Bull. Austral. Math. Soc. Vol. 42 (1990) [247-251]

BURNSIDE RINGS OF FINITE REPRESENTATION TYPE

ALBERTO RAGGI-CÁRDENAS

Let G be a finite group. It is proved that the localised Burnside ring $\Omega_p(G)$ is of finite representation type if and only if for each p-perfect subgroup H of G, $\left|\left\{\underline{K} \in \mathcal{C}(G) : \underline{\mathcal{O}^p(K)} = \underline{H}\right\}\right| \leq 3$, where \underline{K} means the conjugacy class of K.

1. Introduction

Let G be a finite group and let p be a prime number. Let $\Omega_p(G)$ be the Burnside ring of G localised at p. We are interested in the representation type of the category of $\Omega_p(G)$ -lattices (which is Krull-Schmidt by [1] 30.18). In this note we characterise in terms of the group G when this category is of finite representation type (in this case we say that $\Omega_p(G)$ is representation-finite).

To state the theorem we need to recall some notation. Let C(G) be the set of conjugacy classes \underline{K} of subgroups K of G and given any subgroup H of G, let $\mathcal{O}^p(H)$ denote the minimal normal subgroup $N \underline{\triangleleft} H$ such that H/N is a p-group. We say that H is p-perfect if $\mathcal{O}^p(H) = H$.

THEOREM. The ring $\Omega_p(G)$ is representation-finite if and only if for each p-perfect subgroup H of G,

$$\left|\left\{\underline{K}\in\mathcal{C}(G):\underline{\mathcal{O}^p(K)}=\underline{H}\right\}\right|\leqslant 3.$$

We obtain this theorem in Section 2 as an application of the Drozd-Roiter's criterion for finite representation type of commutative orders (see [4] and [1] 33.14). In Section 3 we obtain some corollaries and give some examples.

For basic background on Burnside rings and orders we refer the reader to [1, 2, 3].

2. The proof of the theorem

Let $\Lambda = \Omega_p(G)$ and Λ' be the unique $\mathbb{Z}_{(p)}$ -maximal order in $\Omega_{\mathbb{Q}}(G) := \mathbb{Q} \otimes_{\mathbb{Z}} \Omega(G)$.

Received 23 October 1989

I would like to thank L. Salmerón and E. Vallejo for fruitful discussions on the subject.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/90 \$A2.00+0.00.

0

LEMMA A. The following hold.

- (i) $\operatorname{rad}_{\Lambda}(\Lambda') = \operatorname{rad}_{\Lambda}(\Lambda)\Lambda' = \operatorname{rad}_{\Lambda'}(\Lambda') = p\Lambda'.$
- (ii) $rad_{\Lambda}(\Lambda) = p\Lambda' \cap \Lambda$.
- (iii) $\operatorname{rad}_{\Lambda}(\Lambda'/\Lambda) = (p\Lambda' + \Lambda)/\Lambda \cong (p\Lambda')/(p\Lambda' \cap \Lambda) = (p\Lambda')/(\operatorname{rad}_{\Lambda}(\Lambda)).$

PROOF: (i) Since $\operatorname{rad}_{\Lambda}(\Lambda') = \operatorname{rad}_{\Lambda}(\Lambda)\Lambda'$ and $\operatorname{rad}_{\Lambda'}(\Lambda') = p\Lambda'$, it is enough to show that $\operatorname{rad}_{\Lambda}(\Lambda)\Lambda' = p\Lambda'$. There is m > 0 such that $\operatorname{rad}_{\Lambda}(\Lambda)^m \subseteq p\Lambda$, so $(\operatorname{rad}_{\Lambda}(\Lambda)\Lambda')^m \subseteq p\Lambda' = \operatorname{rad}_{\Lambda'}(\Lambda')$; thus $\operatorname{rad}_{\Lambda}(\Lambda)\Lambda' \subseteq p\Lambda'$. The other inclusion is obvious.

(ii) Since Λ is a $Z_{(p)}$ -order there is m > 0 such that $p^m \Lambda' \subseteq \Lambda$. Therefore, for m large enough, $(p\Lambda' \cap \Lambda)^m \subseteq p\Lambda \subseteq \operatorname{rad}_{\Lambda}(\Lambda)$; thus $p\Lambda' \cap \Lambda \subseteq \operatorname{rad}_{\Lambda}(\Lambda)$. Also $\operatorname{rad}_{\Lambda}(\Lambda) \subseteq \operatorname{rad}_{\Lambda}(\Lambda)\Lambda' = p\Lambda'$.

For the following lemma we need to fix some notation.

Let $\varphi_H \colon \Omega_p(G) \to \mathbb{Z}_{(p)}$ be the mark of H, that is, if X is a G-set then $\varphi_H(X) = |X^H|$, where X^H is the set of fixed points of X under H.

Let
$$\varphi \colon \Omega_p(G) \to \prod_{\underline{H} \in \mathcal{C}(G)} \mathsf{Z}_{(p)}$$
 be given by $\varphi = (\varphi_H)_{\underline{H} \in \mathcal{C}(G)}$.

Let e_H be the idempotent of $\Omega_{\mathbf{Q}}(G)$ corresponding to H (that is, $\varphi_K(e_H) = 1$ if $\underline{K} = \underline{H}$ and 0 otherwise).

Let $e_H^p = \sum e_K$, where the sum runs over all $\underline{K} \in \mathcal{C}(G)$ with $\underline{\mathcal{O}^p(K)} = \underline{H}$.

Let $C_p(G)$ be the set of conjugacy classes of *p*-perfect subgroups of G. Yoshida has shown that $\{e_H^p: \underline{H} \in C_p(G)\}$ is a complete set of primitive idempotents of $\Omega_p(G)$ (see [6]; 3.1).

Finally for a finitely generated Λ -module M let $\overline{M} = M/(\operatorname{rad}_{\Lambda}(M))$, let $\mu_{\Lambda}(M)$ be the minimal number of generators of M as Λ -module and let F_p be the field with p elements.

LEMMA B. We have the equality

$$\mu_{\Lambda}(\Lambda'/\Lambda) = \sup \left|\left\{\underline{K} \in \mathcal{C}(G) : \underline{\mathcal{O}}^p(K) = \underline{H}\right\}\right| - 1,$$

where the supremum is taken over all p-perfect subgroups H of G.

PROOF: For any finitely generated Λ -module M we have $\mu_{\Lambda}(M) = \mu_{\overline{\Lambda}}(\overline{M})$. Thus $\mu_{\Lambda}(\Lambda'/\Lambda) = \mu_{\overline{\Lambda}}(\overline{\Lambda'/\Lambda}) = \mu_{\overline{\Lambda}}(\Lambda'/(p\Lambda' + \Lambda))$, by Lemma A. On the other hand $\overline{\Lambda} = \Lambda/(\operatorname{rad}_{\Lambda}(\Lambda)) = \Lambda/(p\Lambda' \cap \Lambda) \cong (\Lambda + p\Lambda')/(p\Lambda') \subseteq (\Lambda')(p\Lambda')$, again by Lemma A. Then $\mu_{\Lambda}(\Lambda'/\Lambda) = \mu_{\overline{\Lambda}}(\overline{\Lambda'}/\overline{\Lambda})$. Let

$$P_{H,p} = \operatorname{Ker} \left(\Omega_p(G) \to \mathbb{Z}_{(p)} \to \mathbb{F}_p \right).$$

By [6] 2.2, the set $\{P_{H,p} \mid \underline{H} \in \mathcal{C}_p(G)\}$ consists of the distinct maximal ideals of $\Omega_p(G)$. Then by the Chinese remainder theorem φ induces isomorphisms

$$\overline{\varphi} \colon \overline{\Lambda}' \to \prod_{\underline{H} \in \mathcal{C}(G)} \mathsf{F}_p e_H =: A$$

$$\overline{\varphi} \colon \overline{\Lambda} \to \prod_{\underline{H} \in \mathcal{C}_p(G)} \mathsf{F}_p e_H^p =: B.$$

and

Then $\mu_{\Lambda}(\Lambda'/\Lambda) = \mu_{B}(A/B)$. If for $\underline{H} \in C_{p}(G)$ we let $B_{H} = \mathbb{F}_{p}e_{H}^{p}$ and $A_{H} = \oplus \mathbb{F}_{p}e_{K}$, where the sum runs over all $\underline{K} \in C(G)$ with $\underline{\mathcal{O}^{p}(K)} = \underline{H}$, then we have $\mu_{\Lambda}(\Lambda'/\Lambda) = \sup \mu_{B_{H}}(A_{H}/B_{H})$, where the supremum is taken over all $\underline{H} \in C_{p}(G)$. On the other hand $\mu_{B_{H}}(A_{H}/B_{H}) = \left|\left\{\underline{K} \in C(H) : \underline{\mathcal{O}^{p}(K)} = \underline{H}\right\}\right| - 1$, so the result follows.

In the next lemma we use the fact that the minimum integer n such that $ne_H \in \Omega(G)$ is $[N_G(H):H][H:H']_0$, where $[H:H']_0$ is the product of all the distinct prime factors of [H:H']. (See [5], remark after 3.3).

LEMMA C. If $\mu_{\Lambda}(\Lambda'/\Lambda) \leq 2$ then $\mu_{\Lambda}(\operatorname{rad}_{\Lambda}(\Lambda'/\Lambda)) \leq 1$.

PROOF: From Lemma A, $\operatorname{rad}_{\Lambda}(\Lambda'/\Lambda) = (p\Lambda')/(\operatorname{rad}_{\Lambda}(\Lambda))$ and from Lemma B, if $\mu_{\Lambda}(\Lambda'/\Lambda) \leq 2$ then $p^3 \nmid |G|$. Therefore $p^2\Lambda' \subseteq \Lambda$ and, in fact, $p^2\Lambda' \subseteq \operatorname{rad}_{\Lambda}(\Lambda)$. If $p\Lambda' \subseteq \Lambda$, we are done. Thus we assume that p^2 divides |G|. Hence $(p\Lambda')/(\operatorname{rad}_{\Lambda}(\Lambda))$ is a $\overline{\Lambda}$ -module. Therefore $\mu_{\overline{\Lambda}}(\operatorname{rad}_{\Lambda}(\Lambda'/\Lambda)) = \sup \mu_{B_H}(((p\Lambda')/\operatorname{rad}_{\Lambda}(\Lambda))e_H^p)$, with B_H as in the proof of Lemma B and the supremum taken over all $\underline{H} \in \mathcal{C}_p(G)$. Given $\underline{H} \in \mathcal{C}_p(G)$, there are two cases:

If $\left|\left\{\underline{K}\in\mathcal{C}(G):\underline{\mathcal{O}^p(K)}=\underline{H}\right\}\right|\leqslant 2$, then $p\Lambda'e_H^p\subseteq\mathrm{rad}_\Lambda(\Lambda)$, so $\mu_{B_H}((p\Lambda')/(\mathrm{rad}_\Lambda(\Lambda))e_H^p)=0$.

If $\left|\left\{\underline{K}\in\mathcal{C}(G):\underline{\mathcal{O}^p(K)}=\underline{H}\right\}\right|=3$ then $e_H^p=e_{H_0}+e_{H_1}+e_{H_2}$ with $H\leq H_i$ and $[H_i:H]=p^i$. Clearly pe_{H_2} and pe_H^p lie in $\mathrm{rad}_{\Lambda}(\Lambda)$ by the remark, so $pe_{H_0}+pe_{H_1}\in\mathrm{rad}_{\Lambda}(\Lambda)$. Therefore $(p\Lambda')/(\mathrm{rad}_{\Lambda}(\Lambda))e_H^p=\overline{\Lambda}pe_{H_0}$. We conclude then that $\mu_{\overline{\Lambda}}(\mathrm{rad}_{\Lambda}(\Lambda'/\Lambda))\leqslant 1$.

Now, using Lemmas A and B our Theorem clearly follows from the Drozd-Roiter's criterion.

3. Some consequences and examples

COROLLARY A. If $\Omega_p(G)$ is representation-finite then $p^3 \nmid |G|$.

For p-groups the only p-perfect subgroup is the trivial one, so we obtain the following corollary.

0

COROLLARY B. Let G be a p-group. Then $\Omega_p(G)$ is representation-finite if and only if G is cyclic of order dividing p^2 .

If G is not a p-group we can only say:

COROLLARY C. If a p-Sylow subgroup of G is cyclic of order dividing p^2 , then $\Omega_p(G)$ is representation-finite.

PROOF: Let $\underline{H} \in \mathcal{C}_p(G)$. If $\underline{K} \in \mathcal{C}(G)$ with $\mathcal{O}^p(K) = \underline{H}$ then we may assume $H \leqslant K \leqslant N_G(H)$. Let $H \leqslant H_p \leqslant N_G(H)$ be such that H_p/H is a p-Sylow subgroup of $(N_G(H))/H$. If $p^2 \nmid [H_p : H]$ then clearly $\left|\left\{\underline{K} \in \mathcal{C}(G) : \underline{O^p(K)} = \underline{H}\right\}\right| \leqslant 2$. If $p^2 \mid [H : H_p]$, then H_p/H is isomorphic to a p-Sylow subgroup of G, hence it is cyclic and therefore

$$\left|\left\{\underline{K}\in\mathcal{C}(G):\underline{\mathcal{O}^p(K)}=\underline{H}\right\}\right|=3.$$

The converse of Corollary C is false, as the following example shows.

EXAMPLE A. Let $G = A_4$, the alternating group of degree 4, and p = 2. Then $\Omega_p(G)$ is representation-finite and a 2-Sylow subgroup of G is isomorphic to $\mathbb{Z}/(2\mathbb{Z}) \times \mathbb{Z}/(2\mathbb{Z})$.

Having in mind our Theorem and Example A one might naively suspect that if $p^3 \nmid |G|$ and all the subgroups of the same order of a p-Sylow subgroup of G are conjugate (that is $\left|\left\{\underline{K} \in \mathcal{C}(G) : \underline{\mathcal{O}^p(K)} = 1\right\}\right| \leqslant 3$), then $\Omega_p(G)$ is representation-finite. However, the following example shows that this is not true.

EXAMPLE B. Let $P_1 = \langle x \rangle$, $P_2 = \langle y \rangle$ be cyclic groups of order 2, $Q_1 = \langle w \rangle$, $Q_2 = \langle z \rangle$ cyclic groups of order 5 and $T = \langle a \rangle$ a cyclic group of order 3. Let T act on $P_1 \times P_2 \times Q_1 \times Q_2$ by $axa^{-1} = y$, $aya^{-1} = xy$, $awa^{-1} = w^3z$ and $aza^{-1} = w^2z$. (This is justified since $\begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$ is an element of $GL(2, \mathbb{Z}/5\mathbb{Z})$ of order 3.) Then if p = 3 and G is the semidirect product $(P_1 \times P_2 \times Q_1 \times Q_2) \times T$, we have the desired example. (Indeed $\left|\left\{\underline{K} \in \mathcal{C}(G) : \underline{\mathcal{O}^2(K)} = \underline{Q_1}\right\}\right| \geqslant 4$).

REFERENCES

- [1] C.W. Curtis and I. Reiner, Methods of representation theory I (J. Wiley, New York, 1981).
- [2] C.W. Curtis and I. Reiner, Methods of representation theory II (J. Wiley, New York, 1987).
- [3] T. tom Dieck, 'Transformation groups and representation theory', in Lecture Notes in Mathematics 766 (Springer-Verlag, Berlin, 1979).
- [4] Y. Drozd and A. Roiter, 'Commutative rings with a finite number of indecomposable integral representations', Math. USSR Izv I (1967), 757-772.

- [5] C. Kratzer and J. Thévenaz, 'Fonction de Möbius d'un groupe fini et anneau de Burnside', Comment. Math. Helv. 59 (1984), 425-438.
- [6] T. Yoshida, 'Idempotents of Burnside rings and dress induction theorem', J. Algebra 80 (1983), 90-105.

Instituto de Matemáticas, UNAM Circuito Exterior, Ciudad Universitaria México, 04510, D.F. Mexico