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Abstract
The study presents an adaptive robust control method for the Pendubot subjects to matched and mismatched
uncertainty. First, the control task is formatted as a reduced-dimension equality constraint of the system states.
To handle the matched and mismatched uncertainties, an orthogonal decomposition method is employed to make
the mismatched part disappear after decomposition. Based on the above, an adaptive robust control law based
on constraint-following is devised. By the Lyapunov approach, it is rigorously proven that the proposed approach
ensures the uniform boundedness and uniform ultimate boundedness of the closed-loop control system and thus ren-
ders approximate constraint-following, regardless of uncertainty. Simulation and experimental results are provided
and discussed, demonstrating the good performance of the proposed approach.

1. Introduction
Underactuated mechanical systems have fewer independent actuators than the degrees of freedom
[1, 2]. Due to the reduction of actuators, these systems have some important merits which include lighter
weight, lower cost, and less energy consumption and thus have been widely applied in industries [3],
such as cranes [4], robots [5, 6], hovercrafts [7], surface/underwater vehicles [8, 9], and spacecrafts [10].
The Pendubot system is a classical two-link underactuated robot with only one actuator [11]. Due to the
strong nonlinear coupling relationship between the two links, even though the actuated link is stabilized
at the desired position, it is hard to guarantee the stability of the unactuated one. Consequently, the
control problem of the Pendubot has received growing attention in recent years.

In refs. [11], [12], and [13], feedback control, energy-based control, and impulse momentum methods
are proposed to stabilize the Pendubot. Nevertheless, none of them takes account of system uncer-
tainties. Uncertainty, such as dynamic friction, external disturbances, and initial condition deviation,
can bring unexpected consequences to the actual systems and will severely degrade the control system
performance. Consequently, it is of prominent importance to compensate uncertainties in control design.

To eliminate the influence of uncertainties, the radial basis function (RBF) neural network and fuzzy
RBF neural network are respectively employed in refs. [14] and [15], and a compensator using a non-
linear disturbance observer is designed in ref. [16]. In ref. [17], a signal compensation-based robust
control method is proposed. However, these methods only consider the matched friction in the actuated
link. In ref. [18], a constraint-following-based robust control scheme is developed to cope with the mis-
matched uncertainty. However, the upper bounds of uncertainties need to be known beforehand. For the
uncertainties such as the dynamic friction, modeling errors that exist in the actual Pendubot system, the
upper bound is usually unknown. Consequently, it is necessary to design a controller that can deal with
uncertainties with unknown upper bound so as to achieve the effective control of the Pendubot system.
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Figure 1. Diagram of the Pendubot.

This paper proposes an adaptive robust constraint-following control approach for the Pendubot sys-
tem subjects to matched and mismatched uncertainty. To begin with, a nominal control is investigated
for the Pendubot without uncertainty. Then, the uncertainty is specially decomposed into the matched
portion and the unmatched portion. Based on that, an adaptive robust control law is devised to tackle
initial condition deviation and uncertainty. By using the Lyapunov approach, the developed approach
is proved to be both uniformly bounded and uniformly ultimately bounded, rendering approximate
constraint-following to the Pendubot system subjects to initial condition deviation and uncertainty.
Finally, simulation and experimental results are presented, demonstrating the good tracking accuracy
and robustness of the proposed approach.

The major contributions of the research are the following. First, the robust control problem of the
Pendubot subjects to matched and unmatched uncertainties is formulated as a constraint-following
control problem with reduced-dimension equality constraints. Second, a robust constraint-following
control method is proposed with a leakage-type adaptive law. Unlike the existing methods requiring
the information of the uncertainty bound, the proposed approach removes this limitation and can well
tackle uncertainties with unknown bounds. Third, the closed-loop Pendubot system is proved to be both
uniformly bounded and uniformly ultimately bounded under the action of the proposed approach.

The remainder of the study is organized as follows. The task to be addressed is formulated in
Section 2. Section 3 discusses the adaptive robust constraint-following control design. Section 4 presents
the stability analysis. Simulation results are provided and discussed in Section 5. The paper is then
concluded in Section 6.

2. Constraint-following task formulation
2.1. Dynamics
The schematic of the Pendubot is shown in Fig. 1, where m1 (m2) stands for the mass of link 1 (link 2),
q1 denotes the angle of link 1 relative to the horizontal axis, q2 refers to the angle of link 2 relative to
link 1, l1 (l2) is the length of link 1 (link 2), lc1 (lc2) denotes the distance from the centroid to the con-
nection point of link 1 (link 2), and I1 (I2) is the moment of inertia of link 1 (link 2). For simplicity, we
introduce five parameters: θ1 = m1l2

c1 + m2l2
1 + I1, θ2 = m2l2

c2 + I2, θ3 = m2l1lc2, θ4 = m1lc1 + m2l1, θ5 =
m2lc2.

According to ref. [19], the dynamics of the Pendubot with uncertainty can be obtained as

M(q)q̈ + C(q, q̇)q̇ + G(q) + F(q, q̇) = Bτ , (1)
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M(q) =
[
θ1 + θ2 + 2θ3 cos q2 θ2 + θ3 cos q2

θ2 + θ3 cos q2 θ2

]
,

C(q, q̇) =
[−θ3q̇2 −θ3 (q̇2 + q̇1)

θ3q̇1 0

]
sin q2,

G(q) =
[
θ4g cos (q1) + θ5g cos (q1 + q2)

θ5g cos (q1 + q2)

]
,

F(q̇) =
[

f1(q̇)

f2(q̇)

]
, B =

[
1

0

]
,

where q = [q1 q2]T and q̇ = [q̇1 q̇2]T represent the angle vector and angle velocity vector, respectively,
M(q) is the symmetric positive definite inertia matrix, C(q, q̇) denotes the centripetal and Coriolis torque
vector, G(q) stands for the gravitational torque vector, F(q, q̇) is the system uncertainty, and τ denotes
the input torque applied to link 1.

2.2. Constraints
The control goal is to stabilize both link 1 and link 2 of the Pendubot toward the desired vertical upright
position. However, due to the underactuated Pendubot system exhibits nonholonomic constraint, it is
impossible to design a stabilizing controller that can render both q1 and q2 converging to their target
position q1d, q2d, with arbitrary independent convergence curves. These curves may be conflicting with
the inherent dynamic coupling, since there is a strong nonlinear coupling between q1 and q2. To solve
this, the control objective for the dynamical system (1) is formulated as a constraint-following control
problem with the constraint defined as follows between two states as shown in the following lemma.

ṡ + ςs = −2η

π
arctan(s), (2)

with

s = λ(ė1 + λ1e1) + (ė2 + λ2e2), (3)

e1 = q1 − q1d, e2 = q2 − q2d, (4)

where q1d = π/2, q2d = 0, ς , η, λ, λ1, and λ2 are positive constants, and η is arbitrarily small. From (2) to

(4), as t → ∞,
2η

π
arctan(s) will converge to η. Since η is arbitrarily small, from (2), s will infinitely con-

verge to zero, which means that both q1 and q2 will arbitrarily converge to their desired positions q1d, q2d.
With (3) and (4), the constraint (2) is rewritten as

λq̈1 + λλ1q̇1 + q̈2 + λ2q̇2 + ς [λq̇1 + λλ1(q1 − π/2) + q̇2 + λ2q2]

= −2η

π
arctan(λq̇1 + λλ1(q1 − π/2) + q̇2 + λ2q2). (5)

Remark 1. Obviously, the RHS of (5) is unintegrable, therefore, (5) is a nonholonomic constraint. When

t → ∞, −2η

π
arctan(λq̇1 + λλ1

(
q1 − π

2

)
+ q̇2 + λ2q2) will converge to an arbitrarily small constant η

(but not equal to zero). As a consequence, λq̇1 + λλ1

(
q1 − π

2

)
+ q̇2 + λ2q2 will converge to zero, hence

q̇1 + λ1

(
q1 − π

2

)
and q̇2 + λ2q2 will converge to zero simultaneously, indicating both q1 and q2 will

converge to their desired points. This shows that the motor torque can control both the actuated link
angle and underactuated link angle to approximately follow their desired positions.
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Integrating (5) from 0 to t, we obtain

λ(q̇1 − q̇1(0)) + λλ1(q1 − q1(0)) + (q̇2 − q̇2(0)) + λ2(q2 − q2(0)) + ςλ(q1 − q1(0))

+ ςλλ1

∫ t

0

(q1 − π/2)dτ + ς (q2 − q2(0)) + ςλ2

∫ t

0

q2dτ

= −2η

π

∫ t

0

arctan(λq̇1 + λλ1(q1 − π/2) + q̇2 + λ2q2)dτ , (6)

where q1(0), q2(0), q̇1(0), and q̇2(0) are the initial values of q1, q2, q̇1, and q̇2, respectively.
Let

A = [
λ 1

]
,

b = −λλ1q̇1 − λ2q̇2 − ς [λq̇1 + λλ1(q1 − π/2) + q̇2 + λ2q2]

− 2η

π
arctan(λq̇1 + λλ1(q1 − π/2) + q̇2 + λ2q2),

c = λq̇1(0) − λλ1(q1 − q1(0)) + q̇2(0) − λ2(q2 − q2(0))

− ςλ(q1 − q1(0)) − ς (q2 − q2(0)) − ςλλ1

∫ t

0

(q1 − π/2)dτ

− ςλ2

∫ t

0

q2dτ − 2η

π

∫ t

0

arctan(λq̇1 + λλ1(q1 − π/2) + q̇2 + λ2q2)dτ , (7)

then (5) and (6) can be rewritten as

Aq̇ = c,

Aq̈ = b. (8)

3. Adaptive robust control design
3.1. Uncertainty decomposition
The Pendubot dynamics (1) contains both matched and mismatched uncertainties. Due to the lack of
control input, mismatched uncertainties bring great obstacle to the control design. In view of this, the
uncertainty F is specially divided into the matched part B(q, q̇)F̂(q, q̇), which is in the range space of
B(q, q̇), and the mismatched part �F̃(q, q̇), which is in the bull space of B(q, q̇), that is,

F(q, q̇) = B(q, q̇)F̂(q, q̇) + �F̃(q, q̇). (9)

Let D = M−1, then we have

AM−1B = ADB = λθ2

θ1θ2 − θ 2
3 cos2q2

> 0, (10)

therefore ADB is invertible.
To exploit the constraint (8), we introduce an orthogonal decomposition approach [20] and specially

decompose the uncertainty F based on the constraint matrix A and the parameter matrixes B, D. Based
on that, the decomposition is specified as

F̂(q, q̇) = (A(q, q̇)D(q, q̇)B(q, q̇))−1A(q, q̇)D(q, q̇)F(q, q̇),

�F̃(q, q̇) = F(q, q̇) − B(q, q̇)F̂(q, q̇). (11)

From (9) and (11),

A(q, q̇)D(q, q̇)�F̃(q, q̇) ≡ 0. (12)
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The above decomposition arranges the unmatched portion �F̃(q, q̇) to be in the null space of
A(q, q̇)D(q, q̇). Thus, �F̃(q, q̇) will not affect the constraint-following performance. This allows the con-
trol to be designed without considering the unmatched part and just based on the matched one, which
will be used in later derivation.

3.2. Control design
Before the control design of the Pendubot system (1), we make the following two assumptions.

Assumption 1: There is a positive constant λ such that

ADBBTDAT ≥ λ. (13)

Remark 2. In fact, Assumption 1 means that the minimum of ADB always has a finite distance from 0.
Since we already have ADB > 0, it is reasonable to make this assumption.

Assumption 2: There is an unknown constant vector α ∈ (0, ∞)k and a known function 
(q, q̇) : R2 ×
R2 → Rk such that for all (q, q̇) ∈ R2 × R2,

max‖F̂(q, q̇)‖ ≤ αT
(q, q̇), (14)

where the function αT
(q, q̇) refers to the uncertainty bound and the unknown vector α depends on the
bound of the uncertainty F̂(q, q̇).

Remark 3. In a sense, what Assumption 2 does is the parameterization of the worst effect of the
uncertainty F̂(q, q̇), which will be further elaborated in the proof of Theorem 1.

In practice, it is an arduous task to acquire the specific value of α, since it may be related to the
bounding set. As a result, the following leakage-type adaptive law is designed

˙̂α = κ1
(q, q̇)‖β̂(q, q̇)‖ − κ2α̂, (15)

where κ1 > 0 and κ2 > 0 are constants, α̂ ∈ Rk is the estimated value of α, α̂i(t0) > 0, i = 1, . . . , k.

Remark 4. According to (15), α̂i(t) > 0 for all t ≥ t0. This is because the first term κ1
(q, q̇)‖β̂(q, q̇)‖ on
the right half side of (15) is always non-negative and the second term −κ2α̂ alone will render an expo-
nentially decaying (to zero) solution from above. The leakage item −κ2α̂ in (15) prevents the constantly
increase of α̂.

Then, the adaptive robust constraint-following control law is proposed as follows:

τ = p1(q, q̇) + p2(q, q̇) + p3(α̂, q, q̇), (16)

where

p1(q, q̇) = (A(q, q̇)D(q, q̇)B(q, q̇))−1[b(q, q̇) + A(q, q̇)D(q, q̇)(C(q, q̇)q̇ + G(q, q̇))], (17)

p2(q, q̇) = −κβ̂(q, q̇), (18)

p3(α̂, q, q̇) = −γ (α̂, q, q̇)μ(α̂, q, q̇)α̂T
(q, q̇), (19)

where κ > 0 is a constant,

β̂(q, q̇) = BT(q, q̇)D(q, q̇)AT(q, q̇)β(q, q̇), (20)

β(q, q̇) = A(q, q̇)q̇ − c(q, q̇), (21)

μ(α̂, q, q̇) = β̂(q, q̇)α̂T
(q, q̇), (22)
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γ (α̂, q, q̇) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1∥∥μ(α̂, q, q̇)
∥∥ , if

∥∥μ(α̂, q, q̇)
∥∥ > ε

1

ε
, if

∥∥μ(α̂, q, q̇)
∥∥ ≤ ε

, (23)

where ε > 0 is a given small constant, and α̂ is determined by the adaptive law in (15).

Remark 5. Different from ref. [17], which only considers the matched uncertainty, this paper considers
both matched and unmatched uncertainty. In refs. [18, 20], the parameter α is assumed to be known.
However, in this paper, α is unknown and is estimated using the leakage-type adaptive law in (15).

4. Stability analysis

Theorem 1. Consider the Pendubot system (1) subjects to Assumptions 1–2 and let δ(t) :=
[βT(q(t), q̇(t)) (α̂(t) − α)T]T , under the action of the adaptive robust control (16)–(23), the Pendubot
system has the following performance:

(i) Uniformly bounded: For any r > 0, there exists a d(r) < ∞ such that for all t ≥ t0, if ‖δ(t0)‖ ≤ r,
then ‖δ(t)‖ ≤ r;

(ii) Uniformly ultimately bounded: For any r > 0 with ‖δ(t0)‖ ≤ r, there is d > 0 such that for any
d̄ > d, ‖δ(t)‖ ≤ d̄ as t ≥ t0 + T(d̄, r), where 0 ≤ T(d̄, r) < ∞.

Proof: Choose the Lyapunov candidate function as

V(β, α̂ − α) = βTβ + κ−1
1 (α̂ − α)T(α̂ − α). (24)

Then, the derivative of V is represented as

V̇ = 2βT β̇ + 2κ−1
1 (α̂ − α)T ˙̂α. (25)

Next, we will make a separate analysis of each item. For the first item of (25),

2βT β̇ = 2βT(Aq̈ − b)

= 2βT{AM−1[(−Cq̇ − G − F) + B(p1 + p2 + p3)] − b}
= 2βT{AD[(−Cq̇ − G) + (Bp1 + Bp2) − F + Bp3] − b}. (26)

In view of p1 in (17), we can obtain

AD[(−Cq̇ − G) + Bp1] − b = 0. (27)

From the decomposition in (9) and (12), we have

ADF = ADBF̂ + AD�F̃

= ADBF̂ + 0

= ADBF̂. (28)

Introducing (27) and (28) into (26), we have

2βT β̇ = −2βTADBF̂ + 2βTADBp2 + 2βTADBp3. (29)

From (14) and (20), we obtain

−2βTADBF̂ ≤ 2‖BTDATβ‖‖F̂‖
≤ 2‖β̂‖αT
(q, q̇). (30)
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With (18), we have

2βTADBp2 = 2βTADB(−κBTDATβ). (31)

According to the Rayleigh’s principle and Assumption 1,

2βTADB(−κBTDATβ) = −2κβT(ADBBTDAT)β

≤ −2κλ‖β‖2. (32)

Combining (31) and (32), we can get

2βTADBp2 ≤ −2κλ‖β‖2. (33)

From (19) and (22), we have

2βTADBp3 = 2βTADB(−γμα̂T
(q, q̇))

= −2γ βTADBμα̂T
(q, q̇)

= −2γ ‖μ‖2. (34)

By (23), for ‖μ‖ > ε,

−2γ ‖μ‖2 = −2‖μ‖. (35)

If ‖μ‖ ≤ ε, then

−2γ ‖μ‖2 = −2
‖μ‖2

ε
. (36)

With (29), (30), (33), (34), and (35), for ‖μ‖ > ε,

2βT β̇ ≤ −2κλ‖β‖2 − 2‖μ‖ + 2‖β̂‖αT
(q, q̇)

= −2κλ‖β‖2 − 2‖β̂‖α̂T
(q, q̇) + 2‖β̂‖αT
(q, q̇)

= −2κλ‖β‖2 + 2‖β̂‖(α − α̂)T
(q, q̇). (37)

For ‖μ‖ ≤ ε, with (22) and (36),

2ββ̇ ≤ −2κλ‖β‖2 − 2
‖μ‖2

ε
+ 2‖β̂‖αT
(q, q̇)

= −2κλ‖β‖2 − 2
‖μ‖2

ε
+ 2‖β̂‖α̂T
(q, q̇)−2‖β̂‖α̂T
(q, q̇) + 2‖β̂‖αT
(q, q̇)

≤ −2κλ‖β‖2 − 2
‖μ‖2

ε
+ 2‖μ‖ + 2‖β̂‖(α − α̂)T
(q, q̇)

= −2κλ‖β‖2 − 2(
‖μ‖2

ε
− ‖μ‖) + 2‖β̂‖(α − α̂)T
(q, q̇)

≤ −2κλ‖β‖2 + 2
1

4/ε
+ 2‖β̂‖(α − α̂)T
(q, q̇)

= −2κλ‖β‖2 + ε

2
+ 2‖β̂‖(α − α̂)T
(q, q̇). (38)

The first equality above holds simply due to the addition and subtraction of an item simultaneously.
From (37) and (38), for all ‖μ‖,

2ββ̇ ≤ −2κλ‖β‖2 + ε

2
+ 2‖β̂‖(α − α̂)T
(q, q̇). (39)
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For the last term of (25), by utilizing the adaptive law designed in (15), one has

2κ−1
1 (α̂ − α)T ˙̂α = 2κ−1

1 (α̂ − α)T(κ1
(q, q̇)‖β̂‖ − κ2α̂)

= 2(α̂ − α)T
(q, q̇)‖β̂‖ − 2κ−1
1 (α̂ − α)Tκ2α̂

= 2(α̂ − α)T
(q, q̇, t)‖β̂‖ − 2κ−1
1 κ2(α̂ − α)T(α̂ − α + α)

= 2(α̂ − α)T
(q, q̇)‖β̂‖ − 2κ−1
1 κ2(α̂ − α)T(α̂ − α) − 2κ−1

1 κ2(α̂ − α)Tα

≤ 2(α̂ − α)T
(q, q̇)‖β̂‖ − 2κ−1
1 κ2‖α̂ − α‖2 + 2κ−1

1 κ2‖α̂ − α‖‖α‖. (40)

With (39) and (40), (25) becomes (by using ‖δ‖2 = ‖β‖2 + ‖α̂ − α‖2)

V̇ ≤ − 2κλ‖β‖2 + ε

2
− 2κ−1

1 κ2‖α̂ − α‖2 + 2κ−1
1 κ2‖α̂ − α‖‖α‖

≤ − κ1‖δ‖2 + κ2‖δ‖ + κ3, (41)

where

κ1 = min{2κλ(1 + ρ�), 2κ−1
1 κ2(1 + ρ�)},

κ2 = 2κ−1
1 κ2(1 + ρ�)‖α‖,

κ3 = (1 + ρ�)ε/2. (42)

Therefore, by refs. [21] and [22], the uniform boundedness can be concluded with

d(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
γM

γm

R, if r ≤ R,

√
γM

γm

r, if r > R,

R = 1

2κ1

(
κ2 +

√
κ2

2 + 4κ1κ3

)
, (43)

where

γm = min{λmin(P), 2κ−1
1 (1 + ρ�)},

γM = max{λmax(P), 2κ−1
1 (1 + ρ�)}. (44)

Moreover, uniform ultimate boundedness follows with

d =
√

γM

γm

R, (45)

T(d, r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if r ≤ d
√

γm

γM

,

γMr2 − (γ 2
m/γM)d

2

κ1d
2
(γm/γM) − κ2d(γm/γM)1/2 − κ3

, otherwise.

(46)

5. Simulation results
To verify the effectiveness and feasibility of the proposed approach, simulation results are provided
in this section. Throughout the simulations, the physical parameters of the Pendubot are chosen as:
m1=0.09 kg, m2=0.73 kg, l1=0.15 m, lc1=0.09 m, lc2=0.08 m, I1 = 0.0073 kg · m2, I2 = 0.0001 kg · m2,
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(a) (b)

Figure 2. Comparison of the outputs under LQR and the proposed control.

g = 9.8 kg/m2. The initial conditions of the Pendubot system are: q1(0) = 1 rad, q2(0) = 0.5 rad, q̇1(0) =
q̇2(0) = 0 rad/s. All the simulations are performed in Matlab by using the ode45 solver.

The standard linear quadratic regulator (LQR) is selected for comparison. The most common robust-
ness of LQR can be attributed to a one-half gain reduction, an infinite gain amplification, or a phase
error of positive or negative sixty degrees in the input channel. Furthermore, the robustness of LQR
includes uncertainty in the real coefficients of the linearized model and certain nonlinearities such as
switching and saturation.

According to (16), we choose


 (q, q̇) = (‖ė‖ + 1)
2 + (‖e‖ + 1)

2, (47)

and the adaptive law (15) is given by

˙̂α = κ1

(
(‖ė‖ + 1)

2 + (‖e‖ + 1)
2
) | θ2

θ1θ2 − θ 2
3 cos2q2

{λ(q̇1 − q̇1(0)) + λλ1(q1 − q1(0)) + (q̇2 − q̇2(0))

+ λ2(q2 − q2(0)) + ςλ(q1 − q1(0)) + ςλλ1

∫ t

0

(q1 − π/2)dτ + ς (q2 − q2(0)) + ςλ2

∫ t

0

q2dτ

+ 2η

π

∫ t

0

arctan(λq̇1 + λλ1(q1 − π/2) + q̇2 + λ2q2)dτ }| − κ2α̂, (48)

where α̂(t0) > 0. Next, three sets of simulations will be carried out.

5.1. Matched constant uncertainty
Consider the Pendubot system with matched constant uncertainty (there are constant disturbances in
the actuated link), that is, f1 = 2, f2 = 0, the parameters of constraints are chosen as: λ = 2.25, λ1 =
0.55, λ2 = 0.7, ς = 2, η = 0.001. Obviously, the above initial condition does not satisfy the constraint
(2). Hence, we use p1 + p2 for the control, and the control parameter κ = 2. The parameters of LQR are
chosen as Q = I, R = 1.

Figure 2 depicts the output angles of the Pendubot under the LQR control and the proposed control.
As seen from Fig. 2, under the action of LQR, the Pendubot system can converge quickly; however,
both the actuated and unactuated link angles suffer certain salient deviation from the target position.
Comparing to LQR, the proposed control has better control performance. After some time, both the
actuated and unactuated links achieve each control goal simultaneously and the positioning error is
small enough in contrast with the LQR control. This is mainly due to the compensatory effect of p2. To
demonstrate this point, the comparative simulation results of p1 and p1 + p2 are given in Fig. 3.
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(a) (b)

Figure 3. Comparison of the Pendubot outputs under p1 and p1 + p2.
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Figure 4. The integral absolute error.

Figures 4, 5, and 6 provide the integral absolute error (IAE) (
∫ tf

0
|q1 − q1d|dt,

∫ t

0
|q2 − q2d|dt,

where [0, tf ] is the considered interval of time), the maximal absolute error (MAE) (max
0≤t≤tf

{|q1 − q1d|},
max
0≤t≤tf

{|q2 − q2d|}), and the maximal absolute error during the last two seconds (MAE2) ( max
tf −2≤t≤tf

{|q1 −
q1d|}, max

tf −2≤t≤tf
{|q2 − q2d|}) of q1 and q2, respectively. From Figs. 4, 5, and 6, it can be seen that the values

of IAE, MAE, and MAE2 of the proposed control are smaller than that of LQR, which indicates that the
system presents better dynamic performance, transient performance, and final tracking accuracy under
the action of the method presented in this paper.

5.2. Matched time-varying uncertainty
Considering the nonlinear time-varying friction model in ref. [19], we employ the matched uncertainty F
as follows: f1 = 4.18(tanh(1.59q̇1) − tanh(3.15q̇1)) + 0.09tanh(3.52q̇1) + 0.021q̇1, f2 = 0. Since there are
both uncertainty and initial condition deviation, we adopt the control law τ = p1 + p2 + p3 in (16) and the
control parameters are κ = 2, ε = 0.001, κ1 = 0.02, κ2 = 2. Figure 7 shows the history of ADBBTDAT . It
can be found that ADBBTDAT is not infinitely approaching to zero. Hence, there exists λ > 0 such that
Assumption 1 is verified.

The outputs of the Pendubot by LQR and the proposed adaptive robust control are depicted in Fig. 8.
In Fig. 9, we also compare the maximal absolute tracking errors of q1 and q2 during the last 2 s. It
shows that the proposed control has higher final tracking accuracy. The absolute constraint-following
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(a) (b)

Figure 8. The outputs of the Pendubot.

Figure 9. The maximal error during the last 2 s.

errors |β| of the conventional LQR and the proposed control are shown in Fig. 10. After some time,
the constraint-following error of the developed approach enters a small area near zero, which indicates
that |β| is uniformly ultimately bounded. Figures 11 and 12 show the accumulative absolute constraint-
following error and the control effort, respectively. As seen from Figs. 11 and 12, the proposed method
is superior to LQR.

5.3. Matched and unmatched time-varying uncertainty
For the matched and unmatched time-varying uncertainty, we consider the friction both in the actu-
ated link and the unactuated link and choose F as [16]: f1 = 4.18(tanh(1.59q̇1) − tanh(3.15q̇1)) +
0.09tanh(3.52q̇1) + 0.021q̇1, f2 = 4.18(tanh(1.59q̇2) − tanh(3.15q̇2)) + 0.09tanh(3.52q̇2) + 0.021q̇2. To
handle both uncertainty and initial condition deviation, we use the control law τ = p1 + p2 + p3. The
control parameters are the same as last session. Figure 13 shows the history of ADBBTDAT . It can be
found that ADBBTDAT is not infinitely close to zero. Hence, there exists λ > 0 such that Assumption 1
is verified.

The outputs of the Pendubot system by the proposed new control are presented in Fig. 14. The
constraint-following error |β| is given in Fig. 15. We can see that |β| enters a small neighborhood of
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Figure 10. The constraint-following error.

Figure 11. The accumulative absolute error.

Figure 12. The control input.

zero after some time, which indicates the uniform ultimate boundedness of the constraint-following
error. Figure 16 shows the control p1, p2, and p3.

The above three groups of simulation evidently illustrate that the proposed robust control can
effectively eliminate the uncertainty, whether constant or time-varying, matched or unmatched.
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Figure 13. History of ADBBTDAT with matched and unmatched uncertainty.
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6. Experimental results
To validate the effectiveness of the proposed adaptive robust control method, experiments were carried
out on an actual Pendubot system, where there exist matched and unmatched uncertainties. The Pendubot
experimental system consists of three parts: a PC monitor, an embedded controller, and the Pendubot
system. The Pendubot is driven by a servo motor with rated voltage of 90 V and no-load speed of
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Figure 17. The experimental outputs of the Pendubot.

Figure 18. The control input.
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Figure 19. The integral absolute error.

Figure 20. The maximal absolute error during the last 2 s.

2000 r/min. The control algorithm is implemented on the embedded controller with a PowerPC processor
running at 1 GHz. The angles of the actuated and unactuated link are measured by two encoders of 1250
pulses per revolution. The parameters of the Pendubot system in (1) are identified as θ1 = 0.0096 kg ·
m2, θ2 = 0.0054 kg · m2, θ3 = 0.0046 kg · m2, θ4 = 0.0679 kg · m2, θ5 = 0.0332 kg · m2, and g = 9.8 m/s2,
and the initial position is (q1, q2, q̇1, q̇2) = (− π

2
, 0, 0, 0

)
. The swing-up control adopts the energy-based

method [12] and the control parameters are kP = 66.35, kD = 9.45, and kE = 1. The switching conditions
are |q1 − π/2| ≤ 0.26, |q2| ≤ 0.26. Furthermore, the proposed method was compared with the traditional
LQR method.

The experimental results are shown in Figs. 17 and 18. From Fig. 17, it can be seen that the proposed
method effectively decreases the fluctuation and tracking error. Figures 19 and 20 provide the IAE and
the MAE2 of q1 and q2, respectively. From Figs. 19 and 20, we can see that the values of IAE and MAE2
of the proposed new control are smaller than that of LQR, indicating that the Pendubot system exhibits
better dynamic performance and final tracking accuracy under the proposed new control.

7. Conclusion
We investigate the constraint-following control for the Pendubot system subjects to both matched and
unmatched uncertainty. An orthogonal decomposition method is adopted to deal with the system uncer-
tainty. After decomposition, the mismatched part of the uncertainty “disappears". For the matched part,
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an adaptive law with a leakage term is adopted to estimate its upper bound. Based on that, an adaptive
robust control law is developed. Through rigorous mathematical derivation, we show that the closed-loop
system is uniformly bounded and uniformly ultimately bounded, without approximating or lineariz-
ing the original nonlinear dynamics. Simulation results suggest that the constraint can be effectively
followed.
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