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1. Introduction

It is known that some closed operators with invariant domains—like symmetric, hyponor-
mal, paranormal, etc.—are automatically bounded [9,11–13]. On the other hand, there
are closed densely defined operators with invariant domains which are unbounded [13].
We mention here two classes of such operators, namely nilpotents and idempotents [14].
The aim of the present paper is to show that, similarly to nilpotents and idempo-
tents, closed 2-hyperexpansive operators with invariant domains may be unbounded.
Bounded 2-hyperexpansive operators (and, in particular, 2-isometries) have been studied
in [1–3,16,19,20].

We prove in § 3 that 2-hyperexpansive operators which are paranormal (in partic-
ular subnormal) must be isometric. Recall that powers of (closed) paranormal opera-
tors are (closed) paranormal [4–6, 23]. It turns out that the same assertion remains
true for 2-hyperexpansive operators (see § 4). In § 5 we calculate various parts of spec-
tra of 2-hyperexpansive operators (cf. [2, 16, 20] for the bounded case). Only those
parts of spectra which are located on the unit circle are not precisely recognized. Sec-
tion 6 deals with 2-hyperexpansive weighted shifts. It is proved that for every p > 1,
such operators are perturbations of the unilateral shift by compact operators which
belong to the Schatten–von Neumann p-class. In general, the case of trace class per-
turbations (p = 1) is excluded. However, some one-dimensional perturbations of 2-
hyperexpansive weighted shifts are shown to be 2-hyperexpansive. Finally, we notice
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that a 2-hyperexpansive operator with invariant domain can be completely characterized
by a family of 2-hyperexpansive weighted shifts attached to it (see Proposition 6.7).

2. Preliminaries

From now on D stands for the open unit disc {z ∈ C : |z| < 1} and H for a complex
Hilbert space. By an operator in H we understand a linear mapping T : H ⊃ D(T )→ H
defined on a linear subspace D(T ) of H which is called the domain of T . Denote by N (T )
the kernel of T and by R(T ) the range of T . Set

D∞(T ) =
∞⋂
n=1

D(Tn),

T[k] = T |D(Tk) for k > 1 and T[∞] = T |D∞(T ). T̄ and T ∗ stand for the closure and the
adjoint of T , respectively. A subspace E of D(T ) is said to be a core of T if T̄ = T |E .
Denote by Spp(T ), Spr(T ), Spc(T ) and Spap(T ) the point, the residual, the continuous
and the approximate point spectrum of T , respectively. Let Sp(T ) stand for the spectrum
of T . The C∗-algebra of all bounded operators on H is denoted by B(H).

Recall that an operator T in H is called paranormal if ‖Tf‖2 6 ‖f‖‖T 2f‖ for f ∈
D(T 2) [4,6,15,24] and hyponormal if D(T ) ⊂ D(T ∗) and ‖T ∗f‖ 6 ‖Tf‖ for f ∈ D(T )
[7,15,21,22]. It is well known that hyponormal (in particular subnormal) operators are
automatically paranormal [15,21,24].

Given an operator T in H, define the graph norms ‖ · ‖T,n on D(Tn) by

‖f‖2T,n =
n∑
k=0

‖T kf‖2, f ∈ D(Tn), n > 0,

and put ‖·‖T = ‖·‖T,1. Denote by τ∞(T ) the locally convex topology on D∞(T ) induced
by the family of norms {‖·‖T,n}∞n=1. Our first observation can be proved straightforwardly
by induction [23, Proposition 1].

Lemma 2.1. An operator T in H is closed if and only if D(Tn) is complete with
respect to ‖ · ‖T,n for every n > 1. Moreover, if T is closed, then τ∞(T ) is complete.

The next result deals with necessary and sufficient conditions for the orthogonal sum
of countably many operators to have invariant domain.

Proposition 2.2. Let T =
⊕∞

n=1 Tn be the orthogonal sum of operators Tn acting in
Hilbert spaces Hn.

(i) If TnD(Tn) ⊆ D(Tn) and ‖T 2
nfn‖2 6 c‖fn‖2Tn for fn ∈ D(Tn) and n > 1 with some

c > 0, then TD(T ) ⊆ D(T ).

(ii) If Tn = T̄n for n > 1 and TD(T ) ⊆ D(T ), then TnD(Tn) ⊆ D(Tn) and ‖T 2
nfn‖2 6

c‖fn‖2Tn for fn ∈ D(Tn) and n > 1 with some c > 0.
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Proof. (i) Take a vector f ∈ D(T ). Then f =
⊕∞

n=1 fn with fn ∈ D(Tn) and

∞∑
n=1

‖Tnfn‖2 <∞.

By our assumptions Tnfn ∈ D(Tn) for every n > 1 and

∞∑
n=1

‖Tn(Tnfn)‖2 6 c
∞∑
n=1

‖fn‖2Tn <∞,

which yields Tf ∈ D(T ).
(ii) Since T is closed, so is the operator T : (D(T ), ‖ · ‖T ) → (D(T ), ‖ · ‖T ). By the

closed graph theorem there exists c > 0 such that

‖Tf‖2T 6 c‖f‖2T , f ∈ D(T ). (2.1)

It is easily seen that the inclusion TD(T ) ⊆ D(T ) implies that TnD(Tn) ⊆ D(Tn) for
every n > 1. Hence, by (2.1), we have

∞∑
n=1

(‖Tnfn‖2 + ‖T 2
nfn‖2) 6 c

∞∑
n=1

(‖fn‖2 + ‖Tnfn‖2), f =
∞⊕
n=1

fn ∈ D(T ).

Substituting f = fn ∈ D(Tn) into the above inequality completes the proof. �

3. Basic properties

In the present paper we investigate a new class of unbounded operators called 2-hyper-
expansive ones (cf. [1–3,16,19,20] for the bounded case). Below we include its definition
as well as definitions of related classes of operators.

We say that an operator T in H is

(i) 1-hyperexpansive if ‖Tf‖ > ‖f‖ for f ∈ D(T ),

(ii) 1-isometric if ‖Tf‖ = ‖f‖ for f ∈ D(T ),

(iii) 2-hyperexpansive if ‖T 2f‖2 − 2‖Tf‖2 + ‖f‖2 6 0 for f ∈ D(T 2), and

(iv) 2-isometric if ‖T 2f‖2 − 2‖Tf‖2 + ‖f‖2 = 0 for f ∈ D(T 2).

It turns out that bounded 2-isometries are completely hyperexpansive, but this is no
longer true for 2-hyperexpansive operators (cf. [2] for the terminology and proofs). Let
us recall that 1-hyperexpansive operators do not have the approximate point spectrum
in the unit disc D.

Lemma 3.1. If T is a 1-hyperexpansive operator in H, then D ∩ Spap(T ) = ∅.
Proof. Since ‖Tf − zf‖ > ‖Tf‖− |z|‖f‖ > (1− |z|)‖f‖ for f ∈ D(T ) and z ∈ C, the

proof is completed. �
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It is shown in [16, Lemma 1] that bounded 2-hyperexpansive operators on H are
1-hyperexpansive. It turns out that a weaker version of this fact remains valid for
unbounded operators. For the convenience of the reader we sketch its proof (see also
Corollary 6.8 and Remark 6.9).

Lemma 3.2. If T is a 2-hyperexpansive operator in H, then

(i) T is injective,

(ii) ‖Tf‖2 > ((n− 1)/n)‖f‖2 for f ∈ D(Tn) and n > 1,

(iii) ‖Tf‖ > ‖f‖ for f ∈ D∞(T ),

(iv) ‖Tnf‖2 + (n− 1)‖f‖2 6 n‖Tf‖2 for f ∈ D(Tn) and n > 1, and

(v) limn→∞ ‖Tnf‖1/n = 1 for f ∈ D∞(T ) \ {0}.
Proof. If f ∈ N (T ) ⊆ D∞(T ), then

0 6 ‖f‖2 = ‖T 2f‖2 − 2‖Tf‖2 + ‖f‖2 6 0,

so (i) is proved. Using once more the fact that T is 2-hyperexpansive, we get

‖T 2f‖2 − ‖Tf‖2 6 ‖Tf‖2 − ‖f‖2, f ∈ D(T 2).

Replacing f by T kf leads to

‖T k+2f‖2 − ‖T k+1f‖2 6 ‖T k+1f‖2 − ‖T kf‖2, f ∈ D(T k+2), k > 0.

Hence

0 6 ‖Tnf‖2 =
n∑
j=1

(‖T jf‖2 − ‖T j−1f‖2) + ‖f‖2

6 n(‖Tf‖2 − ‖f‖2) + ‖f‖2

= n‖Tf‖2 + (1− n)‖f‖2, f ∈ D(Tn), n > 1, (3.1)

which implies (ii) and (iv). Letting n→∞ in (ii) yields (iii) (clearly (iii)⇒ (i)).
(v) Take f ∈ D∞(T ) \ {0}. It follows from (iv) that lim supn→∞ ‖Tnf‖1/n 6 1. How-

ever, according to (iii), the sequence {‖Tnf‖}∞n=0 is monotonically increasing, so

lim inf
n→∞ ‖T

nf‖1/n > lim
n→∞ ‖f‖

1/n = 1,

which completes the proof. �

It is easily seen that if T is a 2-isometry, then part (iv) of Lemma 3.2 takes the form
‖Tnf‖2 + (n − 1)‖f‖2 = n‖Tf‖2 for f ∈ D(Tn) and n > 1. Part (v) of Lemma 3.2 is
related to [23, Lemma 8], where the existence of limn→∞ ‖Tnf‖1/n ∈ [0,∞] has been
proved for paranormal operators T .
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Corollary 3.3. If T is a 2-hyperexpansive operator in H, then for each a > 1 and for
each f ∈ D∞(T ) there exists c > 0 such that ‖Tnf‖ 6 can for all n > 0.

Corollary 3.3 says that every C∞-vector of a 2-hyperexpansive operator is bounded.
This means that unbounded closed 2-hyperexpansive operators with invariant domains
(see Example 6.4 below) form a new class of operators for which the answer to the
question (i) in the abstract of [23] is in the negative.

We now show that the class of 2-hyperexpansive operators has ‘small’ intersections
with some other known classes of operators. Let us begin with paranormals and their
adjoints (amongst them there are seminormal and, in particular, subnormal operators).
It is proved in [20, Proposition 4] that if T ∈ B(H) is completely hyperexpansive (conse-
quently, 2-hyperexpansive) and subnormal, then T is an isometry. It turns out that this
assertion remains true for unbounded 2-hyperexpansive operators.

Theorem 3.4. Let T be a densely defined 2-hyperexpansive operator inH with invari-
ant domain. If T is paranormal, then T̄ is an isometry. If T is bounded and T ∗ is para-
normal, then T̄ is unitary.

Proof. If T is paranormal, then by [23, Theorem 10] and Lemma 3.2 (v) T is bounded
and ‖T‖ 6 1 (see also Remark 6.9). In the case where T is bounded and T ∗ is paranormal,
the spectral radius of T ∗ is equal to ‖T ∗‖ = ‖T‖ [6, Theorem 1]; however, the spectrum
of T̄ is contained in D̄ (because T̄ is 2-hyperexpansive, cf. [16, Lemma 1]), so Sp(T ∗) ⊆ D̄.
Hence again ‖T‖ 6 1. Applying Lemma 3.2 (iii) to both cases we get

‖f‖ 6 ‖Tf‖ 6 ‖T‖‖f‖ 6 ‖f‖, f ∈ D(T ),

which means that T̄ is an isometry. The proof is completed by showing that if V ∈ B(H)
is an isometry and V ∗ is paranormal, then V is unitary. Substituting f = V h, h ∈ H, into
the inequality ‖V ∗f‖2 6 ‖f‖‖V ∗2f‖, we get ‖h‖ 6 ‖V ∗h‖ for h ∈ H, so N (V ∗) = {0}
or, equivalently, R(V ) = H. �

Recall that an operator T in H with invariant domain is said to be nilpotent (respec-
tively, idempotent) if T 2f = 0 (respectively, T 2f = Tf) for every f ∈ D(T ) [13, 14].
Notice that, contrary to the case of idempotents, powers of closed nilpotents need not be
closed. Comparing those operators with 2-hyperexpansive ones, we see that

(i) if T is a 2-hyperexpansive nilpotent, then, by Lemma 3.2 (i), N (T ) = {0} and
consequently D(T ) = N (T 2) = {0}, and

(ii) if T is a 2-hyperexpansive idempotent, then once more by Lemma 3.2 (i)R(1−T ) =
N (T ) = {0}, so T is the identity operator on D(T ).

According to [20, Remark 3] every 2-hyperexpansive operator T ∈ B(H) whose range
is dense in H is unitary. In other words, invertible elements of B(H) which are 2-
hyperexpansive must be unitary. In fact, this assertion remains true if we relax the
boundedness of T .
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Proposition 3.5. Let T be a densely defined 2-hyperexpansive operator in H with
invariant domain. If one of the following two conditions holds true

(i) D(T ) = R(T ),

(ii) T is closable and R(T ) = H,

then T̄ is unitary.

Proof. Since ‖T (Tf)‖2 6 2‖Tf‖2 for f ∈ D(T ), we get ‖Th‖ 6 √2‖h‖ for h ∈ R(T ),
which means that the operator T |R(T ) is bounded and T |R(T ) ⊆ T . In both cases we
conclude that T̄ = T |R(T ) ∈ B(H) is a 2-hyperexpansive operator with a dense range.
Hence, by [20, Remark 3], T̄ is unitary. �

We conclude this section with two observations based on spectral arguments.

Remark 3.6. If T ∈ B(H) is a 2-hyperexpansive operator which is not unitary,
then, for every λ ∈ C \ {0}, T + λ is not a 2-hyperexpansive operator. The assertion
follows from the fact that if T ∈ B(H) is 2-hyperexpansive and not unitary, then
Sp(T ) = D̄ (cf. [20, Remark 3]). The same reasoning shows that if T ∈ B(H) is a
2-hyperexpansive operator, then for every λ ∈ C, |λ| 6= 1, λT is not a 2-hyperexpansive
operator.

4. Graph norms, closedness and invariant domains

In this section we investigate the powers of 2-hyperexpansive operators as well as 2-
hyperexpansive operators with invariant domains. We begin with the description of rela-
tionships between graph norms of 2-hyperexpansive operators.

Lemma 4.1. If T is a 2-hyperexpansive operator in H, then

(i) the norms ‖ · ‖T and ‖ · ‖T,n are equivalent on D(Tn) for n > 1,

(ii) the norms ‖ · ‖Tn and ‖ · ‖T,n are equivalent on D(Tn+1) for n > 1,

(iii) the norms ‖ · ‖Tn and ‖ · ‖T,n are equivalent on D(Tn) for n > 1, provided T is
1-hyperexpansive,

(iv) τ∞(T ) coincides with the topology induced by ‖ · ‖T on D∞(T ), and

(v) T[∞] is ‖ · ‖T -bounded,

Proof. (i) By Lemma 3.2 (iv), ‖T kf‖2 6 k‖Tf‖2 for f ∈ D(T k) and k > 1. This in
turn implies that

‖f‖2T,n 6 ‖f‖2 + (1 + 2 + · · ·+ n)‖Tf‖2 6 1
2n(n+ 1)‖f‖2T , f ∈ D(Tn), n > 1.
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(ii) It follows from Lemma 3.2 (ii) that ‖f‖2 6 2‖Tf‖2 for f ∈ D(T 2), hence that
‖T jf‖2 6 2n−j‖Tnf‖2 for f ∈ D(Tn+1) and 0 6 j 6 n, and finally that

‖f‖2T,n 6 ‖f‖2 + (2n−1 + · · ·+ 20)‖Tnf‖2 6 (2n − 1)‖f‖2Tn , f ∈ D(Tn+1).

Since ‖ · ‖2Tn 6 ‖ · ‖2T,n, (ii) is proved.
Condition (iii) can be proved in the same way as (ii). Condition (iv) follows from (i).
(v) Since ‖T 2f‖2 6 2‖Tf‖2 for f ∈ D(T 2), we obtain ‖Tf‖2T 6 3‖f‖2T for f ∈ D(T 2),

which proves (v) (see also [23, Proposition 2]). �

Proposition 4.2. If T is a 2-hyperexpansive operator in H, then

(i) Tn is 2-hyperexpansive for n > 1,

(ii) Tn is closed for n > 1 provided T is closed and 1-hyperexpansive, and

(iii) Tn|D∞(T ) is closed for n > 1 provided T is closed.

Proof. (i) Take f ∈ D(T 2n). The definition of 2-hyperexpansivity enables us to write
the following inequalities

1(‖T 2f‖2 − 2‖Tf‖2 + ‖f‖2) 6 0,

2(‖T 3f‖2 − 2‖T 2f‖2 + ‖Tf‖2) 6 0,
...

(n− 1)(‖Tnf‖2 − 2‖Tn−1f‖2 + ‖Tn−2f‖2) 6 0,

n(‖Tn+1f‖2 − 2‖Tnf‖2 + ‖Tn−1f‖2) 6 0,

(n− 1)(‖Tn+2f‖2 − 2‖Tn+1f‖2 + ‖Tnf‖2) 6 0,
...

2(‖T 2n−1f‖2 − 2‖T 2n−2f‖2 + ‖T 2n−3f‖2) 6 0,

1(‖T 2nf‖2 − 2‖T 2n−1f‖2 + ‖T 2n−2f‖2) 6 0.

Summing all the above inequalities yields (i).
Condition (ii) follows from Lemma 2.1 and Lemma 4.1 (iii).
(iii) Since T is closed, we conclude from Lemma 2.1 and Lemma 4.1 (iv) that T[∞] is

closed. By Lemma 3.2 (iii), T[∞] is 1-hyperexpansive, so (ii) implies that the operator
Tn|D∞(T ) = Tn[∞] is closed. �

An inspection of the proof of Proposition 4.2 (i) shows that if T is a 2-isometry, then
so is Tn for every n > 1.

It is easy to check that if T is a 2-hyperexpansive operator in H, then T[k], k > 1,
and T[∞] are 2-hyperexpansive operators in H; if, moreover, T = T[∞], then T is 2-
hyperexpansive in pre-Hilbert spaces (D(T ), ‖ · ‖T,k) and (D(T ), ‖ · ‖Tk) for k > 0. These
facts will be exploited below. Similar assertions can be formulated for 2-isometries and 1-
hyperexpansive operators. In addition, if T = T[∞] is 1-hyperexpansive in H and k > 1,
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then T is a 1-isometry in H if and only if T is a 1-isometry in the pre-Hilbert space
(D(T ), ‖ · ‖T,k) (respectively, (D(T ), ‖ · ‖Tk)).

Theorem 4.3. If T is a closed 2-hyperexpansive operator in H, then

(i) T[k] is closed and 2-hyperexpansive for k > 1,

(ii) T[∞] is closed and 2-hyperexpansive,

(iii) (I − zT )D∞(T ) = D∞(T ) for z ∈ D, and

(iv) (I − zT )D∞(T ) is a closed subspace of H for z ∈ C \ D̄.

Proof. (i) By Lemma 2.1, the normed space (D(T k), ‖ · ‖T,k) is complete. However,
according to Lemma 4.1 (i), the norms ‖ · ‖T,k and ‖ · ‖T are equivalent on D(T k). Hence
(D(T k), ‖ · ‖T ) is complete, which means that T[k] is closed.

Condition (ii) follows from Proposition 4.2 (iii) with n = 1.
(iii) In view of (ii) and Lemma 4.1 (v), the operator T[∞] is bounded and 2-hyper-

expansive as an operator acting on the Hilbert space (D∞(T ), ‖ · ‖T ). Consequently,
the spectrum of T[∞] calculated in the algebra B(D∞(T ), ‖ · ‖T ) is contained in D̄ [16,
Lemma 1], which means that (I − zT )|D∞(T ) is invertible in B(D∞(T ), ‖ · ‖T ) for z ∈ D.

(iv) It follows from Lemma 3.2 (iii) and Lemma 3.1 that D∩Spap(T[∞]) = ∅. However,
according to (ii), T[∞] is closed. Hence, if z ∈ D, then (T[∞]−z)−1 is closed and bounded,
which in turn implies that (T − z)D∞(T ) = D((T[∞] − z)−1) is a closed subspace of
H. �

We now concentrate on 2-hyperexpansive operators whose successive domains are
equal.

Proposition 4.4. If T is a closed 2-hyperexpansive operator in H and n > 1, then
the following conditions are equivalent:

(i) D(Tn) = D(Tn+1),

(ii) D(Tn) = D∞(T ), and

(iii) D(Tn+1) is a core of T[n].

Proof. Implications (i)⇒ (ii)⇒ (iii) are obvious.
(iii)⇒ (i) According to Theorem 4.3 (i), the normed space (D(Tn+1), ‖·‖T ) is complete,

so D(Tn+1) is ‖ · ‖T -closed and simultaneously ‖ · ‖T -dense in D(Tn). Hence, D(Tn) =
D(Tn+1), which completes the proof. �

Closed 2-hyperexpansive operators with invariant domains can be characterized as
follows.

Theorem 4.5. If T is a closed 2-hyperexpansive operator in H, then the following
conditions are equivalent:

(i) TD(T ) ⊆ D(T ),
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(ii) D(T 2) is a core of T ,

(iii) D(Tn) is a core of T for some n > 2,

(iv) D(Tn) is a core of T for every n > 2,

(v) D∞(T ) is a core of T , and

(vi) D(T ) = D∞(T ).

Proof. Implications (i) ⇒ (vi) ⇒ (v) ⇒ (iv) ⇒ (iii) ⇒ (ii) are obvious. Implication
(ii)⇒ (i) follows from Proposition 4.4 with n = 1. �

We conclude this section with a useful observation concerning orthogonal sums of 2-
hyperexpansive operators with invariant domains. It is easy to verify that if Tn, n >
1, are 2-hyperexpansive operators (respectively, 2-isometries), then T =

⊕∞
n=1 Tn is a

2-hyperexpansive operator (respectively, 2-isometry). We are thus led to the following
proposition.

Proposition 4.6. If Tn, n > 1, are 2-hyperexpansive operators (respectively, 2-
isometries) such that TnD(Tn) ⊆ D(Tn), then T =

⊕∞
n=1 Tn is a 2-hyperexpansive

operator (respectively, 2-isometry) such that TD(T ) ⊆ D(T ).

Proof. In both cases the following inequality holds ‖T 2
nfn‖2 6 2‖Tnfn‖2 for fn ∈

D(Tn), so the conclusion follows from Proposition 2.2 (i). �

5. Spectra

In this section we intend to describe the spectra of unbounded 2-hyperexpansive operators
(see [2,3,16,20] for the bounded case). We start with the following theorem.

Theorem 5.1. Let T be a closed 2-hyperexpansive operator. Then

(i) Spp(T ) ⊆ {z ∈ C : |z| = 1},
(ii) D ⊆ Sp(T ) \ Spap(T ) provided T is 1-hyperexpansive and not 1-isometric,

(iii) C \ D̄ ⊆ Sp(T ) provided T[∞] is unbounded, and

(iv) C \ D̄ ⊆ Spc(T ) provided D∞(T ) is dense in H and T is unbounded.

Proof. (i) If f ∈ D(T ), ‖f‖ = 1 and Tf = zf for some z ∈ C, then

(|z|2 − 1)2 = ‖T 2f‖2 − 2‖Tf‖2 + ‖f‖2 6 0,

so |z| = 1.
(ii) It follows from Lemma 3.1 that D ⊆ C \ Spap(T ). Since the defect function z 7→

indz T
df= dim[H	R(T−z)] is constant on connected components of C\Spap(T ), the proof

of the inclusion D ⊆ Sp(T ) is completed by showing that ind0 T > 0, or equivalently that
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0 ∈ Sp(T ). Suppose, contrary to our claim, that 0 /∈ Sp(T ). Since T is 2-hyperexpansive
we have

‖T 2f‖2 − 2‖Tf‖2 + ‖f‖2 6 0, f ∈ D(T 2).

Substituting f = T−2h, h ∈ H, into the above inequality leads to

‖T−2h‖2 − 2‖T−1h‖2 + ‖h‖2 6 0, h ∈ H.

This means that T−1 ∈ B(H) is 2-hyperexpansive. It follows from [16, Lemma 1] that
‖T−1h‖ > ‖h‖ for h ∈ H and consequently that ‖f‖ 6 ‖Tf‖ 6 ‖f‖ for f ∈ D(T ), which
contradicts the assumption that T is not 1-isometric.

(iii) Suppose that there exists z ∈ C \ D̄ such that (T − z)−1 ∈ B(H). Since (T[∞] −
z)−1 ⊆ (T − z)−1, the operator (T[∞]− z)−1 is bounded and, by Theorem 4.3 (ii), closed;
consequently, the space (T − z)D∞(T ) = D((T[∞] − z)−1) is closed. It follows from
Theorem 4.3 (iii) that the space D∞(T ) is closed as well. By the closed graph theorem,
the operator T[∞] is bounded, which contradicts the assumption.

(iv) First we observe that T[∞] is unbounded. Indeed, otherwise the inclusion T[∞] ⊆ T
and the equality D∞(T ) = H imply, via Theorem 4.3 (ii), that T = T[∞] ∈ B(H), which
contradicts our assumption. We now prove that C\D̄ ⊆ Spc(T ). Take z ∈ C\D̄. It follows
from Theorem 4.3 (iii) that

H = D∞(T ) = R(T[∞] − z) ⊆ R(T − z).

However, by (i), N (T − z) = {0}. Hence, according to (iii), z ∈ Spc(T ). �

The spectrum of a 2-hyperexpansive operator which leaves its domain invariant can
be described as follows (recall that according to [14, Proposition 2.1] a closed densely
defined operator T in H with invariant domain is in B(H) if and only if Sp(T ) 6= C).

Proposition 5.2. If T is an unbounded closed 2-hyperexpansive operator in H such
that D(T ) = H and TD(T ) ⊆ D(T ), then

(i) Sp(T ) = C,

(ii) D ⊆ Spr(T ),

(iii) Spp(T ) ⊆ {z ∈ C : |z| = 1},
(iv) C \ D̄ ⊆ Spc(T ),

(v) Spap(T ) = C \ D,

(vi) R(I − zT ) = D(T ) for z ∈ D, and

(vii) the spectral radius of T calculated in B(D(T ), ‖ · ‖T,n) is equal to 1 for n > 1.

Proof. Condition (i) follows either from Lemma 3.2 (iii) and Theorem 5.1 or from [14,
Proposition 2.1]. Conditions (ii), (iii), (iv) and (v) can be deduced from Lemma 3.2 (iii)
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and Theorem 5.1 (because Sp(T ) \ Spap(T ) ⊆ Spr(T ), Spc(T ) ⊆ Spap(T ) and the set
Spap(T ) is closed). Condition (vi) is a direct consequence of Theorem 4.3 (iii).

(vii) It follows from∗ Lemma 4.1 (i) and (v) that (D(T ), ‖ · ‖T,n) is a Hilbert space and
that T is a bounded 2-hyperexpansive operator on (D(T ), ‖·‖T,n). Hence, [20, Remark 3]
completes the proof. �

Corollary 5.3. Under the assumptions of Proposition 5.2 we have

(i) Sp(T ∗) = Spap(T ∗) = C,

(ii) D ⊆ Spp(T ∗), and

(iii) C \ D̄ ⊆ Spc(T ∗).

Remark 5.4. It is well known that if T =
⊕∞

n=1 Tn is the orthogonal sum of hyponor-
mal operators, then

Sp(T ) =
∞⋃
n=1

Sp(Tn).

This is no longer true for 2-hyperexpansive (what is more, for completely hyperexpansive)
operators. Indeed, take a sequence of 2-hyperexpansive operators Tn ∈ B(Hn), n > 1,
such that supn>1 ‖Tn‖ = ∞ (cf. Example 6.4). Then, by Proposition 4.6, T =

⊕∞
n=1 Tn

is an unbounded closed 2-hyperexpansive operator with invariant dense domain. Hence,
according to [16, Lemma 1] and Proposition 5.2, we have

∞⋃
n=1

Sp(Tn) ⊆ D̄ ( C = Sp(T ).

6. All this for weighted shifts

Let K be a separable Hilbert space with an orthonormal basis {en}∞n=0 and let {λn}∞n=0
be a sequence of positive numbers. The operator S in K defined by

D(S) =
{
f ∈ K :

∞∑
k=0

|〈f, ek〉|2λ2
k <∞

}
, Sf =

∞∑
k=0

〈f, ek〉λkek+1, f ∈ D(S),

is called a weighted shift with weights {λn}∞n=0. The operator S so defined is closed
and the linear span of {en}∞n=0 is a core of S (cf. [10]; see also [18] for the bounded
case). Moreover, S is bounded if and only if the sequence {λn}∞n=0 is bounded; if this
happens, then ‖S‖ = supn>0 λn. The weighted shift U ∈ B(K) with weights λn ≡ 1
(i.e. Uen = en+1 for n > 0) is called the unilateral shift. Obviously U is an isometry.
All weighted shifts investigated in this section are considered with respect to the same
orthonormal basis.
∗ It is also a consequence of Lemma 2.1 and the fact that T is a closed operator on the Hilbert space

(D(T ), ‖ · ‖T,n) (we only need to assume that T is closed and TD(T ) ⊆ D(T )).

https://doi.org/10.1017/S001309159900139X Published online by Cambridge University Press

https://doi.org/10.1017/S001309159900139X
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We begin this section by formulating basic properties of 2-hyperexpansive weighted
shifts (cf. [2] for the description of completely hyperexpansive weighted shifts). The
proof of the following fact is left to the reader.

Lemma 6.1. Let S be a weighted shift with weights {λn}∞n=0.

(i) S is 2-hyperexpansive if and only if λ2
n+1 6 2− (1/λ2

n) for n > 0.

(ii) If S is a 2-isometry, then λ0 > 1 and λn = σn(λ0) for n > 0, where

σn(λ) =

√
1 + (n+ 1)(λ2 − 1)

1 + n(λ2 − 1)
, n > 0, λ > 1.

Conversely, for every λ > 1, the weighted shift Sλ with the weight sequence
{σn(λ)}∞n=0 is a 2-isometry.

Notice that if 1 6 λ 6 λ′, then σn(λ) 6 σn(λ′) for every n > 0.

Proposition 6.2. Let S be a 2-hyperexpansive weighted shift with weights {λn}∞n=0
and let s > 0. Then

(i) S ∈ B(K) and ‖S‖ = λ0,

(ii) λk > 1 for k > 0,

(iii) λk > λk+1 for k > 0,

(iv) limk→∞ λk = 1,

(v) λk 6 σk(λ0) for k > 0, where σk(λ0) are as in Lemma 6.1,

(vi) λk = 1 for k > s provided λs = 1, and

(vii) λk = 1 for k > s provided λs = λs+1.

Proof. (iii) Suppose, contrary to our claim, that λk < λk+1 for some k > 0. Then, by
Lemma 6.1 (i), we have

0 6 λ4
k − 2λ2

k + 1 < λ2
kλ

2
k+1 − 2λ2

k + 1 6 0,

which is impossible.
Condition (i) follows from (iii), while (ii) is a consequence of (i) and Lemma 3.2 (iii)

(because λk = ‖Sek‖).
(iv) It follows from (ii) and (iii) that the limit λ

df= limk→∞ λk exists and λ > 1.
According to Lemma 6.1 (i) we have λ2

k+1 − 2 + (1/λ2
k) 6 0, so letting k →∞ yields

λ2 − 2 + (1/λ2) 6 0, which, in turn, gives us λ = 1.
Applying an induction argument, one can deduce (v) from Lemma 6.1 (i). Condi-

tion (vi) follows from (ii) and (iii).
(vii) Since λs = λs+1 and, by Lemma 6.1 (i), λ2

sλ
2
s+1 − 2λ2

s + 1 6 0 we conclude that
λs = 1. Applying (vi) completes the proof. �
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Remark 6.3. Let S and S′ be 2-hyperexpansive weighted shifts with weight sequences
{λn}∞n=0 and {λ′n}∞n=0, respectively. Then, by Lemma 6.1 (i), the weighted shifts with
weight sequences {λn+s}∞n=0 and {λs,n}∞n=0, where λs,n = λn for n = 0, . . . , s− 1 and
λs,n = min{λn, λ′n−s} for n > s, are 2-hyperexpansive (s > 0). It follows from Lemma
6.1 (i) and Proposition 6.2 (i) that, after replacing the first weight λ0 of S by λ0 +t, t > 0,
we get a 2-hyperexpansive weighted shift whose norm is equal to λ0 + t. Moreover, by
parts (ii) and (v) of Proposition 6.2, the weights of S are placed between weights of two
extreme weighted shifts, the first of which is the unilateral shift U , while the other one
is a 2-isometry.

We are now in a position to exhibit examples of unbounded closed 2-isometries with
invariant domains.

Example 6.4. Let Sλ, λ > 1, be the 2-isometry defined in Lemma 6.1 (ii). In view of
Proposition 6.2 (i), ‖Sλ‖ = λ. Therefore, by Proposition 4.6, the operator S =

⊕∞
n=1 Sn

is an unbounded closed 2-isometry with invariant dense domain.

The next result sheds more light on spectra of 2-hyperexpansive weighted shifts. Denote
by Sp, p > 1, the Schatten–von Neumann p-class of operators on K.

Theorem 6.5. If S is a 2-hyperexpansive weighted shift, then

(i) S = U + ∆S , where ∆S is a compact operator which belongs to Sp for p > 1;
moreover, if S is a 2-isometry which is not an isometry, then ∆S /∈ S1, and

(ii) Spp(S∗) = D.

Proof. (i) It suffices to show that |∆S | df= (∆∗S∆S)1/2 belongs to an appropriate ideal
of operators (see [17] for more details). Let {λn}∞n=0 be the weight sequence of S. Set
δn = λn − 1 for n > 0. Then, by Proposition 6.2 (ii), ∆S is a weighted shift with
non-negative weights {δn}∞n=0, and, consequently, |∆S |en = δnen for n > 0. In view of
Proposition 6.2 (iv), limn→∞ δn = 0, so the operator ∆S is compact.

Since δn = ((λ2
n − 1)/(λn + 1)) for n > 0, parts (ii) and (iii) of Proposition 6.2 imply

that
∑∞
n=1 δ

p
n <∞ if and only if

∑∞
n=1(λ

2
n − 1)p <∞ (p > 0). By Proposition 6.2 (v) we

have
∞∑
n=1

(λ2
n − 1)p 6

∞∑
n=1

(σn(λ0)2 − 1)p, p > 0. (6.1)

Notice also that

σn(λ0)2 − 1 =
λ2

0 − 1
1 + n(λ2

0 − 1)
, n > 1. (6.2)

Combining (6.1) and (6.2) we conclude that ∆S ∈ Sp for every p > 1. In the case in
which S is a 2-isometry which is not an isometry (i.e. λ2

0−1 > 0), (6.2) leads to ∆S /∈ S1.
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(ii) We know that D ⊆ Spp(S∗) (cf. [2, Proposition 5]). Thus, by [22, § 16], we only
need to show that

∑∞
n=0 ‖Sne0‖−2 =∞. According to Proposition 6.2 (v) we have

∞∑
n=1

‖Sne0‖−2 =
∞∑
n=1

1
λ2

0 · · ·λ2
n−1

>
∞∑
n=1

1
σ0(λ0)2 · · ·σn−1(λ0)2 =

∞∑
n=1

1
1 + n(λ2

0 − 1)
=∞,

which completes the proof.∗ �

Referring to Theorem 6.5 (i), we establish 2-hyperexpansive weighted shifts S such that
∆S ∈ S1.

Example 6.6. Take an arbitrary 2-hyperexpansive weighted shift S with weights
{λn}∞n=0. Since limn→∞(λn− 1) = 0, there exists a subsequence {kn}∞n=1 of {n}∞n=0 such
that k1 = 0 and

∞∑
n=1

k2n∑
j=k2n−1

(λj − 1) <∞.

Consider a new sequence

λk1 , . . . , λk2 , λk3 , . . . , λk4 , . . . , λk2n−1 , . . . , λk2n , . . . ,

and denote its entries by λ′0, λ
′
1, λ
′
2, . . . . One can check, using Lemma 6.1 (i) and Propo-

sition 6.2 (iii), that the weighted shift S′ with weights {λ′n}∞n=0 is 2-hyperexpansive and
that ∆S′ is trace class.

We now show how to characterize 2-hyperexpansive operators with invariant domains
by means of 2-hyperexpansive weighted shifts (see [8] for the case of bounded subnormal
operators).

Proposition 6.7. If T is an operator in H such that TD(T ) ⊆ D(T ), then T is 2-
hyperexpansive (respectively, 2-isometric) if and only N (T ) = {0} and the weighted shift
Sf with the weight sequence {‖Tn+1f‖

‖Tnf‖
}∞
n=0

is 2-hyperexpansive (respectively, 2-isometric) for every f ∈ D(T ) \ {0}.
Proof. If T is 2-hyperexpansive and f ∈ D(T ) \ {0}, then

‖Tn+2f‖2 − 2‖Tn+1f‖2 + ‖Tnf‖2 6 0. (6.3)

Dividing both sides of (6.3) by ‖Tn+1f‖2, we get λ2
f,n+1 6 2 − (1/λ2

f,n) with λf,n =
(‖Tn+1f‖/‖Tnf‖). By Lemma 6.1 (i), Sf is 2-hyperexpansive. Likewise, we prove the
converse implication as well as the case of 2-isometries. �
∗ Using [22, § 16], one can directly show that D ⊆ Spp(S∗).

https://doi.org/10.1017/S001309159900139X Published online by Cambridge University Press

https://doi.org/10.1017/S001309159900139X


Unbounded 2-hyperexpansive operators 627

Applying Proposition 6.2 (iii), (vii) and (v), Lemma 6.1 (ii) and Proposition 6.7, we
get the following corollary.

Corollary 6.8. If T is a 2-hyperexpansive operator in H with invariant domain and
f ∈ D(T ) \ {0}, then

(i) {‖Tn+1f‖/‖Tnf‖}∞n=0 is a monotonically decreasing sequence,

(ii) ‖Tf‖2 > ‖f‖‖T 2f‖,
(iii) ‖Tnf‖ = ‖f‖ for every n > 0 provided ‖Tf‖2 = ‖f‖‖T 2f‖, and

(iv)
‖Tn+1f‖2
‖Tnf‖2 6 (n+ 1)‖Tf‖2 − n‖f‖2

n‖Tf‖2 − (n− 1)‖f‖2
for every n > 0.

Remark 6.9. Part (ii) of Corollary 6.8 reminds us of the definition of a paranormal
operator, only the inequality is, in a sense, opposite. In fact, it remains true without
assuming invariance of the domain of T . To be more precise, if T is a 2-hyperexpansive
operator in H, then

‖Tf‖2 > 1
2 (‖f‖2 + ‖T 2f‖2) > ‖f‖‖T 2f‖, f ∈ D(T 2). (6.4)

If, moreover, T is paranormal, then (6.4) implies that ‖Tf‖2 = ‖f‖‖T 2f‖ for f ∈ D(T 2).
This and the second inequality in (6.4) give us ‖T 2f‖ = ‖f‖ for f ∈ D(T 2). Hence
‖Tf‖2 = ‖f‖‖T 2f‖ = ‖f‖2 for f ∈ D(T 2). This is an alternative proof of a part of
Theorem 3.4. Notice also that part (iv) of Corollary 6.8 implies part (iv) of Lemma 3.2
in the case in which the operator in question leaves its domain invariant.

Our next goal is to show that some one-dimensional perturbations of 2-hyperexpansive
weighted shifts remain 2-hyperexpansive (compare with Remark 3.6). Set P0h = 〈h, e0〉e0

for h ∈ K (P0 is the orthogonal projection of K onto Ce0).

Proposition 6.10. Let S be a 2-hyperexpansive (respectively, 2-isometric) weighted
shift with weights {λn}∞n=0 and let z ∈ C. Then

(i) rλ0,λ1

df= 1
2 (2 − λ2

0 + λ0
√
λ2

0 − 4λ2
1 + 4) > 0; moreover, rλ0,λ1 = 0 if and only if

λ0 >
√

2 and λ1 = σ1(λ0),

(ii) the operator S + zP0 is 2-hyperexpansive (respectively, 2-isometric) if and only if
|z|2 6 rλ0,λ1 (respectively, z = 0 or |z|2 = rλ0,λ1).

Proof. (i) It follows from Lemma 6.1 (i) that ϑλ0,λ1

df= 2λ2
0 − λ2

0λ
2
1 − 1 > 0, hence that

λ2
0 − 4λ2

1 + 4 = λ−2
0 ((2− λ2

0)
2 + 4ϑλ0,λ1) > 0 and finally that

2rλ0,λ1 = (2− λ2
0) +

√
(2− λ2

0)2 + 4ϑλ0,λ1 > (2− λ2
0) + |2− λ2

0| > 0. (6.5)

https://doi.org/10.1017/S001309159900139X Published online by Cambridge University Press

https://doi.org/10.1017/S001309159900139X
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If λ1 = σ1(λ0) (⇔ ϑλ0,λ1 = 0), then, by (6.5), rλ0,λ1 = 0 for λ0 >
√

2 and rλ0,λ1 > 0 for
λ0 <

√
2. In the case where λ1 6= σ1(λ0) (⇔ ϑλ0,λ1 > 0), (6.5) yields rλ0,λ1 > 0.

(ii) Set T = S + zP0. It is a simple matter to verify that if {αn}∞n=0 ∈ `2, then

‖T 2f‖2 − 2‖Tf‖2 + ‖f‖2 = |α0|2(|z|4 + |z|2(λ2
0 − 2) + (λ2

0λ
2
1 − 2λ2

0 + 1))

+
∞∑
n=1

|αn|2(λ2
nλ

2
n+1 − 2λ2

n + 1), f =
∞∑
n=0

αnen. (6.6)

According to Lemma 6.1 (i), λ2
nλ

2
n+1−2λ2

n+1 6 0 for n > 0. Hence, by (6.6), the operator
T is 2-hyperexpansive if and only if

|z|4 + |z|2(λ2
0 − 2) + (λ2

0λ
2
1 − 2λ2

0 + 1) 6 0. (6.7)

In view of (6.5), the inequality (6.7) is equivalent to |z|2 6 rλ0,λ1 . The same reasoning
applies to the case of 2-isometries. �

Referring to Proposition 6.10 (and Remark 6.3), consider an arbitrary 2-hyperexpan-
sive weighted shift S. Leaving the weights λ1, λ2, . . . unchanged, one can show (making
use of (i) and (6.5)) that limλ0→∞ rλ0,λ1 = 2 − λ2

1 > 0. Hence, by (ii), for every z ∈ C
with |z| <

√
2− λ2

1, there exists R > 0 such that S+zP0 is 2-hyperexpansive for λ0 > R.
Notice that ‖S + zP0‖ =

√
λ2

0 + |z|2 > λ0.
We conclude the paper with the following observation.

Proposition 6.11. If S is a closed bilateral weighted shift with positive weights
{λn}∞n=−∞ which is 2-hyperexpansive, then S is unitary, i.e. λn ≡ 1.

Proof. Let {en}∞n=−∞ be an orthonormal basis with respect to which S is a bilateral
weighted shift and let E be the linear span of {en}∞n=−∞. Applying Proposition 3.5 (i) to
the operator T = S|E , we conclude that S = T̄ is unitary. �
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