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BURNSIDE RINGS OF FINITE
REPRESENTATION TYPE

ALBERTO RAGGI-CARDENAS

Let G be a finite group. It is proved that the localised Burnside ring f)p(G) is
of finite representation type if and only if for each p-perfect subgroup H of G,
\{K € C(G) : O"(K) = H}\ < 3, where K_ means the conjugacy class of K.

1. INTRODUCTION

Let G be a finite group and let p be a prime number. Let Qp(G) be the Burnside
ring of G localised at p. We are interested in the representation type of the category
of fip(G)-lattices (which is Krull-Schmidt by [1] 30.18). In this note we characterise in
terms of the group G when this category is of finite representation type (in this case
we say that Clp(G) is representation-finite).

To state the theorem we need to recall some notation. Let C(G) be the set of
conjugacy classes K_ of subgroups K of G and given any subgroup H of G, let OV[E)
denote the minimal normal subgroup N<H such that H/N is a p-group. We say that
H is p-perfect if OP(H) = H.

THEOREM . The ring tlp(G) is representation-finite if and only if for each p-perfect
subgroup H of G,

We obtain this theorem in Section 2 as an application of the Drozd-Roiter's cri-
terion for finite representation type of commutative orders (see [4] and [1] 33.14). In
Section 3 we obtain some corollaries and give some examples.

For basic background on Burnside rings and orders we refer the reader to [l, 2, 3].

2. THE PROOF OF THE THEOREM

Let A = ftj,(G) and A' be the unique Z(p)-maximal order in (IQ(G) := Q®z(l{G).
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248 A. Raggi-Cardenas [2]

LEMMA A. The following hold.

(i) radA (A') = radA (A)A' = radA, (A') = pA'.
(ii) radA(A) = pA'nA.

(iii) radA (A'/A) = (PA' + A)/A a (PA')/(pA' n A) = (pA')/(radA (A)).

PROOF: (i) Since radA (A') = radA (A)A' and radA/(A') = pA', it is enough
to show that radA (A)A' = pA'. There is m > 0 such that radA (A)m C pA, so
(radA(A)A')m C pA' = radA/(A'); thus radA(A)A' C P A\ The other inclusion is
obvious.

(ii) Since A is a Z(j,)-order there is m > 0 such that pmA' C A. Therefore,
for TO large enough, (pA'n A)m C pA C radA(A); thus pA' fl A C radA(A). Also
radA (A) C radA (A)A' = pA'.

(iii) This follows from (i) and (ii). D

For the following lemma we need to fix some notation.
Let (pn- Mp(G) —» Z(p) be the mark of H, that is, if X is a G-set then

<Pfj{X) = |-^Wji where XH is the set of fixed points of X under H.

Let <p: Slp(G) -> fl Z(j>) b e S»ven by V = (VH)H6C(G)•
H€C(G) -

Let ejj be the idempotent of SIQ(G) corresponding to H (that is, <PK(ZH) = 1 if
K_ = H_ and 0 otherwise).

Let ep
H = X) eK, where the sum runs over all K_ € C(G) with Qr(K) = H_.

Let Cp(G) be the set of conjugacy classes of p-perfect subgroups of G. Yoshida
has shown that {ev

H: H_ 6 CP(G)} is a complete set of primitive idempotents of ilp(G)
(see [6]; 3.1). _

Finally for a finitely generated A-module M let M = M/(radA(M)), let ^A(M)
be the minimal number of generators of M as A-module and let Fp be the field with
p elements.

LEMMA B . We have the equality

(A'/A) = sup |{K € C(G): O"(K) =M.}\-1,

where the supremum is taken over all p-perfect subgroups H of G.

PROOF: For any finitely generated A-module M we have /iA(M) = /ij-(M). Thus

jiA(A'/A) = / J J / A ' / A ) = /i^<A'/(pA' + A)), by Lemma A. On the other hand A =
A/(radA (A)) = A/(pA' D A) S (A +pA')/(pA') C (A')(pA'), again by Lemma A. Then

MA(A'/A)=/*A-(F/X). Let
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By [6] 2.2, the set {PHJ, I K € CP{G)} consists of the distinct maximal ideals of ilp(G).
Then by the Chinese remainder theorem <p induces isomorphisms

?•• A*

and p : A

Then MA(A'/A) = fiB(A/B). If for 27 e CP(G) we let i? H = Fpe^ and AH = ®FpeK,

where the sum runs over all K_ 6 C(G) with O^if) = H_, then we have /iA(A'/A) =

supHBH{AH/BH), where the supremum is taken over all H_ 6 Cy(G). On the other

hand HBH(AH/BH) = I{i£ G C(J7) : Op(iif) = £[} I - 1, so the result follows. D

In the next lemma we use the fact that the minimum integer n such that
neH e il{G) is [Na(H) : H][H : H']o, where [H : H']o is the product of all the
distinct prime factors of [H : H']. (See [5], remark after 3.3).

LEMMA C. If /iA(A'/A) < 2 then /xA(radA (A'/A)) ^ 1.

PROOF: From Lemma A, radA (A'/A) = (pA')/(radA (A)) and from Lemma B, if
/xA(A'/A) < 2 then ps \ \G\. Therefore p2A' C A and, in fact, p2A' C radA (A). If
pA' C A, we are done. Thus we assume that p2 divides \G\. Hence (pA')/(radA (A))
is a A-module. Therefore /x^(radA (A'/A)) = sup/iBH(((pA')/radA ( A ) ) ^ ) , with Bfi
as in the proof of Lemma B and the supremum taken over all H_ G Cp{G). Given
H_ 6 CP(G), there are two cases:

If i j jCe C(G) : Op(K) = H_}\ < 2, then pA'e^ C radA(A), so

If | { j f 6 C(G) : O^K) = S;} | = 3 then ep
H = eHo + eHl + eH j with H < Ht

and [Hi : H] = p*. Clearly pen, and pe^j lie in radA (A) by the remark, so pen0 +

. Therefore (pA')/(radA (A))e^ = Ape^o • We conclude then that

Now, using Lemmas A and B our Theorem clearly follows from the Drozd-Roiter's
criterion.

3. SOME CONSEQUENCES AND EXAMPLES

COROLLARY A. I! flp(G) is representation-finite tien ps f \G\.

For p-groups the only p-perfect subgroup is the trivial one, so we obtain the fol-
lowing corollary.
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COROLLARY B. Let G beap-group. Then(lp(G) is representation-Unite if and
only if G is cyclic of order dividing p2. D

If G is not a p-group we can only say:

COROLLARY C. If a p-Sylow subgroup of G is cyclic of order dividing p2, then
Slp(G) is representation-Unite.

PROOF: Let H_ e CP(G). If K_ G C(G) with OV(K) = E_ then we may assume
H < K < Na(H). Let H < Hp < Na(S) be such that Hp/H is a p-Sylow subgroup
of (Na(H))/H. If p2 f [Hp : JT] then clearly |{j£ 6 C(G) : O^K} = # } | < 2. If
p2 | [JT : £Tp], then Hp/H is isomorphic to a p-Sylow subgroup of G, hence it is cyclic
and therefore

The converse of Corollary C is false, as the following example shows.

EXAMPLE A. Let G — A4, the alternating group of degree 4, and p = 2. Then
is representation-finite and a 2-Sylow subgroup of G is isomorphic to Z/(2Z) X Z/(2Z).

Having in mind our Theorem and Example A one might naively suspect that if
p3 \ \G\ and all the subgroups of the same order of a p-Sylow subgroup of G are
conjugate (that is | j jC€C(G) : Qr(K) = 1 \ I < 3), then Slp(G) is representation-
finite. However, the following example shows that this is not true.

EXAMPLE B. Let Px = (x), P2 = (y) be cyclic groups of order 2, Qi = (w), Q2 -
(z) cyclic groups of order 5 and T = (a) a cyclic group of order 3. Let T act on
P\ x P2 x Q\ x Q2 by axa-1 — y, ayaT1 = xy, awa-1 = w3z and aza-1 = w2z. (This

(3 2 \
J is an element of GL (2, Z/5Z) of order 3.) Then if p = 3 and

G is the semidirect product (Pi x P2 x Q\ x Q2) * T> we have the desired example.

(Indeed | {K E C{G) : O2(-R:) = Q x } | ^ 4).
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