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The programmable array microscope (PAM) is a powerful
tool combining the capabilities of nearly all previously de-
scribed optical sectioning techniques in a single microscope.
Not only can the user create optical sections of three-
dimensional objects, but the PAM's unique adaptive optical
strategy allows a user to select the best sectioning method for
a particular sample or experimental need. The key to the PAM
is a spatial light modulator (SLM). This device, when placed in
the image plane of a microscope, can be used to create optical
sectioning, generate spatial encoding masks, and/or define
regions of interest. The growing family of PAMs includes opti-
cal sectioning systems operating in fluorescence4'3'7112 and
reflection7'112, as well as spectroscopic imaging systems for
fluorescence emission spectroscopy. Perhaps the most com-
mon application of this unique family of adaptive optical sys-
tems is optical sectioning.

Optical sectioning microscopes typically use single point,
line, or rotating disk scanning (Figure 1). The rotating disk
scanning systems normally consist of repeating patterns of dot
or line arrays lithographically produced on the surface of a
disk. Recently, disk systems utilizing random bit sequences 6l16

or regularly spaced apertures covered with micralenses have
come into use. These modifications increase the optical
throughput of the rotating disk and hence the speed of the
measurement. Such microscopes have limitations when ob-
serving thick specimens and, since they are not made with
adaptive components, are typically optimised for a particular
magnification. The degree of optical sectioning depends on the
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periodic structure of the pattern, the numerical aperture of the ob-
jective, the wavelength of light, and the magnification,5'15 In this
context, the programmable array microscope is advantageous
since it allows most scanning methods to be reproduced under
programmable control and the scan pattern can be adapted to
best match a particular sample and lens.

The core of any programmable array microscope is a spatial
light modulator placed in the primary image plane of the micro-
scope. Spatial light modulators come in a variety of types and for-
mats, with digital micromirror devices (DMDs) and liquid crystal
devices (LCD) being the most common (Figure 2), Both technolo-
gies have been extensively developed to service the needs of
video projector systems. As such, they are available in mass
quantities at reasonable cost. The use of a DMD in optical section-
ing arrangements provides the unique capability to select the non-
conjugate (out-of-focus) light, which is normally lost at the pinhole
in a confocal microscope, and send it along a separate optical
pathway (Figure 1c).5

A second application in which an adaptive optical element is
useful is for generating spatial encoding masks for imaging spec-
troscopy6. There are three standard ways in which two-
dimensional spectral images are acquired in microscopes. These
consist of point10, slit scanning13, or wavelength scanning (Figure
3)11. These three methods describe the bulk of imaging spectros-
copy done in microscopes. Wavelength scanning currently is the
most popular of the methods shown and has been implemented
with variable interference filters17, acousto-optical tuneable filters9,
and liquid crystal tunabie filters9. In situations where only a limited
area of the sample is of interest or a limited number of wave-
lengths are needed, these filter types remain the methods of
choice. However, they share a common disadvantage in that the
majority of the light is rejected or the majority of the sample is out-
side the region of view. When large areas of a sample are of inter-
est, multiplexed methods allow a greater amount of the sample to
be observed simultaneously. Fourier encoding of the wavelength
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Figure 1 Confocal Scanning systems. The simplest and still most common optical sectioning microscope is the confocal laser scanning microscope
(A). Here the scanning is done with the focused spot of a laser beam and out of focus light is removed at the confocal aperture. A variation on this ap-
proach is to use a line of illumination and slit detection. Another approach to confocal scanning is the use of regularly spaced apertures arranged on
the surface of a rotating disk (B). This allows many apertures to scan the sample simultaneously. The system shown illustrates the use of microlenses
to improve the utilization of illumination light. The disadvantage of the rotating disk is that the pattern of illumination and detection cannot be adjusted to
for a particular purpose. This problem is solved elegantly by the programmable array microscope (C). The PAM can uses the elements of a spatial light
modulator to scan a specimen. This allows the PAM to do point and line scans and to adapt the spacing of the pattern and the aperture size to a par-
ticular expenmental need. The system shown illustrates acquisition of separate conjugate, lc ("in-focus"), and non-conjugate, l w (" out-of-focus1*), im-
ages. When excitation source A is activated, the "in-focus" image forms on camera A while an "out-of-focus" image forms on camera B. Conversely, if
excitation source B is activated, the positions of lc and l w are reversed. The area surrounded by the dotted lines shows a single sided segment. The
two-sided arrangement is currently under development.
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domain has proved successful for generating two-dimensional
spectral images8. Hadamard transform techniques, however,
have a number of special advantages for this type of measure-
ment. For example, when implemented with stationary mask
technology such as a liquid crystal SLM, no moving parts are
required. Also the optics are relatively simple and do not re-
quire exceptional care to align. In contrast, the patterns used in
mask lithography, such as used to produce rotating disks, can
not be rapidly adapted to meet the needs of a particular speci-
men or purpose under programmable control. However
through the use of spatial light modulators, pixel element sizes

H
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Figure 2 Two spatial light modulators used in PAMs. The SLM on the
right is a transmission liquid crystal device provided by CRL laborato-
ries. The SLM device is a digital micromirror device (DMD) made by
Texas Instruments.

can be adjusted for rapid screening at low resolutions or careful
examination of higher resolution structures.

Optical sectioning programmable array microscopes
An optical sectioning PAM was implemented as an add-on

module to a Nikon E-600 microscope. To define patterns of illumi-
nation and detection, a Texas Instruments DMD (Piano, TX) was
mounted in the primary image plane and used. The light from the
"on" elements was relayed to an Apogee KX-2 charge-coupled
device (CCD) camera (Apogee Instruments, Tucson, AZ). The
quality of the optical relay was sufficient to observe effects from
the 1 um dark segments between adjacent DMD elements. The
DMD was illuminated through a Nikon filter block using a 250 W
super high pressure Hg arc lamp system (Lumatec GmbH, Mu-
nich, Germany), a 450 W Xe arc lamp (Muller Elektronik-Optik,
Moosinning, Germany), or an argon ion laser (Coherent, Santa
Clara, CA). Axial positioning of the objective was accomplished
using a PIFOC piezoelectric system with a resolution of 10 nm
(Physik Instrumente, Waldbronn, Germany). A block diagram of
the microscope and add-on are given in Figure 1C.

Spectroscopic PAM
A fluorescence Hadamard transform programmable array mi-

croscope (PAM) is as shown in Figure 3E3. The system consisted
of an add-on to a Nikon E-600 microscope equipped with a 100 W
Hg arc lamp and an epi-fiuorescence unit. This spectroscopy mod-
ule consisted of a SVGA format LCD device SLM (Central Re-
search Labs, England), anamorphic relay optics, a PARISS prism-
based imaging spectrograph (Lightform Inc., Belle Mead, NJ), and
a KX-2 CCD camera (Apogee Instruments, Tucson, AZ). The pix-
els of the SLM consisted of an irregular element approximating a
26 um (horizontal) by 24 um (vertical) rectangle reproduced on a
33 pm square pitch. The active element was a TFT twisted
nematic LC array in an 800x600 format. The SLM was used to dis-
play a series of bar patterns defined by the rows of cyclic S-
matrices. An image was recorded for every row of the S-matrix,
After subsequent decoding with an inverse S-transform, a three-
dimensional image stack was obtained.

Continued on page20
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Figure 3 Spectroscopic imaging methods. The most common are point (a), line (b), and wavelength scanning (c). Point scanning systems look at a
single point in the image field and record the spectrum after passing with a scanning monochromator or spectrograph. Observing fine transects can
increase the speed of acquisition of the point scanning approach. In the latter approach, a camera is used to detect a two dimensional image consist-
ing of one spatial axis and wavelength. The two dimensional spectral image is then acquired by recording a series of such images at different spatial
locations. For imaging a small number of wavelengths, the use of a wavelength tunable filter and CCD camera detection is one of the most efficient.
These methods share a common disadvantage in that most of the sample or the range of available wavelengths is not available for observation. To
avoid these limitations, multiplexed methods have been developed using both Fourier (d) and Hadamard encoding techniques (e). The latter is well
adapted to the PAM approach. With a transmissive liquid crystal SLM there are no moving parts, a low demand on detector dynamic range, and the
high tolerances required for interferometry are not present.
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Results:
Axial responses: When used to collect conjugate images,
measured axial responses to rhodamine thin films indicated a
resolution of -1.0 um for line patterns having a 1x24 unit cell
and ~0.6 um for the dot lattices having a unit cell of 4x6. A con-
ventional illumination pattern could not discriminate the axial
location of the thin fluorescent film. The offsets in these axial
responses were characterised in terms of , the ratio of "on" to
total modulator elements, and ', the ratio of axial response
maximum to minimum. Both patterns had = 0.041, but the
line patterns had ' = 0.18 while the dot lattices had ' = 0.38.
This implies that a line pattern will show less background than
a dot pattern for equivalent , while giving a thicker optical sec-
tion. In addition, we found that for the same throughput, a ran-
dom pattern has a lower offset than has a regular pattern of

ill
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Figure 4. Images of MCF-7 cells stained for tubulin with monoclonal antibody and Oregon green
GAMIG, 60x NA 1.4 oil immersion objective.
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Observation of biological specimens
The sectioning capability seen with the thin films was also ob-

served in biological specimens (Figure 4). As the spacing of the
illumination/detection pattern decreases, the amount of blur from
out-of-focus planes increases, as does the amount of cross talk
between adjacent apertures in the pattern. Relatively little degra-
dation in image quality is seen between the 20x1 and the 10x1
patterns in the specimen shown. The latter pattern, however, can
be scanned twice as fast.

Spectroscopic imaging
Stacks of three-dimensional spectroscopic images can be col-

lected using the spectroscopic system generating a spectroscopic
image with 3 spatial dimensions (Figure 5). Similar observations of
polytene chromosomes from Drosophita melanogaster stained
with Alexa594 or Cy3 for the polyhomeotic protein and with
YOYO-1 for DNA revealed two spectral signatures, one repre-

sented predominantly the fluorescence
emission from YOYO-1/DNA and the
other from Cy3 or Alexa594. From the
four-dimensional data set obtained
from observation of Drosophila
meianogaster, two three-dimensional
wavelength slices were extracted and
submitted to reconstruction analysis
(Figure 6). This procedure allows much
of the out of focus blur to be removed
giving a better indication of important
proteins along the chromosome back-
bone.

Conclusions
The PAM uniquely combines the

power of multiple scanning methods in
a single microscope, allowing the re-
sults to be compared in a rapid and
convenient manner. For any given
sample, the selection of an optical sec-
tioning strategy represents a compro-
mise between light throughput, axial
resolution, offset rejection, and photo-
bleaching. Deciding which method to
use will depend on the sample, the
needs of the investigator, and many
other experimental variables. The PAM
can rapidly adapt its sectioning strat-
egy to best match a particular speci-
men. In addition, the PAM is a powerful
platform on which to develop spectro-
scopic imaging methods. In both opti-
cal sectioning and imaging spectros-
copy, the adaptive capacity of the spa-
tial light modulator gives an unparal-
leled flexibility to the system. Hybrid
PAMs combining optical sectioning
with emission spectroscopy and life-
time imaging are under development
as is the two-sided arrangement shown
in Figure 3. •

Figure 5 Series of two-dimensional spectral images taken at 1 ^m along the z-axis. Each series repre-
sents one wavelength slice in the data set. The image series on the left corresponds to approximately
630 nm (MitoTracker). The series on the right corresponds to approximately 525 nm (Oregon Green). Continued on page 22
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Localization of Polyhomeotic on Polytene
Chromosomes using Spectroscopic PAM

•

Sequence Length = 511
100 xNA 1.3 Objective

Atexa598 and YOYO-1

Figure 6 Stereo projection representing two spectral segments of a three-dimensional spectroscopic image before (upper panel) and after (lower
panel) image reconstruction. This image shows Drosophila polytene chromosomes stained for the polyhomeotic protein with Alexa598 and DNA with
YOYO-1. Reconstruction is from a stack of 16 spectral images measured at 400 nm intervals in the axial direction. (Data reprinted with permission of
the Journal of Microscopy 197:5-14 (2000)).
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