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Parametric subharmonic instability of inertial
shear at ocean fronts
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The two-dimensional stability of vertically sheared inertial oscillations at ocean fronts is
explored through a linear stability analysis and nonlinear simulations. Baroclinic effects
reduce the minimum frequency of inertia-gravity waves to an extent determined by
the balanced Richardson number Ri of the front. Below a critical value of Ri, which
depends on the strength of the inertial shear, the inertial oscillations become unstable to
parametric subharmonic instability (PSI) resulting in growing perturbations that oscillate
at half the inertial frequency f . Since the critical value is always greater than 1, PSI can
occur at fronts stable to symmetric instability. Although modest in weak inertial shear,
growth rates exceeding f /2 can be achieved for inertial shear greater than or equal to
the thermal wind shear. Our formulation allows for non-hydrostatic perturbations and can
be applied to initially unstratified geostrophic adjustment problems. We find that PSI will
almost totally damp the transient oscillations that arise during geostrophic adjustment. The
perturbations gain energy at the expense of the inertial oscillations through ageostrophic
shear production. The perturbations then themselves become unstable to secondary
Kelvin–Helmholtz instabilities creating a pathway by which the inertial oscillations can
be dissipated rapidly. In contrast to symmetric and baroclinic instabilities that draw on a
front’s kinetic or potential energy, PSI acts to increase the energy stored in the balanced
front as the convergence and divergence of the eddy-momentum fluxes set up a secondary
circulation in the sense to stand up the front.

Key words: baroclinic flows, waves in rotating fluids, parametric instability

1. Introduction

Unbalanced motions are a prevalent feature of the upper ocean driven by unrelenting
atmospheric forcing, most notably in the form of wind stresses and surface heat fluxes.

† Email address for correspondence: hilditch@stanford.edu

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 966 A34-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

45
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:hilditch@stanford.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.452&domain=pdf
https://doi.org/10.1017/jfm.2023.452


J. Hilditch and L.N. Thomas

These motions often take the form of near-inertial oscillations, horizontal motions that
oscillate at or near the inertial frequency f = 2Ω sin λ where Ω is the angular velocity
of the Earth, and λ is the latitude. In addition, atmospheric forcing can give rise to a
slew of dynamic instabilities especially in the submesoscale regime, characterised by
Rossby numbers, the ratio of relative to planetary vorticity, and balanced Richardson
numbers, the square of the ratio of buoyancy frequency to geostrophic shear, of order unity
(Thomas, Tandon & Mahadevan 2008; McWilliams 2016). Submesoscale instabilities can
be categorised broadly by the structure of the perturbations and their energy source.

At fronts, wind-induced frictional forces or diabatic cooling (Thomas 2005) can drive
a change in sign of the Ertel potential vorticity (PV) q, such that fq < 0, resulting in
symmetric instability (SI) (Hoskins 1974). SI and the extended family of inertia-symmetric
instabilities that form in stably stratified flows are primarily shear instabilities that draw
from a reservoir of kinetic energy. For pure SI, kinetic energy is extracted through
geostrophic shear production from the ‘thermal wind’ that balances the lateral buoyancy
gradients that define fronts (Thomas et al. 2013). SI is characterised by two-dimensional
(2-D) overturning cells, aligned with isopycnals and invariant in the along-front direction.
Alternatively, fronts stable to this class of instabilities may undergo a baroclinic instability
(Stone 1966, 1970; Boccaletti, Ferrari & Fox-Kemper 2007). Baroclinic instabilities
draw from the reservoir of potential energy stored in the lateral density gradient. These
instabilities are a major contributor to the rich field of eddies that are found in the
submesoscale regime (Callies et al. 2016). Both classes of submesoscale instability are
associated with ageostrophic circulations that not only restratify the upper ocean but also
transport heat, momentum, and biogeochemically important tracers between the air–sea
interface and interior ocean.

In this paper, we describe a different submesoscale instability that occurs at unbalanced
fronts. It is closely related to SI but draws from the kinetic energy of the unbalanced
motions rather than the geostrophic flow. We extend the analysis of Thomas & Taylor
(2014), henceforth referred to as T&T, which introduced a new damping mechanism on
vertically sheared inertial oscillations at fronts, namely parametric subharmonic instability
(PSI). As with SI, baroclinic effects are the underlying driver of this instability. Lateral
buoyancy gradients reduce the minimum frequency of inertia-gravity waves and increase
the perturbation slope at which the minimum is achieved (Whitt & Thomas 2013). T&T
found that at fronts with a sufficiently small balanced Richardson number, such that the
minimum frequency of inertia-gravity waves is less than f /2, vertically sheared inertial
oscillations are unstable to PSI. Importantly, PSI can occur when fq ≥ 0, thus the presence
of unbalanced motions at fronts extends the region of instability.

The analytical results of T&T focused on along-isopycnal perturbations that, in
the hydrostatic limit and under the assumption of weak inertial shear, correspond to
inertia-gravity waves with the lowest frequency since they do not create a buoyancy
anomaly. They are therefore the most unstable modes near the critical value of the balanced
Richardson number. Here, we derive a formulation of the linear stability analysis that
does not require this restriction, nor does it require that the perturbations be in hydrostatic
balance. In doing so, we extend the parameter space to which these results are applicable.

In particular, relaxing the hydrostatic constraint allows us to consider fronts that are
instantaneously unstratified and thus capture a range of geostrophic adjustment problems.
The prototypical example of this is a lateral buoyancy gradient following a storm where
buoyancy and momentum are well mixed in the vertical. The resulting flow consists of
transient sheared inertial oscillations about a steady equilibrium state (Tandon & Garrett
1994). The equilibrium state is partially restratified but unstable to mixed-layer instability,
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z z̃

y, ỹ

Figure 1. Schematic of the background flow and coordinate systems for Ri = 4/3, δ = 3/4, Γ = 10 when ft =
π/2. Isopycnals are contoured in black, isolines of absolute momentum in grey, and the across- and along-front
velocities are indicated in red and blue, respectively.

a type of baroclinic instability, that restratifies the front further (Fox-Kemper, Ferrari &
Hallberg 2008). However, we are interested in the damping of the transient oscillations.
Viscous effects are always active in dampening the unbalanced flow, and at finite-width
fronts, the inertial oscillations may propagate away. Here, we show that the inertial
oscillations are additionally unstable to PSI, leading to a potentially more rapid dampening
of the transient flow.

Here, we consider the stability of an idealised model of inertial shear at an infinite
uniform front. We begin, in § 2, by deriving governing equations for the perturbations in
a coordinate system advected with the isopycnals. With a plane wave assumption, these
are reduced to a pair of coupled ordinary differential equations in time, which we solve
numerically to find the Floquet exponents and periodic eigenfunctions. In § 3, we introduce
a 2-D nonlinear numerical model and compare the predictions of the linear theory to
numerical simulations. The nonlinear evolution of the simulations once the perturbations
reach finite amplitude, including the onset of secondary Kelvin–Helmholtz instabilities
and the damping of the inertial shear, is described in § 4. Then in § 5, we consider the final
state of the simulations once the flow has restabilised, and the changes to the balanced
front induced by the instabilities. Finally, we provide conclusions and discussion in § 6.

2. Linear stability analysis

2.1. Background state
We use the same background state as T&T, an infinite front under a sheared inertial
oscillation (figure 1). The front has constant horizontal buoyancy gradient −∂B/∂y = S2,
which is balanced by geostrophic shear. The inertial shear is also spatially uniform, and the
resulting background flow is an exact solution to the Boussinesq equations on an f -plane.
The horizontal velocities and stratification ∂B/∂z = N2 are given by

U = S2

f
(1 − δ Ri cos( ft)) z, (2.1a)

V = δ Ri
S2

f
sin( ft) z, (2.1b)

N2 = N2
0(1 − δ cos( ft)). (2.1c)
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There is no vertical velocity, and the pressure is hydrostatic. The balanced Richardson
number of the front is

Ri := N2
0 f 2

S4 , (2.2)

and δ is a scaling factor that determines the strength of the inertial shear. Unlike T&T, who
included the initial phase of the inertial oscillation as a free parameter, we prefer to express
the problem in terms of the balanced, or mean, state, and have chosen a particular phase
with the stratification initially minimal. This phase choice is ideal for studying the ‘classic
geostrophic adjustment problem’ of Tandon & Garrett (1994). However, the stability of
this set-up is independent of the choice of initial phase.

While the stratification varies as isopycnals are sheared by the ageostrophic flow, the PV

q := ( f ẑ + ∇ ∧ u
) · (∇b) = fN2 − S2 ∂U

∂z
= fN2

0 − S4

f
(2.3)

is conserved. Here and in § 2.2, u = (u, v, w) is the velocity, b is the buoyancy, ∇ =
(∂/∂x, ∂/∂y, ∂/∂z) is the gradient operator, and ∧ indicates a cross-product. In the absence
of inertial shear, the minimum frequency for hydrostatic inertia-gravity waves is given by

ωmin =
√

fq

N2
0

= f
√

1 − Ri−1 (2.4)

(Whitt & Thomas 2013). For weak ageostrophic shear, we expect – and T&T found – that
the flow is unstable to PSI when ωmin < 1

2 f , Ri < 4
3 , and unstable to SI when ω2

min < 0,
Ri < 1. Here, we extend the analysis of T&T to include not only arbitrary perturbations,
but a larger range of parameter space where non-hydrostatic effects will become important.
In particular, we consider stronger inertial shears applicable to geostrophic adjustment.
Two special cases of geostrophic adjustment are δ = Ri−1 and δ = 1. These correspond
to initial conditions with well-mixed momentum and buoyancy, respectively. Their
intersection Ri = δ = 1 corresponds to the ‘classic geostrophic adjustment problem’.

2.2. Governing equations in an advected coordinate system
Our governing equations are the non-hydrostatic, inviscid, adiabatic, Boussinesq equations
on an f -plane:

Du
Dt

+ f ẑ ∧ u + ∇p − bẑ = 0, (2.5a)

Db
Dt

= 0, (2.5b)

∇ · u = 0. (2.5c)

We, like T&T, will consider only perturbations with across-front variability, thereby
effectively precluding baroclinic instabilities. We explicitly set the x derivatives to zero,
but retain all three components of the velocity. The material derivative is D/Dt = ∂/∂t +
v∂/∂y + w∂/∂z and p is the pressure divided by the Boussinesq reference density.

In this 2-D inviscid adiabatic set-up, both the buoyancy and along-front momentum
equations can be written in conservative form. We define the absolute momentum
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M = u − fy, and write the along-front momentum equation as DM/Dt = 0. The absence
of along-front derivatives reduces the PV to the Jacobian of b and M, q = J(b, M) =
|∂(b, M)/∂( y, z)|, and its conservation follows from the conservation of b and M. The
absolute momentum of the background flow is U − fy = f −1S2(1 − δ Ri cos ft)z − fy, and
the background buoyancy is B = B0 − S2y + N2

0(1 − δ cos ft)z. This motivates a new
non-dimensional coordinate system advected with the isopycnals, which we denote by
tildes (figure 1). Define

ỹ := 1
L

(
y − N2

0
S2 (1 − δ cos ft)z

)
, (2.6)

where L is, at this point, an arbitrary horizontal length scale. Defining the front strength

Γ := S2

f 2 , (2.7)

which may take either sign but from here on will be assumed to be positive, the background
buoyancy is B = B0 − f 2Γ Lỹ. We use f to non-dimensionalise time, t̃ := ft, and the
horizontal across-isopycnal velocity in the advected coordinate system is given by

ṽ := 1
f

Dỹ
Dt

= v

fL
− N2

0
S2

(
δ sin ft

z
L

+ (1 − δ cos ft)
w
fL

)
= v − V

fL
− N2

0
S2 (1 − δ cos ft)

w
fL

,

(2.8)

where the inertial oscillations of the background flow drop out naturally. Identifying a
frequently appearing aspect ratio

γ := S2

N2
0

= Γ −1Ri−1 (2.9)

defined by the balanced isopycnal slope, the natural along-isopycnal coordinate is
z̃ := z/γ L, with corresponding velocity w̃ := f −1 Dz̃/Dt = w/γ fL. Finally, we define
non-dimensional along-front momentum, buoyancy and pressure perturbations: ũ := (u −
U)/fL, b̃ := (b − B)/f 2Γ L, p̃ := ( p − P)/f 2L2, where P = P0 + (B0 − S2y)z + N2

0z2/2
is the background pressure. Under these transformations, the governing equations become

Dũ
Dt̃

− ṽ + (Ri−1 − 1)w̃ = 0, (2.10a)

Dṽ

Dt̃
+ (1 − δ cos t̃)

Dw̃
Dt̃

+ ũ + ∂ p̃
∂ ỹ

+ 2δ sin t̃w̃ = 0, (2.10b)

γ 2 Dw̃
Dt̃

+ ∂ p̃
∂ z̃

− (1 − δ cos t̃)
∂ p̃
∂ ỹ

− Ri−1 b̃ = 0, (2.10c)

Db̃
Dt̃

− ṽ = 0, (2.10d)

∂ṽ

∂ ỹ
+ ∂w̃

∂ z̃
= 0, (2.10e)

where D/Dt̃ = ∂/∂ t̃ + ṽ ∂/∂ ỹ + w̃ ∂/∂ z̃ is the material derivative in the advected
coordinate system.
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In this coordinate system, the total buoyancy and absolute momentum take on very
simple forms with constant uniform background gradients. The total buoyancy is given
by b̃ − ỹ, and the absolute momentum transforms to M̃ = ũ − ỹ + (Ri−1 − 1)z̃, where
the inertial variability has been absorbed into the coordinate definition. Furthermore, the
governing equations for the perturbations are independent of the new spatial coordinates.

The stability problem is described by three non-dimensional parameters: the balanced
Richardson number Ri, the strength of the inertial shear δ, and implicitly the front strength
Γ through the aspect ratio γ . Note that we are considering parameter ranges with Ri =
O(1), hence γ ∼ Γ −1. However, γ and hence Γ influence the solutions only through the
non-hydrostatic acceleration, so we expect the solutions to have negligible dependence on
Γ in large parts of parameter space.

2.3. Plane wave solution
In this coordinate system, we look for plane wave solutions

[
ũ, ṽ, w̃, b̃, p̃

]T =
[
û(t), v̂(t), ŵ(t), b̂(t), p̂(t)

]T
exp(i(ỹ − α0z̃)) + c.c., (2.11)

where we have dropped the tilde on t for convenience, and taken the horizontal
wavenumber to be 1. This fixes a choice for the previously arbitrary length scale L, which
we assume implicitly is large enough to justify the inviscid adiabatic assumption.

Defining α(t) = 1 + α0 − δ cos t and using the continuity equation to eliminate v̂, we
have

dû
dt

− (1 + α0 − Ri−1)ŵ = 0, (2.12a)

α(t)
dŵ
dt

+ û + ip̂ + 2δ sin tŵ = 0, (2.12b)

γ 2 dŵ
dt

− i α(t) p̂ − Ri−1 b̂ = 0, (2.12c)

db̂
dt

− α0ŵ = 0. (2.12d)

Multiplying (2.12b) by α(t), adding (2.12c), and defining the along-isopycnal displacement
amplitude ζ such that dζ/dt = ŵ, b̂ = α0ζ and û = (1 + α0 − Ri−1)ζ , reduces these
equations to

d
dt

[(
α(t)2 + γ 2

)
ŵ
]

=
(
α0 Ri−1 − (1 + α0 − Ri−1) α(t)

)
ζ. (2.13)

Finally defining Ψ = (α(t)2 + γ 2)ŵ, we arrive at a pair of coupled ordinary differential
equations:

dΨ

dt
=
(
α0 Ri−1 − (1 + α0 − Ri−1) α(t)

)
ζ, (2.14a)

dζ

dt
=
(
α(t)2 + γ 2

)−1
Ψ. (2.14b)
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Figure 2. Plots of (a) growth rate σ , and (b) α0, for the most unstable solutions for Γ = 10. Black contours
bound the region where the imaginary parts of the Floquet exponents were 1/2, indicating PSI. Grey dashed
lines indicate the special cases δ = Ri−1 and δ = 1. Black stars, labelled in (b) by simulation number, indicate
the initial conditions of simulations SIM01–13.

The coefficients of (2.14) are periodic and time reversible. We can therefore use Floquet
theory to write any given solution as

[
Ψ (t)
ζ(t)

]
= A eμt

[
Ψ1(t)
ζ1(t)

]
+ B e−μt

[
Ψ2(t)
ζ2(t)

]
(2.15)

for some A and B, where Ψ1, ζ1, Ψ2 and ζ2 are periodic eigenfunctions (Floquet 1883).
By integrating forwards two linearly independent initial conditions, we find the Floquet
exponents (μ, −μ), with Im(μ) ∈ (−1/2, 1/2], and corresponding eigenfunctions (see
Appendix A for details). Note that we do not consider the degenerate cases with μ =
−μ, which may be avoided by the inclusion of viscosity. The system (2.14) displays a
further symmetry under complex conjugation, denoted by superscript ∗, therefore we must
have μ∗ = μ or μ∗ = −μ. The latter implies purely imaginary Floquet exponents and
corresponds to stable wavelike solutions. The former can be split into two cases where
without loss of generality we take Re(μ) > 0. First, for μ real, we have one decaying and
one growing solution. This is the case that includes SI. Second, since the imaginary part
of the Floquet exponent is defined modulo 1, we can have μ ∈ {a + 1/2i | a ∈ R, a > 0}.
This growing oscillatory behaviour at the subharmonic frequency characterises PSI and
allows us to distinguish between PSI modes and SI modes (figure 2). In all cases, we
define the growth rate σ = Re(μ).

2.4. Physical interpretation
In physical space, the structure of the perturbations is exp(i( y − γ −1 α(t) z)/L), and their
slope is γ α(t)−1. The horizontal wavenumber is fixed, but the vertical wavenumber varies
sinusoidally. This observation allows us to interpret the system of (2.14) as a coupling
between the along-front vorticity and the thermal wind imbalance. Multiplying (2.13) by
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iγ −2, we have

d
dt

[
−
(
γ −2 α(t)2 + 1

) ŵ
i

]
= γ −1

(
iγ −1 Ri−1 α0 − iγ −1 α(t) (1 + α0 − Ri−1)

)
ζ.

(2.16a)

Then introducing a streamfunction φ̃ = φ̂ exp(i(ỹ − α0z̃)) + c.c., such that ŵ = iφ̂, and
rewriting the right-hand side in terms of û and b̂, we get

d
dt

[
−
(

1 + γ −2 α(t)2
)

φ̂
]

= γ −1
(

iΓ b̂ − iγ −1 α(t) û
)

. (2.16b)

Unwrapping our coordinate transformation, we interpret this equation as the creation of
along-front vorticity φyy + φzz by the thermal wind imbalance f −1by + uz (Thomas, Lee
& Yoshikawa 2010).

2.5. Growth rate and perturbation slope
The region of instability for PSI extends out from the critical value 4/3 of the balanced
Richardson number in the limit of vanishing inertial shear (figure 2). As δ increases, so
does the critical value of Ri, denoted Ric(δ), for which the flow is unstable to PSI. For
balanced Richardson numbers smaller than Ric, the flow is unstable. The fastest growing
modes are PSI modes if Ri � 1, and SI modes if Ri is smaller. Note that there is a small
region with Ri < 1 where PSI modes grow faster than SI modes. The growth rate σ in
the PSI regime depends strongly on the strength of the inertial shear δ, weakly on the
balanced Richardson number Ri, and negligibly on Γ unless δ ≈ 1. The growth rate of SI,
on the other hand, increases rapidly with Ri−1, but also increases with increasing δ. In the
absence of inertial shear, the growth rate of SI is given by

σSI =
√

Ri−1 − 1 (2.17)

for Ri < 1. In weak inertial shear, the growth rates of PSI are modest. However, in
strong inertial shear, of order the thermal wind shear, δ = Ri−1, growth rates σ ≈ 1/2
are achievable. For context, σSI = 1/2 when Ri = 4/5. Increasing δ further increases the
growth rate. The physically realisable limit for inertial shear is δ ≈ 1, after which the front
periodically becomes negatively stratified with the inertial oscillations advecting dense
water over light. In this part of parameter space, we find O(1) growth rates that depend on
Γ (figure 3).

The free parameter α0 defines the slope of perturbations in the advected coordinate
system. Here, α0 = 0 describes an along-isopycnal perturbation, and consequently both ṽ

and b̃ are zero. Also, α0 > 0 describes perturbations that are shallower than the isopycnal
slope, and α0 < 0 describes perturbations that are steeper. Isolines of absolute momentum
are given by α0 = Ri−1 − 1. As Ri−1 increases, so does α0. There is a transition across
which the solution changes from being almost exactly along-isopycnal, |α0| � 1, to
shallower than isopycnals, α0 ≈ 1. In weak inertial shear, δ � 1, this is explained by the
requirement for the solutions to have frequency f /2. As Ri−1 increases, the minimum
frequency – that is, the frequency of along-isopycnal perturbations – decreases, and in
order to obtain the required phasing, the solutions must be increasingly off-isopycnal.
As δ increases and the solution amplitudes are deformed from perfect sinusoids, the
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Figure 3. Growth rate σ and α0 for the special cases (a,b) δ = Ri−1, (c,d) δ = 1, and (e, f ) δ = Ri = 1 as
functions of Γ .

fastest growing modes become more along-isopycnal. For shallow slopes |α(t)| � γ , the
hydrostatic approximation is valid and the problem becomes independent of the front
strength Γ . PSI in weak inertial shear is well described by the hydrostatic regime for Γ �
1, N0 � f /2. In this region of parameter space, the growth rate should be independent of
Γ . It was this regime that was considered in T&T. However, for stronger inertial shear and
the initially unstratified geostrophic adjustment problem (δ = 1), non-hydrostatic effects
can be important, with the front strength playing a role in setting the growth rate. The
dependence on Γ for the two special cases δ = Ri−1 and δ = 1 is explored in figure 3.
We find that in the former, there is little dependence on Γ unless Ri−1 = δ ≈ 1. This is
because the fastest growing modes occur for α0 ≈ 0 and hence the condition for α(t) ≈ γ

is that δ ≈ 1.
More interesting is the case δ = 1, where the background state periodically becomes

instantaneously unstratified. Here, the growth rates of the fastest growing modes with
α0 ≈ 0 grow with increasing Γ and are not well described by the hydrostatic assumption.
However, the classic geostrophic adjustment problem with Ri = δ = 1 is the exception,
as α0 = 0 is stable. When Ri = 1, the coefficient in (2.14a) is proportional to α0.
Consequently, as Γ → ∞, α0 takes on a finite value with γ � α0, and the growth rate
asymptotes. The asymptotic value is 1/2 and is achieved approximately for Γ > 100,
values which are typical of observed ocean fronts (e.g. Sarkar et al. 2016). However, large
buoyancy gradients occur, in general, only at narrow fronts or low latitudes, hence our
uniform, f -plane front model may be a poor approximation.

Finally, for small Ri−1, we find an instability with growth rates comparable to PSI.
In addition to PSI, it is possible to excite solutions corresponding to higher harmonics
of the subharmonic, that is, solutions with frequency nf /2. Most of the unstable region
at small Ri−1 below the PSI regime in figure 2 corresponds to the excitation of inertial
solutions or more precisely solutions where the Floquet exponents are real and the periodic
eigenfunctions have two zero crossings. Note that at fronts where the minimum frequency
is subinertial, there are two inertial characteristics, one horizontal and one steep, and here
we are exciting a solution along the steep characteristic. Unlike PSI, the excitation of the
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Figure 4. Relative contributions to the growth in perturbation kinetic energy from (a) geostrophic shear
production (GSP), (b) ageostrophic shear production (AGSP), and (c) buoyancy fluxes (BF), over one inertial
period for Γ = 10. The boundary between PSI and non-PSI modes is denoted by black contours determined by
the imaginary part of the Floquet exponents. The special cases of geostrophic adjustment δ = Ri−1 and δ = 1
are denoted by grey dashed lines.

higher harmonics occurs only at strictly finite δ. Furthermore, the regions of instability, as
a function of α0, are relatively narrow, and the steeper perturbations are more susceptible
to viscous damping, a claim justified by the analysis presented in § 3.3. Therefore, we
prefer to focus on the PSI and SI modes.

2.6. Energetics of the linear solutions
Both PSI and SI are primarily shear instabilities in that they grow by extracting energy
from the background flow through shear production. However, considering even the
simplest case of along-isopycnal perturbations, the energy source is different. We define
the phase-averaged perturbation kinetic energy as

Ek̂ := |û|2 + |v̂ + (1 − δ cos t)ŵ|2 + γ 2|ŵ|2, (2.18a)

which satisfies the evolution equation

1
2

dEk̂
dt

= −Ri−1|ûŵ∗|︸ ︷︷ ︸
GSP

+ δ cos t|ûŵ∗| − δ sin t |(v̂ + (1 − δ cos t)ŵ)ŵ∗|︸ ︷︷ ︸
AGSP

+ Ri−1|ŵb̂∗|︸ ︷︷ ︸
BF

.

(2.18b)

We identify three different production terms: the geostrophic shear production (GSP),
the ageostrophic shear production (AGSP), and the buoyancy flux (BF). The relative
contributions of these three terms to the change in perturbation kinetic energy over an
inertial period was calculated to identify the dominant sources of perturbation kinetic
energy (figure 4). PSI grows by extracting energy from the ageostrophic shear, whereas
SI, which can be active in the absence of ageostrophic shear, extracts its energy primarily
from the geostrophic shear. However, SI will also access the ageostrophic shear, and as the
ageostrophic shear increases, it accounts for a larger fraction of the total. By contrast, the
fastest growing PSI modes have negative GSP. PSI modes are very efficient at extracting
energy from the ageostrophic shear, although the off-isopycnal modes supplement the
AGSP with a buoyancy flux and thus extract potential energy from the background state.
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Parametric subharmonic instability at ocean fronts

The time dependence of the background flow and growing solutions result in an
interesting phase dependence in energetics. This phasing also depends on the strength
of the inertial shear. In very weak inertial shear, we can build intuition by considering
the PSI modes as inertia-gravity waves with frequency 1/2. Note that this argument can
be formalised with the method of multiple scales by introducing a slow time scale δ−1t.
The inertia-gravity waves are propagating across-front, hence ṽ and w̃ are in phase and in
quadrature with ũ and b̃. Therefore, |ûŵ∗| and |ŵb̂∗| integrate to zero over the course
of an inertial period, and the only term that contributes to the growth is the second
term in the ageostrophic shear production. Consider an along-isopycnal mode such that
ṽ = 0. In this case, the change in perturbation kinetic energy over an inertial period is

Ek̂ = −2δ

∫
sin t |ŵ|2 dt. The optimal phasing for growth is ŵ ∼ cos(t/2 + π/4), and

the growth is maximal when t = 3π/2. We find that as the inertial shear is increased, the
phase of the maximum growth shifts later in the inertial period towards the phase when
the stratification is weakest. We can draw an analogy to SI in the presence of inertial shear
where shear production is enhanced during the phases when the stratification is weakening
(Thomas et al. 2016; Wienkers, Thomas & Taylor 2021b).

3. Numerical simulations

We use 2-D nonlinear simulations to verify the findings of the preceding linear
stability analysis and explore the decay of the inertial shear. The simulations were
run with DIABLO, a non-hydrostatic hydrodynamics code (Taylor 2008). DIABLO
solves the Boussinesq equations on an f -plane, employing a uniform staggered grid
with second-order finite differences in the vertical, and a collocated pseudo-spectral
method in the periodic horizontal direction(s). The equations are stepped forward using
a third-order-accurate implicit–explicit scheme with an adaptive time step.

3.1. Simulation design
To simulate a front, we utilise the ‘frontal zone’ set-up, as in Taylor & Ferrari (2009),
where the simulation is made periodic by subtracting a uniform horizontal buoyancy
gradient and the corresponding geostrophic shear. We solve for the ageostrophic flow,
including terms in the governing equations that capture the advection of the subtracted
geostrophic momentum and buoyancy. We neglect the along-front variations running
2-D simulations with sufficient resolution to resolve secondary Kelvin–Helmholtz (KH)
instabilities. We use a small viscosity ν so as not to damp the inertial oscillations before
the PSI modes have a chance to develop. However, in the simulations that we ran with
Laplacian viscosity (not shown), we found that this damping is insufficient to avoid a
pile-up of energy at the grid scale at certain times during the simulations, hence we choose
to employ a hyper-viscosity for the horizontal damping. It should be noted that we find the
results presented here to be insensitive to the choice of horizontal damping, under resolved
Laplacian versus hyper-viscosity.

Unfortunately, DIABLO requires a new non-dimensionalisation. We use the domain
half-height H, the geostrophic shear f Γ , and the corresponding advective velocity
scale f Γ H, to non-dimensionalise lengths, time and velocities. The buoyancy is
non-dimensionalised by N2

0H = f 2Γ 2RiH. From here on, unless explicitly stated,
it should be assumed that all derivations and calculations are with respect to
this non-dimensionalisation. Importantly, the parameters Ri and Γ are exactly as
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defined before. The model solves the following equations:

∂u
∂t

+ u · ∇u + wx̂ + 1
Γ

ẑ ∧ u + ∇p − Ri bẑ = Ek
Γ

[
∂2

∂z2 − νH
∂4

∂y4

]
u, (3.1a)

∂b
∂t

+ u · ∇b − 1
Ri Γ

v = Ek
Γ

[
∂2

∂z2 − νH
∂4

∂y4

]
b, (3.1b)

∇ · u = 0. (3.1c)

The initial conditions are given by

u = −δ0 Ri z, v = 0, w = 0, b = (1 − δ0)z, (3.2)

plus white noise of amplitude 10−4 in the velocity fields, which are then projected onto a
divergence-free subspace. These initial conditions correspond exactly to the background
state (2.1) with δ = δ0. The top (z = 1) and bottom (z = −1) boundary conditions relax
the solution to the balanced state:

∂u
∂z

= ∂v

∂z
= 0, w = 0,

∂b
∂z

= 1. (3.3)

These boundary conditions are designed to minimise the drag on the inertial oscillations
due to the boundaries. We use a fixed Ekman number Ek := ν/( fH2) = 10−3, with the
exception of SIM15, and the resulting decay of the inertial oscillations at the start of
the simulations is small. The horizontal damping utilises a hyper-viscosity to effectively
dissipate the energy at the smallest scales. The hyper-viscosity was adjusted manually, and
a scaling factor νH = 4(LY/NY)4/(LZ/NZ)2 was found to work in all cases. Here, LY is
the non-dimensional domain width, and LZ = 2 is the non-dimensional domain height.
Also, NY is the number of grid points in the horizontal – however, in order to dealias
the quadratic nonlinearities, the spectral resolution is �NY/3� Fourier modes; NZ is the
number of grid points in the vertical.

3.2. Validation of the linear theory
We conducted a coarse sweep of parameter space involving 13 simulations (SIM01–13
in table 1, black stars in figure 2). However, here we focus on results from a single
simulation, SIM07. For these parameter values, Ri−1 = δ = 0.75, the linear theory
predicts approximately along-isopycnal PSI modes with dimensional growth rate 0.37f .
The simulation captures the exponential growth of PSI shear bands and the tilting of the
isopycnals by the background flow as well as the onset of secondary instability at around 13
inertial periods (figure 5). Qualitatively, the linear theory holds and we observe the growth
of large horizontal wavelength PSI modes that are slightly shallower than the isopycnals.
However, the slopes of the perturbations are too shallow compared to those predicted by
the linear theory, and we can also see some features of the solution associated with the
boundary conditions that are not considered in the linear theory. Most notably, the vertical
velocity is required to vanish at the top and bottom boundaries, and there is some evidence
of reflected perturbations (e.g. figure 5a).

To study and quantify properties of the PSI modes, in particular the theoretical
predictions for the growth rate and perturbation slope, we decompose the ageostrophic
fields into a lateral mean, the inertial oscillations denoted by overbars (e.g. u), and
perturbations from that mean denoted by primes (u′). Plotting the perturbation kinetic
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Parametric subharmonic instability at ocean fronts

Simulation LY Ri−1 δ0 δ(sim) σ (lin) σ (sim) α
(lin)
0 α

(sim)
0

SIM01 80 0.5 0.5 — 0.110 — −0.340 —
SIM02 80 0.5 0.75 — 0.254 — −0.002 —
SIM03 80 0.5 1 0.80 0.765 0.34 −0.001 −0.51
SIM04 64 0.625 0.625 — 0.241 0.05 −0.001 —
SIM05 64 0.625 1 1.08 0.773 0.30 0.014 0.11
SIM06 53.3 0.75 0.5 0.37 0.206 0.08 0.001 0.30
SIM07 53.3 0.75 0.75 0.70 0.367 0.18 0.003 0.30
SIM08 53.3 0.75 1 0.95 0.764 0.33 0.027 0.27
SIM09 45.7 0.875 0.875 0.82 0.471 0.25 0.017 0.39
SIM10 45.7 0.875 1 0.95 0.707 0.32 0.042 0.34
SIM11 40 1 0.5 — 0.133 0.05 0.870 —
SIM12 40 1 0.75 0.63 0.224 0.12 0.671 0.75
SIM13 40 1 1 0.98 0.416 0.24 0.241 0.55
SIM14 42.7 0.75 0.75 0.68 0.367 0.18 0.003 0.31
SIM15 53.3 0.75 0.75 0.74 0.367 0.23 0.003 0.20
SIM16 80 1 0.5 0.32 0.133 0.07 0.870 1.07
SIM17 80 1 0.75 0.64 0.224 0.13 0.671 0.77
SIM18 80 1 1 0.97 0.416 0.24 0.241 0.53

Table 1. Predicted and observed growth rates, σ and α0 values, for a coarse sweep of parameter space with
Γ = 10. Superscript (lin) and (sim) denote values from the linear theory, using δ = δ0, and the simulations,
respectively. All simulations were run for 20 inertial periods with NZ = 481, NY = 8192 and Ek = 10−3, with
the exception of SIM15. In SIM15, Ek = 5 × 10−4, NZ = 993 and NY = 16384 were used. This simulation was
stopped after 6.5 inertial periods, which was sufficient to determine the growth rate and α0. For simulations
SIM01–13, the width of the domain was LY = 4Γ Ri. The simulation growth rate was inferred from the
perturbation kinetic energy, and α0, δ from a fit to the perturbation slope as described in § 3.2. Missing values
are from simulations in which perturbations did not grow or grew too slowly to allow for a good fit.

energy Ek,p := 1
2

〈
u′ · u′〉 where 〈·〉 denotes a domain average, as a function of time

(figure 6a), we determine the growth rate of the perturbations to be 0.18f , approximately
half of the theoretical value. The growth rates across all the simulations were significantly,
but not uniformly, reduced from the theoretical prediction (table 1). Nonetheless, in strong
inertial shear, growth rates of f /3 were achieved.

The linear theory also predicts the slope of the perturbations to be γ α(t)−1, where in
non-dimensional simulation time, α(t) = 1 + α0 − δ cos(t/Γ ). The aim of the following
analysis is to extract the value of α0 that best describes the perturbations in each simulation
before finite-amplitude effects play a significant role in the dynamics.

We wish to find the slopes of the lines of constant phase, therefore we consider spatial
autocorrelations of the along-front, u′, and across-front, v′, perturbation velocities. We first
calculate the autocorrelations, e.g. Ru′ , as a function of the displacement r := (
y, 
z):

Ru′(r) := 1〈
u′2〉 1

|S(r)|
∑
S(r)

u′( y1, z1) u′( y2, z2), (3.4a)

S(r) := {y1, y2, z1, z2 | y2 − y1 ≡ 
y mod NY, z2 − z1 = 
z}, (3.4b)

where S(r) is the set of all pairs of points in the domain separated by r, accounting for
the periodicity in y. Here, |S(r)| is the size of the set, which depends on the vertical
displacement 
z. Next, we bin these autocorrelations according to the angle of the
displacement vector. Defining θ := tan−1(γ 
y/
z), we create 200 uniformly spaced bins
over the range 0 < θ ≤ π. Note that the autocorrelations are symmetric under r → −r,
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Figure 5. Sections of the across-front shear vz ( f Γ ) from SIM07. The colour scale is a symmetric log scale,
linear between ±0.1, that captures the exponential growth in the amplitude of the PSI modes. Contours of the
total buoyancy are overlaid in black with spacing 0.4f 2Γ 2 Ri H.

allowing us to limit the range of θ . Then we define ρu′(θ) by taking the mean of Ru′(r),
weighted by |S(r)|, for each bin. This gives us the autocorrelation as a function of the
displacement angle θ , and therefore α since α = cot θ .

We use the θ that maximises ρu′(θ) to infer the dominant perturbation slope. We plot
both 1 − ρu′ , which we can interpret as the fraction of variance unexplained (FVU) by the
assumption that the perturbations are perfectly correlated along the given slope, and the
α value at the maxima, αu′ , as a function of time (figure 6c). We see that the predicted
sinusoidal time dependence of α is realised, but with periodic outliers. These outliers
are coincident with times when the FVU is large, and occur when the amplitude of the
dominant PSI mode is approximately zero. We calculate αv′ in the same way; it displays
similar behaviour, but the outliers occur at a different inertial phase, which is to be
expected as u′ and v′ should not be in phase.
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Figure 6. Evolution of (a) the perturbation kinetic energy, and (c) the dominant perturbation slope for
simulation SIM07. The plot in (a) is a semilog plot of the perturbation kinetic energy, with a linear fit in
log space overlaid in dashed red. The theoretical inviscid growth rate is indicated by the blue dashed line. We
identify the dominant slope of the perturbations by considering the autocorrelation of u′ (red) and v′ (blue) as
a function of displacement angle, or equivalently α, and then fit the expected form α = 1 + α0 − δ cos(t/Γ ),
as described in § 3.2. The fraction of variance unexplained (FVU, which is 1 − ρ) for the dominant slope is
plotted in (b), and the inferred α is plotted in (c). The weighted linear least squares fit is overlaid in black.

To extract α0, we do a two-parameter (α0 and δ) linear regression to the expected
form α(t) = 1 + α0 − δ cos(t/Γ ), during the exponentially growing phase. To mitigate
bias from the outliers, we fit αu′ and αv′ together, and weight the fit by 1/(1 − ρu′) and
1/(1 − ρv′) as appropriate. The inferred α0 and δ values for all the simulations where
PSI modes grew sufficiently to dominate the perturbations are listed in table 1 alongside
the predictions from the linear theory. We fit for δ in addition to α0 as the background
inertial oscillations are decaying viscously. Nevertheless, the inferred δ values are close to
their initial values, with the best agreement for the fastest growing modes as the fits were
taken over the shortest intervals and hence there was less opportunity for viscous decay.
The decay of the inertial shear is considered in more detail in § 4.2. Of more interest is the
noticeable discrepancy between the simulations and the theory in the value of α0. With the
exception of SIM03, the observed perturbations are shallower and more across-isopycnal
than the theoretical predictions. Potentially, this has significant consequences for the
energetics of the perturbations as the buoyancy flux will play a larger role than predicted
by the linear theory.
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3.3. Viscosity and geometric constraints
Viscous effects are the most obvious source of the observed discrepancies, and we find that
the inclusion of viscosity in the linear theory, combined with the geometric constraints of
the domain, explains not only the slower growth rates but also the shallower slope of the
fastest growing perturbations. While deriving the viscous theory, we return to the advected
coordinate system and variables defined in § 2.2.

The derivation of (2.14) is largely unchanged by the inclusion of viscosity; we merely
gain a few extra terms. Adding a vertical Laplacian operator ν ∂2/∂z2 to the Boussinesq
momentum and buoyancy equations (assuming Prandtl number 1 as in the simulations),
(2.14) becomes

dΨ

dt
=
(
α0 Ri−1 − (1 + α0 − Ri−1) α(t)

)
ζ − Ekwave α(t)2 Ψ, (3.5a)

dζ

dt
=
(
α(t)2 + γ 2

)−1
Ψ − Ekwave α(t)2 ζ, (3.5b)

where Ekwave = νγ 2l20/f is an Ekman number defined using the horizontal wavenumber,
and ζ is no longer exactly the along-isopycnal displacement but still satisfies û = (1 +
α0 − Ri−1)ζ and b̂ = α0ζ . Here, the dimensional horizontal wavenumber l0 = L−1, which
dropped out of the original derivation, plays an important role in setting the strength
of the damping. While it is intuitive that the damping will reduce the growth rate and
preferentially select larger wavelength perturbations, it is not obvious why the slope of the
perturbations is affected. To explain this, we must also consider geometric constraints.

The finite size of the numerical domain discretises the permitted horizontal wavelengths
and vertical modes. Although the horizontal wavelength influences Ekwave directly, we find
that in our simulations, the vertical constraint is more influential in setting the perturbation
slope. We can see this by comparing simulations SIM14 to SIM07, and simulations
SIM16–18 to SIM11–13. The only differences between these simulations are the domain
widths, and we find the same growth rates and perturbation slopes. However, there are
differences at finite amplitude for the simulations with Ri ≈ 1, which are discussed in
§ 4.3. The vertical constraint necessarily requires a deviation from the linear theory that
considers tilting plane waves that not only fail to satisfy the boundary condition on
the vertical velocity but also have a continuous variation in the vertical wavenumber.
Nonetheless, we can make some inferences about the impact of viscosity by observing that
a common feature of the simulations is that the vertical wavelength, at the inertial phase
when it is maximal, approximately fills the domain. This behaviour is observed frequently
in simulations of SI (e.g. Bachman & Taylor 2014). However, the time dependence of the
vertical wavelength means that we should expect the damping to be stronger than that of
an SI mode with the same Ekman number.

Imposing a constraint on the maximum vertical wavelength λmax, we explore what this
means for the damping coefficient:

mmin = 2π

λmax
= γ l0 α(0) =⇒ γ l0 = π

H(1 + α0 − δ)

2H
λmax

, (3.6)

where in the final expression we have multiplied and divided by H, the domain half-height,
so that we can apply this theory directly to the simulations. Substituting this into the
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Ekeff σ α0

0 0.3674 0.0032
5 × 10−4 0.2937 0.1114
10−3 0.2447 0.1949
2 × 10−3 0.1734 0.3219
5 × 10−3 0.0278 0.5583

Table 2. Growth rates σ and optimal values of α0 for varying effective Ekman numbers in the case
Ri−1 = δ = 0.75 and Γ = 10.
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Figure 7. Real parts of both Floquet exponents as a function of α0 for Ri−1 = δ = 0.75, Γ = 10 and varying
effective Ekman number. The observed growth rates and α0 from simulations SIM07 and SIM15 are included
for comparison.

expression for the time-dependent viscous damping coefficient r(t) := Ekwave α(t)2 gives

r(t) = π2 Ek
(
λmax

2H

)−2
(1 + α0 − δ cos t)2

(1 + α0 − δ)2 = π2 Ek
(
λmax

2H

)−2 [
1 + δ

1 − cos t
1 + α0 − δ

]2

,

(3.7)

where Ek := ν/fH2 is the Ekman number used in the simulations. We see that increasing
α0 reduces the damping, hence we might expect the optimal α0 to be larger than
that predicted by the inviscid theory. We allow for flexibility in the maximum vertical
wavelength, and suggest only that λmax/2H ≈ 1. In particular, we do not require
λmax/2H ≤ 1. Finally, we define the effective Ekman number Ekeff := Ek(λmax/2H)−2.

Armed with this expression for the damping, we can solve the system (3.5) for the
viscous growth rate and optimal α0. These results for Ri−1 = δ = 0.75 and Γ = 10
(SIM07) are shown in table 2 for different Ekeff . Furthermore, we plot curves of the growth
rate against α0 (figure 7). The simulation growth rate and α0 are best described by the
calculation with Ekeff = 2 × 10−3. For Ek = 10−3, as in the simulation, this corresponds
to maximum vertical wavelength

√
2 H. Furthermore, we ran a simulation (SIM15) with

the same parameters as SIM07 except that we reduced the Ekman number by a factor of 2.
We find that the growth rate and α0 match with the calculation for Ekeff = 10−3, which is
also consistent with maximum vertical wavelength

√
2 H. However, the maximum vertical

wavelength does vary across the other simulations in a non-trivial way. Finally, note the
presence of inviscidly unstable modes with α0 < 0 that are stabilised by viscosity. These
modes are the higher harmonics alluded to at the end of § 2.5.
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Figure 8. Evolution of the kinetic energy for (a) SIM07 and (b) SIM13. The inertial and perturbation kinetic
energy are plotted along with the time integrals of the production and sink terms defined in (3.8). (c,d) Rate
of dissipation of the perturbation kinetic energy εp, and the percentage of grid points with gradient Richardson
number Rig, and 2-D gradient Richardson number Rig,2D, less than 1/4. The 2-D gradient Richardson number
considers only the across-front shear, as this is the plane to which the perturbations are constrained.

The inclusion of vertical viscosity combined with geometric constraints on the vertical
wavelength is sufficient to explain the reduced growth rates and shallower slopes observed
in all but one of the unstable simulations. The exception is SIM03, which had parameters
Ri−1 = 0.5, δ0 = 1. In this simulation, the growth rate was again reduced to less than
half of the predicted value, but the observed α0 was, unlike in the other simulations,
reduced. Crucially, both the predicted and observed values of α0 are negative because the
perturbations are steeper than the isopycnals. With δ0 = 1, the flow is initially unstratified
and the isopycnals are periodically vertical. Consequently, the perturbation slope passes
through the vertical and tilts in the opposite direction. This is a more serious departure
from the plane wave theory than the other simulations because in this case the plane
wave theory predicts that the vertical wavelength becomes infinite. It is therefore not
surprising that the plane wave theory does not hold in this case. However, since this is
the only simulation in which the perturbation slope changes sign, we do not explore this
phenomenon further.

3.4. Kinetic energy evolution
From (3.1a), we may construct an equation for the evolution of the domain-averaged
perturbation kinetic energy, Ek,p := 1

2

〈
u′ · u′〉. Derivations of all the simulation energy
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equations are provided in Appendix B. We have

dEk,p

dt
= − 〈u′w′〉︸ ︷︷ ︸

Pg

−
〈
∂u
∂z

· (u′w′)
〉

︸ ︷︷ ︸
Pa

+ Ri
〈
w′b′〉︸ ︷︷ ︸
B

− Ek
Γ

〈
∂u′

∂z
· ∂u′

∂z
+ νH

∂2u′

∂y2 · ∂2u′

∂y2

〉
︸ ︷︷ ︸

εp

.

(3.8a)

We also define an inertial kinetic energy Ek,i := 1
2 〈u · u〉, with evolution equation

dEk,i

dt
=
〈
∂u
∂z

· (u′w′)
〉

︸ ︷︷ ︸
−Pa

− Ek
Γ

〈
∂u
∂z

· ∂u
∂z

〉
︸ ︷︷ ︸

εi

. (3.8b)

We identify the geostrophic shear production Pg through which the perturbations can
extract kinetic energy out of the front, and the ageostrophic shear production Pa that
transfers kinetic energy from the inertial oscillations to the perturbations. We also identify
the buoyancy flux B through which the perturbations may access the potential energy of
the front. Finally, we have two sinks, the rate of dissipation of the inertial oscillations, εi,
and the rate of dissipation of the perturbations, εp.

Plotting the time integral of the terms in these equations for SIM07 reveals that, as
predicted by the linear stability analysis, the primary energy source of the perturbations
is the ageostrophic shear production supplemented by a much weaker positive cumulative
buoyancy flux (figure 8a). However, in SIM13, Ri−1 = δ0 = 1, the buoyancy flux plays a
much greater role (figure 8b). This is consistent with both the predictions of the theory
and the observed shallower, and hence more off-isopycnal, slopes (table 1). Note also
the phasing of the growth in perturbation kinetic energy. It grows during the second half
of each inertial period, when the stratification is decreasing and the ageostrophic shear
production is active, and decays when the ageostrophic shear production shuts down in
the first half of each inertial period. This inertial phasing of the growth is consistent with
the predictions of the linear theory, and very different from the uniform growth found in
exponentially growing instabilities such as SI. The sign of the geostrophic shear production
is perhaps the most important distinction between PSI and SI. We find, as predicted,
that the cumulative geostrophic shear productions in SIM07 and SIM13 are negative.
We confirm this result for the other simulations by plotting the normalised cumulative
kinetic energy sources and sinks after 20 inertial periods (figure 9). The geostrophic shear
production is always negative, but the sign of the buoyancy flux depends on Ri. For small
Ri, the buoyancy flux is positive, and for Ri = 1, it exactly cancels the geostrophic shear
production. This is a prediction of the linear theory: if Ri = 1, then û ≡ b̂, but in § 5.3, we
argue why this must also hold identically in the simulations. As we move to smaller Ri−1,
the buoyancy flux switches sign, and both the geostrophic shear production and buoyancy
flux are sinks for the kinetic energy.

4. PSI at finite amplitude

A primary motivator of this study is the potential for PSI to damp the transient motions
during the geostrophic adjustment of fronts with positive PV, and hence stable, to
symmetric and inertial instability. To assess this damping, we continue to analyse the
energetics of the simulations.
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Figure 9. Inertial and perturbation kinetic energy budgets after 20 inertial periods for SIM01–13 (white
backgrounds) and SIM16–18 (light grey backgrounds). We plot the time integral of the terms in the kinetic
energy evolution equations (3.8) as bar charts centred on the point in parameter space corresponding to the
initial conditions of the simulation. The exceptions are SIM16–18 which have the same parameters as SIM11–13
and hence are positioned directly beneath. The bar chart y-axes are normalised by the initial inertial kinetic
energy of the simulations. We indicate, by the grey blob, simulations in which the perturbations never reached
an amplitude at which they may have appreciably affected the energetics.

At the start of the simulation, the inertial energy is dissipated directly, through εi. The
uniform shear profile set as the initial conditions and used for the linear stability analysis
does not satisfy the boundary conditions. However, we can project it onto a Fourier series
that not only satisfies the boundary conditions but is an eigenfunction expansion for
the viscous operator. The dominant and slowest decaying components of the horizontal
velocities are proportional to sin(πz/2) and hence decay viscously with e-folding time
4Γ/(Ek π2). After 5 inertial periods (t = 10πΓ ) with Ek = 10−3, the amplitudes of these
modes will have decayed to approximately 93 % of their initial value. This is consistent
with the decay observed at the start of the simulations. Fits of uniform shear (e.g. u = βz)
and stratification to the lateral mean velocity and buoyancy profiles show the predicted
slow viscous decay (figure 10). Furthermore, the standard deviations of the profiles from
the uniform fit are small throughout, allowing for the application of the linear theory.

We observe ‘staircase-like’ decay of the inertial oscillations once the PSI modes reach
sufficient amplitude that the shear production and buoyancy fluxes exceed the viscous
damping (figures 8 and 10). The decay mirrors the ageostrophic shear production, which
transfers energy from the inertial oscillations into the perturbations with a ‘step’ every
inertial period. The decay also inherits the phasing from the ageostrophic shear production,
with energy lost to the perturbations during the second half of each inertial period when
the stratification is weakening.
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Figure 10. Decay of the inertial shear during SIM07. The shear and stratification were calculated from a least
squares fit to the lateral mean velocity and buoyancy assuming a linear profile (u = βz). Shading on the total
shear and stratification indicates one standard deviation. The stratification is offset by 1, its theoretical mean
value, to highlight the inertial oscillations and changes in the mean value.

4.1. Onset of secondary instability
As with SI (Taylor & Ferrari 2009; Wienkers, Thomas & Taylor 2021a), the PSI modes
become unstable to secondary KH instabilities that halt their growth. We anticipate that
the Miles–Howard gradient Richardson number criterion, Rig < 1/4 (Howard 1961; Miles
1961), controls the onset of the secondary instabilities. We confirm this by plotting the
percentage of grid points with Rig < 1/4, Rig,2D < 1/4, and the rate of dissipation of
perturbation kinetic energy (figures 8c,d). Accounting for our non-dimensionalisation,
we have Rig = Ri bz/((1 + uz)

2 + v2
z ) and Rig,2D = Ri bz/v

2
z . In these 2-D simulations,

the latter is the relevant criterion. We find inertially modulated peaks in the rate of
dissipation lagging shortly behind the peaks in the percentage of points satisfying the
Miles–Howard criterion, which is evidence of dissipation following a cascade of energy
to the smallest scales triggered by KH instability. The peaks in the number of points
satisfying the gradient number criteria occur during the phase of the inertial oscillation
when the stratification is weakest. We see that at the most unstable times, defined by the
maxima in the number of unstable points, the across-front shear dominates the along-front
shear, and there is little difference between the two gradient Richardson number criteria.
The secondary instabilities halt the growth of the PSI modes by transferring energy to the
smaller scales, where it is dissipated. At this point, the PSI and KH modes are effectively
acting as a catalyst for the dissipation of inertial energy, and we see a corresponding
increase in the total rate of dissipation. As the inertial shear decays, the shear production
by the PSI modes decreases, and the PSI modes lose energy to KH and eventually dissipate
faster than they extract it from the inertial oscillations, resulting in a decrease in the
perturbation kinetic energy. Eventually, the inertial shear decays to the point where it is no
longer unstable to PSI, and the PSI modes themselves decay to the point where they are
no longer unstable to KH. Any remaining energy in the inertial oscillations or PSI modes
is then subject to a slow viscous decay.

4.2. Decay of inertial shear
The inviscid linear theory predicts that for Ri−1 > 3/4, the PSI modes will continue to
extract energy from the background flow until the inertial oscillations are totally damped,
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Figure 11. Decay of the inertial shear in simulations SIM01–13 (LY = 4Γ Ri, solid lines) and SIM16–18
(LY = 8Γ Ri, dashed lines). We infer δE(t) from the inertial kinetic energy of the simulations by assuming
a uniform shear profile δE(t) := √

6 Ri−1 E1/2
k,i .

regardless of the initial strength of the inertial shear since the growth rate is positive for all
δ > 0 (figure 2). However, viscous effects mean that the region of instability depends on
the strength of the inertial shear, and in our simulations we find that PSI modes do not grow
in weak ageostrophic shear. Nonetheless, in most cases when the PSI modes did grow,
they almost totally damped the inertial oscillations within 20 inertial periods. To show
this, we plot δE(t) defined by finding the uniform shear profile |u| = δE(t) Ri z as assumed
by the linear theory, with the same kinetic inertial kinetic energy, δE(t) := √

6 Ri−1 E1/2
k,i

(figure 11). As the inertial shear decays, the PSI modes stabilise at finite amplitude, through
either secondary instability or the decrease in δ, but they continue to extract energy out
of the inertial oscillations; that is, the ageostrophic shear production remains positive,
at least in a period-averaged sense (figure 8). Although the PSI modes are themselves
decaying in amplitude, they act as conduits for inertial energy to pass to the small scales
or be dissipated directly.

4.3. Impact of domain width on inertial decay
At larger Ri−1 than the Ri−1 = 3/4 case on which we have been focusing, the optimal
perturbation slope varies as δ varies, and for small δ is much shallower than the
isopycnal slope. For the linear stability, this is not a very important consideration as,
having accounted for viscosity, the small δ cases are stable. However, it is relevant for
the nonlinear decay of the inertial shear. We explored this by repeating simulations
SIM11–13, Ri = 1, with twice the domain width (SIM16–18). As noted earlier, there was
no appreciable difference in the linear stability in terms of the growth rate and perturbation
slope. This is despite the fact that in SIM18, when the PSI modes first formed there were
7 wavelengths horizontally in the domain, compared to 3 in SIM13 (figure 12). We can
compare this to the final states where there were 3 and 2 wavelengths, respectively, in the
domain. As the inertial shear decays, the PSI modes merge and adjust to a shallower slope
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Figure 12. Hövmoller plots of the across-front perturbation shear at the midpoint of the domain, z = 0, for
(a) SIM13 and (b) SIM18. The simulations have the same parameter values, Ri = δ0 = 1, and differ only in
their domain width. The horizontal wavelength of the perturbations increases as the inertial shear decays and
the optimal perturbation slope flattens.

with larger horizontal wavelength. In SIM13, the narrower domain limits this process, and
from 15 inertial periods onwards, the inertial shear stabilised at approximately δE = 0.25,
whereas in SIM18 the inertial shear continued to decay to near zero (figure 11). There
were also differences between SIM12 and SIM17 (δ0 = 3/4), with the inertial shear in the
later decaying more quickly once the PSI modes reached finite amplitude, although neither
had stabilised by 20 inertial periods, so we cannot compare the final states. In SIM11 and
SIM16 (δ0 = 1/2), the PSI modes never reached an amplitude at which nonlinear effects
would be important. This finite-amplitude dependence is also relevant to SIM10, where
Ri−1 = 0.875, δ0 = 1, and with a wider domain we may expect the inertial shear to decay
further.

5. The stabilised state

We consider the final state of the simulations to be reached once they are stable to both
PSI and the secondary KH instability. At this point, the vast majority of the ageostrophic
kinetic energy has been lost, and the front is approximately balanced. Any remaining
residual energy in the inertial oscillations or PSI modes is subject to a slow viscous decay.

5.1. Change in potential energy
In our earlier analysis of the kinetic energy of the perturbations, we identified the
geostrophic shear production Pg and buoyancy flux B, which we interpreted as an energy
transfer between the perturbations and an infinite reservoir of energy associated with the
front. However, we can be more precise and associate this with a change in the potential
energy of the front. A limitation of the frontal zone set-up is that the horizontal buoyancy
gradient and geostrophic momentum are fixed, hence the only way to ‘slump’ or ‘stand-up’
the front and modify the balanced state is by changing the stratification through horizontal
advection or diffusive boundary fluxes. The diffusive fluxes are generally weak, and it is
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the former that is more important. In these simulations, this manifests itself as a reduction
in the stratification (figure 10), implying an increase in the background potential energy.

From (3.1b), we construct the evolution equation for the potential energy of the system,
Ep := 〈−Ri bz〉:

dEp

dt
= − Ri

〈
w′b′〉︸ ︷︷ ︸
B

− 1
Γ

〈vz〉︸ ︷︷ ︸
BH

+ Ek
Γ

[
b − z

]z=1
z=−1︸ ︷︷ ︸

Db

. (5.1)

Here, we identify the buoyancy flux B, the differential horizontal advection of the
background buoyancy BH , and a diffusive boundary flux of buoyancy Db, which arises
through integration by parts and the application of the boundary conditions. The diffusive
flux is weak and can be neglected. Therefore, the changes in potential energy are
governed by exchanges with the perturbation kinetic energy through the buoyancy flux
and the differential horizontal advection of buoyancy. Note that the differential horizontal
advection term encompasses both the advection of potential energy into the domain and
the buoyancy flux associated with the background buoyancy gradient (Appendix B). Now
we relate it to the geostrophic shear production.

While the inertial kinetic energy Ek,i := 1
2 〈u · u〉 is a convenient measure of the strength

of the inertial oscillations, it neglects the role of the constant geostrophic momentum
ug = zx̂ in the energetics. When the inertial oscillations are aligned with the geostrophic
flow, the kinetic energy is larger, and when anti-aligned, the kinetic energy is smaller. We
can decompose the total kinetic energy of the flow into four parts:

Ek := 1
2

〈
(ug + u) · (ug + u)

〉 = 1
2

〈
ug · ug

〉︸ ︷︷ ︸
Ek,g

+ 〈ug · u
〉︸ ︷︷ ︸

Ek,c

+ 1
2 〈u · u〉︸ ︷︷ ︸

Ek,i

+ 1
2

〈
u′ · u′〉︸ ︷︷ ︸
Ek,p

. (5.2)

We have two new terms, the geostrophic kinetic energy Ek,g, which is constant, and the
cross-term between the geostrophic momentum and the inertial oscillations, Ek,c, which
will oscillate in sign. We construct an evolution equation for the cross-term by taking the
dot product of the geostrophic momentum and the lateral mean of (3.1a) (Appendix B):

dEk,c

dt
= 〈u′w′〉︸ ︷︷ ︸

−Pg

+ 1
Γ

〈vz〉︸ ︷︷ ︸
Pp

− Ek
Γ

u|z=1
z=−1︸ ︷︷ ︸

Du

. (5.3)

Here, we identify the geostrophic shear production Pg and a new diffusive boundary
flux Du. We also identify a term Pp that exactly cancels with the differential horizontal
advection term BH in the potential energy equation. This term arises from multiplying the
Coriolis force −(1/Γ )v in the u momentum equation with the geostrophic momentum
ug = z. However, the Coriolis force never does any work, and by invoking geostrophic
balance, we can interpret this term, Pp, as the work done by the geostrophic pressure
gradient (Appendix B). The inertial oscillations cause the kinetic energy and potential
energy to oscillate as the across-front velocity does work against the geostrophic pressure
gradient and differentially advects buoyancy into the domain. If the flow remains laterally
homogeneous with w = 0, then we observe the cross kinetic energy oscillating about
zero and the potential energy oscillating about the potential energy of the balanced
front. However, the geostrophic shear production and buoyancy flux associated with
the instabilities, both primary and secondary, allow for exchanges of energy with the
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Figure 13. Flowchart of the different energy transfers. Arrows indicate the direction of energy transfer
in SIM07. However, we indicate the differential horizontal advection, BH , and geostrophic pressure work,
Pp, term with two arrows to highlight the oscillations in Ek,c and Ep. Double arrows indicate a strictly
one-directional energy transfer, dissipation, and light dashed arrows indicate energy transfers that are negligibly
weak, the diffusive boundary fluxes. In some other simulations, the buoyancy flux B is, on average, negative.

perturbation kinetic energy and ultimately for the modification of the potential energy
of the balanced front. We summarise the different energy transfers in figure 13.

While the constraints of the frontal zone set-up make the energetics difficult to interpret
physically, we can draw some inferences about the sense of the secondary circulation
driven by the convergence and divergence of the along-front eddy-momentum flux, u′w′.
The evolution equation for the along-front mean velocity is

du
dt

− 1
Γ

v = − ∂

∂z
u′w′ + Ek

Γ

∂2u
∂z2 . (5.4)

The sign of the geostrophic shear production and the boundary conditions on w require that
the eddy-momentum flux is, on average, positive in the middle of the domain and vanishing
at the boundaries. It is therefore convergent, (∂/∂z)u′w′ < 0, at the top boundary, and
divergent, (∂/∂z)u′w′ > 0, at the bottom boundary. Although, we cannot claim a turbulent
Ekman balance between the Coriolis force and the convergence of the eddy-momentum
fluxes, as was invoked by Taylor & Ferrari (2010) in the case of forced convection and
SI, we can note that the convergence and divergence of the eddy-momentum flux is in the
sense to drive an overturning circulation that steepens the front. This manifests itself in
the frontal zone set-up as a differential horizontal advection that increases the potential
energy in the domain via BH := −(1/Γ ) 〈vz〉. Although BH is dominated by the inertial
oscillations, it develops a positive bias, indicating a tendency for the across-front velocity
to steepen the front (figure 14).

However, this does not necessarily result in an increase in potential energy of the
balanced front as we have not accounted for the buoyancy flux. Unlike the geostrophic
shear production, which is always negative resulting in an increase in potential energy
of the front, the sign of the buoyancy flux varies between simulations (figure 9). For
small Ri−1, the buoyancy flux is negative and acts to increase the potential energy of
the front, whereas for large Ri−1, it is positive and competes against the geostrophic shear
production. We now compute the overall change in potential energy of the balanced front
by considering the total energy of the system.
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Figure 14. Time integral of the the differential horizontal advection of the background buoyancy BH :=
−(1/Γ ) 〈vz〉, for three simulations with δ0 = Ri−1. The initial value is −Ek,c|t=0 so that the initial oscillations
are centred about 0.

Summing (3.8), (5.1) and (5.3), we construct the evolution equation for the total energy
E := Ek + Ep:

dE
dt

= −εi − εp + Du + Db. (5.5)

Not only are the diffusive fluxes very weak, but they also have a tendency to cancel, thus to
a very good approximation, the total change in the energy of the system is the energy lost
to dissipation. Furthermore, once the inertial oscillations and perturbations have decayed
to zero, we can equate the change in background potential energy and the energy lost to
dissipation to the initial energy associated with the unbalanced motions. However, some
of the simulations still have significant inertial energy after 20 inertial periods (figure 9).
In order to assess the change in the potential energy of the balanced state, we must account
for the oscillations in potential energy due to the differential horizontal advection by the
inertial oscillations. Therefore, we define the potential energy of the balanced state to be
the potential energy plus the cross kinetic energy:

Ep,b := Ep + Ek,c. (5.6)

In doing so, we have made the assumptions that the buoyancy flux, geostrophic shear
production and diffusive boundary fluxes are negligible. With these assumptions, the only
active terms in the potential and cross kinetic energy equations are the geostrophic pressure
work and horizontal differential advection through which kinetic and potential energy are
exchanged. The cross kinetic energy oscillates about zero, hence the potential energy of
the balanced state is the instantaneous potential energy plus the cross kinetic energy.

These assumptions are justified for almost all of our simulations as the diffusive fluxes
are always weak and after 20 inertial periods the perturbation kinetic energy has decayed,
assuming that the flow was unstable in the first place, to negligible values. Hence there
is little scope for geostrophic shear production or buoyancy fluxes to transfer energy from
the perturbation kinetic energy to the potential or cross kinetic energy (figure 9). The
assumptions do not, at first sight, hold in the simulations with Ri = 1, δ0 = 0.75 (SIM12
and SIM17), which have not reached their final state as the PSI modes grew slowly
(table 1) and have significant perturbation (and inertial) kinetic energy. However, as we
show shortly, when Ri = 1, the geostrophic shear production and buoyancy flux exactly
cancel, and consequently the perturbations cannot exchange energy with the balanced
state. Therefore, with this definition we find no change in the potential energy of the
balanced state in these simulations (figure 15).
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Figure 15. Fate of the initial inertial kinetic energy after 20 inertial periods for SIM01–13 (white backgrounds)
and SIM16–18 (light grey backgrounds). We plot the terms of (5.7) as bar charts centred on the point in
parameter space corresponding to the initial conditions of the simulation. The exceptions are SIM16–18, which
have the same parameters as SIM11–13 and hence are positioned directly beneath. The bar chart y-axes are
normalised by the initial kinetic energy of the simulations. We indicate, by the grey blob, simulations in which
the flow is stable to PSI.

Finally, defining the unbalanced energy as the total energy minus the geostrophic kinetic
energy and balanced potential energy, Eu := E − Ek,g − Ep,b, we can evaluate the change
in the potential energy after 20 inertial periods, t = T := 40πΓ , and determine the fate of
the energy initially contained in the inertial oscillations:

Eu|t=0 = Eu|t=T + 
Ep,b +
∫ T

0
εi dt +

∫ T

0
εp dt +

∫ T

0
Du dt +

∫ T

0
Db dt. (5.7)

Note that with these definitions, the initial unbalanced energy is simply the inertial kinetic
energy Ek,i|t=0 plus a negligible amount of perturbation kinetic energy due to the white
noise. Similar to the plot of the kinetic energy budget (figure 9), we plot the terms on the
right-hand side of this equation normalised by the initial unbalanced energy (figure 15).

We find that the potential energy of the system increases in all the cases with Ri−1 < 1,
which is consistent with our analysis of the kinetic energy in which the combined
geostrophic shear production and buoyancy flux was found to be negative. The fraction
of the initial unbalanced energy that goes into raising the potential energy of the balanced
state increases as Ri−1 gets smaller, although the dependence is weak for Ri−1 < 3/4.
However, there exists a critical balanced Richardson number, Ric(δ), above which the flow
is stable to PSI. For balanced Richardson numbers larger than the critical value, the inertial
motions decay viscously and the balanced state is unchanged.
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Figure 16. Sections of (a) the vertical derivative of the absolute momentum uz + 1, (b) the horizontal
derivative of the total buoyancy by − Ri−1 Γ −1, and (c) the thermal wind imbalance uz + Ri Γ by from SIM18
after 20 inertial periods. Contours of total buoyancy are overlaid in black.

5.2. Potential vorticity
The modification of the balanced state requires a change in the PV that must occur via a
boundary flux (Haynes & McIntyre 1987). Initially, the simulations start with uniform PV,
q = f 3Γ 2(Ri − 1). For Ri > 1, while the baroclinic contribution −f 3Γ 2 remains fixed, the
mean stratification decreases, resulting in a decrease in the PV. We again draw a contrast
with symmetric, and inertial, instabilities that occur when the PV is negative, and must
increase the PV in order to reach stability. In the ocean and in many simulations, this
is achieved by mixing with a reservoir of positive PV, such as the thermocline (Taylor
& Ferrari 2009). However, in idealised simulations with uniform PV set-ups similar to
ours, this can be achieved purely through boundary fluxes (Thorpe & Rotunno 1989). In
our case, however, there is no such requirement on the PV. PSI stabilises by damping its
energy source, namely the inertial oscillations, and it is not obvious a priori that the PV
will decrease. Indeed, if we start with larger Ri such that the flow is stable to PSI, then
there will be no change in the mean stratification, PV, or potential energy of the balanced
state.

5.3. Ri = 1
In our simulation set-up, the total buoyancy b − Γ −1 Ri−1 y and absolute momentum ug +
u − Γ −1y satisfy the same equation, advection–diffusion with equal diffusivities (Pr =
1), and boundary conditions. When Ri = 1, they also have the same initial conditions,
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up to the inconsequential addition of white noise. Therefore, they evolve in the same way,
and the PV, which is the Jacobian of the total buoyancy and absolute momentum, will
remain zero. Furthermore, u′ = b′, implying 〈u′w′〉 = 〈b′w′〉, and we must have the exact
cancellation of the geostrophic shear production and buoyancy flux (figures 8 and 9). As
a result, there is no exchange of energy between the perturbations and the balanced state
(figure 15). Finally, once the unbalanced motions die out, the vertical structure of the
absolute momentum will be set by the fixed geostrophic shear, and the exact equality of
the total buoyancy and absolute momentum means that the stratification of the balanced
state is also fixed.

However, the unbalanced motions do not vanish totally. Although their energy content
is very small, the remnant PSI modes can in some cases contribute significantly to the
velocity and buoyancy gradients. The case with Ri = δ0 = 1 is one such, and perhaps
the most interesting as it corresponds to the ‘classic geostrophic adjustment problem’ of
Tandon & Garrett (1994). After 20 inertial periods, the inertial oscillations have been
almost completely damped out, but the PSI modes are prominent in plots of the shear
and horizontal buoyancy gradient (figure 16). The PSI modes are still unstable to KH,
and we see evidence of KH billows. Nonetheless, this simulation is very close to its final
state. On scales larger than the KH billows, the PSI modes still contribute significantly to
the horizontal buoyancy and vertical velocity gradients, and could therefore influence the
future evolution of the front. It should be noted, however, that the PSI modes are not in
geostrophic balance (figure 16c).

6. Conclusions

In this paper, we explored the 2-D stability of inertial shear at fronts to parametric
subharmonic instability. We extended the linear stability analysis of T&T to include
off-isopycnal modes, thus allowing for the buoyancy flux to play a role in the energetics,
and non-hydrostatic perturbations, which arise in strong inertial shear. We find that both
the critical value of the balanced Richardson number, Ric, below which PSI occurs, and
the growth rate of PSI, depend strongly on the strength of the inertial shear, δ. While the
growth rates in weak inertial shear are modest, growth rates in excess of f /2 are predicted
for inertial shear that matches or exceeds the thermal wind shear. The optimal slope, in a
coordinate system advected with the isopycnals, of the perturbations is a function of both
Ri and δ. However, in strong inertial shear, an approximately along-isopycnal perturbation
grows fastest.

We tested our linear stability analysis with a set of nonlinear 2-D simulations. We found
discrepancies in the growth rates and perturbation slopes that can be attributed to viscous
effects. Despite the viscous damping, growth rates of approximately f /3 were obtained
in some cases. The optimal perturbation slope was generally found to be shallower
than predicted, and buoyancy fluxes played a small, but not insignificant, role in the
energetics. However, the sign of the cumulative buoyancy flux was found to depend on
Ri. The simulations also confirmed the prediction of the linear stability analysis that the
geostrophic shear production would be negative. Unlike symmetric instability (SI) that
primarily gains energy from the geostrophic shear, PSI draws energy out of the inertial
oscillations, and some of that energy is put into the front. In the frontal zone set-up, this
manifests itself as a differential horizontal advection that increases the potential energy of
the front. However, for Ri−1 ≈ 1, the buoyancy flux acts to extract potential energy out of
the balanced front, counteracting this advection, and for Ri = 1, the two exactly balance
and the potential energy of the balanced front is unchanged. This increase in potential
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energy is associated with a decrease in the stratification and potential vorticity (PV) of the
balanced state. This unusual behaviour – most instabilities at fronts occur at the expense
of the front’s store of energy – occurs for only a small range of Ri; too large and PSI does
not occur, too small and the front is unstable to SI. The increase in the potential energy
of the balanced front is possible only because the front is initially unbalanced and hence
there is an additional source of energy in the inertial motions.

Our numerical set-up, a 2-D frontal zone, places limitations on the dynamics that can
occur and precludes some physical mechanisms that could influence the growth of PSI
modes, secondary instabilities and the evolution of the balanced state. At a finite-width
front, we would expect to find a closed overturning circulation that stands-up the front,
increasing its potential energy. However, other processes may be at play, including the
propagation of the near-inertial waves, frontogenesis and frontolysis, all of which could
modify the development of PSI modes. Furthermore, the final balanced state and its
potential energy are dependent on the turbulent mixing of buoyancy induced by the
secondary instabilities. However, the use of hyper-viscosity and the restriction to two
dimensions modifies the evolution of the secondary instabilities (Staquet 2000) and
consequently limits the ability of our simulations to represent mixing realistically.

Finally, we comment on physical scenarios where PSI might be important. The first is
geostrophic adjustment, where PSI could rapidly damp the transient motions. However, it
is thought that on longer time scales, the majority of the adjustment and restratification of
the ocean mixed layer is as a result of mixed-layer instabilities (MLIs) (Boccaletti et al.
2007; Fox-Kemper et al. 2008). While the growth rates of PSI in strong inertial shear
exceed those of MLI, σ 2

MLI = (5/54)(1 + Ri)−1f 2 (Stone 1970), the two are comparable
as the inertial shear decays. Furthermore, the generation of PV at the boundary, and
subsequent advection into the interior of the front by PSI modes, can create PV gradients
potentially contributing to a baroclinic or barotropic instability. The potential coexistence
and interplay between PSI and MLI is a very interesting but inherently three-dimensional
problem, and is left to a future study. Geostrophic adjustment generally occurs after a
very intense forcing event, such as a storm. However, we do not necessarily require such
dramatic events to trigger PSI. The PSI mechanism requires two things: first, a front with
a low balanced Richardson number, and second, inertial shear. Fronts preconditioned
for PSI, in the sense that they have low balanced Richardson numbers, can be found
in regions with lateral buoyancy gradients, a shallow convective or frictional surface
boundary layer, and a deeper pycnocline. The weakly stratified region between the
boundary layer and pycnocline often persists in or near a state of marginal stability to
SI, that is, Ri = 1. It is well documented that down-front winds will force SI in this
scenario (Thomas et al. 2013). However, there is also the possibility that ‘stabilising’
winds will force strong inertial oscillations that then undergo parametric subharmonic
instability.

Acknowledgements. Some of the computing for this project was performed on the Sherlock cluster.
We would like to thank Stanford University and the Stanford Research Computing Center for providing
computational resources and support that contributed to these research results.

Funding. J.P.H. and L.N.T. were supported by a grant from the National Science Foundation,
SUNRISE, award no. OCE-1851450. L.N.T. was additionally supported by Office of Naval Research grant
N00014-18-1-2798.

Declaration of interests. The authors report no conflict of interest.

966 A34-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

45
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.452


Parametric subharmonic instability at ocean fronts

Author ORCIDs.
James P. Hilditch https://orcid.org/0000-0002-7164-9953;
Leif N. Thomas https://orcid.org/0000-0002-0548-5786.

Appendix A. Numerical procedure to find eigenvalues and eigenfunctions

We use a fourth-order Runge–Kutta scheme to integrate (2.14) from two linear independent
initial conditions for one period. We can express these two solutions, denoted by subscripts
a and b, as [

Ψa(t) ζa(t)
Ψb(t) ζb(t)

]
= A

[
eμt 0
0 e−μt

] [
Ψ1(t) ζ1(t)
Ψ2(t) ζ2(t)

]
. (A1)

Our aim is to find μ and invert A to get the eigenfunctions. Let

S(t) =
[
Ψa(t) ζa(t)
Ψb(t) ζb(t)

]
, D(t) =

[
eμt 0
0 e−μt

]
, M(t) =

[
Ψ1(t) ζ1(t)
Ψ2(t) ζ2(t)

]
. (A2a–c)

At t = 0, we have D = I and we choose S(0) = I . We therefore have A = M(0)−1.
Integrating forward in time to t = T = 2π, and using the periodicity of M , we have

S(T) = A D(T) A−1, (A3)

which is precisely the diagonalisation of S(T), and immediately gives us not only μ from
the eigenvalues of S(T), but also the columns of A as the right eigenvectors of S(T).
Furthermore, to calculate μ, we do not need to save S(t), and we validate our integration
by checking that the determinant of S(T) is 1 = eμTe−μT .

The viscous solutions are found similarly, but as the equations are no longer
time-reversible, we do not have the property that the determinant of S(T) is 1.

Appendix B. Simulation energetics

We construct the evolution equations for the domain-averaged (denoted 〈·〉) energetics.
DIABLO solves (3.1) for the ageostrophic component of the flow. From this, we derive
evolution equations for the perturbation kinetic energy Ek,p = 1

2

〈
u′ · u′〉, and inertial

kinetic energy Ek,i = 1
2 〈u · u〉. Taking the dot product of u with (3.1a) and taking the

domain average gives

d
dt

(
1
2

〈u · u〉
)

+ 〈uw〉 − Ri 〈wb〉 = −Ek
Γ

〈
∂u
∂z

· ∂u
∂z

+ νH
∂2u
∂y2 · ∂2u

∂y2

〉
, (B1a)

where the advective and pressure works terms vanish due to the boundary conditions, the
Coriolis terms vanish identically, and the viscous terms have been written in negative
definite form with vanishing boundary terms. Splitting terms into lateral mean and

966 A34-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

45
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-7164-9953
https://orcid.org/0000-0002-7164-9953
https://orcid.org/0000-0002-0548-5786
https://orcid.org/0000-0002-0548-5786
https://doi.org/10.1017/jfm.2023.452


J. Hilditch and L.N. Thomas

perturbation parts, we have

d
dt

(1
2

〈u · u〉︸ ︷︷ ︸
Ek,i

+ 1
2

〈
u′ · u′〉︸ ︷︷ ︸
Ek,p

)
+ 〈u′w′〉︸ ︷︷ ︸

−Pg

− Ri
〈
w′b′〉︸ ︷︷ ︸
B

= − Ek
Γ

〈
∂u
∂z

· ∂u
∂z

〉
︸ ︷︷ ︸

εi

− Ek
Γ

〈
∂u′

∂z
· ∂u′

∂z
+ νH

∂2u′

∂y2 · ∂2u′

∂y2

〉
︸ ︷︷ ︸

εp

. (B1b)

Taking the lateral mean of the momentum equation (3.1a), and noting that the vertical
momentum equation reduces to hydrostatic balance, we have

du
dt

+ ∂

∂z
u′w′ + 1

Γ
ẑ ∧ u = Ek

Γ

∂2u
∂z2 . (B2)

We construct the evolution equation for the inertial kinetic energy (3.8b) by taking the dot
product with u, taking the domain average, and utilising the boundary conditions to shift
derivatives:

d
dt

(1
2

〈u · u〉︸ ︷︷ ︸
Ek,i

)
− ∂u

∂z
u′w′︸ ︷︷ ︸

Pa

= − Ek
Γ

〈
∂u
∂z

· ∂u
∂z

〉
︸ ︷︷ ︸

εi

. (B3)

We get the evolution equation for the perturbation kinetic energy (3.8a) by subtracting
(B3) from (B1b).

From (B2), we construct the evolution equation for the cross kinetic energy by taking
the dot product with the geostrophic momentum ug = zx̂, and taking the domain average:

d
dt

⎛
⎜⎝〈ug · u

〉︸ ︷︷ ︸
Ek,c

⎞
⎟⎠+ 〈u′w′〉︸ ︷︷ ︸

Pg

− 1
Γ

〈vz〉 − Ek
Γ

u|z=1
z=−1︸ ︷︷ ︸

Du

, (B4)

where we have used integration by parts to shift the derivative from the eddy momentum
flux onto the geostrophic velocity, and reduced the viscous terms to a boundary flux. We
have a term arising from the Coriolis force. However, using the geostrophic balance, we
can reinterpret this as the work done against the geostrophic pressure gradient, Πy, by the
inertial oscillations:

1
Γ

ug = −Πy =⇒ 1
Γ

z = −Πy =⇒ 1
Γ

〈vz〉 = − 〈vΠy
〉︸ ︷︷ ︸

Pp

. (B5)

The potential energy, Ep := 〈−Ri bz〉, evolution equation is formed by multiplying
(3.1b) with −Ri z and taking the domain average:

dEp

dt
= − Ri

〈
w′b′〉︸ ︷︷ ︸
B

− 1
Γ

〈vz〉︸ ︷︷ ︸
BH

+ Ek
Γ

[
b − z

]z=1
z=−1︸ ︷︷ ︸

Db

, (B6)

where we again use integration by parts to extract the buoyancy flux and reduce the viscous
term down to a boundary flux. We can interpret the differential advection of horizontal
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buoyancy, BH , as the advection of potential energy and the buoyancy flux associated with
the background buoyancy gradient:

− 1
Γ

〈vz〉 =
〈

∂

∂y

(
v Ri

[
− 1

Γ Ri
y
]

z
)〉

=
〈

∂

∂y

(
v Ri

[
− 1

Γ Ri
y
]

z
)〉

−
〈

∂

∂y

(
v′Ri

[
− 1

Γ Ri
y
]

z
)〉

=
〈

∂

∂y

(
v Ri

[
− 1

Γ Ri
y
]

z
)〉

−
〈(

∂v′

∂y

)
Ri
[
− 1

Γ Ri
y
]

z
〉

=
〈

∂

∂y

(
v Ri

[
− 1

Γ Ri
y
]

z
)〉

+
〈(

∂w
∂z

)
Ri
[
− 1

Γ Ri
y
]

z
〉

= −
〈

∂

∂y

(
−v Ri

[
− 1

Γ Ri
y
]

z
)〉

−
〈

∂

∂z

(
−w Ri

[
− 1

Γ Ri
y
]

z
)〉

− Ri
〈
w
[
− 1

Γ Ri
y
]〉

. (B7)

Note that this entire manipulation is invariant under translations in y.
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