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Introduction. Consider the following problem of Lagrange

in the calculus of variations: relative to differentiable curves xl(t)

satisfying xl(to) =x. and xl(ti) =x. find a curve minimizing

0 1
t
1 a a
( f F{x ,x ,\}dt
to
(1) < subject to the restraint®
l A - F{x",%x,\} =0 and Mty) =0 .

By integrating the equation of restraint in (1) it follows that the
problem of Lagrange can be re-formulated: minimize )\(ti)

given by the integral equation

t
1
(1') M) = [ F{x(6),% (0), 1 (1) at

%o

relative to the same curves as before. Assume that F is

If the restraint were of the form A\ - F(xa,:':a) =0, this
would be a special case of A. Lichnerowicz, Les espaces
variationnels généralisés, Ann. Sci. Ecole norm. sup. (3)
62, 339-384 (1945).
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positive homogeneous of degree one (briefly plus-one) in the

2
% sothat F is plus-two while

2 2
{1 9 1 2
2) g (5,50 = E 1t
ij 2 ja 1 2 .1
Ox9x X X

is plus-zero in % The standard properties of homogeneous
functions (see [1]) imply that (1') may be written in the form

t R
(3) X(t) = f {gij(xa,ica’\)klk‘]} dr .
t
0

Given a curve, (3) defines its A-length and the extremals
of (3) define geodesics and distances in a geometry which will
be called symmetric Finsler fatigue. If the g . are independent
1)

.a . .

of x, the geometry becomes symmetric Riemann fatigue.

The word symmetric is used here to stress the fact that as

given by (2) the g. . are symmetric. The present paper is
1

primarily concerned with the differential geometry of sym-
metric Riemann fatigue. Symmetric Finsler fatigue is studied
in {2], while non-symmetric Riemann fatigue (except for the
brief comments concluding this paper) will be studied in a
latter paper. Its motivation will be seen in (iv) below.

og
It will be seen that the tensors g and 9 g . S
ij X Tij RN

play a fundamental role. Tensors formed from only the g_,
1

. . . . a .

and its derivatives with respect to x are called conservative;

if axg_j or its derivatives appear, the tensor is called dissi-
1

pative. The principle results of the present paper are:

(1) a distinction between conservative and dissipative
covariant differentiation denoted respectively by A’ I and
.. |1

AT

.1

(ii) the extremals of (3), or geodesics, depend on 8)\g,
1

J
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and are dissipative. Coordinate transformations leave X\
invariant, being the length of a curve, and hence lead to con-
servative tensors. The equation

i .p 1 La.B.i

— = €{- ] -9 %

8t l-g 8 0 +30,8 5% %)

defines geodesics for € =1 and auto-parallel curves for € =0 ;

. i .
(iii) a conservative curvature tensor %, having all the
J

ke
properties usually found in Riemannian geometry relative to
conservative differentiation; a dissipative curvature tensor

R,1 with the properties

ikt
R, =R_
ij ija
F.=R% =R, -R..=-F
ij aij ji ij ji
F. +F. _+F _ . =0

ij, & ik, 1 ki, j
Fijlk+ ij|i+ Fkilj =0

(iv) if in addition it is assumed that for fixed xg the

g_j(xg, \) vary proportionately with N (conformal tangent
i

spaces) then the geodesics and auto-parallel curves equation
may be written
8% _-€
st 28

ia

8 g )&
( Xgaf})
while the geodesics become

g = pxX where p= 9

af
3 N0 )\
,a )\g a B

if N\ 1is an appropriate solution of the Hamilton-Jacobi equation.
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In view of {iv) and the analogous equations of electro-magnetic
theory, the significance of a non-symmetric Riemann fatigue
geometry is clear.

Preliminary Theorems.

LEMMA 4. The Euler-Lagrange equations associated
with (1)_25 (1') are

d
(4) T Fiie F L F,iF)\ .

Proof. Consider p as Lagrange multiplier and set

- d d ~
G=F+ p(k-F). Then dt(c,ii)‘-c;xi.o and - (G{) - G, =0

become

. d .
s F,i = (i-p)(a- F.i- F i) and p.—(i-p.)F)\ .

X p.< p.<

Eliminating {1 and (4-p) yields the lemma.
Since the gij(xa,X) in the expression

t o i . 1/2
A(t) = f{gij(x LN )X ,'cJ} dr

%

depend on x” and on A which in turn may also be a function

]
of xa, for clarity let 0 K R always imply N fixed and let
9x

Dk = ka denote

] = 0 o] .0
.Dk k+ k)\ \

a .
the total partial derivative with respectto x . The operation

Dk implies of course a specified function A\(x%). With this

convention we may state the following
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THEOREM 1. In symmetric Riemann fatigue the Euler-
Lagrange equations (geodesic equations) may be written in the

form
i
5% ia . 1 .a.p.i
= -g% ¢ P+ls
5t 8 I\Bap™ TZ NBep* X *
where
i
55 i i .j.k
Et— = X +ijiex
YT 9 g}
Yik T 28 VBT VB T % aBik

and where the parameter is chosen such that

) i.5.1/2
A= {gijif:J}

= 1.

Proof. An immediate result of substituting
s 1/2
F={ g% ¥}  into (4).

In [3] it is shown that given a function H{ <, P »\}
a

which is plus-one in P, and such that dei:(H2 ) #0, one can
1)

always associate a Lagrangian F{ xa,f:a,k} » plus-one in i:a,

such that the characteristic equations of the partial differential

equation

a
2 X = 1 ’ = a X »
(5) H{x , P, } where p =9

coincide with the Euler- Lagrange equations associated with (1)
or (1'). Since the present paper is concerned with Riemann
fatigue it suffices to show that the function

.s 1/2
(6) H{x"p, A} = {g"(x" ., })pp}
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.. 1/2
is a Hamiltonian for F{ x, %7, A} ={ gij(xa. X)Sclz'()} . Here
gll denotes the inverse matrix of 8. assuming as always

that det(gij) 20 .

LEMMA 2. The characteristic equations of the partial
differential equation

.. 1/2
(7.1) {g(x",\)p.p.} =1, where p =9\,
173 1 i
can be written in the form
Li ij ) ) .j
7.2 = , I = xJ s
(7.2) x 8 P; implying p, = g,
13%° 1 9%P
7.3 = .= g S ,
(7.3) P, 2,1 pap‘3 > Tox papﬁpi
xX
i, 1/2
(7. 4) X = {gJPin} =1.

Proof. The characteristic equations for the general
equation (5) are given by [4]

n
A= T pH = H by homogeneity,
a p
a=1 a
W1
x = H s
Py
Pl = -H i" PHX ’
x

so that (7. 2), (7.3) and (7. 4) follow immediately given (7.1).

If (7.1) is to be the Hamilton-Jacobi equation associated
with (1) or (1'), one has merely to prove the following
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THEOREM 2. The characteristic equations (7.2) and
(7. 3) coincide with the Euler- Lagrange equations as given in
Theorem 1, so that (6) defines the Hamiltonian and (7. 1) the
Hamilton-Jacobi equation in symmetric Riemann fatigue.

Proof. By (7.2) p_l = gij’? , So that

9g.. . 2. . .
p. = —L W + X+ g &
i axk N ij

But by (7.4), = =1. Finally, since giag"-‘ = 5;, it follows that

af af. j.k J.k
] = 2 = -0 22
ig papﬁ gakgﬁj ig xe igjk x

and, similarly,

3 af _ _ gJ.k.a
\ B PPl T 7 O\ B8y,

Substituting in (7. 3) yields
' ik 4 ik i1 P k.o
P +0 g x5 -0 g Fx = -8 g ¥ +9 Px
gijx] * kgijx]x 20 8t * N 8= tZ2n BB < *
proving the theorem.

A solution of (7. 1) which is zero on a set P0 will be

called a distance function from PO, and the geodesics which

coincide with the corresponding characteristics (7. 2) and (7. 3)
will be called \-geodesics from P

o

Tensors in Riemann Fatigue. To recapitulate the main
formulas

a ,a a 'iij 172
F{x,x,\} = {gﬁ(x JAN)X X} ,
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.. 1/2
a ij, a
X, 1)\ = 1x P. »
H{x",p_.A} = {g°(x )plpj}
where glJ and g.. are symmetric inverse matrices. If \ is
1)

i
a distance function and x (t) the corresponding \-geodesic then

Ji ij o\
(8) x=gp.=gJ—-

J 3y
The geodesics are given by

It
6x 1 L. B.1 ia .
—_—= -9 - 9 xﬁ
©) 5t 2 a8t ** " 8 g™ !

where

i
8% _ gi i j.k
T Sk

provided the parameter is chosen such that X =1. Finally

af
t?) = - 9
(10) nBij T "8ioBi°\ 8
and

9 - 3 %P
x5 8iaBjp kB

Since the Y;k are defined in terms of ai implying X\

fixed, many of the standard identities from Riemannian geometry
carry over. In particular [5]

a a

g =
kgij gajyik + gaiYJk
(11)

a
= d =
" : log 'J-g where g =det gij ’
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(assuming g positive, otherwise ~N-g and

0 =9 .
(12) i\'aj jvai

Since (3) or (3') defines a functional on curves, \ is
invariant under coordinate transformations. Denoting the new

coordinate system by primed indices it follows that the g_.
1
transform according to

a' i j a
(13) gy (X SX) = AL AL g ).

(This assumes that the coordinate transformation does not
depend on X, an assumption made throughout the remainder.)
Differentiating with respect to N\ implies

%, j* ij agij
(14) T Ui TR TY
9g..
so that g . and —-‘L are tensors.
IJ aX
Perform the operation Dk' on both sides of (13). It will
be seen below that the result is the same whether Dk' or 9 K

; :
is used. Since D A, =2 k,A;',

depending on A, one obtains

the transformation not

-AA’A(D

i _]
+
_. Ai' A g A A

Dy 8o o ik 855

By cyclic permutation this yields

(15) (Djl gl(' i' + Dil gjl kl - Dk' gi'j')

- Al ad - j
-Ai'Aj'Ak'(ng1+ng Dkg_,)+2A Ak'gJ.
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]
However, expanding D, =3  + T 9 " X, it follows that the
1 1

left side of (15) can be written
9 A+ 0
J

(ajlgklit +aill gj|k| -akl giljl) + (a)\gk'i' xgjll(|8ilX

3 _\).
)\giljl k! )

In view of (14), the second term becomes

k

i j i ok
E 3\ E 3 A
rr Ay O g O MAL, + AL AL 9,800 A,

k
-A A (9 3 \H
A J.,( )\gij)( M

which cancels with the corresponding term on the right of (15),
verifying the previous statement that 9 could replace D..
i i

Hence (15) reduces to simply
. S S T P i j
(16) {i'j*, k'} = Ai'Aj'Ak'{lJ’k} +Ai‘j'Ak' gij ,

where {ij,k} is the Christoffel symbol of the first kind
gkaYZj' Equation (16) is identical to the Riemannian case,
notwithstanding the fact that {ij,k} is a function of \.

Hence (16) may be solved for Ai' .

it obtaining

i 8%yt i
X
(17) AL, T T ALY
'k 3XJ Bxk i

il

j ki
e ALALY
j j

t k' YJk

Covariant differentiation may now be defined using (17),
and since the formula is identical to the Riemannian case it
follows that covariant differentiation is also given by the
classical formulas. If a tensor V1 depends on X, two
covariant derivatives may be distinguished.

442

https://doi.org/10.4153/CMB-1965-030-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1965-030-3

Conservative differentiation

i
V..

= 8,Vi+Va1
[ j Y

aj

Dissipative differentiation

vi, = Dvi+vih = v 48 vie .
) i aj i~ j

In view of (11) it follows that

=0 = 0 9 \.
8ij|x &ij, k n 85 “x

Corresponding to conservative differentiation one may introduce

Auto-Parallel Curves

1
6% i i.j.k
X ey ©dx =0,
5t Y E

Since \ is kept fixed relative to the | operation, it is clear
a

that a curvature tensor %’jk may be defined as in Riemannian
1

geometry,

a
Ailjk - Aifkj - %ijk Ay

’

and that %:ik satisfies the usual identities relative to the

| operation. Taking Dr of both sides of (17) one finds that

i i

Arl j'k! - Ak' j'r!
if and only if

i a! _ o, B o i
Ao-v lerlkl = AleklAr'RWﬁ 4

where
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k k

D. D Yo: Yo

Kk 1) L B
£ij ¥

K kook BB

NERNE Yeio Vpj

If we define Fij = RZij = DiYZj - DjY:ri , and expand Di’ the
terms corresponding to 9 i and aj cancel as in the Riemannian

case since (i2) holds. Hence

a [+ 4
18 F._ =20 & -9 3 A= -F, .
(18) ij AYaj i A Vai ji

It was shown in J. Bazinet's thesis [2] that the Bianchi
identity still holds in Riemann-fatigue geometry,

k + rE + RS =0

“1ij, T 1jr,i 2 ri,j ’

from which it readily follows that the analogue of Maxwell's
first equations hold, namely

1 F + F + F = 0.
(19 ok T Fiie i ™ P, j

Equation (19) can be proved directly as follows. By (11)

3 ¢ =00 =8
AYoi 2y tave =80
while, since A\ is a function of the x's, (9 i7\) . =(9 ik) I

= (8 _)\)
J

.=(@ \) .. Writing F__ =9 ¢.9 A -9 ¢.9 \, then
[i i, ij j i i j

={ (3 - (9 9 9
Fij’k‘* ij,i + Fki,j {( j¢),k ( k<!>),J.} M {( kcb)’i
- (9 3 3 - (0 3 .
@0 Fons {00 - (@0) 3O,
9 - (9 =0 90_¢6.0 \-0 9_6.90 s
But ( acb),ﬁ ( 5¢)"a o ﬁ)\ 6 y P9 N, and
substituting yields (19). The definition (18), or its equivalent
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a a
18' F = - »
(18") ij o Yaj, i Yei,j

is clearly analogous to the definition of the electro-magnetic

field F =9 A -0 A as in classical texts [6].
ij i ji

The fact that F,j is not trivially zero can be seen from
i

2" 22 32 xt a2t
the example f{(ki) +(x) +(X) -e * (x)} dt for
which
0
0 0 0 1X
0 0 0 o\
Fi' = 2 .
J 0 0 0 3\

a
Thus far the tensors R_.
oi

R R?, and F . =Ra_, have been
jk ijk i aij

J

a
introduced. Since R"k is identical to the Riemannian case,
oij

as is also the conservative operation " |" differentiation, the
conservative Ricci and Einstein tensors can be defined

ij

ij j o1
-z8 R

a
R.. =R,, , R=g R _, G =R
oi} oija o af o [s)
and will satisfy the standard equations relative to conservative
differentiation.

H =0,
ence gij "
= -R = =R = R
%aijk oaikj oiajk ojkai

i i i
R. + .+R . =0,
ojke %kl] of jk

i i i ij
=0, . =0
%jkt |m * %jz mlk+ %jmk,l (03 |
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If these equations are taken in conjunction with auto-parallel
curves, one obtains the standard Riemannian geometry in which
appears a parameter A. The conservative Riemann-fatigue
geometry is obtained in other words by considering A as
locally fixed.

For the dissipative aspects of the geometry we have so far

8ii, k Z By kT
k _ k
1 ij 2
x Rk Rk = 0 (proof not given) ,

+ +
Rysgor T Ryje, i Ry ey

20 +F + F = 0.
(20) Fij,k jk, 1 ki, j

This list is now to be extended. There is no difficulty in
verifying

[24

a Q
: . = 0.
Rijic ¥ By ¥ R

Hence contracting on a and k one obtains

so that the tensor F, 1is (except for a factor of 2) the non-
1)

symmetric part of the Ricci tensor R,j.
1

If TIJ is an anti- symmetric tensor, then TIJ .. -’-—TIJRij y
» i ‘
for
™ =79 4+t =Y ¥
2 J1 s J1 s 1) s J1 s 1)
= T + TR = PR’ . TP%J) = 21%fR
aji aji afi aBj af
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The above derivation holds equally well for Tl Red
ji

and since % 8 is symmetric we have
a

)= PP F? _ =o0.
,» ji ap |J1

..

Also, from (20), using the fact that A~ i:A ,i+9)\A"'.8,X
“ ey PO PR 1

it follows that

{F.

et F

9 9 9 3 a 2] =0.
jk]i+ Fkilj} + {( xFij) k)‘+( iij) i)‘+( XFki) jx} 0

However, substituting for Fij from (18), that is
= (. yHoA-(a. .y 5o
Fii = Oavg?ih - Oavgy? 54

the second bracketed term becomes zero (9X3 A =0 since not
i

a function of A ) so that we also have

+F, F _, =0.
Bt Tiefit

Hence, recapitulating the properties of Fij ’

( F.. =R =R_-R._,
ij aij ji ij
ij af
21 + F + F =0, F = F »
(21) Fij, jk, 1 ki, j ,»ji Raﬁ
F + F + F =0 Fij =0
\ jlk Tikli Tkij T ik

The following remarks may be of interest. First, since
the transformation law for the Christoffel symbols is

if ik i i i
= + ’
Yjrke Az Ap b Vit Ay

they are of course not tensors. But since the transformation is
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assumed independent of A\, differentiation yields

i ko, i
3 = J )
e T A A e O Y

i
so that @ i t .
o tha )\ij is a tensor

Secondly, the geodesic equation and auto-parallel curves
may be written

55 ia Bap 1 %p a.i g
a O, .
(22) — =€{-g T3 x x}1x

where € =0 vyields auto-parallel, € =1 yields geodesics. But
since the right hand side is a tensor, and since it depends on
the dissipative quantity 3)\gij, one can consider the family of

curves for 0 <€ <1, taking € as a measure of the particle's
reaction to the dissipative field, (somewhat like a charge).

Finally, the auto-parallel curves (¢ =0), while dependent

on A, do not depend on the dissipative fields formed from
9

)\gij' They are geodesics in the Riemannian geometry defined
a
by the curvature tensor PS"k' Hence classical gravitational
1

field theory is applicable to them.

Conformal Riemann Fatigue. No restrictions have been
placed on the geometry other than that it be symmetric Riemann
fatigue. In this section a condition is imposed on the variation

of gij with A. This restriction will be written in the form
5°
g.
ia
2 =
(23) 0 =3, a.p

and clearly if gij(xa, ) = f(xa, A )gij(xa, 0), where f(xa, \) acts
as a gauge function, (23) is satisfied. Expanding (23) and using

the fact that along geodesics the parameter is such that gaﬁ:’cakﬁ =1

»

one obtains
448
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9 )‘cﬁ = ) 7 %Y .
(24) Xgaﬁ gaﬁx xg(ryx x

THEOREM 3. If the space is conformal in the sense of
(23) then the geodesics and auto-parallel curves can be written

.1 .
ox ia

_ € B
s - Tz 8 (8%

(25)

for € =41 and 0 respectively. Further, let A be a distance

function from PO while xl(t) are \-geodesics from Po.

Then these X -geodesics satisfy

ia .1 af
= =0 9 A3 X .
(26) g px where p ) & %8

,

Proof. (25) is immediate upon substitution of (24) in (22).
To obtain (26), recall that if x'(t) is a A\ -geodesic then

i = glapa = glaaa)\ .  Hence (24) may be written
T 3gv »
b} 9 N = I N )\ .
g 9,50, g g 0,8, N3 Ng g

But multiplying by gm yields, in view of (10)
5 g9 A = (3 gD A3 MK .
A j A i k

But the left side is precisely gle and the theorem follows.

?

Motion of Charges in an E. M. Field. In flat space the
equations of motion for a charged particle in an electro-magnetic
field can be written in the form [6]

.1

ox ia .B i _
(27) - <8 Faﬁx + f € =

where
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i 2ee | 8% o 625"

2Q\ = e— -
(28) f 3 2z &t T2

&t ot

If as an approximation one takes equation (27) with fl =0,
substitution in (28) leads to the expression

fi_ZGZe(iaF P e LT xY
= g X tes Fogg Fol

3 af
po Ly.a.i
- € F F x'xx).
g af oy
Substituting back in (27) leads to
i i Zﬁze ia x] k
. J.
2 -
(29) X +{ij 3 g Faj,k} x
ia 2€2e Yo B
= € + F F X
g (FaB 3 ayg U[S)X

«(F +?‘Eze F gV r %Py
o’ 3 Tay® Cop

where we have used the fact that I-"Olﬁiat:':B =0 since Fa'ﬁ is

skew-symmetric. A simpler expression can be formed in
terms of the stress-energy tensor

- ap
T.. = Fiag F

1 o v
ij j - ZgijF.vF.G' ’

Pi
Substituting for Fiagaﬁpﬁj leads to the

Approximate equations of motion with damping

i
% ia .B .a.B.i
(30) i €g (Fa5+KTaﬁ)X - G(Faa+KTa‘3)x X x
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2 .
where K =(2/3) e and where 6 stresses the fact that the
Christoffel symbols have been modified as indicated in (29).

a.p
Here gapxx =1.

In view of (25) and (26) and the similarity between (30) and
(22) it seems significant to consider the case in which gij is not

symmetric for possible applications to electro-magnetic and
gravitational fields. This, it is hoped, will be the subject of a
subsequent paper.
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