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We study the propagation of water waves in a three-dimensional device alternating open
canals and resonant canals with subwavelength resonances. The dispersion of water
waves in such a medium is obtained by analysing the full three-dimensional problem and
combining Bloch–Floquet analysis with an asymptotic technique. We obtain the closed
forms of the dispersions for resonant canals containing one or two resonators, which
depend on only two functions associated with symmetric and antisymmetric modes, and
on a geometric parameter analogous to the hopping parameter in topological systems.
The analysis of the complete band structure reveals frequency ranges alternating between
elliptical and hyperbolic dispersions; in particular, the hyperbolic regime gives rise to
a negative effective water depth with a consequent negative refraction. Throughout the
course of our study, our theoretical results are validated by comparison with numerical
calculations of the full three-dimensional problem.

Key words: surface gravity waves

1. Introduction

The study of the propagation of water waves in the presence of a periodic distribution
of scatterers began with the seminal work of Schnute (1967) on arrays of submerged
horizontal circular cylinders, a problem since revisited by Linton (2011). In subsequent
studies, other configurations were considered, including periodic variations in bathymetry
(Mei 1985; Davies, Guazzelli & Belzons 1989; Porter & Porter 2003; Maurel, Pham &
Marigo 2019), arrays of vertical cylinders extending throughout the fluid depth (Evans &
Porter 1999; McIver 2000; Carter 2012) and deformable or elastic floating scatterer arrays
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© The Author(s), 2023. Published by Cambridge University Press 961 A16-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

22
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:leo-paul.euve@espci.fr
mailto:kim.pham@ensta-paris.fr
mailto:agnes.maurel@espci.fr
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.220&domain=pdf
https://doi.org/10.1017/jfm.2023.220


L.-P. Euvé, K. Pham and A. Maurel

(Chou 1998; Meylan et al. 2018). In Schnute (1967), Chou (1998) and McIver (2000), the
Bloch–Floquet formalism was used, allowing the set of scatterers to be identified with
a crystal giving rise to Bragg scattering for waves with wavelengths of the same order
as the crystal spacing. This description has been enriched, or at least diversified, thanks
to concepts borrowed from condensed matter physics and quantum physics. Dirac cone
dispersions have been used to realize zero-refractive-index media for water waves (Wu &
Mei 2018) or to produce so-called topologically protected edge modes, in one dimension
(Yang, Gao & Zhang 2016; Anglart 2021) and in two dimensions (Laforge et al. 2019;
Makwana et al. 2020). Anomalous dispersions, such as that reported by Kosaka et al.
(1998) in a graphene crystal-like photonic crystal, have been used to produce negative
refraction of water waves (Farhat et al. 2008, 2010; Carter 2012). Recently, an original
anomalous dispersion was proposed by Porter (2021) and Porter & Marangos (2022)
with inclined plates piercing the surface, thus forcing the energy flow in one direction
only. This example is the only one to our knowledge capable of producing negative
refraction for water waves in the subwavelength regime. In parallel, another strategy has
been considered following the work of Veselago (1968) on elliptical dispersion media with
two negative effective parameters, gravity and surface depth. However, to date, negative
effective gravity in the long-wavelength regime has been obtained by Hu et al. (2003,
2004) and Huang & Porter (2023), but no device capable of producing negative effective
water depth has been proposed.

In the present study, we analyse the dispersion of a periodic medium with subwavelength
resonators inspired by the recent works of Euvé et al. (2021a,b). The medium is composed
of alternating open canals and resonant canals formed by one or two resonators; see
figure 1. The resonators are cavities whose vertical walls extend through the entire depth of
the fluid, with completely submerged holes drilled on two opposite walls. We will consider
the case where the resonant canal contains a single resonator, called a single-resonant canal
(figure 1a) and the case where the resonant canal contains two connected resonators, called
a doubly-resonant canal (figure 1c). Our analysis is based on the Bloch–Floquet formalism
combined with asymptotics using an underlying scale separation; this is developed in
§ 2 (the Brillouin zone is shown in figure 1(b) with κ = (κx, κy) the Bloch–Floquet
wavenumber). The derivation of the dispersion relation for a single-resonant canal is
performed in § 3, and the exercise is repeated more briefly for a doubly-resonant canal
in § 4. We show that the dispersion relation can be put in the same form in both cases,
namely

κ2
x

κ2
0

+ (χs − χa) sin2 κy�y

2
= χs, (1.1)

where χs and χa are explicit frequency-dependent functions (which depend on the number
of resonators in the resonant canal) that encapsulate the subwavelength resonances of
the symmetric and antisymmetric modes. In particular, we show that the dispersion
is governed by a geometrical parameter that is the ratio of the cross-sections of the
resonator and the open canal in the unit cell, analogous to the hopping parameter in
SSH systems (see e.g. Coutant et al. 2021). Finally, in § 5, the complete band diagrams of
both structures are analysed, revealing transitions from elliptical to hyperbolic dispersions,
similar to the topological transitions in the isofrequency surfaces of optical metamaterials
alternating subwavelength layers of metal and dielectric (Dyachenko et al. 2016); in
both cases, the anisotropic medium is characterized by an effective water depth tensor.
In the hyperbolic regime, one of the water depths is negative and an application to
negative refraction is proposed. Throughout the course of our study, the validation of the
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Figure 1. Conceptual view of arrays alternating open canals and resonant canals. (a) Single-resonant canals
contain one resonator along y. (b) The irreducible Brillouin zone with κ = (κx, κy) the Bloch–Floquet
wavenumber. (c) Doubly-resonant canals contain two resonators along y.

theoretical results is proposed through the comparison with numerical calculations of the
full three-dimensional problem.

2. Preliminaries

We consider an inviscid, incompressible fluid and an irrotational motion. Therefore, the
velocity U(r) and the velocity potential Φ(r) (where r = (x, y, z)) are solutions of

div U = 0, U = ∇Φ. (2.1)

We consider the harmonic regime with time dependence exp(−iωt) (where ω is frequency,
and t is time). The boundary conditions read

Uz(x, y, 0) = ω2

g
Φ(x, y, 0), U · n = 0 on the rigid walls, (2.2a,b)

with the origin O at the mean free surface and z directed vertically upwards, and where Uz
is the vertical component of the velocity, n is the normal to the rigid part boundaries, and
g is the gravitational constant.

2.1. Separation of the scales
We consider resonant cavities whose vertical walls extend through the entire depth h of
the fluid, with completely submerged holes drilled on two opposite walls. The dynamics
of a resonator are captured through the separation of three scales similar to that used in
Euvé et al. (2021a). The smallest, microscopic scale is associated with the dimensions
of the hole: its width e, which is also the width of the vertical walls, and

√
s, with s its

cross-section. The intermediate, mesoscopic scale is associated with the dimensions of the
three-dimensional unit cell, �x, �y and h. Finally, the largest, macroscopic scale refers to the
wavelength 1/k = √

gh/ω of the waves that would propagate in the absence of resonators
(i.e. at the free surface of the water column of depth h in the shallow-water regime). We
emphasize that this does not imply that the effective wavenumber κ supported by the
metamaterial behaves in the same way, and therefore in (1.1) we do not have necessarily
sin(κy�y/2) � (κy�y)/2. We also define

Sc = �2
c, S = ��x (2.3a,b)
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as the cross-sections of the resonant cavity and the open canal, with �c = �x − e and

(i) � = �y − �c − 2e for the single-resonant canal,
(ii) � = �y − 2�c − 3e for the doubly-resonant canal.

We thus have √
s, e � �c, �, �x, �y, h � 1/k, (2.4)

and, as said before, the wavelength 1/k at the largest scale indicates a low-frequency
regime, not a large effective wavelength 1/κ .

With this separation of scales, the analysis of the problem is similar to that of Marigo,
Maurel & Pham (2023). It combines an asymptotic homogenization along x and a
Bloch–Floquet analysis along y. The homogenization allows us to establish the effective
propagation equation in the x direction, which provides in part the characteristics of the
effective medium. The Bloch–Floquet condition allows us to take into account the values
of κy ∈ (0,π/�y), which is necessary to obtain the dispersion relations announced in (1.1).
In §§ 2.2 and 3.1, we present informally the main steps of the analysis, the more formal
derivation of which is given in Appendix A.

2.2. Fluxes and potentials at the microscopic scale
At the microscopic scale, i.e. near the opening in the wall, the problem is still that of a
potential flow in three dimensions, but the geometry is simplified greatly since the wall
has an infinite extension. We consider the problem in a dimensionless form for a hole of
unit section in a wall of thickness e/

√
s separating two unbounded regions Ω in and Ωout

(figure 2a). Accordingly, we define

rμ = r√
s
, ψ

(
r√
s

)
= Φ(r), v

(
r√
s

)
= √

s U(r), (2.5a–c)

and the potential ψ and velocity v satisfy

v = ∇μψ, divμ v = 0, v ∼
rμ→+∞

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− A
2πrμ

n, in Ω in,

A
2πrμ

n, in Ωout,

(2.6a–c)

with v · n = 0 on the rigid parts, and where A is the flux. The solution is written in the
form ψ(rμ) = A f (rμ)+ B, with A and B two constants and

f (rμ) ∼
rμ→+∞

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2πrμ

− b
2
, in Ω in,

− 1
2πrμ

+ b
2
, in Ωout,

(2.7)

where b is a blockage coefficient. We also obtain the form of the constant potentials far
from the hole, ψ in = −Ab/2 + B in Ω in, and ψout = Ab/2 + B in Ωout, and thus

A = 1
b
(ψout − ψ in). (2.8)
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Figure 2. (a) Potential flow problem through a pierced wall between two semi-infinite domains (microscopic
scale). The horizontal section shows the potential ψ(rμ) calculated numerically for a hole with unit section
(red and blue indicate the maximum and minimum values of ψ , respectively). (b) Unit cell at the mesoscopic
scale for the single-resonant canals. The potentials are constant within each domain (open canal and resonant
cavity), and the Bloch–Floquet condition applies between adjacent cells.

We now return to our dimensional problem at the mesoscopic scale (figure 2b).
The fluxes Fin and Fout are obtained from the previous analysis thanks to the relation
Fout = −Fin = √

s A, which gives

Fout = −Fin = α(ϕout − ϕin), α =
√

s
b
. (2.9)

where ϕin (resp. ϕout) refer to the value of the potential on the left (resp. on the right) of
the drilled hole. For a given shape of the hole, the solution of the potential flow problem,
posed on ψ(rμ), can be computed numerically by fixing A = 1, which gives the constant
b (see § B.1). The value of b depends on e/

√
s and the shape of the hole cross-section. In

Appendix C, we report the variations of b(e/
√

s) computed for a square-shaped hole.

3. The case of single-resonant canals

In this section, we derive the dispersion relation announced in (1.1) along with the closed
form of the functions χs and χa for the configuration of figure 1(a) alternating open canals
and single-resonant canals. The dispersion along the main directions of the Brillouin zone
is discussed in relation to the geometrical parameter γ = Sc/S, the increase of which
produces the closure and re-opening of a band-gap along Γ Y .

3.1. Effective propagation
In the three-dimensional unit cell sketched in figure 3(a), we introduce the mesoscopic
coordinate rm = r/h, where rm = (xm, ym, zm). The result of the asymptotic analysis,
whose details are given in Appendix A, is as follows. The resonant cavity is closed by
walls except at the free surface, and we have

in the cavity, Φ(r) = ϕ1(x), U(r) = w1(x, rm), (3.1a,b)

satisfying

divm w1 = 0, w1(x, xm, ym, 0) · ez = ω2

g
ϕ1(x), (3.2a,b)
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Figure 3. Unit cells (highlighted regions) used to derive the effective propagation (a) for the single-resonant
canals and (b) for the doubly-resonant canals.

and w1 · n = 0 on the walls. Next, the region of the open canal is bounded by walls along
y only, and we have

in the open canal, Φ(r) = ϕ(x), U(r) = ∂ϕ

∂x
(x) ex + w(x, rm), (3.3a,b)

satisfying
∂2ϕ

∂x2 + divm w = 0, w(x, xm, ym, 0) · ez = ω2

g
ϕ(x), (3.4a,b)

w · n = 0 on the walls, and a periodic boundary condition between xm = ±�x/2.
Note that at the mesoscopic scale, the holes are reduced to points, and at these points,

the velocities (w,w1) have a singularity in |rm|−2 that guarantees finite fluxes. These
finite fluxes are given by the analysis at the microscopic scale that provided (2.9). Hence
with Fin/out

|s (x) = ∫
sin/out w(x, rm) · erm ds – the fluxes through the surfaces sin/out of the

half-spheres centred at a singular point with vanishing radius – we obtain

Fout
|s (x) = −Fin

|s (x) = α(ϕout
|s (x)− ϕin

|s (x)). (3.5)

We will now derive the equation governing the effective propagation along x and take
into account the Bloch–Floquet condition along y, i.e. when passing from one cell to the
others over large distances. To begin with, we integrate the incompressibility relation in
(2.2a,b) within a resonant cavity, and we obtain

ω2Sc

g
ϕ1 − Fout

|s0
− Fin

|s+ = 0, (3.6)

with Fout
|s0

and Fin
|s+ defined in figure 2(a). Accordingly, we have ϕin

|s0
= ϕ, ϕout

|s0
= ϕin

|s+ = ϕ1

and, accounting for the Bloch–Floquet conditions along adjacent cells, ϕout
|s+ = ϕey (where

ey = exp(iκy�y)), hence

ω2Sc

g
ϕ1 − α(ϕ1 − ϕ)+ α(ϕey − ϕ1) = 0. (3.7)

Next, we integrate the incompressibility relation in (3.4a,b) in the region of the open canal,
resulting in

Sh
∂2ϕ

∂x2 + ω2S
g
ϕ − Fout

|s− − Fin
|s0

= 0, (3.8)
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Negative refraction of water waves

with ϕin
|s− = ϕ1e−1

y , ϕout
|s− = ϕin

|s0
= ϕ and ϕout

|s0
= ϕ1, and thus the second relation

Sh
∂2ϕ

∂x2 + ω2S
g
ϕ − α(ϕ − ϕ1e−1

y )+ α(ϕ1 − ϕ) = 0. (3.9)

By defining the quantities

ω2
0 = αg

Sc
, κ2

0 = ω2
0

gh
, γ = Sc

S
, (3.10a–c)

and the non-dimensional frequency Ω = ω/ω0, (3.7) and (3.9) take the form⎧⎪⎨
⎪⎩
(Ω2 − 2)ϕ1 + (1 + ey)ϕ = 0,

1
κ2

0

∂2ϕ

∂x2 + (Ω2 − 2γ )ϕ + γ (1 + e−1
y )ϕ1 = 0.

(3.11)

In the limit γ = 0, we recover the one-dimensional propagation equation for a
stratified medium, namely ∂xxϕ + (ω2/gh)ϕ = 0, as it should be (Porter 2021); see also
Appendix D.

3.2. Dispersion and symmetries of the modes
The dispersion and associated modes are obtained by looking for ϕ(x) = ϕ exp(iκxx) and
ϕ1(x) = ϕ1 exp(iκxx) in (3.11), which takes the form{

(Ω2 − 2)ϕ1 + (1 + ey)ϕ = 0,

γ (1 + e−1
y )ϕ1 + (

Ω2 − 2γ − (κx/κ0)
2)ϕ = 0.

(3.12)

The solvability condition of (3.12) provides the dispersion relation announced in (1.1) with

χs(Ω) = Ω2 − 2γ
Ω2

Ω2 − 2
, χa(Ω) = Ω2 − 2γ. (3.13a,b)

As a result, we obtain the following results along the principal directions of the Brillouin
zone:

along YM,

{
χs = ∞ (Ω = √

2), ϕ = 0, S mode,

κx = κ0
√
χa, ϕ1 = 0, A mode,

(3.14)

along XΓ, κx = κ0
√
χs,

ϕ1

ϕ
= − 2

Ω2 − 2
, S mode, (3.15)

along Γ Y,
ϕ1

ϕ
= − 1 + ey

Ω2 − 2
,

with γ (ey + e−1
y ) = Ω4 − 2(γ + 1)Ω2 + 2γ

⎫⎪⎬
⎪⎭ (3.16)

(where the above dispersion is equivalent to (1.1) along with (3.13a,b) for κx = 0). Note
that we call S mode (resp. A mode) a mode that is symmetric (resp. antisymmetric) with
respect to the axis (C, ex), with C the centre of a resonant cavity (that is, within a shifted
unit cell with ym ∈ (−�y/2, �y/2)).
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Figure 4. Geometry of the three-dimensional unit cell used to compute numerically the dispersion and the
Bloch–Floquet modes, and boundary conditions used in the calculations (see main text), with �y = �c + �+ 2e
and �x = �c + e.

The system (3.12) is degenerate at Y (κx = 0, ey = −1) for γ = 1 since the discriminant
of the system vanishes. From (3.14), this corresponds to the point where the branch of the
S mode atΩ = √

2 (the pole of χs) meets the branch κx = κ0
√
χa of the A mode at κx = 0

(with χa = Ω2 − 2 for γ = 1). We will see that this corresponds to the appearance of a
Dirac point at Y .

To inspect the validity of the obtained dispersion, we consider the following
configurations. The resonators have a square cross-section Sc = �2

c with �c = 5 cm and
wall thickness e = 0.2 cm. Then we fix the length of the open canal � to obtain γ = 0.5,
1 or 2 (hence � � 9.6, 4.8 or 2.4 cm). The (square) section of the submerged opening is
s = 0.5 × 0.5 cm2, and the water depth is h = 5 cm. The analysis of potential flow through
the opening provides the blockage coefficient b = 1.31 (see Appendix C) and accordingly,
ω0 = 3.87 rad s−1 and κ0 = 5.52 m−1.

The dispersion in the actual three-dimensional unit cell was calculated numerically. The
unit cell is shown in figure 4 for � = 10 cm. This has been done by using Bloch–Floquet
conditions along y (BFy on faces opposite of the holes at y = 0 and y = −�y) and along
x (on faces opposite x = ±�x/2 and y ∈ (−(�c + e),−�y)), a free water surface condition
FS at z = 0 (except on regions of the resonator walls piercing the free surface), and a rigid
wall condition W on the submerged resonator walls and on the sea bottom (see details
of the numerics in § B.2). In the following, we restrict our representation to Γ Y ′ with
Y ′(κy = 0, κx�y = π) and XM′ with M′(κy�y = π, κx�y = π) since the branches along
these directions reach their asymptotes well before κx�x = π.

The numerical results are presented in figure 5 (grey symbols) together with our
theoretical prediction, (1.1) with (3.13a,b) (solid lines). We observe very good agreement,
with, however, a slight loss of accuracy whenΩ increases since the assumption of constant
potential inside the resonant cavity becomes questionable and at the same time we leave
the shallow-water regime. Note that an adaptation to greater water depth is possible; this
is discussed in Appendix E.

Let us now comment on the observed dispersion in the light of the general properties
given in (3.14)–(3.16). The two eigenfrequencies at Γ are Ω = 0,

√
2(γ + 1) (χs = 0),

and the S mode along X′Γ follows the two parts of the branch κx = κ0
√
χs corresponding

to χs > 0. Consequently, a band-gap for Ω ∈ (√2,
√

2(γ + 1)) is observed for any γ .
The two eigenfrequencies at Y are Ω = √

2,
√

2γ (χs = ∞ for the S mode, and χa = 0
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γ = 0.5(a) γ = 1(b)

Γ Y

χs = 0

χs = 0

χs = ∞

χa = 0

γ = 2(c)

Γ Y

3

χs = 0

χs = 0

χs = ∞

χa = 0

0

Ω

i

ii

iii

Γ Y

χs = 0

χs = 0

χs = ∞
χa = 0

3

0

3

0

iv

X ′ M ′ X ′ M ′ X ′ M ′

Figure 5. Dispersion along the principal directions of the Brillouin zone for the single-resonant canal. The
grey symbols are from the direct numerics, and the solid lines are from (1.1) with (3.13a,b). Along X′Γ , the
two branches are associated with S modes; along YM, the blue branch is associated with S modes (ϕ = 0), the
green branch with A modes (ϕ1 = 0). In (b), the insets show the patterns in the unit cell centred on the resonator.
Because of the degeneracy at Y for γ = 1, the gap along Γ Y at γ = 0.5 closes at γ = 1, and re-opens at γ = 2.

for the A mode). Along YM, the branch of the S mode stays glued to its asymptote atΩ =√
2, and the A mode follows the part of the branch κx = κ0

√
χa corresponding to χa > 0

(Ω >
√

2γ ). (For γ < 1, our model predicts that the two branches along YM′ intersect
at Ω = √

2; in the direct numerics, we observe an avoiding crossing.) As expected, the
relative positions of the two branches vary depending on whether γ < 1 or γ > 1, and
they cross for γ = 1. As a result, the band-gap opens along Γ Y for γ < 1, closes at Y for
γ = 1 with the appearance of a Dirac point, and re-opens for γ > 1. This behaviour is
characteristic of topological systems studied recently in the context of water waves (Yang
et al. 2016; Anglart 2021); see also Coutant et al. (2021) in one-dimensional and Zheng
et al. (2019) in two-dimensional acoustic systems.

We conclude this discussion by commenting on the shapes of modes reported in the
insets in figure 5(b) for γ = 1. Along X′Γ , the modes are symmetric; in agreement with
(3.15), we observe that ϕ1/ϕ is positive on the first branch (inset i), and it is negative on
the second branch (inset ii). The first branch then reaches its asymptote atΩ = √

2, giving
rise to a symmetric mode extended along YM, with ϕ = 0 in agreement with (3.14) (inset
iii). The second branch along YM is associated with antisymmetric modes, which is made
possible for the single-resonant canal since ϕ1 = 0, in agreement with (3.14) (inset iv). The
degeneracy at Y is again visible as the shapes of the S and A modes become incompatible
at Y .

4. The doubly-resonant canal

We now turn to the configuration in figure 1(c). The unit cell is composed of two identical
resonators and a region of the open canal. The second resonator introduces an additional
degree of freedom while preserving the form of the dispersion (only χs and χa will be
different), which facilitates the interpretation of the observed phenomena.
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4.1. Analysis of the effective propagation
We proceed as in the previous section, starting with the integration of the incompressibility
relation in (2.2a,b) in each resonator, which applies for Φ(r) = ϕ1(x) and Φ(r) = ϕ2(x);
see figure 3(b). We obtain {

(Ω2 − 2)ϕ1 + ϕ2 = −ϕ,
ϕ1 + (Ω2 − 2)ϕ2 = −eyϕ,

(4.1)

where ey = exp(iκy�y), and with now �y = 2�c + �+ 3e. Next, we use (3.4a,b) that we
integrate over the region of the open canal within the unit cell, and we obtain

Sh
∂2ϕ

∂x2 + ω2S
g
ϕ + α(ϕ1 + ϕ2e−1

y − 2ϕ) = 0. (4.2)

4.2. Dispersion and symmetries of the modes
With two resonators, the analysis of the Bloch–Floquet mode symmetry is simplified
greatly by introducing the symmetric and antisymmetric parts of the modes in the
resonators ϕa = (ϕ1 + ϕ2)/2 and ϕs = (ϕ1 − ϕ2)/2. Next, as before, we look for ϕ(x) =
ϕ exp(iκxx) and ϕs,a(x) = ϕs,a exp(iκxx). By doing so, we obtain from (4.1) and (4.2) the
equivalent system⎧⎪⎪⎨

⎪⎪⎩
2

(
Ω2 − 1

)
ϕs + (1 + ey)ϕ = 0,

2
(
Ω2 − 3

)
ϕa + (1 − ey)ϕ = 0,

γ (1 + e−1
y )ϕs + γ (1 − e−1

y )ϕa + (
Ω2 − 2γ − (κx/κ0)

2)ϕ = 0,

(4.3)

whose solvability condition provides the dispersion relation. We recover the form
announced in (1.1), with χs and χa given by

χs(Ω) = Ω2 − 2γ
Ω2

Ω2 − 1
, χa(Ω) = Ω2 − 2γ

Ω2 − 2
Ω2 − 3

(4.4a,b)

(instead of (3.13a,b)), with (γ, κ0, ω0) given in (3.10a–c) and still Ω = ω/ω0. Along the
principal directions of the Brillouin zone, we obtain

along YM :

⎧⎨
⎩
χs = ∞(Ω = 1), ϕ = ϕa = 0, S mode,

κx = κ0
√
χa, ϕs = 0,

ϕa

ϕ
= − 1

Ω2 − 3
, A mode,

(4.5)

along XΓ :

⎧⎪⎨
⎪⎩
χa = ∞ (Ω = √

3), ϕ = ϕs = 0, A mode,

κx = κ0
√
χs, ϕa = 0,

ϕs

ϕ
= − 1

Ω2 − 1
, S mode,

(4.6)

along Γ Y :
ϕs

ϕ
= − ey + 1

2(Ω2 − 1)
,

ϕa

ϕ
= ey − 1

2(Ω2 − 3)
,

with γ (ey + e−1
y )+Ω2(Ω4 − 4Ω2 + 3)− 2γ (Ω4 − 3Ω2 + 1) = 0,

⎫⎪⎬
⎪⎭

(4.7)

where the above dispersion relation is equivalent to (1.1) with (4.4a,b), for κx = 0. (Note
that the symmetries of the modes correspond to symmetries with respect to Cxm, with C
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the centre between the cavities and ym ∈ (−�y/2, �y/2).) The situation is now the same at
Γ and Y . At Γ , the eigenfrequencies correspond to the two zeros of χs and the pole of χa,
and at Y , the eigenfrequencies correspond to the two zeros of χa and the pole of χs.

For γ = 1, the system (4.3) is degenerate at Y when Ω = 1, and it is degenerate at
Γ when Ω = √

3 (the discriminant of the system (4.3) vanishes). In the former case at
Y , the scenario is the same as for the single-resonant canal; from (4.5), the branch of
the S mode at Ω = 1 (the pole of χs) meets the branch κx = κ0

√
χa of the A mode at

κx = 0 (with χa = (Ω2 − 1)(Ω2 − 4)/(Ω2 − 3) for γ = 1). The situation is the same at
Γ for Ω = √

3; from (4.6), the branch of the A mode at Ω = √
3 (the pole of χa) meets

the branch κx = κ0
√
χs of the S mode at κx = 0 (with χs = Ω2(Ω2 − 3)/(Ω2 − 1) for

γ = 1). This will lead to the appearance of two Dirac points at Y and at Γ .
We consider the same resonant cavities and open canal, hence again γ = 0.5, 1

and 2. The holes are the same, so b = 1.31, and ω0 = 3.87 rad s−1, κ0 = 5.52 m−1.
Our representation in figure 6 is identical to that in figure 5 (with �y = 2�c + �+ 3e).
The dispersion in the three-dimensional unit cell has been calculated numerically (grey
symbols) and is compared with the model (1.1) and (4.4a,b) (solid lines). We observe
the same very good overall agreement as in figure 5. Among the three branches, two of
them were already visible for the single-resonant canals, but with the appearance of a
new antisymmetric branch (indicated by a star), the branches associated with the S and
A modes now behave in the same way. Along XΓ , the two symmetric branches follow
the dispersion κx = κ0

√
χs with a band-gap when Ω ∈ (1,√1 + 2γ ); the antisymmetric

branch is glued to its asymptote atΩ = √
3 (χa = ∞). Consequently, a Dirac cone appears

at Γ where the two branches meet, for γ = 1,Ω = √
3. Along YM′, the two antisymmetric

branches follow the dispersion κx = κ0
√
χa with two band-gaps when Ω ∈ (0,Ω−) and

Ω ∈ (√3,Ω+) (χa < 0, with Ω± the two zeros of χa). (The two zeros Ω± of χa are the
roots of Ω4 − (3 + 2γ )Ω2 + 4γ = 0, and whatever the value of γ , Ω− ∈ (0,√2) and
Ω+ ∈ (√3,+∞).) The symmetric branch is glued to its asymptote at Ω = 1 (χs = ∞).
WithΩ− = 1 when γ = 1, the two branches meet whenΩ = 1, which gives a Dirac cone
at Y .

The shapes of the modes i–iv (shown in the insets of figure 6b) on the branches that
existed for a single-resonant canal are identical to those reported in figure 5, with ϕa = 0
for i, ii, iv, and ϕa = ϕs = 0 for iii. The new antisymmetric modes, v with ϕs = ϕ = 0 and
vi with ϕs = 0, are made possible by the additional degree of freedom that we introduced
with the second resonator.

5. Elliptic and hyperbolic dispersion, application to negative refraction

In this section, we take the usual representation of effective media in electromagnetism
whose simple counterpart for water waves can be deduced from (1.1) when κy�y � 1. In
this limit, the dispersion relation (1.1) provides, in dimensional form,

hxκ
2
x + hyκ

2
y = ω2

ge
, (5.1)

with

hx = h, hy = (�yω0)
2

4g
(χs − χa), ge = Ω2

χs
g. (5.2a–c)
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iii

Γ Y Γ Y Γ Y

3

0

3

0

3

0

Ω

(a) (b) (c)γ = 0.5 γ = 1 γ = 2

χa = 0
χa = 0

χa = 0

χa = 0

χa = 0

χa = 0

χa = ∞
χa = ∞

χa = ∞
χs = 0

χs = 0 χs = 0

χs = 0

χs = 0

χs = 0

χs = ∞
χs = ∞

χs = ∞
i

v

ii vi

iv

M ′ M ′X ′X ′ M ′X ′

Figure 6. Dispersion along the principal directions of the Brillouin zone for the doubly-resonant canal. Same
representation as in figure 5. A new branch appears (green stars) associated with the pole of χa and one of its
two zeros, associated with A modes along X′Γ and YM′. Because of the degeneracies at Γ and Y , the gaps at
γ = 0.5 close at γ = 1 and re-open at γ = 2.

The water-depth tensor (with diagonal elements (hx, hy)) is equivalent to the permittivity
tensor, and the effective gravity ge is equivalent to the effective permeability. With hx =
h > 0, the dispersion is elliptical in nature when hy > 0 and ge > 0, and hyperbolic when
hy < 0 (the negative index thought by Veselago (1968), with hx, hy and ge negative, is not
possible). In the limit κy�y � 1, we also obtain that the group velocity vg = ∇κω is

vg ∝ hxκxex + hyκyey, (5.3)

and vg is perpendicular to the isofrequency contour (the curve (κx, κy) in (5.1) for constant
ω value). It is sometimes objected that the directions of the group velocity and the Poynting
vector may differ. However, the unambiguous derivation of the expression for the Poynting
vector in the equation of energy conservation is made difficult by the fact that (1.1), or (5.1),
does not provide an effective model. It is shown in Appendix F that by using a continuity
argument with the case of thick plates piercing the free surface, the Poynting vector can
be written as

π = 2ωξ |ϕ|2(hxκxex + hyκyey), (5.4)

where ξ = �/�y is the filling fraction of open canal in the unit cell. Note that when the
condition κy�y � 1 is not satisfied, (5.1) is still valid using hy → hy sinc2(κy�y/2), and
(5.3) is still valid using hy → hy sinc(κy�y) (with still vg perpendicular to the isofrequency
contour). (We use the function sinc(a) = sin a/a.)

5.1. Band structure and analysis of the isofrequency contours
We are now interested in the complete band structure in the (κx, κy,Ω) space and in the
analysis of the isofrequency contours. We plot in figure 7 the complete band structure
obtained from (1.1), using (χs, χa) in (3.13a,b) for the single-resonant canals and in
(4.4a,b) for the doubly-resonant canals. The colours on the dispersion surfaces correspond
to constant values of Ω ∈ (0, 3). We also plot isofrequency contours (white lines) and
the dispersion along the principal directions of the Brillouin zone (coloured lines as in
figures 5 and 6). To interpret the observed isofrequency contours, we start with (5.1),
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Figure 7. Full band structures of (a) a single-resonant canal and (b) a doubly-resonant canal. The white lines
show the isofrequency contours, and the coloured lines show the dispersion in the pass-bands along Γ Y (red
lines), YM′ (blue lines) and XΓ (green lines). As Ω increases, the structures have a dispersion alternating
elliptical and hyperbolic isofrequency contours, and end up above the last pass-bands of Γ X with a dispersion
similar to that of non-resonant closed cavities.

which tells us that the isofrequency contours are elliptical if (χs − χa) > 0 (hy > 0)
and χs > 0 (ge > 0), and hyperbolic if (χs − χa) < 0 (hy < 0, whatever the sign of ge).
Therefore, in this κy�y � 1 approximation, we expect that for a single-resonant canal, with
(χs − χa) = −4γ /(Ω2 − 2), the dispersion is of hyperbolic shape for Ω >

√
2, and for

a doubly-resonant canal, with (χs − χa) = 4γ /((Ω2 − 1)(Ω2 − 3)), it is of hyperbolic
shape for Ω ∈ (1,√3), whatever the value of γ . This is roughly consistent with what is
observed in figure 7, but must be corrected as κy�y increases. Indeed, for elliptical and
hyperbolic dispersions predicted by (5.1), propagation along Γ Y is always possible (there
is a solution at κx = 0, κy /= 0). In fact, the dispersion is elliptical or hyperbolic only
in the pass-bands of Γ Y . Outside these regions, ellipses and hyperbolas are deformed
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y

x

κx

κy

(a) (b) (c) (d ) (e)

Figure 8. Directional emission of a point source through a single-resonant canal (top plots) and corresponding
dispersion from the Fourier transform of the fields; the theoretical isofrequency contours, from (1.1) along with
(3.13a,b), are shown with dashed black lines (bottom plots). Values of Ω used are (a) 0.62, (b) 1.12, (c) 1.61,
(d) 1.92, and (e) 2.05.

by the opening of a gap at κx = 0. This becomes critical for large enough Ω above the
last pass-band of Γ Y , where the dispersion becomes strongly anisotropic. According to
(3.13a,b) or (4.4a,b), we then have χs = χa � Ω2, thus the isofrequency contours reduce
to the two lines κx = ±ω/√gh as in Porter (2021); see also Appendix D.

To confirm and complete these theoretical predictions, we performed the following
numerical experiments. We solved numerically the full three-dimensional problem with
water depth h = 5 cm and, in the horizontal plane, a square domain of extension 30�y ×
30�y. We impose a point excitation at frequency ω at the centre of the domain on the free
surface corresponding to an open canal (details on the numerics are given in § B.3). The
results are shown in figures 8 and 9 for the single- and doubly-resonant canals, respectively
(the reported domain is 20�y × 20�y). In the figures, the upper plots show the velocity
potential fields in the (x, y) plane at the z = 0 free surface. We plot for x < 0 the raw
numerical result (the position of the resonators is visible), and for x > 0 we use a trick to
reveal the effective propagation on ϕ by expanding the field in the open canal to the entire
unit cell. In these regions, the dashed black lines show the extremities of the Poynting
vector calculated from (5.4). The lower plots show the Fourier transform of the field in
the (κx, κy) plane as well as the theoretical isofrequency contour at the same frequency
(dashed black line).

The results confirm that the isofrequency contours undergo transitions between elliptical
and hyperbolic shapes, and the agreement between direct numerical simulation and theory
is very good. They also confirm the last transition to an ultra-directional emission along
x, similar to that of closed cavities, which results from the deformation of hyperbolas for
single-resonant canals, and from the deformation of ellipses for doubly-resonant canals.
We note that propagation in single-resonant canals is in general more anisotropic than
in doubly-resonant canals. This is particularly visible in the hyperbolic regime, with a
characteristic X-shaped emission, the X being less open for the upper plots in figure 8(d,e)
than for those in figure 9(d,e).
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(a) (b) (c) (d ) (e)

( f ) (g) (h) (i) ( j)

Figure 9. Same representation as in figure 8 for doubly-resonant canals (the theoretical isofrequency contours
are obtained from (1.1) along with (4.4a,b)). (a–j) Values of Ω used are 0.50, 0.80, 1.24, 1.55, 1.61, 1.74, 1.86,
2.00, 2.05 and 2.24, respectively.

5.2. Negative refraction produced by hyperbolic dispersion
Negative refraction, as opposed to positive refraction, refers to a non-classical refraction
whose most striking demonstration is made when a beam incident in a regular region
is refracted on the same side of the normal to an interface with a metamaterial. To
illustrate the ability of our hyperbolic media to produce negative refraction, we performed
a numerical experiment in which such an incident beam passes through a slab x ∈ (0, L)
surrounded by regular regions with constant water depth h0. The slab is composed of
simply resonant canals with the same characteristics as in § 3, and we used L = 18�y and
h0 = h. The incident beam is generated using sources pulsating at the frequency Ω = 2,
placed along a segment inclined at angle θi = 45◦ with respect to the vertical direction
y. In figure 10(a), the incident beam interferes with the waves diffracted by the edges
of the segment, but the beam emerging at x = L is clearly visible with a well-defined
angle θi and a small aperture. In the region x > L, the Fourier transform of the field thus
produces a weak extension spot on the dispersion curve centred on k = k(cos θi, sin θi)

with k�y = 1.23; see figure 10(b).
At the chosen frequency, the dispersion in the slab is of hyperbolic type. Since the

vertical components of the wavevectors are conserved, κy�y = ky�y = 0.87, we predict
from (1.1) along with (3.13a,b) that κx�y = ±0.48. To determine the sign of κx, we use the
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(a) (b) (c)
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y
x

L

ky�y

kx�y

1 θi θt

κy�y

κx�y

θi

θt

0 90

0

–15

Figure 10. (a) Negative refraction in a slab 0 < x < L made of resonant canals; the regions x < 0 and x > L
corresponds to constant water-depth regions with water-depth h0 = h. The white arrows show the wavevectors
inside and outside the slab, and the dashed red lines show the direction of the Poynting vectors. Wavevectors
(white arrows) and Poynting vectors (red arrows) (b) outside and (c) inside the slab.

model again, and we are now interested in the Poynting vectors. Outside the slab, π0 given
by

π0 = 2ω |ϕ|2h0(kxex + kyey) (5.5)

is simply parallel to k = (kx, ky), with k =
√

k2
x + k2

y satisfying the usual dispersion

relation k tanh kh0 = ω2/g. In these regions, kx > 0, hence π0x > 0, as it should be. In
the slab, we rely on the causality principle, which imposes that πx ∝ hxκx in (5.4) must be
positive too; with hx = h > 0, we deduce that κx is positive, hence κx�y = 0.48. It is then
sufficient to note that in the hyperbolic regime, hy < 0, to deduce that πy ∝ hyκy < 0.
These predictions are in very good agreement with the results of figure 10. On the one
hand, the Fourier transform of the field in x ∈ (0, L) (figure 10c) shows that the wavevector
in the slab corresponds to the wavevector κ (the white arrow corresponds to the theoretical
prediction), with notably κx > 0. On the other hand, the refraction angle θt = atan(πy/πx)

of the energy flux in the slab, predicted at θt = −14.2◦, is in agreement with the observed
path of the beam refracted in the slab and transmitted at x = L (the theoretical path is
indicated in red dotted lines). Let us finally note that the energy of the refracted beam in
the slab is particularly directional since for θi > 40◦ we have θt ∈ (14◦, 14.7◦) (see inset
of figure 10b).

6. Conclusion

We have presented a type of subwavelength resonant media capable of producing elliptic
or hyperbolic type dispersions for water waves. The dispersion in these media is described
accurately by a simple effective model for one or two resonators in the unit cell; in
particular, the dispersion relation keeps an identical form that naturally encapsulates the
symmetry of the Bloch–Floquet modes. Our study has focused on obtaining and validating
this dispersion with an application to negative refraction in the hyperbolic regime. We
point out that the same mechanism has been recently demonstrated in elastodynamics,
with slender beam canals experiencing bending resonances supported by plain elastic
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canals (Marigo et al. 2023). We also note the similarity of the proposed analysis with
that conducted in Farhat et al. (2008) for an interconnected network of open canals.

To illustrate the validity of the model, we have chosen a rather large hole opening,
i.e. moderately subwavelength resonances. Choosing a smaller aperture would of course
improve the predictivity of the model but would perhaps take us away from realistic
practical realizations, due to losses. Moreover, it allowed us to show that the phenomena,
predicted in an asymptotic framework that assumes a subwavelength regime, are robust
when we push the model towards its limits of validity.

Finally, as mentioned in places in this paper, our systems present strong analogies
with topological systems studied recently in the context of classical waves. The types
of predictive models that we have obtained should be useful in extending our study to
new applications. In particular, we have in mind the promising possibility for water waves
to travel along interfaces without backscattering, regardless of the presence of defects or
disorder, thanks to non-trivial topological phases of which some features – the hopping
parameter and topological inversion points associated with degenerate Dirac cones – have
already been identified in our model.
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Appendix A. Asymptotic analysis

We will use a non-dimensional form of the problem, for r → kr, u → u/U0 and ϕ →
kϕ/U0 with k = ω/

√
gh, and U0 a characteristic velocity. Accordingly, (3.1a,b)–(2.2a,b)

read

div u = 0, u = ∇ϕ, uz|z=0 = εϕ|z=0, (A1a–c)

with u · n = 0 on the rigid parts, and ε = ω
√

h/g � 1 the small parameter.

A.1. The mesoscopic scale
The mesoscopic scale is that of a unit cell Ωt = Ωc ∪Ω (where Ωc is the region of the
cavity, and Ω is the region of the open canal). Using the rescaled, mesoscopic, coordinate
rm = r/ε, with rm = (xm, ym, zm), we have

Ω = {xm ∈ (−lx/2, lx/2), ym ∈ (−l−y , 0), zm ∈ (−1, 0)},
Ωc = {xm ∈ (−lx/2, lx/2), ym ∈ (0, l+y ), zm ∈ (−1, 0)}.

}
(A2)

The fields are expanded as

ϕ = ϕ0(x, rm)+ ε ϕ1(x, rm)+ · · · , u = u0(x, rm)+ εu1(x, rm)+ · · · . (A3a,b)

We notice that at the mesoscopic scale, the walls have zero thickness and the holes are
reduced to points (finite thickness of the wall and geometry of the hole will be accounted
for at the microscopic scale only). In reference to figure 2(a), we call these points Ps− , Ps0
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and Ps+ . Hence the cavity Ωc is completely closed. The region Ω is bounded by walls at
ym = −l−y and 0, and we impose periodic boundary conditions

∀ n ≥ 0, ϕn(x, lx/2, ym, zm) = ϕn(x,−lx/2, ym, zm), rm ∈ Ω, (A4)

(and the same for un). We start with the second equation in (A1), which at the dominant
order in ε−1 provides ∇mϕ

0 = 0, hence ϕ0 is independent of rm in Ω and in Ωc. In other
words, ϕ0(x, ym) is a function of x only for ym < 0 (in Ω) and for ym > 0 (in Ωc). Next,
we consider the problem set on (ϕ1,u0). From the first equation in (A1) at the order ε−1,
and the other two equations at the order ε0, we obtain⎧⎪⎨

⎪⎩
divm u0 = 0, u0 = ∇mϕ

1 + ∂ϕ0

∂x
ex,

u0
z |zm=0 = 0, u0 · n = 0, on the rigid boundaries,

(A5)

which applies in Ω and in Ωc, and in Ω , the periodic conditions (A4) apply. Assuming
that u0 is regular at Ps± and Ps0 , the solution to (A5) reads

u0 = ∂ϕ0

∂x
ex, rm ∈ Ω, u0 = 0, rm ∈ Ωc, (A6a–d)

hence u0 is independent of rm in Ω and in Ωc. We now use, from (A1), the first and third
equations at the order ε, namely

divm u1 + ∂u0
x

∂x
= 0, u1

z |zm=0 = ϕ0
|zm=0, (A7a,b)

and we integrate the above incompressibility relation over Ω and over Ωc with u0 in
(A6a–d). We obtain

0 = |Ω| ∂
2ϕ0

∂x2 (x, ym < 0)+
∫
∂Ω

divm u1 drm

= |Ω| ∂
2ϕ0

∂x2 (x, ym < 0)+ SΩ ϕ0(x, ym < 0)

+
∫

s−,out
u1 · n dsm +

∫
sin
0

u1 · n dsm, in Ω, (A8)

with |Ω| the volume of Ω , and SΩ the surface of Ω at zm = 0, and

0 =
∫
∂Ωc

divm u1 drm = SΩc ϕ
0(x, ym > 0)

+
∫

sout
0

u1 · n dsm +
∫

s+,in
u1 · n dsm, in Ωc, (A9)

with |Ωc| the volume of Ωc, and SΩc the surface of Ωc at zm = 0. The surfaces s−,in/out

are those of half-spheres of radius, say, a → 0 centred at Ps− (the same for s+,in/out and
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Negative refraction of water waves

sin/out
0 ). We assume that the fluxes through these surfaces do not vanish; that is, we assume

that u1 is singular at the hole points. The singularity must be of the form

u1(x, rm) ∼
rm→0

sign( ym)
A(x)
2πr2

m
er, (A10)

to ensure that the terms of flux in (A9) and (A8) are finite (and the change of sign for
ym < 0 and ym > 0 will be justified by the analysis at the microscopic scale).

A.2. The microscopic scale
We now move on the microscopic scale in the vicinity of one (generic) hole, and we
introduce the rescaled coordinate rμ = r/(αμε3), for rμ = (xμ, yμ, zμ) with

αμ =
√

s
hε2 = O(1). (A11)

We notice that this choice produces a hole of unitary section at the microscopic scale. At
this scale, the sea bottom and the free surface do not exist (they have been sent to ±∞
along xμ and zμ) and the problem is reduced to a potential flow problem in an unbounded
space, as sketched in figure 2(a). We expand the fields as

ϕ = ψ0(x, rμ)+ ε ψ1(x, rμ)+ · · · , u = ε−3 v−3(x, rμ)+ ε−2 v−2(x, rμ)+ · · · .
(A12a,b)

The boundary conditions when rμ = |rμ| → +∞ are given by matching conditions that
tell us that the solution at the microscopic scale when rμ → +∞ has to match the solution
at the mesoscopic scale when rm → 0, namely

ψ0(x, rμ)+ ε ψ1(x, rμ)+ · · · ∼
rm→0, rμ→+∞

ϕ0(x, rm)+ ε ϕ1(x, rm)+ · · · ,

ε−3 v−3(x, rμ)+ ε−2 v−2(x, rμ)+ · · · ∼
rm→0, rμ→+∞

u0(x, rm)+ ε u1(x, rm)+ · · · .

⎫⎪⎬
⎪⎭

(A13)

We will need only the problem set at the dominant order on (ψ0, v−3), which is given by
the first two equations of (A1) at the order ε−3, along with the matching condition on v−3

in (A13) and (A10), namely

divμ v−3 = 0, v−3 = 1
αμ

∇μψ
0, v−3(x, rμ) ∼

rμ→+∞ sign( yμ)
A(x)

2πα2
μr2
μ

erμ.

(A14a–c)

Note that in (A14a–c), the behaviour of v−3 when rμ → +∞ is consistent with the
incompressibility condition, which justifies the choice made in (A10). We define f (rμ)
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in the relation ψ0(x, rμ) = A(x) f (rμ)/αμ + B(x) and deduce that

f (rμ) ∼
rμ→+∞

1
2πrμ

− b
2
, yμ < 0, f (rμ) ∼

rμ→+∞ − 1
2πrμ

+ b
2
, yμ > 0, (A15a,b)

where b is a blockage coefficient, and

A(x) = −α2
μ

∫
sin

v−3 · erμ dsrμ = α2
μ

∫
sout

v−3 · erμ dsrμ (A16)

is the constant flux. From (A10), we obtain

A(x) = −
∫

sin
u1 · erm dsm =

∫
sout

u1 · erm dsm. (A17)

We can now come back to (A8)–(A9) where we had left the terms of flux.
The matching (A13) at the dominant order on the potentials provides the relations
ϕ0(x, ym < 0) = −A(x) b/(2αμ)+ B(x) and ϕ0(x, ym > 0) = A(x) b/(2αμ)+ B(x), hence

αμ(ϕ
0(x, ym > 0)− ϕ0(x, ym < 0)) = A(x) b (A18)

(where b is known after f (rμ) has been calculated numerically). Using (A10) further, we
can calculate the fluxes in (A8)–(A9).

A.3. Final expressions
From what we have seen, we can conclude and establish the relations (3.7) and (3.9). In
the main text, we defineded ϕ(x) = ϕ0(x, ym < 0) and ϕ1(x) = ϕ0(x, ym > 0) in the unit
cell (figure 2(b)). The flux through Ps0 corresponds to the integrals over sin/out = sin/out

0
on the wall at ym = 0, hence from (A17) and (A18), we have (for n = −erm)∫

sin
0

u1 · n ds = −
∫

sout
0

u1 · n ds = αμ

b
(ϕ1 − ϕ). (A19)

For the integral over s−,out, (A17) involves the potential for ym < −l−y , given by the
Bloch–Floquet condition (see figure 2b), which provides∫

s−out
u1 · n ds = αμ

b
(ϕ − ϕ1e−1

y ) (A20)

(with ey = exp(iκy�y)). Similarly, for the integral over s+,in, (A17) involves the potential
for ym > l+y , hence ∫

s+,in
u1 · n ds = αμ

b
(ϕey − ϕ1). (A21)

Gathering the above results in (A8)–(A9), we obtain⎧⎪⎪⎨
⎪⎪⎩

|Ω| ∂
2ϕ

∂x2 + SΩϕ − αμ

b
(ϕ − ϕ1e−1

y )+ αμ

b
(ϕ1 − ϕ) = 0,

SΩcϕ1 − αμ

b
(ϕ1 − ϕ)+ αμ

b
(ϕey − ϕ1) = 0,

(A22)

which are the dimensionless forms of (3.7) and (3.9) (with ε2 = ω2h/g, αμ = √
sg/(hω)2,

|Ω| = SΩ = S/h2, SΩc = Sc/h2, and remembering that x → kx with k2 = ω2/(gh)).
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xμ

yμ

zμ

x

z

y

(b)(a)

Figure 11. (a) Geometry and mesh of the computational domain to solve the microscopic problem on f (rμ).
(b) Geometry and mesh of the computational domain to solve the eigenvalue problem (B5) on �per(r) (band
diagram).

Appendix B. Details on the numerical calculations

For the numerical resolution of the different problems reported in our study, we used
Comsol Multiphysics or the Matlab partial differential equation (PDE) toolbox. We specify
that the choice of the solver is motivated not by the performances/limitations of these
numerical tools but rather by the competence of the authors to use one or the other.

B.1. Resolution of the problem at the microscopic scale
The problem at the microscopic scale (2.6a–c) has been solved numerically to get the
blockage coefficient b in (2.7). This problem is set on f (rμ) satisfying the Laplace equation
with ∇f · n = 0 on the rigid parts (the vertical wall of thickness e/

√
s and the walls of the

hole) with unitary flux through the whole. We implemented the problem on the geometry
shown in figure 11(a) which is composed of

half-hole,
{
xμ ∈ (−1/2, 1/2), yμ ∈ (0, e/(2

√
s)), zμ ∈ (−1/2, 1/2)

}
,

half-sphere,
{(

x2
μ + (

yμ − e/(2
√

s)
)2 + z2

μ

)
∈ (0,R2)

}
,

⎫⎬
⎭ (B1)

with R � e/
√

s in order to recover the limits (2.7) (in practice, R = 10). The boundary
conditions applied to the boundaries of the computational domain are

f = 0, for xμ ∈ (−1/2, 1/2), yμ = 0, zμ ∈ (−1/2, 1/2),

∇f · erμ = 1
2πR2 , for

√
x2
μ + (

yμ − e/(2
√

s)
)2 + z2

μ = R, yμ > e/(2
√

s).

⎫⎬
⎭ (B2)

Once f has been computed, we deduce the blockage coefficient

b = 2 lim
rμ→∞

(
f (rμ)+ 1

2πrμ

)
(B3)

(in practice, for rμ = R). This problem has been solved using Comsol Multiphysics.

B.2. Band diagrams
The band diagram is obtained by solving the three-dimensional direct problem set on
Φ(r), (3.1a,b)–(2.2a,b), in the unit cell shown in figure 11(b) (see also figure 4) with
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Bloch–Floquet decomposition

Φ(r) = �per(r) exp(iκ · r), (B4)

where �per(r) is a periodic function with periodicity �x along x, and �y along y, and with
κ = κxex + κxey. Numerically, we implemented the weak formulation of the eigenvalue
problem for�per(r), i.e. set on a periodic cellΩt. It results that the resolution consists, for
a given wavevector κ , to find the set of (ω,�per) such that for any (periodic) test function
�∗

per, we have∫
Ωt

(∇�per · ∇�∗
per + κ2�per�

∗
per − i�∗

perκ · ∇�per + i�perκ · ∇�∗
per)dΩ

−
∫

z=0

ω2

g
�per�

∗
per dS = 0, (B5)

where κ2 = κ · κ . This problem has been solved using Comsol Multiphysics with the weak
formulation PDE interface.

B.3. Numerical experiments with a source term
For the results reported in figures 8–10, the set of equations (3.1a,b)–(2.2a,b) has been
modified to account for source terms, specifically

ΔΦ(r) = S(r). (B6)

We define a elementary source as

se(r) = exp(−(x2 + y2 + z2)/d2), d = �x/10. (B7)

The results reported in figures 8 and 9 have been obtained using a point source, and
we imposed S(r) = se(r) with the computational domain being {x ∈ (−15�y, 15�y), y ∈
(−15�y, 15�y), z ∈ (−h, 0)}.

The results on negative refraction (figure 10) involve an incident beam. In the numerics,
we used

S(r) =
∑

c

se(r − rc), (B8)

with rc the centres of a hundred elementary sources located along a segment inclined at
45◦ with respect to the y-axis (the segment is visible in figure 10).

In both cases, in order to avoid the reflection on the borders of the domain, we used
perfectly matched layers of thickness 2.5�y. These problems have been solved using the
Matlab toolbox Pdetool (partial differential equations using finite element analysis).

Appendix C. Resonance frequency and blockage coefficient

In Euvé et al. (2021a,b), we pointed out the analogy between an underwater resonant
cavity for water waves and an acoustic Helmholtz resonator in two dimensions. Here, the
geometry of the cavity is three-dimensional, and we will see that, mutatis mutandis, the
analogy still holds. The resonance frequency of a Helmholtz resonator, which applies to
the acoustic pressure, is obtained by integrating the Helmholtz equation over the cavity
and further by assuming that the acoustic velocity in the hole is constant. We repeat this
exercise and integrate the incompressibility condition over the cavity, with ϕ1 the constant
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Negative refraction of water waves

0.87

0.92

0.8

2.0

0 1 0 1

b

1

e/�
s

b = 0.91 + e/�
s

b – e/�s

(b)(a)

e/�s e/�s

Figure 12. (a) Blockage coefficient b of a infinite wall pierced by a square hole with unitary cross-section and
normalized length e/

√
s (solid blue line); a good estimate is given by b = b0 + e/

√
s, b0 = 0.91, (dashed black

line). (b) Variation of b − e/
√

s, revealing a small shift with respect to the law b = b0 + e/
√

s for vanishing e.

potential within the resonator, and ϕ|N the value of the potential at the exit of the neck.
Accordingly, we obtain

0 =
∫

div u dr = ω2Sc

g
ϕ1 + s v|N, (C1)

with v|N = u · n at the exit of the resonator neck. Assuming as in the acoustic case that
the velocity is constant in the neck of length e, we have v|N = (ϕ|N − ϕ1)/e, hence

(ω2 − ω2
r )ϕ1 = −ω2

rϕ|N, ω2
r = sg

eSc
. (C2)

The above estimate of the resonance frequency does not account for boundary layer
effects at the extremities of the hole, due to evanescent fields. This is what has been
accounted for in § 2.2, where we analysed the potential flow through a hole, resulting in the
resonance frequency ω0 in (3.10a–c), with α = √

s/b in (2.9). The blockage coefficient
b, for a hole with unitary cross-section and length e/

√
s, depends only on the shape of

the hole cross-section and on e/
√

s. In figure 12, we report the variations of b(e/
√

s)
calculated for square-shaped hole. Not surprisingly, we obtain b � b0 + e/

√
s (b0 � 0.91),

and the same result would be obtained for other shapes of hole cross-section (with a
different value of b0). Consequently, (3.10a–c), along with (2.9), provides

ω2
0 = αg

Sc
= sg
(e + b0

√
s)Sc

, (C3)

with the hole length e in (C2) replaced by a so-called effective length eeff = e + b0
√

s. We
notice in figure 12 that for e/

√
s < 1, the blockage coefficient b0 varies slightly because

the effects of the evanescent fields at each end of the hole are no longer independent.

Appendix D. Rigid plates piercing the free surface

We report in this appendix a quick reminder on the strongly dispersive character of
rigid plates piercing the free surface (figure 13a), introduced by Porter (2021) and Porter
& Marangos (2022), which we use as a reference case. To begin with, note that for
subwavelength period, this three-dimensional configuration is the exact analogue of the
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)

)

)

α

κx

κy

π

α

(a) (b)

x
α

π

κ0 /cos α

κ0 /sin α

y
z

Figure 13. (a) The case of arrays of inclined plates studied in Porter (2021) and Porter & Marangos (2022).
(b) Isofrequencycontour at constant ω (where κ0 = ω/

√
gh).

two-dimensional acoustic case, i.e. the potential ϕ(x, y) f (z) exactly satisfies the Helmholtz
equation

(Δ+ k2)ϕ = 0, k2 = ω2

gh
, (D1)

because no evanescent mode is triggered. For a relative spacing ξ between the plates, the
homogenized version of the dispersion is known (Mercier et al. 2015; Marigo & Maurel
2017) and takes the form

div w + ξ
ω2

g
ϕ = 0, w = hξRα

(
1 0
0 0

)
R−1
α ∇ϕ, (D2)

where Rα is the rotation matrix of the angle α. The search for a solution ϕ(x, y) ∝
exp(i(κyx + κxy)) provides the dispersion

cosακx + sinακy = ± ω√
gh
, (D3)

which gives isofrequency contours composed of two parallel lines (figure 13a). Therefore,
the water wave energy is forced to follow the direction along the plates, as it should.
As said previously, in the context of our study, the above dispersion for α = 0 coincides
with (1.1) for ω � ω0 since from (3.13a,b) and (4.4a,b), χa ∼ χs ∼ Ω2, so κx = ±κ0Ω =
±ω/√gh.

Appendix E. Dependence on the water depth

Here, we consider the possibility of taking into account the finite depth effect kh ∼ 1. To
do so, we define the velocity potential

ψ(x, y, z) = ϕ(x, y) f (z), f (z) = cosh k(z + h), (E1)

which takes into account the dependence along z of the propagating mode, with the
wavenumber k now satisfying

w2 = g tanh(kh). (E2)
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Negative refraction of water waves

For single-resonant canals, we proceed as in § 3. By integrating the incompressibility
condition in the resonant cavity, we obtain

ω2Sc

g
cosh kh

cosh kh/2
ϕ1 − α(ϕ1 − ϕ)+ α(ϕey − ϕ1) = 0 (E3)

(instead of (3.7)). We used the facts that the free surface condition applies to the potential
at z = 0 and that the fluxes involve the potentials at depth z∗ = −h/2. Integrating the
incompressibility condition in the region of open canal in the unit cell, we obtain in the
same way

Sh F(h)
∂2ϕ

∂y2 + ω2S
g

cosh kh
cosh kh/2

ϕ − α(ϕ − ϕ1e−1
y )+ α(ϕ1 − ϕ) = 0. (E4)

We used the fact that the integration in the open canal for z ∈ (−h, 0) makes the integral∫ 0
−h f (z) dz appear, thus

F(h) = sinh kh
kh cosh kh/2

. (E5)

So we obtain the same relations as in (3.11) but with

ω2
0 = αg

Sc

cosh kh/2
cosh kh

, κ2
0 = ω2

0
gh

kh
2 sinh kh/2

(E6a,b)

instead of (3.10a–c). Repeating the exercise for the doubly-resonant canals, we obtain the
same relations as in (4.3) with again (E6a,b) instead of (3.10a–c). We note that ω0 is now
frequency-dependent, resulting in a lower resonance frequency; this is consistent with our
observations (not reported) when, by increasing h, we leave the shallow-water regime.
Another consequence is that the interpretation of κ0 is no longer simple. The results are
presented in figure 14; the branches for ω > 5 rad s−1 where the dispersive effects become
visible (see inset, which shows the deviation of k from the shallow-water regime ω/

√
gh)

are well corrected when compared to the results in figures 5 and 6. We note, however,
that the lower branches are also lightly shifted, which gives for γ = 1, 2 a slightly worse
agreement for which we have no explanation.

Appendix F. Poynting vector

The derivation of the Poynting vector that enters the equation of energy balance requires
that an effective model be available. The most classical model in the context in which
we are interested is that of the stratified medium alternating open canals and surfacing
piercing plates, which as said previously is the exact analogue of the acoustic problem. In
this context, we have

ξ

g
¨̂ϕ(x, t)− div ŵ(x, t) = 0, ŵ(x, t) = ξh

∂ϕ̂

∂x
(x, t) ex, (F1)

so ŵy = 0 (see e.g. Marigo & Maurel 2017; Zhou Hagström, Maurel & Pham 2021); the
dot means the time derivative. We multiply the first equation by ˙̂ϕ, and differentiate the
second equation with respect to time and multiply it by ∇ ˙̂ϕ, then integrate the sum of the
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Figure 14. Correction of the band diagrams accounting for a dependence of the potential on z, (E1): (a) for
single-resonant canals, to be compared with figure 4, and (b) for doubly-resonant canals, to be compared with
figure 6. The inset in (a) for γ = 2 shows the deviation of k satisfying (??) with respect to the shallow-water
prediction k = ω/

√
gh.

two contributions on a general surface S. We obtain

d
dt

∫
S
E(x, t) ds +

∫
∂S

π̂(x, t) dl = 0, (F2)

where the first term implies the local energy E = ξ( ˙̂ϕ)2/(2g)+ ξh(∂xϕ̂)
2/2, and the

second term is the flux of the Poynting vector through ∂S, with π̂(x, t) = − ˙̂ϕ(x, t) ŵ(x, t).
In the harmonic regime at the frequency ω, with w(x, ω′) = w(x) δ(ω − ω′), we have

ŵ(x, t) = 2 Re (w(x) exp(−iωt)) , ˙̂ϕ(x, t) = 2 Im (ω ϕ(x) exp(−iωt)) . (F3a,b)

which gives the expression of the Poynting vector averaged in time (on a period 2π/ω):

π(x) = 2ω Im
(
ϕ∗(x)w(x)

)
. (F4)

961 A16-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

22
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.220


Negative refraction of water waves

Using further that w(x) = ξh ∂xϕ(x) ex, and looking for a solution ϕ(x) = ϕ exp(i(κxx +
κyy)), we get

π(x) = 2ω |ϕ|2ξhκxex. (F5)

As said in the main text, the analysis that provides (1.1) or (5.1) does not provide an
effective model as (F1), mainly because the complexity of the system requires the use of
the Bloch–Floquet analysis along y. However, we can use the fact that (F1) is a particular
limit of our resonant canal medium (above the resonances) to assume that (5.1) comes
from an effective model of the form

ξ

ge
ω2 ϕ(x, ω)+ div w(x, ω) = 0, w(x, ω) = ξ

(
hx 0
0 hy

)
∇ϕ(x, ω). (F6)

The form of the system (F6) provides (1.1) or equivalently (5.1) for a solution ϕ(x) =
ϕ exp(i(κxx + κyy)), and allows us to recover the limit (F1) in the time domain where
hx = h and hy = 0 no longer depend on ω. If this procedure is legitimate, then the balance
of energy reads as in (F2), with a local energy E(x, t) given by

E = ξ ˙̂ϕ(x, t)
∫ ∞

−∞
ϕ̈(x, ω)
ge(ω)

exp(−iωt) dω

+ ŵ(x, t)
ξ

∫ ∞

−∞

(
h−1

x ω 0
0 h−1

y ω

)
ẇ(x, ω) exp(−iωt) dω, (F7)

while the expression of the Poynting vector in (F4) is still valid. With now w(x)
given by the second relation in (F6), and looking as before for a solution ϕ(x) =
ϕ exp(i(κxx + κyy)), we obtain

π(x) = 2ωξ |ϕ|2(hxκx + hyκy), (F8)

as announced in (5.4).
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