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BURNSIDE RINGS OF FINITE
REPRESENTATION TYPE

ALBERTO RAGGI-CARDENAS

Let G be a finite group. It is proved that the localised Burnside ring 0,(G) is
of finite representation type if and only if for each p-perfect subgroup H of G,
|{£ €C(G): OP(K) = ﬂ_}| < 3, where K means the conjugacy class of K.

1. INTRODUCTION

Let G be a finite group and let p be a prime number. Let 2,(G) be the Burnside
ring of G localised at p. We are interested in the representation type of the category
of ,(G)-lattices (which is Krull-Schmidt by (1] 30.18). In this note we characterise in
terms of the group G when this category is of finite representation type (in this case
we say that Q,(Q) is representation-finite).

To state the theorem we need to recall some notation. Let C(G) be the set of
conjugacy classes K of subgroups K of G and given any subgroup H of G, let OP(H)
denote the minimal normal subgroup N<H such that H/N is a p-group. We say that
H is p-perfect if OP(H)=H.

THEOREM. The ring Q,(G) is representation-finite if and only if for each p-perfect
subgroup H of G,

keco):onk) =B} <3.

We obtain this theorem in Section 2 as an application of the Drozd-Roiter’s cri-
terion for finite representation type of commutative orders (see [4] and [1] 33.14). In
Section 3 we obtain some corollaries and give some examples.

For basic background on Burnside rings and orders we refer the reader to |1, 2, 3].

2. THE PROOF OF THE THEOREM

Let A = Q,(G) and A’ be the unique Z(,)-maximal order in g(G) := Q®2(G).
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LEMMA A. The following hold.
(i) rada (A') =rads (A)A' =rady (A') = pA'.
(ii) rada (A)=pA'NA.
(iii) rads (A'/A) = (pA’' + A)/A = (pA')/(pA' N A) = (pA')/(rads (A)).

PROOF: (i) Since radj (A') = rada (A)A’ and rady/ (A') = pA’, it is enough
to show that rads (A)A' = pA’. There is m > 0 such that rads (A)™ C pA, so
(rada (A)A')™ C pA' = radys (A'); thus rady (A)A’ C pA’'. The other inclusion is
obvious.

(i) Since A is a Z(p)-order there is m > 0 such that p™A' C A. Therefore,
for m large enough, (pA'NA)™ C pA C rads (A); thus pA' N A C rads (A). Also
rady (A) C rady (A)A' = pA’.

(iii) This follows from (i) and (ii). 0

For the following lemma we need to fix some notation.

Let pu: 2,(G) — Z(;) be the mark of H, that is, if X is a G-set then
ea(X) = IXH!, where XH is the set of fixed points of X under H.

Let ¢: Q5(G) > [I Z(p) be given by ¢ = (¢r)yec(a)-
Hec(G) -

Let ey be the idempotent of 2g(G) corresponding to H (that is, px(en) =1 if
K = H and 0 otherwise).

Let e}, = } ek, where the sum runs over all X € C(G) with OP(K) = H.

Let Cy(G) be the set of conjugacy classes of p-perfect subgroups of G. Yoshida
has shown that {e},: H € Cp(G)} is a complete set of primitive idempotents of ,(G)
(see [6]; 3.1).

Finally for a finitely generated A-module M let M = M/(rad, (M)), let ux(M)
be the minimal number of generators of M as A-module and let F, be the field with
p elements.

LEMMA B. We have the equality
ua (A'/8) =sup [{K €c(6): 07(K) = H}| - 1,

where the supremum is taken over all p-perfect subgroups H of G.

PROOF: For any finitely generated A-module M we have us(M) = px(]_ll—) . Thus
pa(A'/A) = pK(KT/T) = pg(A'/(pA' +A)), by Lemma A. On the other hand & =
A/(radp (A)) = A/(pA' N A) = (A + pA')/(pA’) C (A')(pA'), again by Lemma A. Then
pa(A'/A) = px(A'/R). Let

Pup = Ker (2(G) — Z() — Fy).
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By [6] 2.2, the set {Py, | H € Cp(G)} consists of the distinct maximal ideals of 2,(G).
Then by the Chinese remainder theorem ¢ induces isomorphisms

?:7\4—» H Fpeg =: A
Hec(a)
and ?:8> [ Feeli=:B.
HeCy(G)

Then pp(A'/A) = pp(A/B). If for H € C,(G) welet By = Fpef; and Ay = @F pex,
where the sum runs over all K € C(G) with OP(K) = H, then we have us(A'/A) =
sup pBy (AH/BH), where the supremum is taken over all H € Cp(G). On the other

hand pp, (Ax/Br) = f{g € C(H) : OP(K) = g;}l —1, 50 the result follows. 0

In the next lemma we use the fact that the minimum integer n such that
ney € Q(G) is [Ng(H) : H|[H : H'lo, where [H : H']p is the product of all the
distinct prime factors of [H : H']. (See [5], remark after 3.3).

LEMMA C. If pua(A'/A) <2 then pa(rady (A'/A)) < 1.

PROOF: From Lemma A, rady (A'/A) = (pA')/(rads (A)) and from Lemma B, if
pa(A'/A) < 2 then p® t |G|. Therefore p?A’' C A and, in fact, p?A’ C rad, (A). If
pA’' C A, we are done. Thus we assume that p? divides |G|. Hence (pA’)/(rada (A))
is a A-module. Therefore px(rads (A'/A)) = sup pp, (((pA')/ rads (A))el;), with By
as in the proof of Lemma B and the supremum taken over all H € C,(G). Given
H € C,(G), there are two cases:

If ‘{K € C(G): O*(K) = Q}' < 2, then pA'el;, C rads(A), so
By ((PA')/(rads (A))el;) = 0.

it [{Kec(G): 0°(K)=H}| =3 then ef = ex, + en, +em, with H < H;
and [H; : H] = p*. Clearly pey, and pef; lie in rad, (A) by the remark, so pep, +
pen, € radp (A). Therefore (pA')/(rads (A))e}; = Apen,. We conclude then that
px(rada (A'/A)) < 1. g

Now, using Lemmas A and B our Theorem clearly follows from the Drozd-Roiter’s

criterion.

3. SOME CONSEQUENCES AND EXAMPLES

COROLLARY A. If Q,(G) is representation-finite then p® 1 |G|.

For p-groups the only p-perfect subgroup is the trivial one, so we obtain the fol-
lowing corollary.
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COROLLARY B. Let G be a p-group. Then Qp(G) is representation-finite if and
only if G is cyclic of order dividing p®. 0

If G is not a p-group we can only say:

COROLLARY C. If a p-Sylow subgroup of G is cyclic of order dividing p?, then
§2,(G) is representation-finite.

PROOF: Let H € Cp(G). If K € ((G) with OP(K) = H then we may assume
H < K < Ng(H). Let H < Hp < Ng(H) be such that H,/H is a p-Sylow subgroup
of (Ng(H))/H. If p*  [H, : H] then dearly |{£ € C(G) : O?(K) =_11}l <2 If
p? | (H : Hp), then H,/H is isomorphic to a p-Sylow subgroup of G, hence it is cyclic

and therefore

{x ece): ork) = H}| =3.

The converse of Corollary C is false, as the following example shows.

EXAMPLE A. Let G = A4, the alternating group of degree 4, and p = 2. Then Q,(G)
is representation-finite and a 2-Sylow subgroup of G is isomorphic to Z/(2Z) xZ/(2Z).

Having in mind our Theorem and Example A one might naively suspect that if
p® t |G| and all the subgroups of the same order of a p-Sylow subgroup of G are
conjugate (that is |{£ €C(G): OP(K) = l}l < 3), then Q,(G) is representation-

finite. However, the following example shows that this is not true.

EXAMPLE B. Let P, = (z), P, = (y) be cyclic groups of order 2, @, = (w), @, =
(2) cyclic groups of order 5 and T = (a) a cyclic group of order 3. Let T act on

1 3

PyxP;xQ1xQ; by aza™! =y, aya~! =zy, awa! = w2 and aza=! = w?z. (This

2
is justified since (? 1) is an element of GL (2, Z/5Z) of order 3.) Then if p = 3 and

G is the semidirect product (P, x P, x Q; X @2) » T', we have the desired example.
(Indeed ]{5 € C(G): O*(K) = Ql}l > 4).
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