()

Check for
updates

Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1-54, 2024
DOI:10.1017/prm.2024.109

Numerical invariants on twisted noncommutative
polyballs: curvature and multiplicity

Gelu Popescu

Department of Mathematics, The University of Texas at San Antonio,
1 UTSA Circle, San Antonio, 78249 Texas, United States
(gelu.popescu@utsa.edu)

(Received 19 January 2024; revised 5 September 2024; accepted 5 September 2024)

The goal of this paper is to show that the theory of curvature invariant, as
introduced by Arveson, admits a natural extension to the framework of U-twisted
polyballs BY(#) which consist of k-tuples (A1,..., Ay) of row contractions

Aj = (A, ..., Asn,) satisfying certain U-commutation relations with respect to a
set U of unitary commuting operators on a Hilbert space H. Throughout this paper,
we will be concerned with the curvature of the elements A € BY(H) with positive
trace class defect operator A 4(I). We prove the existence of the curvature invariant
and present some of its basic properties. A distinguished role as a universal model
among the pure elements in U-twisted polyballs is played by the standard

I ® U-twisted multi-shift S acting on £2(F, x --- x F,J{k) ® H. The curvature
invariant curv(A) can be any non-negative real number and measures the amount by
which A deviates from the universal model S. Special attention is given to the

I ® U-twisted multi-shift S and the invariant subspaces (co-invariant) under S and
I ®U, due to the fact that any pure element A € BY(H) with A4 (1) > 0 is the
compression of S to such a co-invariant subspace.
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1. Introduction

In 2000, Arveson [2] introduced and studied the curvature and Euler characteristic
for finite rank contractive Hilbert modules over Clzy,..., z,], which are in fact
numerical invariants for the commuting n-tuples of operators X := (X1,...,X,) €
BH)™, with Ax =T - X1 X§ — -+ — X, X} >0 and rank Ax < oo, where B(H)
is the algebra of bounded linear operators on a Hilbert space H. Shortly after, the
author [20] and, independently, Kribs [14] defined and studied a notion of curvature
for the elements in the noncommutative unit ball

[B(H)"]; == {(X1,...,Xn) € B(H)": I - X1 X} —---— X, X} >0}
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2 G. Popescu

and, as a consequence, for the invariant subspaces under the left creation operators
S1,...,8y, on the full Fock space F?(H,) with n generators. Some of these results
were extended by Muhly and Solel [16] to a class of completely positive maps on
semifinite factors. The theory of Arveson’s curvature on the symmetric Fock space
F2(H,) with n generators was significantly expanded due to the work by Greene,
Richter, and Sundberg [11]; Fang [7]; and Gleason, Richter, and Sundberg [10].
Engli§ remarked in [6] that using Arveson’s ideas, one can extend the notion of
curvature to complete Nevanlinna—Pick kernels. The extension of Arveson’s theory
to holomorphic spaces with non-Nevanlinna—Pick kernels was first considered by
Fang [9] who was able to show that the main results about the curvature invariant on
the symmetric Fock space carry over to the Hardy space H?(D¥) over the polydisc.
He also extended the theory to the invariant subspaces of the Dirichlet shift [8]. In
the noncommutative setting, a notion of curvature invariant for noncommutative
domains generated by positive regular free polynomials was considered in [21].

In [22], we developed a theory of curvature invariant for the regular noncommu-
tative polyball and formulated a theory of curvature and multiplicity invariants for
the tensor product of full Fock spaces F?(H,,)®---®@ F?(H,, ) and also for the ten-
sor product of symmetric Fock spaces. These results were used in [24] to study the
Euler characteristic associated with the elements of the regular noncommutative
polyball and obtain an analogue of Arveson’s version of the Gauss-Bonnet—Chern
theorem from Riemannian geometry, which connects the curvature to the Euler
characteristic of some associated algebraic modules.

We say that V := (V1,..., Vi), k > 2, is a k-tuple of doubly U-commuting row
isometries Vi := [Vi1 -V, ] with V; o € B(H) if

Vie €U and Vi Vi =Ui;(s,0)" Vi Vi if i # j,

where U := {U, ;(s,t)} C B(H) is a set of commuting unitary operators such that
Uji(t,s) = U, (s, t)* if i 7 and U’ is the commutant of &. We note that, in the
particular case when n; = 1, V4,..., V) are unitary operators, and U; j := X\; j I,
Aij € T, the corresponding universal C*-algebras generated by Vi,...,V}, are the
higher-dimensional noncommutative tori which are studied in noncommutative dif-
ferential geometry (see [4, 30]). In the same setting, but assuming that Vi,...,V;
are isometries, De Jeu and Pinto [5] obtained Wold decompositions for doubly U-
commuting isometries. Inspired by their work, we studied in [25, 26] the structure
of the k-tuples of doubly A-commuting row isometries, which corresponds to the
particular case U, ;(s,t) = A, ;(s,t)I3, where A, ;(s,t) € T.

The rotation algebras, noncommutative tori, the Heisenberg group C*-algebras,
as well as C*-algebras generated by isometries with twisted commutation relations
have been studied in the literature in various particular cases (see [1, 5, 12, 13, 15,
17-19, 25, 29, 31] and [26]). More recently, we studied in [27] the structure of the k-
tuples of doubly U/-commuting row isometries, obtained Wold type decompositions
[32], and used them to classify the k-tuples of doubly U-commuting row isometries
up to a unitary equivalence. Furthermore, in [28], we showed that many of the
classical results concerning the dilation theory of contractions on Hilbert spaces
have analogues for regular U-twisted polyballs.
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Due to the Wold decomposition from [27], each k-tuple of doubly U-commuting
pure row isometries is unitarily equivalent to a standard multi-shift S :=
(S1,...,Sk) with S; := [S; 1 ---S; »;], which is a k-tuple of doubly I @U-commuting
pure row isometries on the Hilbert space £*(F;f x --- x F}} ) @ H, where F}}. is the
unital free semigroup with n; generators (see § 3 for the definition). It was proved
in [28] that the standard multi-shift plays the role of a universal model for the
pure elements in the U-twisted polyball. To present this result, we introduce the
U-twisted polyball BY (M) as the set of all U-commuting k-tuples A := (Ay, ..., Az)
of row contractions A; := (A;1,...,Ain;) € B(H)", ie.

Ai,s ey’ and Ai,sAj,t = Ui’j(s,t)Aj’tAi’S if 4 7é J-

We proved in [28] that A € BY(#H) is a pure element, i.e. L (I) — 0 strongly as
m — 0o, where ® 4, : B(H) — B(H) is the completely positive linear map defined
by ®4,(X) :=31%, A; ;X A, and the defect operator

1,87

Ap(l) = (id = ®ay)0---0(id— s, )(I) >0,
if and only if there are a Hilbert space D C H and a multi-shift S := (Sq,...,Sk)
with 8; := [S; 1 -+ S; »,] of doubly I ® U-commuting pure isometries on the Hilbert
space (2 (F;[l X oo X F,J{k) ® D such that H is co-invariant under all operators S; ,
and I®@U; ;(s,t) and A} ; = S7 (|3,. Due to this reason, to understand the structure

of pure elements A in the U-twisted polyball BY (H) with positive defect operators
A 4(I), one should focus on the I @U-twisted multi-shifts S and the closed invariant
(resp. co-invariant subspaces) under S and I @ U.

The goal of the present paper is to show that the notion of curvature admits a
natural extension to the framework of U-twisted polyballs and to present its basic
properties followed by several consequences. We remark that if U # {I}, the row
contractions Ay, ..., Ag are not pairwise commuting. Due to this reason, the ‘tensor
product’ techniques used in the theory of the regular polyballs and the curvature
[22, 23] need to be replaced with new ones appropriate for the U-twisted polyballs
[27, 28].

In § 2, after a few preliminary results, we introduce (see Definition (2.7)) and
prove the existence of the M-curvature, where M = (My,..., M) € ]Rﬁ, M; >
[©%, ()] > 0, and @} (X) := Z;L;l ArX A;, associated with any k-tuple A :=
(Aq,..., Ag) of U-commuting operators with positive trace class defect A 4(I) and
show that

0 < curvy (A4) < trace [Aa(])].

We also show that if A and A are k-tuples of U-commuting and U’-commuting
operators, respectively, with positive trace class defect operators, then A @ A’ is a
k-tuple of U & U’'-commuting operators with a positive trace class defect operator
and

curvy (A @ A') = curvy (A) + curvy, (47).

If, in addition, dim H’ < oo, then curvy (A @ A’) = curvys(A).
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In § 3, under the assumption that A is in the U-twisted polyball BY(#) and
has positive trace class defect operator A4(I), we established several asymptotic
formulas for the M-curvature invariant curvys(A) in terms of the noncommutative
Berezin kernel K4 associated with A.

Throughout this paper, special attention is given to the case M = (ny,...,ng),
when the corresponding curvature, denote by curv(A), satisfies the asymptotic
formula

. trace | K4 (Plqy,...q5) © ) Ka

curv(A) = lim —
e <m+k> 9120, g5 >0 trace Pg;,....qp)

i

k q1+-Fq<m

where P, .. 4.) is the orthogonal projection of £* (IF;1 X xIFjL‘k), with orthonormal

o; € Fj{i’ Iail = qi}. We

2dx)
basis {X(a1,~-~’ak)}’ onto the subspace span {X(a1~~
provide several asymptotic formulas including

.,Otk,) :

trace [(zd - <I>f’411+1) o---o(id— @?4’“;1)(1)

curv(4) = lim --- lim - - ,
q1—0 qj,—r00 Hi:1(1+ni+"'+niz)

where @ 4, is the completely positive linear map associated with the row contraction

A;. We also show that the curvature invariant is upper semi-continuous.

The standard multi-shift S, associated with the scalar weights z = (z; ;(s,1)),
where z; ;(s,t) € T and z;;(¢,s) = 2 ;(s,t), plays an important role in this paper.
This is due to the fact that any pure element A in the U-twisted polyball with
the property that As(I) > 0 and rankA4(I) = m € N is the compression of
a direct sum ©;4S () of scalar multi-shifts to a co-invariant subspace Mt e
Az’,s = IpmtL (Sz(P) )i,s |Ml .

Unlike the non-twisted case (4 = {I}) where we have, up to a unitary equiva-
lence, just one standard shift S with rank Ag(I) = 1, in the twisted case, all the
multi-shifts S, satisfy the relation

curv(S,) = rank Ag, (I) = 1,

and these are the only U-twisted multi-shifts S with rank Ag(I) = 1. Moreover,
we prove, in § 4, that if Sy and S;;s are the standard multi-shifts associated with
U C B(H) and U’ C B(H’'), respectively, then Sy is jointly similar to S, if
and only if there is an invertible operator W € B(H,#H') such that U; ;(s,t) =
W‘le-’J-(s,t)W. Consequently, if S, and S,» are standard multi-shifts associated
with the scalar weights z and z’, respectively, then they are unitarily equivalent if
and only if z = z’.

In § 5, we prove that if A is an element in the U-twisted polyball BY(#) such
that it admits characteristic function © 4 and the defect A4(I) is a positive finite
rank operator, then the curvature operator Ag(KaK4)(N ® Iy) is a trace class
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and

curv(A) = trace [Ag(KaK4)(N ® Iy)],

where

1
N = E 77131 T P(S]."“’Sk}).
1 k
(Sl,...,sk)ezi

This leads to the index type formula
curv(A) =rank A4 (I) — trace [©4(Pc @ I)O% (N ® Iy)]

which is used to show that the curvature invariant detects the elements in
B(H)™ T which are unitarily equivalent to an I ® U-twisted multi-shift S of
finite rank defect operator, i.e. acting on the Hilbert space ZQ(F:{l X - X IF;‘L‘k) ®K
with dim IC < oo (see theorem 5.5).
In § 6, under the assumption that S is a I ® U-twisted multi-shift on ¢2(F;" R
- X IE‘;'{k) ® H with dim’H < oo and M is any invariant subspace under S and
I ® U, we introduce the multiplicity of M by setting

) y trace {PM(P(%’.,_,qk) ®I7.[)}
m = lim ———
m—soco <m+k> 012020 traceP(ql,__ﬂk)

k a1+ +qp<m

We prove its existence, provide several asymptotic formulas, and connect it to the
curvature invariant by showing that

m(M) = dimH — curv(P,, 1 S|, 1)

In particular, if S, is the scalar z-twisted multi-shift on ¢2 (Fj;l X e X F:{k) and
M is an invariant subspace under S, ® I¢ with dim & < oo, then its multiplicity
exists. We remark that if n; = --- = ng = 1, then M is in the vector-valued Hardy
space H?(D*) ® £ and

mM) = lim trace [Pag(P<m ® Ig)]’
m—00 trace [P<m]
where P<,, is the orthogonal projection on the polynomials of degree < m. This is
a twisted version of Fang’s [9] commutative result for H2(D*) ® € when z = {1}.
In § 6, we also obtain some results concerning the semi-continuity for the curva-
ture and the multiplicity invariants. More precisely, we prove that if S is a U-twisted
multi-shift with &/ € B(H) and dim#H < oo, acting on EQ(IFle X e X Fjlk) ® H,
and M and M, are invariant subspaces of S and I/ such that Ppm, — Pp in the
weak operator topology, then
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lim sup curv(P, , | S <curv(P,,. S
pﬁoop v M ‘MZJ)-)— v( ML |MJ-)

and
lim inf m(M,,) > m(M).

p—o0
If M is a Beurling type invariant subspace under S and I ® U, which does not
contain nontrivial reducing subspace under S, then we show that the multiplicity
operator Ag(Pap)(N ® I) is a trace class and

m(M) = trace [Ag(Pm)(N @ I)].

In particular, this relation holds for the Beurling type invariant subspace under
S, ® I¢ with dim £ < oo.

We remark that if A is an element in BY(#) and M is an invariant subspace
under A and U, then A|nq is not necessarily in the U|r-twisted polyball in gen-
eral. However, we will provide necessary and sufficient conditions when A, is in
BYM(H) and prove a stability result for the curvature invariant.

In § 7, we present some results concerning the range of the curvature and the
multiplicity invariants. More precisely, we show that if (ni,...,n;) € N* with
n; > 2 for some j and ¢t € [0,m], then there exists a pure element A in the U-
twisted polyball such that rank A = m and curv(A4) = ¢t. Consequently, the range
of the curvature on the U-twisted polyballs is [0, 00). This also implies that the
range of the multiplicity invariant is [0, co).

On the other hand, we show that the range of the curvature restricted to the
class of doubly U-commuting row isometries with trace class defect operators is
Zy. In addition, if V := (V4,..., Vi) with V;:=[V;1--- Vi, ] and Vi s € B(H) is a
k-tuple of doubly U-commuting row isometries with the trace class defect operator,
we prove that

curv(V) = trace[Ay (I)] = rank Ay (1)
and
curv(V)=m € Z; ifand only if dim ﬂ ker V", = m.
ie€{1,...,k}
s€{l,...,n;}
Moreover, if curv(V) # 0 and n; > 2 for some j € {1,...,k}, then we prove that,
for any ¢ € [0, curv(V)], there is an invariant subspace M C H under V and U
such that curv(P, 1 V], 1) =t
In the sequel to this paper, we study the Euler characteristic associated with the

elements of the U-twisted polyballs and obtain an analogue of Arveson’s version of
the Gauss—Bonnet—Chern theorem from Riemannian geometry.

2. Curvature invariant for {/-commuting operators

In this section, we consider a few preliminary results which are needed through-
out the paper, introduce and prove the existence of the M-curvature, and present
several asymptotic formulas and basic properties for the curvature invariant.
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Let k e N:={1,2,...} with k¥ > 2, and consider the set

Di=A{G,4,s1): i, 5 €{L,....k}i#jse{l,....ni}t €{1,....,n;}},

where n;,n; € N. Throughout this paper, U := {Uixj(s’t)}(ijst)ef‘ is a set of
commuting unitary operators on a Hilbert space such that

Uj,i(tvs) = Ui,j(sat)*v (i,j,S,t) el
DEFINITION. A k-tuple A = (A1,...,Ax) € B(H)"1T T with A; =

(Aixs ..., Ain,) is called U-commuting if
Ai,s cU and Ai,sAj,t = Ui’j<8,t)Aj’tAi’s, (i,j, S,t) < F7
where U’ is the commutant of U C B(H). If, in addition,

A GAje = Ui (s, )" Aj 1 A] (i,7,s,t) €T,

1,89
we say that A is a k-tuple of doubly U-commuting operators.

DEFINITION. The U-twisted polyball BY(H) is the set of all U-commuting k-tuples
A= (Ay, ..., Ag) of row contractions A; == (Ai1,..., Ain;) € B(H)", i.e.

AinAjy+ -+ A Al <1

K2

We say that A has a positive defect operator if Aa(I) > 0, where
AA(X) = (id—(I’Al)O~-~O(id—‘I)Ak)(X), XEB(H),

and ® 4, : B(H) — B(H) is the completely positive linear map defined by ®4,(X) :=
Z:Z:I AiﬁXAZs'
The regular U-twisted polyball BX (H) is the set of all k-tuples A of U-commuting

reg

row contractions such that A, o(I) >0 for any r € [0,1).

According to Proposition 1.2 from [28], a k-tuple A of U-commuting row con-
tractions is in BY(H) if and only if (id — Dy )0 o(id—Py, )%k (I) > 0 for any

reg

515,55 € {0,1}. We note that B (#) is included in BY(#) and the inclusion

reg

is strict in general. On the other hand, it is easy to see that if A € Blfeg(H), then
(2141, ..., 2,A,) € BY (M) for any z; € D:={z € C: |z| <1}.

reg
PROPOSITION 2.3. If A = (Ay,...,Ay) € B(H)“1T" T s a k-tuple of
U-commuting row operators and U’ is the commutant U, then
Dy, ody o0--r0dy. (V)=0y, Dy, ceody. Y Yeu
Aip ©F Ay 0700 Alp( ) Aigry O Aigzy O ° AZ(T(;D)( ) e

for any i1,...,1, € {1,...,k} and any permutation o of the set {1,...,p} and
AA(Y) = (Zd - (I)w(l)) 0---0 (Zd - (I)w(k:))(Y)

for any permutation w of the set {1,...,k}.
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If, in addition, Y = Y* € U’ is such that As(Y) > 0, then the following
statements hold:

(i) For any qi,...,qr €N,

qr—1 q1—1
0< > - Y @ 00 @B (Au(Y)) = (id — ®Y ) o+ 0 (id — DY )(Y).

Pr=0 p1=0

(ii) If each A; is pure, i.e. @’Xi (I) — 0 weakly as m — oo, then' Y > 0,

Y = Z Z CI)ikkmno(I)ill(AA(Y))

pk:O p1=0

and
(id—®a;)* o0 (id—Pa, )*(Y) >0 forany si,...,s5 € {0,1}

Proof. Since A; s is in the commutant of ¢/ which is a set consisting of unitary
operators, it is clear that A; ¢ is in the commutant of U*. Consequently, using the
fact that Ai,sAjﬂg = Ui,j(sat)Aj,tAi,s for (i,j, S,t) S F, we deduce that

.ong
g J

(I)Ai o (I)Aj (Y) = Z Z Ai,sAj,tYA;,tAz,s

s=1t=1

nyony
= Z Z UiJ(S, t)Aj,tAi,sYAZSA;tUi,j (8, t)*

t=1 s=1
=Dy, 0 (Y)

for any Y € U’ and ¢,5 € {1,...,k}. Using this argument repeatedly, one can easily
prove the first part of the proposition.

Now, assume that ¥ = Y* € U’ and A4(Y) > 0. Since A; 5 € U, we also
have A4(Y) € U’'. Due to the first part of this proposition and the fact that
Ax(Y) = (id — P4y)0---0(id — P4, )(Y) > 0, item (i) follows immediately. To
prove item (ii), assume that each A; is pure, i.e. <I>in (I) = 0 weakly as m — oo.
Note that if X = X* € B(H), then

—[ X%, (1) < @4, (X) < [ X[, (1)-

Hence, @Qi(X) — 0 weakly as m — oo. Using this fact repeatedly in item (i), we
conclude that

oo

0<Y = Z Z@ikko---o@ill(AA(Y)),

pkzo p1=0

where the convergence is in the weak operator topology. Since A4(Y) > 0
and Y > 0, we deduce that <I>A1(A(A2W’Ak)(Y)) < A(AQ,...,Ak)(Y), where
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Ay, ,Ak)(Y) = (id—®ay)0---0(id—Pyu, )(Y) is a self-adjoint operator. Hence,
(bAl( (Ag,... ( ) < A(A2w’ k)(Y) for any m € N and

Ay, an I, (1) < PH (Agay,....a,) (V) < [[Aay,..oa,) VIR, (1)

for any m € N. Taking m — oo and using the fact that ®7' (1) — 0 weakly as

m — 00, we conclude that A(Azy-u,Ak) (Y) > 0. Using similar arguments and the first
part of the proposition, we can deduce that (id —®4,)P1o---o(id—®4, )Pk(Y) > 0
for any p; € {0,1}. O

Let A := (Al, .. .,Ak) € B(H)n1+m+nk with A'L = [Ai,l e 'Ai,ni]~ We say that
A; is row power bounded if there is M > 0 such that ||<I>Zli (I)|| £ M for any m € N.

COROLLARY. Let A := (Ay,..., A;) € B(H)™1+ " be a k-tuple of Y-commuting
row operators.

(i) If A4(I) > 0 and each A; is a pure tuple, then A is in the regular Y-twisted
polyball BY, () and

Do o0l (Au() =1
pr=0 p1=0

(i) If A,a(f) > 0 for any r € [0,1) and each A, is a row power bounded tuple,
then A is in the regular U-twisted polyball.

Proof. Part (i) follows from proposition 2.3, part (ii), in the particular case when
Y =1 To prove item (ii), we note that since A; is power bounded, r4; is pure for
any r € [0,1). Applying proposition 2.3 part (ii) to rA, we deduce that

(id = ®pa,)° 0+ 0 (id — g, )’k () >0 for any s1,...,s, € {0,1},7 € [0,1).

Hence, each A; is a row contraction and A is in the regular U-twisted polyball. This
completes the proof. O

Given two k-tuples q = (q1,...,qx) and p = (p1,...,px) in Z%, where Z, :=
{0,1,...}, we set q < p if ¢; < p; for any ¢ € {1,...,k}. We consider Z’i as a

directed set with respect to this partial order.

THEOREM 2.5 Let A:= (Ay,...,Ax) € B(H)"1T T with A; := (Aiq, .. o Aing)
be a k-tuple of U-commuting operators, and let @4, and <I>j‘4i be the completely
positive linear maps on B(H) defined by

:ZlA,-XA;k and @zi(X)::ZlAfXAi.
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If Aa(I) is a positive trace class operator and M; > H<I>*Ai (Dl > 0, then the limit

1 1
lim —m—— —trace [@?41 0---0 <I>?4k (AA(I))}
m—co <m+k—1> (1120;%20 Mfl...]\/[l‘jk 1 k

k—1 q1+-tqp=m

exists and is bounded above by trace [A4(I)].

Proof. If Y > 0 is a trace class operator, then

n n
trace [P 4, (V)] = Z trace (A; ;Y A ;) = trace Z A A | Y
j=1 j=1
< || 9%, (1)ltrace Y < Mjtrace Y’

for any 7 € {1,...,k}. Hence, Miitrace [@a,(Y)] < traceY for any i € {1,...,k}.
Consequently, since A 4(T) is a positive trace class operator and A4 is a U-commuting
tuple of operators, Ay (I) € U’ and we can use proposition 2.3 to deduce that the
multi-sequence

8q17""qk = Wtraee |:(I)?411 o---0 @Zkk (AA(I)):|

1 {
= trace |®% o-.. 0@ (AA(I))]
a1 qaf A A
Mo‘(l) Ce Mo‘(k) o(1) o(k)
is decreasing with respect to each of the indices qi,...,qx and sg .4 <
trace (A 4(I)). Now, it is easy to see that
lim --- lim Sq,..q = lim Sqryeeay = inf Sqrsenar < trace (Aa(D)).
q1—00  qR—o0 (q1,---qx)EZE. (a1,---qx) €K

For each ¢ € Z., denote

Q={(q1,--a) €ZE . 1+ +ag=mand 1 > {,...,q > (}.

k-1 k-1
(ay.ap) €T Sqq,....q5,» and let € > 0. Then, there exists p € N,

p > 1, such that [sy, . 4 —y| < efor any ¢1 > p,...,qr > p. Consequently, we
deduce that

It is easy to see that cardQy = (m +k- 1) and card (Q\Qy) < k¢ (m +k— 2)

for ¢ € Z. Set y := inf
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k—1 k—1
1 1
<0 Z 18q1,qr —Yl+—F—— Z I5q1,....ar. —
m+k—1 (q1,--,ax) €Q0\2p m+k—1 (q1,-,9%)EQp
k—1 kE—1
1 —
<————kp m+k—2 [trace (Aa(I) + y] + €.
m+k—1 k-2
k—1

Taking m — oo, we deduce that

1

7&1—1}(1)0 Z Sql"”’qk =Y
m+k—1 q12>0,...,q;, >0
k—1 g1+ tqp=m

This completes the proof. O

COROLLARY 2.6. The limit in theorem 2.5 is equal to

1 1
lim —— —— —trace [tbql o0 @l (AA(I))]
q q A A
m=oo (1 1k 01200y 20 M11 .. Mkk 1 k
k q1+-+qp<m
= lim --- lim ;trace P o 0 (AL(D))
q1—00 qp—>00 Mg%l) . Mgl(fk) Ao’(l) Aa(k)
q1 qg
1 1 1
= lim --- lim —Z~-~—ZS—Strace
e Uk=ro0 q1 s1=0 k s1,=0 Mo%l) e Mo](ck)

51 .. °k
o oot (Aa)]

for any permutation o of the set {1,...,k}.

Proof. Setting a,, := quzoy_quzo —T ‘?.qu trace [CD?L}I 6---0 (I)ikk(AA(I))} and
q1+tg=m 1 k
by, = <ml—: kl_ 1) , and taking into account that

o) () e ()= ()
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12 G. Popescu
we have

ap+ar+---+an 1 1

bo + b1+ b m+k\ ¢,>0, g0 M- My
k q1—7—~~-+qk§7m

trace [@?411 6.0 qﬁkmm))} .

Due to theorem 2.5, lim,, ‘;—;’L’ exists. Consequently, denoting by y the limit in

theorem 2.5 and using Stolz—Cesaro convergence theorem, we deduce that

1 1
lim ——— Z ————-trace {q)?qll o0---0 @Zkk (AA(I))} =y.

q1 q

— /\4 e \4

e m+k q12>0,...,q;, >0 1 k
k q1++q<m

According to the proof of theorem 2.5, we also have

S B : 1 q1 df
Yy = qllgnoo s qlili}loo Wtrace |:©A0,(1) O---0 ¢Ag(k) (AA(I)) .
o(1) o(k)
The last equality in the corollary follows after a repeated application of the Stolz-
Cesasro convergence theorem. We leave it to the reader. O

Let A:= (A1,..., Ag) € B(H)" T+ with A; := (Ai1,. .., Ain,) be a k-tuple
of U-commuting operators and let ® 4, and <I>j§1i be the completely positive linear
maps on B(H) defined by

Oy, (X) =Y AXA; and @ (X) =) AXA,.
j=1 j=1

Throughout this paper, we assume that the defect operator A4 (I) is a positive
trace class operator and M := (M, ..., My) is such that M; > [|®7 (I)[| > 0.

DEFINITION 2.7. The M-curvature of A is defined by the relation

1 1
curvyr(A) :== lim ——— ———————trace [@?411 0---0 <I>?4’1 (Aa (I))] .

: : q1 dk

e M

m—» o0 m+k P 420 1 Mk
k a1+t <m

IftM,; = H<I>’;‘i (I)|| for any i € {1,...,k}, the corresponding M-curvature is called
x-curvature and we use the notation curv,(A). We remark that if A belongs to the
U-twisted polyball, then we can take M; = n;, in which case the corresponding
M-curvature is called curvature and we denote it by curv(A).

COROLLARY 2.8. Let A := (Ay,...,Ag) be a k-tuple of U-commuting operators
such that A4 (I) is a positive trace class operator. Then the following statements
hold:
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Curvature and Multiplicity 13
(i) For any M := (My,..., M) such that M; > ||<I>f41(I)|| > 0,

0 < curvys(A) < curv(A) < trace [A4(])].
(ii) If curv.(A) > 0 and there is j such that M; > H<I>f4j (I)]], then
curvys(A) = 0.
(iii) If A is in the U-twisted polyball BY(H) and curv(A) > 0, then
curv, (A) = curv(4) and [ (I)]| = n;

for any i € {1,...,k}.
(iv) If A is in the regular U-twisted polyball BTeg(H), then

curv,(A4) < trace [A4(I)] < rank [A4(])].

Proof. Using theorem 2.5, we obtain the inequalities in item (i). To prove (ii),
assume that curv,(A) > 0 and there is j such that M; > ||<I>j1j (I)||- Suppose that

curvas(A) > 0. Since curv, (4) < oo, we have <=4~ 5 On the other hand,

curv s (A)
due to theorem 2.5 and corollary 2.6,
curvys(A) = lim --- lim ;trace [(I)ql 0.0 (A (I))}
M q—o0  q—oo M. MK A1 A=A ‘

k

Consequently,

curv,(A) lim lim M, " M, * ~
=Y — fim .- 1 . = o0,
curvar(4)  a—ee apmee \ 05, (D] lez, (DI

a contradiction. Therefore, curvys(A) = 0.

Now, we prove item (iii). If A € B¥(#), then each A; is a row contraction and,
consequently, [|®% (I)[| < n; for any i € {1,...,k}. Due to item (i) when M; := n;,
we have

0 < curv(A4) < curv,(A) < trace [A4(I)].

Since curv(A) > 0, we also have curv,(A) > 0. Applying item (ii) when M; := n,,
we conclude that HCD’AZ, (Dl = n; for any i € {1,...,k}, which implies curv,(A) =
curv(A). This proves item (iii).

If Ae B,Lfeg(’H) then the defect A4(I) is a positive contraction. Consequently,
we have trace [As(])] < rank[A4(I)], which proves item (iv). The proof is

complete. 0

PROPOSITION 2.9. Let A € B(H)"1T " and A’ € B(H')"1T "k be k-tuples
of U-commuting and U’ -commuting operators, respectively, with positive trace class
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14 G. Popescu

defect operators. Then, A® A’ is a k-tuple of U ® U'-commuting operators with a
positive trace class defect operator and

curvy (A @ A') = curvy (A) + curvy (A47).
If, in addition, dimH' < oo, then curvy (A ® A’) = curvys(A).

Proof. Tt is straightforward due to either theorem 2.5 or corollary 2.6. g

3. The curvature and the noncommutative Berezin kernel on U/-twisted
polyballs

Under the assumption that 4 is in the U-twisted polyball BY(#) and has a positive
trace class defect operator A 4(I), we established several asymptotic formulas for
the curvature invariant in terms of the noncommutative Berezin kernel associated
with A. We also show that the curvature is upper semi-continuous.

DEFINITION. We say that V := (Vq,..., Vi) is a k-tuple of doubly U-commuting
row isometries Vi := [V; 1 -+ Vi .| with V; s € B(H) if

ViseU' and ViV, =U;;(s,t)'V;, V7, (i,7,s,t) €T.

The above doubly U-commutation relation implies the U/-commutation relation
VisVie = Ui j(s,t)V; Vi for any (i,j,s,t) € I' (see [27]). Therefore, V is also a
U-commuting k-tuple.

In what follows, we fix a set U := {Uw-(s,t)}~(i!j.’s’t)eF C B(H) of commuting
unitary operators such that Uj;(t,s) = U; ;(s,t)* for (i,j,s,t) € I'. We recall the
definition of the standard I @ U-twisted multi-shift S := (S1,...,Sg) acting on the
Hilbert space £*(Fy; x --- x F}}' ) @ H, where F is the unital free semigroup with

generators gt .. .gfli and neutral element g*o. Let {X(ay,....ap)}> % € IF‘IZ,, be the
orthonormal basis for €Q(Fjl X - ~><IF;[k). Foreachi € {1,...,k}and s € {1,...,n;},
let S; := [S;1---S; ;] be the row operator defined by setting

Si,S <X((x1,..4,ak) ® h)

X(ggal,aQ,...,ak) @ h, ife=1

)®Ui,1(37041)"'

X(ag oo 1.0k g o,

Uii-1(s,ai—1)h, ified{2,...,k}
for any h € H, a1 € Fj{l, S € IF,fk, where

4 U i(s,j fB8=q¢ - ¢ +
Hb:l Uly] (5,]};) if 8= gjl gjq S Fnj
I if 8 =gy
for any j € {1,...,k}. Due to [27], S := (S1,...,Sk) is a k-tuple of doubly I ® U-

commuting pure row isometries on the Hilbert space ¢2 (IF‘;‘L‘1 X oo X Frfk) ®H. If we
need to emphasize the dependence of S on the set U/, we use the notation Sy,.

Ui,j(s7 B) =
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Curvature and Multiplicity 15
Let A := (A4,...,Ax) be a k-tuple such that its defect operator

AA(T) i= (id — B ay) 0 -0 (id — g, )(T) > 0

and each A; == [A;1--- A”Lz] is row power bounded, i.e. there is a constant C' >0
such that HCIYXZ, (I)|| < C for any m € N. Following [28], the noncommutative Berezin

kernel Ka:H — (2(Fy, x -~ x F} ) ® H associated with A is defined by setting

Kah = > X(B108p) @ Aa(D) P A g - AT 5 b, hEH,
BLEFY, oo Bl €L,

where A; g, == Aip, - Aipy, if Bi = gli)1 cegh€ IF,J{Z, and Aivgé = ]. A simple

extension of theorem 1.5 from [28] is the following. We denote by vN(U) the von
Neumann algebra generated by U.

THEOREM 3.2 Let A := (Aq,...,Ax) € B(H)"1T" "% be a U-commuting k-tuple
such that Aa(I) > 0 and each A; = [A;1---Aiy,] is row power bounded. If
S:=(S1,...,8;) with S; :=[S;1--- S”Lz] is the standard k-tuple of doubly I @ U-
commuting row isometries on the Hilbert space 62(F,+Ll X e X ]ij) ® H, then the
following statements hold:

(i) The noncommutative Berezin kernel K, is a bounded linear operator.
(i) KiKa =limg oo .. limg, oo (id — @% ) 0+ 0 (id — @ )(I).
(i) For any i € {1,...,k} and s € {1,...,n;},
KaA; =8 Ka.
(iv) For any (i,7,s,t) € T,
KaU=(I®U)Ka, U euvNU).

Proof. Note that

HKAh||2 == < Z Al,ﬂl Ak,ﬁkAA(I)AZ,,Bk ATB1h7h>

BleF’;’l»l ’“'76]66]1?#]@

o0

= < Z (1)11)411 O~-~O‘bikk[AA<I)]h7h>
Pl D=0

for any h € H. Due to proposition 2.3, for any ¢1,...,qr € N,

qr—1 q1—1
>y O o0 @ (Aa(D)) = (id — @F ) o0 (id — Y )(I).

pk:O p1=0

. @
Since the latter product is a sum of 2* terms of the form :I:q)i;il 0---0 <I>AZ§7 (I) and
1 P

there is C' >0 such that ||<I)Tl(l)|| < C for any m € Nand i € {1,...,k}, we have
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I(id — @ikk) o---o(id — ‘1)21)(1)” < C*2% for any qi,...,qr € Z,. Consequently,

taking into account that ZZIZ;E e Z;i ;(1) @ikk 0---0 @le (A4(I)) is an increasing
multi-sequence of positive operators with respect to the indices ¢4, ..., gk, we con-
clude that K4 is a bounded linear operator and item (ii) holds. The proof of items
(iii) and (iv) is similar to the one corresponding to the particular case when A is

in the regular U-twisted polyball (see theorem 1.5 from [28]). We shall omit it. O

Under the assumption that A is in the -twisted polyball BY(#) and has positive
trace class defect operator A4 (1), we established several asymptotic formulas for
the curvature invariant in terms of the noncommutative Berezin kernel associated
with A.

For each (¢q1,...,qx) € Zﬁ, let Py, ....q,) be the orthogonal projection of 2 (IF,*L‘1 X

-+« x T} ) onto the subspace
Spal {X(al ..... ap) O 7S F:z’ |al| = QZ}

We also denote by P<(q,,... q,) the orthogonal projection of 2 (IF;‘L‘l X e X IE‘;‘L‘k) onto
the subspace
Spal {X(al ..... ap) NS F:w |al| < qz}

THEOREM 3.3 Let A be in the U-twisted polyball BY(H) such that As(I) is a
positive trace class operator. Then, the M-curvature of A satisfies the asymptotic

formulas
. 1 trace [KZ(P(qu___,qk) ® IH)KA}
curvyr(A) = lim —— « a
m= fm 4+ k 4120, .q)>0 Mt M
k q1++qp<m
trace [K;‘\(P(qlwqu) ® IH)KA}
= lim ~ -
(f117~--,qk)eszF M- M
. 1 trace [K:Z(P(ql’qu) ® L) Ka
= 7,}E>noo N\ Vil ViG
m+k—1 q1>0,...,q >0 1M
kE—1 q1+-t+qp=m

If, in addition, M; > 1 for any i € {1,...,k}, then

trace [KZ(PS(ql,.__,qk) ® IH)KA}
curvys(A) = lim --- lim . -
4100 g0 Hi=1(1+Mi+"'+Mz'qz)

Proof. Let S := (S1,...,Sg), with S; := (S;1,...,8;,,) being the standard k-
tuple of doubly I ® U-commuting row isometries on the Hilbert space éQ(Fjl X
-+ x ) @ H. Note that
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Curvature and Multiplicity 17
S;:s (X(al,...,ak) ® h)

%
X(O‘lr"'ﬁaiflngi’aiJrl)"'70%) b2 Ui,l(sv al) e

= Uii-1(s,ai—1)*h, if a; = giB;
0, otherwise
for any h € H, a1 € IE‘;'{17...7ak € IFjl‘k, and 3; € Fj;i, and, consequently,
n;
Z Si,sSi.s (X(a17~--70tk-) ® h)
s=1

X(al""7ai717ai’ai+1""7ak}) 2 Ui,1(57 al)Ui,1(57 0[1)* e
= Uiiz1(s,0i-1)U; i—1(s, i—1)*h, if |a;| > 1

0, otherwise

X(ag,...nap,) ® h, if |al| >1

0, otherwise.

Since S := (Si,...,Sk) with S; := (Si1,...,Sin,) is k-tuple of doubly I ® U-

commuting row isometries and U := {U;; (s,t)}(ijS pner 18 a set of commuting

unitary operators on a Hilbert space H such that Uj;(t,s) = U, (s,t)* for
(i,7,s,t) € T, one can use the I ® U-commutation relations for S to check that

(Si,sS76)(8;,455,) = (S;,55,)(SisSi ;)
for any i,j € {1,...,k}, i#j, s € {1,...,n;}, t € {1,...,n;}. Moreover, for any
i1,...,1p distinct elements in {1,...,k} and a1 € ]F;‘L‘il,..., a, € Fjl_z , one can
p

prove that

(Sil,als;’khal) o (Sipvapszp,ap> =Sijar 'Sipx‘lpsrpﬂlp T Si‘l,al- (3.1)

Consequently, it is easy to see that

g
(id — ®g,) 0+~ 0 (id — @, )(I) = [ | <I - sl,ss;f,s> = Pc® Iy,

i=1 s=1

where Pc is the orthogonal projection of £2(Fy; x --- x F}l ) onto C C £2(F} x

S X IF;’{k), where C is identified with X (g1 gk)(C. On the other hand, one can check
ol

that

> SiaSia | (Xagoagy @) = Meren) il > g

0 otherwise
a€FL |al=q; ’
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for any ¢; € N. Hence, we deduce that

, i+
(@8~ &)W (X(ayromap) @)

Z Si,OéS;oz - Z Siyasf,a (X(ozl,“.,ak) ® h)

acFyl Jal=q; Q€ lal=q;+1

X(al ..... ag) by h7 if |al| =4

0, otherwise.
Consequently, using relation (3.1), we obtain

+1 +1
(@2 3% o0 (@ — a1

k
=11 Y SiaSia— > SiaSi, (3.2)
=1

ozEIF;tZ,,\M:q aG]F;"L_i,|a\:qi+1
= P(q1,~~~,qk) & Iyy.
On the other hand, due to theorem 3.2, we have

K3jKs= lim ... lim (id—‘bikk)o"'O(id_q)%l)(l)v

qk—>oo q1—>OO

where the limits are in the weak operator topology. Since

qp—1 q1—1

0< (id—@% Yo-wo(id—dY )(I) =Y B o+ Y D5 o(id—Da, )00 (id— D4, )(I)
s, =0 s1=0

and A (1) = (id — @4, ) 0o (id — P4, )(I) > 0, the sequence {(idfq)qk) 0.-:0

(id— <I>qT11)( )}(q1 Lapezh is increasing with respect to each index g;. Ublng propo-
sition 2.3, the fact that (I> Aqs -+ @a, are WOT-continuous completely positive and
contractive linear maps, and WOT-limg, o @%i (I) exists for each i € {1,...,k},
we deduce that
: fK) = i im (id— ®% Yoo (id— ®% ) o (id —
(id — @4, )(K1K4) = q;llinoo .. .qlh_I)noo(zd (I)Ak) o---o(id <I>A1) o(id—®4,)(1)
= lim ... lim (id = ®% )o- -0 (id - ®F)

qk—)oo q2—)oo

lim (id — &% ) o (id — ®4,)(1)

q1~>oo
-1 i (id— D% Voo (id— D2 ) o (id —
_q;@m...qgl_r)noo(zd (I)Ak)o o (id — @) o (id — P4, )(I).

Consequently, composing to the left by id — ®4,, a similar reasoning leads to

(id — ®a,) 0 (id — 4 ) (K41Ka) = lim ... lim (id—@%k)o-no(id—qffg)o
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(id — ®4,) 0 (id — Pa,)(]).
Continuing this process, we obtain
Aa(KGKa) =Aa(]). (33)

On the other hand, due to theorem 3.2, we have KaA},; = S; ;K4 for any i €
{1,...,k} and any j € {1,...,n;}. Consequently, we deduce that

K [q)gll 0 0@ o(id— g )00 (id—@sl)(I)} Ka
= @Y o0 @Y o(id—Pa))o---o(id—Pay)(K4EKa).

Hence and using relations (3.2) and (3.3), we deduce that

Ki(Plgy ) © 1) Ka = K} [(cpg}l — Y oo (0% — q>g§j1)(1)] Ka
- K3 [@gll 00 ®Y o (id — bs,) 0o (id — <I>s1)(1)] Ka
= @9 0 0@% o(id—Da,) 0o (id— Day)(KiKa)
= B% 0.0 Y (Aa(])).
Therefore,
K3 (Playqp) @ I Ka = (I)Z\ll R ‘I’?qkk (Aa(l)) (3.4)
for any qi1,...,qx € Z4. Using this relation, theorem 2.5, and corollary 2.6, we

deduce the first three equalities in the theorem.
Assume now that M; > 1 for any ¢ € {1,...,k}. Using again theorem 2.5 and
corollary 2.6, we have

_ ~ 1 a1 a,
curvy(A) = qllgnoo'”q;gloo Wtrace P o0 (I)Ak(AA(I))} .

A repeated application of Stolz—Cesaro convergence theorem with respect to each
limit leads to

| trace [0 g Xk 0% 0- 0 05 (Au(1)]
curvys(A) = lim -+ lim )

Qo0 oo TI (1 + M+ + M)

Consequently, due to relation (3.4), we deduce that

e [Py 0705
curvys(A) = lim -+ lim p - :
o amee T[S (L M+ -4 M)

The proof is complete. O

In the particular case when M = (Mj,..., My) = (n1,...,n), we obtain the
following asymptotic formulas for the curvature which will be used later on.
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COROLLARY 3.4. Let A := (Aq,...,Ak) be an element in the U-twisted polyball

BY (H) such that A4(I) is a positive trace class operator. Then, the curvature of
A satisfies the asymptotic formulas

curv(A) = lim 71 trace [KZ(P@““’%) © IH)KA]
m—reo (m + k’) 4120,...,q5 >0 trace [P(fn,m,q:c)]
k‘ g1+ g <m
_ fim trace [KZ(P(%M%) ® IH)KA]
(a1,.-,q) €Z. trace [Pg, ,....q,)]
~ i 1 3 trace [K4(Pg,....q0) @ I1)Ka]
M=o (b k=1 50 a0 trace [P, ,....q0)]
E—1 a1+ t+ap=m
. . trace I:KZ(PS(CIL“w%) ® IH)KA}
= lim --- lim
q1— 00 qp — 00 trace [P§<q1 YYYY ‘Zk)]
. 1 1
= lim ——— Wtrace [@‘21 0.0 d% (AA(I))]

a1
m—» o0 .o
(m + k) @20, gpz0

q1++qp<m
k

1 1
= lim ——— ——————trace |®Y o0 DY (Aa(]))
Moo <m+k_ 1> qlzo,,.z,.qkzo n¢111 ...nZk [ 1 k ]

a1t tgp=m
k-1

L trace [(id—@qulﬂ)o---o(z‘d—(l)qA’“k“)(I)]

q1—o0  qp—oo [, (A +ni+ -+ nd)
1
= S " [@‘11 o @ (Au(T }
(171,...,1;1;3)62?F nit .. nik race [®a oo Ak( (1))
We remark that in the particular case of the U-twisted polydisk, i.e. ny = --- =
ng = 1, we have trace {P(ﬂ,qu)} = 1, and therefore, the first of the assymptotic

formulas for the curvature (see corollary 3.4) becomes

curv(4) = lim trace [K4 (Pem @ 1) Ka]

m—00 trace P<,,

)

where P<,, stands for the orthogonal projection of ¢2(Z* ) onto
span{x(mlw7mk) cmy €Zy,my+ -+ myg < mb.

DEFINITION. Let A :

= (Al,...,Ak) with Al = (Ai,17~-~7Ai,ni) S B(;Ll)nZ and
C:=(Cy,...,Cf) with C; =

(Ci,17 L) Cz,nl) € B(H/)nl

(i) We say that A is unitarily equivalent to C if there is a unitary operator ¥ :
H — H' such that VA; = C; ;¥ for anyi € {1,...,k} ands € {1,...,n;}.
(i) If A and C are U-commuting and W-commuting, respectively, we say that
(A, U) is unitarily equivalent to (C, W) if there is a unitary operator ¥ :
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H — H' such that

VA, s =Ci U and QU (s, t) =W, ;(s,t)U for any (i,j,s,t) €.

We note that if (A,2) is unitarily equivalent to (C, W), then A € BY(H) has a
positive trace class defect operator A 4(I3) if and only if C' € B"Y(H') has a positive
trace class defect operator A (I;,). Using one of the asymptotic expressions for
the curvature, it is easy to see that curv(A) = curv(C). Therefore, the curvature
is invariant under unitary equivalence of the pairs (A,U) and (C, W). We remark
that if A and C are just unitarily equivalent, then (A, ) is not necessarily unitarily
equivalent to (C, V) in general.

THEOREM 3.6 Let A and {A®)},cy be elements in the U-twisted polyball BY (H)
with positive defect operators and defect spaces included in a finite dimensional
subspace of H. If K (» KZ(P) — KK, in the weak operator topology as p — oo,
then

lim sup curv(A®)) < curv(A).

p—ro0
Proof. Let K C H be a subspace with dim K < co such that Dy C K and D ) C K
for any p € N. Note that

lim trace {(P(q17.__,qk) ® [’C)KA(P)KZ(p)} = trace {(P(q17.__,qk) ® IIC)KAKZ]

p—o0

for any (q1,...,qx) € Z’j_. A close look at the proof of theorem 3.3 reveals that

P AP AP ATAR T oo A A Ay
an) ® Ix)Ka K]

= trace [<I>‘11411 o0---0 @?4’1 (AA(I))]

= trace [(P(q1

.....

for any (q1,...,qr) € Z%. For each p € N and q := (q1,...,qx) € Z%, let

trace [@?411 o 0l (Ay (I))}

k
aq = and
a n?l e nZk
q
trace <I)Zl(p) 0---0 @A’“(p) (A, ) (I))]
agp) = : a1 qllcC

Ty My

As we saw in the proof of theorem 2.5, {aq}qEZk and {agp)}qezk are decreasing

multi-sequences with respect to the indices ¢, ..., qx. Setting a := lim and

quﬁ'_ g
a®P) = limq ez’i aff’ ), we prove that limsup,, , a?) < a, by contradiction. Passing

to a subsequence, we may assume that there is € > 0 such that a(?) —a > 2¢ > 0 for

https://doi.org/10.1017/prm.2024.109 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.109

22 G. Popescu

any p € N. Taking into account that a := quezk aq, we can find N > 1 such that
+
lag — a| < € for any q = (q1,...,qr) € Z% with ¢; > N. Consequently, aﬁf’) > aP)
and
|a£1p) —aql > |a£1p) —al —|aqg — a|l > 2e — e =,
which contradicts that lim,_, agp ) = aq. Consequently, using corollary 3.4, we
deduce that

lim sup curv(A®) < curv(A).

p—o0

The proof is complete. O
The next result shows that the curvature invariant is upper semi-continuous.

THEOREM Let A and {A®P)},cy be elements in the U-twisted polyball BY(H) such
that they have positive defect operators and rank AA(P) (I) < C for any p € N. If

AP — A in the norm topology as p — oo, then

lim sup curv(A®)) < curv(A).

pP—o0

Proof. According to the proof of theorem 3.6, it suffices to show that, for any
(QI7"'7qk) EZ{T_,

plLrgo trace l@ilgp) 0---0 @Zk,ip) (A, (I))] = trace {@‘21 0.0 <I>?4kk (AA(I))] .

Consequently, using the fact that rank AA(p) (I)) < C, p €N, for some C >0, we
have

trace l@j(p) 0--+0 @i’v(p) (A, (1) = @Y 00 @3{; (A A(I))] ‘
1 k

S 9 - 0B, (8 ()~ ] o0 ¥ (Ba()|
x rank ‘I’Zlgp) -0 ‘I)Zk]gm(AA(p) (1) = @Y, o0 @Y (Aa(]))

<nfl. gk (rank A, (py (I)] + rank [AA(I)}) @7, 00 0% (A 44 (D)
1 k

— 2% oo 0@ (AA(D)]
<20nf 81 00 8% (A ) (1) = B, 0+ 0@ (Au(D)).
1 k

Since A®®) — A in the norm topology as p — 00, it is clear that the later expression
converges to 0. The rest of the proof is similar to that of theorem 3.6. The proof is
complete. 0
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4. The U-twisted multi-shifts as universal operator models

In [28], we proved the following classification result for the pure elements in
the regular U-twisted polyball having defect operators of finite rank. Let A :=
(A1,..., Ax) € B(H)" T+ be a k-tuple with A; := [A;1-- A;p,]. Then, A
is a pure k-tuple in the regular U-twisted polyball, with rank A 4(I) = m, where
m € N, if and only if there is a set W := {W; ;(s,1)}(; j,s,t)er of commuting unitary
operators on C™ with

iji(t7s) = Wi,j(sﬁt>*’ (iaja37t) el

and there is a jointly invariant subspace M C 2 (F) x o X IF:{k) ® C™ under the
I ® W-twisted multi-shift S := (S1,...,Sg) with S; := [S;1- S”Lz] and under
I®@W, ;(s,t) such that dim[(Pc ® Icm)M=] = m and, up to a unitary equivalence,

Ai,s = MJ_SZ',S|MJ_-

Due to the spectral theorem, since Wj ;(s,t) are commuting unitary operators
on C™, there is an orthonormal basis {vi,...,v,} of C™ that simultaneously
diagonalizes each W; ;(s,1), i.e.

Wi (s, t)vp, = zg?(s,t)vp, zi(?(s,t) e,

for any (i,4,s,t) € I'and p € {1,...,m}. Setting z(») := (Z,E??(S,t))(i,j’syt)ep, it is
clear that each Cv, is a reducing subspace for all W; ;(s,t) and W; ;(s,t)|cy, =
zgg)(s,t)lcvp. Consequently, due to the definition of the multi-shift, we have S =
@;n:l S, () i€ Sis = @jzl(sz(p)),;vs. Therefore, the I @ W-twisted multi-shift S
is a direct sum of multi-shifts S, € B(¢? (F > x Frfk)) with scalar weights z =
(2i,5(8,1))(i,j,s,t)er, Where z; j(s,t) € T and z;;(t,s) = 2 5(s,t) for (4,7,s,t) € T.

In particular, according to Corollary 3.5 from [28], A is a pure k-tuple in the
regular U-twisted polyball, with rank A4 (I) = 1 if and only if there is a set z =
(2i,5(8,1))(i.j,s.t)er of complex numbers in the torus T with

Zj,i(t7 S) = Zi,j(s’t)a (ivj, S,t) erl,

and a jointly invariant subspace M C £2(F; L X X IB‘j%) under the standard
multi-shift S, such that dim[PcM1] = 1 and, up to a unitary equivalence,

Ai,s = PML(Sz>i,s|ML~

If M’ is another jointly co-invariant subspace under (S,); s, then P, S,|,,1 and
P 1S L are unitarily equivalent if and only if M+ = M'". As a consequence
of the next result, we deduce that if S, and S,/ are the standard multi-shifts
associated with the scalar weights z and z/, respectively, S, is unitarily equivalent
S,/ if and only if z = =z/.

THEOREM 4.1 Let Sy and S be the standard multi-shifts associated with U C
B(H) andU’' C B(H'), respectively. Then, Sy is jointly similar to Sy if and only if
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there is an invertible operator W € B(H,H') such that U; j(s,t) = WU/ (s, )W
for any (i,j,s,t) € T.

Moreover, Sy is unitarily equivalent Sy if and only if there is a unitary operator
W e B(H,H') such that U; j(s,t) = W*U] ;(s,t)W.

Proof. Let {Xa}a With a = (a1,...,ap) € Ff x -+ x IFij be the orthonormal
basis for the Hilbert space ¢2 (Fj;l X +e X JFIk) Recall that Syp = ((Su)1,-- -5 (Su)k)
with (SL{)Z = [(Su>i,1 L (Su)i,ni]; where

(Su)i,s (X(al’“wak) ® h)

X(giag,ag.....ap) ® h, ifi=1
= X(al,m,ai_l,ggai,ai_;'_l,‘..,ak) ® Uivl(s7 Cl{l) e
Uii-1(s,ai—1)h, ifi € {2,...,k}
forany h € H, a1 €F ... a € IFnk, where

q (e i Y T +
Ui,j(sa ﬁ) = Hb:l U’LJ (Sjjb) lf /B B ng gjq © ]Fnj
I if =g}
for any j € {1,...,k}.
Assume that there is an invertible operator X € éQ(Fil X oee X ij) QH —
C(FL % x FY ) @ H' such that

X(Su)is = (Syr)i,s X (4.1)

for any ¢ € {1,...,k} and s € {1,...,n;}. Let [Xo"ﬁ]aﬂe]F+ §
) ni
ator block matrix of X, where (Xq gh,h') = (X(xg ® h, xa @ h') for any h € H

and i’/ € H'. Note that

XL be the oper-

<X(SL{)1,S(X¢1 ® h)v (XB ® h/)> = <X(X(g§a1,...,ak) & h)’ (X(ﬁl,...ﬁk) ® h/)>

_ /
- <X(/317---7/316),(9%017---,@16)}1’ h >

and

((Su)1sX(Xa @ h), (xg @ 1))
= (X(Xa @ h), (Syr)i s (xg ® 1))

< (X(aq,ap) @)y (X(vq.89...8) @ h/)> if 31 = gl for some v, € IE‘le
0

~

otherwise

X318 )0 vty if 81 = gl for some 7, € IFj;l

0 otherwise.

/—/H/—/h
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Consequently, due to relation (4.1), we must have

+ +
X(gé’YlnBz ----- Br)s(glor,az,.ag) = X(41,82,sB1) (01,02, a)> V1,01 € Fyoi, Bi € By

X(B1,Bp)s (a1 rag) =0 if 81 # oq,04,6; € FIZ

Consequently, if 51 = a1, then

X(B1,89,8)s (01,09, ag) = X(g(%aﬁzv--,ﬁk)v(gé’0‘27»--70%) (4.2)

for any o, B2 € F%,...,ak,ﬂk € IF;‘L‘k
Now, fix i € {2,...,k} and t € {1,...,n;}. As above, using the definition of the
standard multi-shifts, we deduce that

(X(Su)it(Xa ® h), (xg @ K))
= <X(X(a1,.-.,ai_l,gzm,a11+1,4.4,a,€) ®U;a(t 1) Uii—1(t, aim1)h), (X(gy,....8,) @ h')>

7
- <X(/311<~<1Bk)a(a11<~<1ai—17g§aia0"i+11“wak)Ui’1(t7 a1) - Uii-1(t, ai-1)h, h >
and

((Syn)it X (Xa @ h), (xg @ h'))
= (X(Xa @ h), (Syr)i(xg @ 1))

<X(X(a17~~-,%) ® h), (X(ﬁl’-'wﬁi—lWz’ﬁi-&-l’-"ﬁk)@
Uialt ) Uit M)) if 5 = givi, i €

otherwise

_~

/i,l(t,ﬁl)'“ g,ifl(tvﬁifl)

- X(ﬂl,...,[31‘_1,"yi,57;_;'_1,...,ﬁk),(()il,...,ak.)7 hl> lf ﬁ’t = g%’y1W1th 'Yz 6 IF:,L

0 otherwise.
Now, using relation (4.1), we deduce that

X(B1oBirBp) () = 0 1 Bi # s, 05, 85 €
and

(,6’1,.4.,gg’yi,.4.,ﬁk),(o¢1,..A,gtioi,.“,ozk)Ui71<t7 al) e Ui;i—l(t) al—l)

= Ug,l(tvﬁl) T ;,i—l(tvBi—l)X(ﬁl,m’%wwﬁk)’(al,uwai’m,ak)'
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Consequently, if 8; = «;, then

X(B1eeesBiseresBi)s(@1 ey Uit (Biy 1) - Ui i1 (B 1)

= U;,l(ﬁh Bi)-- U;,z‘q(ﬁi, Bi—1)X (4.3)

(517~~,96,~-7ﬂk),(a1,~~-7967-~,0tk)
where

q
Ui;(Bi,oy) = H 0iU ) if Bi=gj - gj, €FL a5 €FL

and Ui’j(ﬁi,aj) = I 1f ﬂz = g(i).
Due to the above results, if there is ¢ € {1,...,k} such that «; # £,
then X, . 5,).( = 0. Therefore, the non-zero entries of the oper-

S seap)
ator block matrix [Xq g are those on the diagonal, that is,

X

o, BEF;T) X xFf
aqrag) (g, ay,)- Using relations (4.2) and (4.3), we deduce that
Koy (@1 o) = Koo ap) (od a0, mag) = (o083 0, (98,02,05,- k)

—...=X
(93:93+-95) (95,93 -.95)

(4.4)

for any o; € TP . Since X is a an invertible operator, X, ; ko1 &
" (99:+--95): (9593
B(H,H') must be invertible as well.

Now, let i € {2,...,k} and let j € {1,. — 1} be such that i > j. In what fol-
lows, we show that U, j(s,t) = U; (s, t) for any se{l,...,n;}andt € {1,...,n;}.
Indeed, take a; = g, a; = gl and a, = gf for any p € {17 ..., k} with p#1i and
p #j. Applying relations (4.3) and (4.4), we obtain

S

X(al,...,ak),(al,...,ak)Ui,l(QLg(l))"'U'7j(giag{) Uzz 1(9(;,96 1)
=U;1(9590) - Ui (95, 98) - Uii1(9%, 95 )
(TR ai_l,gé,ai+1...o¢k),(a1 ..... O‘i—lﬁg(i)’ai-i-lv“'ak)’

which implies

/
apsmap)ar oy Ui (5,1) = UiJ(S’t)X(gé,-4.,g§),(937---79’5)'

Consequently, again using relation (4.4), i.e. X(aq ) (@1, map)
X k

(ol 1 = W, we deduce that WU, (s,t) = U, .(s,t)W, which
955598 (98 5+98) J

proves our assertlon The converse is obviously true. In a similar manner, one can
show that Sy, is unitarily equivalent S;,s if and only if there is a unitary operator
W € B(H,H') such that U, ;(s,t) = W*U] ;(s,t)W for any (i,j,s,t) € I'. The
proof is complete. O

COROLLARY 4.2. Let S, and S,: be the standard multi-shifts associated with the
scalar weights z and z’, respectively. Then, S, is unitarily equivalent S, if and only
ifz=12".
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5. Curvature operator on the U-twisted polyball and some
classification results

In this section, we prove that if A is an element in the U-twisted polyball BY (H)
which admits characteristic function © 4 and the defect A4(I) is a positive finite
rank operator, then we can introduce a trace class curvature operator whose trace is
exactly the curvature of A. This result is used to show that the curvature invariant
detects the elements in B(H)™1 T ™"k which are unitarily equivalent to a I ® U-
twisted multi-shift S of finite rank defect operator and completely classify them. We
also show that the curvature invariant completely classifies the finite rank Beurling
type jointly invariant subspace under S and I ® U.
We recall that

1
NS(‘]]wuqu-) = : s1 Sl P(S]_,...,Sk.)7
ng e nk
SiEZ+7Si§qi

where P(81,~~7sk) is the orthogonal projection of £2 (IF‘jL1 X ~><IF,J{k) onto the subspace

span {X(ay,...ap) * Qi € IF;‘L‘Z,7 ;| = ;).

THEOREM 5.1 Let A be an element in the U-twisted polyball BY(H) such that
A (1) is a positive trace class operator. Then,

curv(A) =  lim  trace [AS(KAKZ)(NS(,ILM%)®IH) ,
(ql“‘"qk)ezﬁ»

where K is the noncommutative Berezin kernel of A.

Proof. Fix j € {1,...,k}, and let oj € ]F;‘L‘j with |a;| = s; < ¢; € Z. Denote by

Pq(? the orthogonal projection of £2(F,}f x --- x Fjl‘k) onto
Spaﬂ{X(al,...,ﬁk) D BreFy ..., By € Fy and |Bj] = Qj}~
Using the definition of the I @ U-twisted multi-shift S on B(¢? (Fjl X+ X ]ij) ®H,

we have

* )
S50, (P © 1) (X(p, ..5,) ® 1)

_ {S;,aj K(ri ©) 1851 =,

0, otherwise

:{X</31 ,,,,, Bi— 15 Biq1rnB) @Uja(ag,B1)" - Ujj_1(ay, Bj—1)"h,  if Bj = a7,

0, otherwise
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if j > 2, where

S

i
Uj oy, Bp) == | | Ujp(in: Bp)
b=1

for each p € {1,...,5 — 1}, aj:g§1-~-ggsj GIE‘;L“J, andﬁpeFr‘fp.Iszl, we have

X(’YlvﬂQ;-..,Bk) ® h7 if 51 = 041'}’1

Ty (P @ I (X(8yp) @ h) = .
0, otherwise.

Consequently, if j > 2, we deduce that

(PD . ® )85 0, (X(p1.) © 1)

(Pg)fs]' ®]”)(X<51 ----- Bi 17584108 @ Uja(ag, B)" -+
- Uj,j—l(o‘jvﬂj—l)*h), it ; =
0, otherwise

_ {X(51 ,,,,, Bi—175: BB @Uj1(ag,B1)" - Ujj-1(a, Bj—1)"h, if B = a;v;

0, otherwise.
On the other hand, if j =1, we have

X(’yl,ﬁg,...,ﬁk) @ h7 if 61 =o1m

1 *
(Pq(l)_sl ® IH)Sl,al(X(ﬂl,,ﬁk) ® h’) = O Otherwise

The above relations imply

S50, (P @ ) = (PY) @ Iy)S*

9% Jg
for any a; € F:j with |o| = s; < ¢; € Zy. Since Pg; o) = Ps(ll) . -~PS(;:) and
taking into account that CIJ;‘:Z' (I) = nfil, we obtain
*S *sk o *S *sk
(I)Sll 0---0 (I)Sk (P(qlv-“7qk) X I?-L) = (P(ql_slv“"qk_sk) ® I’H) (I)Sl1 0---0 (I)Sk (I)

S (p(ql_ﬂw_’qk_%) ® IH)
(5.1)

for any s1 < q1,...,8r < qi. Using proposition 2.3, we have

o0 o0

X=) - Z@‘;llmuo(l);’z(As(X))

s1=0 s=0
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for any X € (I ®U)'. Hence,

q1 K
(Playnag) @ 1) X = Py @ 1) 3 -+ ) ¥y 000 O (As(X)).
51:0 SkZO

Now, using this relation and (5.1), we deduce that

trace [(P(q17..,7qk) ® IH)X}

q1

df
= Z Ztrace

81=O sk:O

(P(Q17“'7Qky) ® IH) Z SLO‘] T Sk>ak,AS(X)SZ,ak T St,al

\a1|:sl,...,|o¢k|:sk

> Siay STy (Pay.gp) ® 13810, -+ Skay As(X)

lar[=s1,lagl=sg
q1

9k
= Z LIRS Z trace [AS(X)@;Z’C O+++0 @;jl (P(q17~~7Qk;) ® I’,LL):I
s1=0 s,,=0

a1 ak
~trace [As(0) Y o 3 al et (Playagep © )
s1=0 s,,=0

q1 ak
o R
= trace § As(X) Z nilpq(l)*ﬁ o Z nkkP;lek ® Iy
5‘1:0 sk.:O
Hence, we obtain
trace {(P(q17,._,qk) ® IH)X]
nit - -nk
q1 1 q 1
= trace { Ag(X) Z e Ps(ll) Z ~ ps(:) ® Iy
s1=0 "1 sp=0 "k (5.2)

1
= trace |Ag(X) Z —T 55 L(s10083,) © Int
Si€Z+,Si§qZ' 107 nk

= trace | As(X)(Ne(qy....q) @ )|
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for any X € (I ®@U)’. Since KaU, j(s,t) = (I @U; ;(s,t))Ka for any (i,j,s,t) €T,
it is clear that K4 K% € (I ® U)'. Using corollary 3.4 and relation (5.2) when
X = K4 K3, we obtain

trace I:K:Z(P(ql,...,qk) ® IH)KA}

A) = li
curv(A) im trace [Py,

k
(ql,.A.,qk)EZ_i_

o)) (5.3)

= lim trace [AS(KAKE)(NS(qL---,qk) ® IH)] .
(ql,.A.,qk)eZﬁ_

This completes the proof. O

THEOREM 5.2 Let A := (A1,...,Ar) be an element in the U-twisted polyball
B“(H) such that Ax(I) is a positive finite rank operator and Ag(I — KAK*%) > 0.
Then, the curvature operator Ag(KaK%4)(N ® Iy) is trace class and

curv(A) = trace [Ag(KAK%)(N ® Iy)],

where

1
A Z TR Plsy,sp)-
1 k
(81,...7816)62&

Proof. Let Dy := A4(I)H, and note that

trace |(Pgq,...q.) @ Ip ) (I — KAK%) trace |(Pgy,....q.) @ ID )
[ LARIL A ]§||IKAKZ|| [ LARIL” A:|

nql...nik nql...nzk
S ||I - KAKZH dimDA.

Hence, and using relation (5.2) when X :=1 — K4K € (I ®U)’, we obtain
trace [AS(I — KAK5)(Ne(gyap) © IH)} < | - KAK?%|| dimDa.

Since {N. S(Q1,~~~7Qk)} is an increasing multi-sequence of positive operators converging
to N, we deduce that

trace [Ag(I — KaK3)(N® I)]=  lim  trace[As(I—KaK})(N<(gy,....q1) ® I11)]
(a1 ax) €LY a (5.4)

< ||~ KaKS | dimDy.

Consequently, Ag(I — K4 K%)(N®1Iy) is a trace class operator. On the other hand,
we have

trace [Ag(KaK}3)(N ® I3)] = trace [Ag(I)(N ® Ip )]
—trace [As(I — KaK3)(N® Ip,)]
= trace [Pc ® Ip,] — trace [AS(I —KAK})(N®Ip, )]
=rank A 4(I) — trace [AS(I —KsK3)(N® IDA)] .

(5.5)
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This shows that Ag(K4K%)(N ®Iy) is a trace class operator. Similarly, we obtain

trace | As(KaKA)(N<(qy,...qp) © )]

(5.6)
=rank A4 (]) — trace {AS(I — KaK})(N<(gy,..qp) @ IDA)} .
Using relations (5.3), (5.6), (5.4), and (5.5), we obtain
curv(A) = lim trace [AS(KAKZ)(NS(%M%) ® IH)}
(ql,...,qk)GZﬁ
—rankAA()—  lim  trace [AS(I — KaK5)(Ne(gyqp) © IDA)}
(ql,...,qk)GZﬁ;

= rank A4 (1) — trace [Ag(I — KaK}4)(N @ Ip )]

= trace [As(KAKZ)(N X IH)] .
The proof is complete. O

Let Sy, be the standard k-tuple of doubly I ®V-commuting pure isometries on the

Hilbert space £2 (F, o X IE‘,J{k) ® L, and let Syy be the standard k-tuple of doubly
I ® W-commuting pure isometries on the Hilbert space £2(F,} x --- X IFjl‘k) QK. A
bounded linear operator M : EQ(IFle X xFr )L — éQ(Ffll X o X Fik) ® K is

called multi-analytic with respect to the multi-shifts Sy, and S,y if
M(Sv)LS = (Sw)i,sM, 1 E {1, ey k}, S € {1, A ,ni},

and

MI®V;,(s,t) =T W,;(st)M, (i,4,s,t) € T
If, in addition, M is a partial isometry, we call it an inner multi-analytic operator.
DEFINITION. We say that an element A in the U-twisted polyball BY (M) with
Aa(I) > 0 has a characteristic function if there is a multi-analytic operator

Ot (Ff > xFL) @K = () x - xF!)® Dy with respect to the
multi-shifts Sy and S“|”DA such that KoK +©,07% = 1.

We remark that, since K4K7 is in the commutant of I ® U, we can apply
theorem 6.1 from [28], to conclude that an element A € BY(#) with A4(I) > 0
has a characteristic function if and only if Ag (I — K4K}) > 0.

COROLLARY 5.4. If A is an element in the U-twisted polyball BY(#H) which has
characteristic function © 4 and finite rank defect operator A 4(I) > 0, then

curv(A) = rank A4 (I) — trace [©4(Pc ® I)O% (N ® I)].

Proof. Since A has a characteristic function, there is a multi-analytic operator
Oa : P(Ff x- - xF} )@L — C(Fy x---xF} )®D4 such that KoK} +040% = I.
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Due to theorem 5.2 and its proof, we have

curv(A) = rank A4 (I) — trace [As(I — KaK})(N ® Ip, )]
(I) — trace[As(©40%)(N ® Ip )]
(I) — trace [©4As(I)O% (N @ Ip ,)]
=rank A4 (]) — trace [O4(Pc ® I)O4 (N @ Iy)].

=rank Ay

=rank A4

This completes the proof. O

In what follows, we show that the curvature invariant detects the elements in
B(H)™1 T which are unitarily equivalent to I ® W-twisted multi-shifts Syy of
finite rank defect operator, i.e. acting on £*(F,} x---x F.) ® K with dim K < occ.

THEOREM 5.5 Let A € B(H)™+ "k, Then A is unitarily equivalent to an I @W-
twisted multi-shift Sy acting on (*(Ff, x -+ x F} ) @ K with dim K < oo if and
only if A is a pure element in a regular U-twisted polyball Bifeg(H) such that A has
a characteristic function and

curv(A) = rank A4 (I) < oo.

In this case, the noncommutative Berezin kernel K : H — (2 (F,fl XX sz)(@DA
is a unitary operator and

Ajs = KE(SU‘DA)LSKA

foranyie{l,....k} and s € {1,...,n;}.

Proof. Let A € B(H)™ % 7% and assume that A is unitarily equivalent to an
I ® W-twisted multi-shift Syy acting on 52(15‘:1 X eee X IF;‘L‘k) ® K with dim K < oo.
Then, there is a unitary operator ¥ : H — EQ(Fjl X oee X ij) ® K such that
Ais = U*(Sw); sV for any s € {1,...,k} and s € {1,...,n;}. Note that A4(I) =
U*Asg,,,(1)¥ > 0 and

rank A4 () = rank Ag,,, (1) = rank (Pc ® Ix) = dim K.

Since Syy is a pure k-tuple of row isometries which are doubly (I ® W)-commuting,
it is easy to see that A is a pure k-tuple of row isometries which are doubly
U-commuting, where U = {U, ;(s,t)} is defined by setting U; (s, t) = ¥*(I ®
Wi j(s,t))¥. Therefore, A is a pure element in the regular U-twisted polyball
Bgeg(”;’-t). On the other hand, using the definition of the I ® W-twisted multi-shift
S := Syy acting on ¢? (IFjl‘l X e X F:k) ® K, one can show that the noncommutative

Berezin kernel K can be identified with the identity on (2(F} x - x F} ) ® K.
Indeed, we have Kg : EQ(IFle X xIF‘,*Lk)®IC — EQ(IFTL1 X oo xIE‘,fk)(EQDS. Under the

identification of (Cx(gl k) with C, we have Ag(I) = Pc®Ix and Dg = CRK = K.
el
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Since

KS(X(al ..... ag) ®h) = Z X(B1s---, Br) ®(PC®I’C)S}Z,B,€ '”SI,Bl(X(al ,,,,, ag) ®h)7
51€F:17»~»15k€F:k

for h € K, and

« « X (ol kb @ h, ifar =pB1,...,a = B
(Pe ® I)Sh g, -+ St.5 (X(arsap) @ B) = { " 90r90)
0, otherwise,

using the above-mentioned identification, we obtain KS(X(al,...,ak) ® h) =
X(aq,mray) ® h, which proves our assertion. Now, taking into account that A is
unitarily equivalent to S, Corollary 3.4 implies

trace Kg(PS(qu,qk) ® Ix)Ks

curv(A4) =curv(S) = qlh_r?oo o q,llinoo trace [P<(

= dim K = rank A 4(I).

Q17~~~7qk)]

On the other hand, since KsK§ = I, we have ©g = 0 as a characteristic function
of S. This completes the proof of the direct implication.

To prove the converse, assume that A is a pure element in a regular U-
twisted polyball Bzfeg(’H) such that A has a characteristic function and curv(A) =
rank A 4(I) < co. Therefore, there is a multi-analytic © 4 : (2(F,} x---xF} )@ —
52(1{;?{1 X - X Fj%) ® D4 with respect to the multi-shifts Sy, and SU\DA’ ie.

@A(SW)LS = (Sul'DA)i’SeA’ 1€ {1, ey k}, CES {1, . ,ni}

and
OA(I @ Wi j(s,t) = (I ®@Ui,;(s,t)p,)Oa, (i,7,s,t) €T,

such that K4 K% +040% = I. Since A is pure, the noncommutative Berezin kernel
is an isometry and, consequently, © 4 is a partial isometry. We remark that

range ©% = {x € PF), x - xFL)®E: [04()] = Ho:||}

is the initial space of © 4 which is invariant under all the isometries (Syy); s, due to

the fact that © 4 (Sw)i s = (SU|DA )i,s© 4. Moreover, since (range @j‘)L =ker Oy, it

is clear that (range @’A)J‘ is invariant under all isometries (Syy); s, and consequently,
it is jointly reducing for these operators. Due to the fact that

T Wi j(s,t) = (Sw);s(Sw)j:(Sw)is(Sw)jits

the subspace (range @Z)J‘ is also reducing for the operators in I ® W.
Since the support of © 4 is defined as the smallest reducing subspace supp(© 4) C

2 (Fjl‘l X e X ]Fik) ® & under the operators (Syy); s containing the co-invariant
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subspace range ©%, we conclude that supp(©4) = range®?. Note that ¢ :=
®A|Supp(@A) is an isometric operator and ®®* = © 40%. According to theorem 3.1
from [28], supp(©4) = 62(]Fjgl XX IE‘;f )® L, where L := (Pc ® I¢)range ©% C £.
Since Asg,,, (I) 1= (id — ®(s,,,);) 00 (id — P(s,,,), ) (I) = Pc ® I¢ and range ©%
is a reducing subspace under all unitary operators I ® W; ;(s,t), we deduce that

Wi j(s,1)(Pc @ Ie)range © = (I © Wi ;(s,1))As,,, (I)range
= As,,,(1)(I ® W; ;(s,t))range ©%
= As,,, (I)range ©7.

Hence, the subspace L is reducing for all the unitaries W; ;(s,t). Since
Oa(Sw)is = (SU\DA )i.sOa and OA(I @ Wi (s, t)) = (I @ U; j(s,t)|p,)Oa,
taking the restriction to the support of © 4, we obtain
Q(Swy,)is = (SUIDA)ZHS(I) and ®(I @ Wi ;(s,t)|c) = ([ @U; (s, t)p,)®

Consequently, ® is a multi-analytic operator with respect to the multi-shifts Syy, -
and SU\D Due to corollary 5.4 and its proof, we have
curv(A) = rank A4 (I) — trace [Asul (@A@*A)(N ® Ip,)]
=rank A4 (I) — trace [ASMI (<I><I>*)(N ® Ip )]
=rank A 4(]) — trace [(@ASWI (HP*) (N ® IDA)]
=rank A (1) — trace [®(FPc ® I£)®"(N ® Ip, )]

Since curv(A) = rank A4 (I) < oo, we must have trace [®(Pc ® I£)®* (N ®@ Ip, )] =
0, which implies ®(Pc ® I2)®*(N ® Ip,) = 0. Hence, we deduce that ®(Fc ®
I2)®*(Pygy.....q)®1D ) = 0 for any (g1, ..., qx) € Z% . Therefore, ®(Pc®I.)®* = 0.
Taking into account that ¥ is an isometric multi-analytic operator with respect to
the multi-shifts Syy| . and Sy p, We deduce that ®(Pr®1I) = 0 and, consequently,

® = 0. On the other hand, using the fact that ®®* = ©,40% and K4 K} +040% =
1, we infer that K4 K’ = I. Since A is pure, we have K} K4 = I, which shows that
K4 is a unitary operator. Due to theorem 3.2, we have

Ais = K,’Q(SM\DA)@SKA
for any ¢ € {1,...,k} and s € {1,...,n;}. This completes the proof. O
Let S, be the standard multi-shift associated with the scalar weights z. Then,
curv,(Sz) = curv(S,) = rank Ag, (I) = 1.

Proof. From the proof of theorem 5.5, we have curv(S,) = rank Ag, (I) = 1. Using
corollary 2.8, we complete the proof. O
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Let Syy be the standard k-tuple of doubly I ® W-commuting pure isometries on
the Hilbert space (?(F,} x---xF} )@ K. We say that M C (2(F} x---xF} )®K
is a Beurling type [3] jointly invariant subspace under the operators (Syy); s and
I@W, (s,t), where i € {1,...,k}, s € {1,...,n;}, and (3,4, s,t) € T, if there are a
Hilbert space £, a standard k-tuple Sy; of doubly I ® U/-commuting pure isometries
on the Hilbert space £2 (IF;[l X X IF,*Lk) ® L, and an inner multi-analytic operator
U 2(FS % x B )@L — ((Ff % xF )@ K with respect to the multi-shifts
Sy and Sy such that

M:xy(z?(wgl ><-~-><IF:§k)®£).

In what follows, we use the notation Syy|aq for the restriction of Syy to an invariant
subspace M under all the operators (Syy); s and I @ W; ;(s,t). In [28], we proved
that the following statements are equivalent:

(i) M is a Beurling type jointly invariant subspace under the operators (Syy);.s
and I @ W; ;(s,1).

(11) (Zd - (I)(Sw)l) O:-+0 (Zd - (I)(SW)IC)(PM) Z O

(iii) The k-tuple Syy|a is doubly (I ® W)|a-commuting.

(iv) There is an isometric multi-analytic operator W : (2(F}f x .- x Fh)®L—
C(Fy x - x F ) ® K with respect to the standard multi-shifts Sy, and
Syy such that

M :\I/<€2(]F+ X x]F;k)@;z:).

n1

If M is a Beurling type jointly invariant subspace under Sy, and I ® W, we say
that it has a finite rank if Syy| ¢ has a finite rank defect operator.

DEFINITION 5.7. Let Syy be the standard k-tuple of doubly I @ W-commuting row
isometries on the Hilbert space éQ(F:{l X e X ]Fﬁk) ® K, and let M and N be
invariant subspaces under Syy and I ® W. We say that M and N are unitarily
equivalent if there is a unitary operator I' : M — N such that

L(SW)islm = (Sw)isIvl and T @ W (s, ) [m = (I @ Wi ;(s,t))|nT-

PROPOSITION 5.8. Let M and N be finite rank Beurling type jointly invariant
subspace under Syy and I @ W. If M and N are unitarily equivalent, then

curv(Sw|m) =rank Agy | (Iv) = curv(Sw|n) = rank Ag | (Iy).

Proof. Due to the remarks preceding definition 5.7, Syy|aq is a doubly (I @ W)|m-
commuting k-tuple of pure row isometry and there is an isometric multi-analytic
operator W : 2(Ff x -+ xFl )@ L — (2(Ff x--- xF} )® K with respect to the
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standard multi-shifts S; and Sy such that
_ 2 @+ +
M—\Il(f (Ff % - ank)e@ﬁ).
Consequently, Pyq = YU* and

Asypip(Im) = Asgyy) 0 (Pra) = VAg, (DT = U(Pe @ 1) ¥ m.
Using the latter relation and taking into account that ¥ is an isometry, we can
prove that rank ASWU\A (Ipm) = dim £. Indeed, if {w, },ex is an orthonormal basis
for the subspace L, then

{\I/(X(al,...,ak) ®wa) HINOS Ev (alv . .,Oék) € le Xoeee X F;er}

is an orthonormal basis for M. Moreover, W(P¢ ® I.)U*|q is equal to the closure
of the range of the defect operator ASW‘ M (Inm) and also coincides with the closed
linear span of the vectors {¥(1 ® wy) : o € X}. Therefore,

rank Ag,, | (Iam) = card ¥ = dim L.

Now, we prove that curv(Syy|a) = dim L. As in the proof of theorem 3.3, using the
definition of the I @ W-twisted multi-shift S := S;; acting on £2 (Fh > IF;‘L‘IC)@L,
one can show that

X((xl,.“,ak) ® h? if |a2| 2 qi + 1

4 (1) (Xag o) @ 1) =
Si (1mk) 0, otherwise

for any ¢; € N. Using this relation, it is easy to see that (id — <I>’é11+1) o---o(id —
@qs’;ﬂ)(f) is the orthogonal projection of 62(IF¢1 X e X Fik) ® L onto

Span{X(al ..... ak) . |a1| §q17-~-a|ak| qu}®£

Due to corollary 3.4, we have

trace [(zd — <I>qsll+1) o---o(id — @qS’ZH)(I)

curv(Sy) = lim --- lim - , =dim L.
AT A [T (L4 i oo )
Now, note that
. +1 . ap+1 . +1
(id — q)((}éw)ﬂ/v() oo (id— (I)(gW)MM)(IM) = U(id — @?éu)l) 00
. +1 «
(id — q’?éu)m)(])‘l’ |M.
Using again corollary 3.4, as above, we deduce that
curv(Syy|m) = curv(Sy) = dim L.
Consequently, we have curv(Syw|m) = rankAg),|, (Im). Similarly, we have

that S|y is a doubly (I ® W)|y-commuting k-tuple and curv(Sy|y) =
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rank ASW| N (In). Now, since the curvature is invariant up to unitary equivalence,
if M and N are unitarily equivalent, then curv(Syy|r) = curv(Syy|nr). The proof
is complete. O

6. Invariant subspaces under U-twisted multi-shifts and their
multiplicity

In this section, we introduce the notion of multiplicity for the invariant subspaces
under the multi-shifts with a finite rank defect operator, prove the existence, pro-
vide several asymptotic formulas, and connect it to the curvature invariant. Under
appropriate conditions, we show that there is a trace class multiplicity operator
whose trace coincides with the multiplicity. We also obtain results concerning the
semi-continuity for the curvature and the multiplicity invariants. Finally, we pro-
vide necessary and sufficient conditions when A|q is in BYM(H) and consider
some consequences.

In what follows, S is the standard k-tuple of doubly I @ U-commuting row isome-
tries on the Hilbert space £*(F;f x -+ x F} ) ®H and assume that dim# < oo. If
M is any invariant subspace under S and / ® U, we introduce the multiplicity of
M by setting

” ) 1 trace |:P/\/[(P(q17,,,,qk) ®I7-L)}
m = lim ————
m=e fm 4k 4120,.0,q1, >0 trace [P(q1 »»»»» qk)}
g | aitotapsm

THEOREM 6.1 Let S be the standard k-tuple of doubly I @U-commuting row isome-
tries on the Hilbert space £*(F}f x -+ x F;i‘—k) Q@ H, where dimH < co. If M is any
invariant subspace under S and I @ U, the multiplicity of M exists and

. 1 trace {PM(P(ql,,,,,qk) ® Ix)
mM)= lim ——
m—00 m + k‘ -1 q120,-.<,q;€20 trace [P(ql,...7qk)]
E—1 a1+ tap=m
trace [PM(P<(q1 ,,,,, ax) ®IH)}

= lim lim

gl =00 qp—roo trace [P<(q; ...q;))

trace [PM(P(QL---%) ® IH)]

= lim .

(a1,a5) €ZK. trace [P(q17~-,qk)]

Proof. Set T := (T, ...,T,) with T; := (T; 1, ... ,Ti_,ni) with T; 5 :== MJ_SZ')S‘MJ_
for any ¢ € {1,...,k} and s € {1,...,n;}. In this case, we also use the notation
T = Py18S|y\L- Since T}, = S;|,,1 and each S; := [S;;---S; ] is a row
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contraction, 7; is also a row contraction. On the other hand, since

Z TioTi 0 = Py Z SiaSia [ It

ozEIFIZ,,\ad:q QGF;Z’\M:(I

and [Si,l"'si,ni] is a pure row isometry, we deduce that T; is a pure row
contraction. Also note that

(Zd— (I)rTl) o:-+0 (ld— q>'er)(I) = PML(Zd_ (I)rsl) 0:--+0 (’Ld— érsk)(l)‘ML > Oa e [07 1)
On the other hand, since M is reducing under each I ® U; ;(s,t), we have

T34 T = 85,485 sl pr = 85,85, (1 @ Ui (5, 8)")| 1

1,87,t

=TrTr Wi,j(S,t)*

2,50 7,t

where W; ;(s,t) == (I ® Ui’j(s,t)”MJ_. Hence, T; T+ = W;;(s,t)T;,T; s for any
(i,7,s,t) € T. Also note that, since

(I X Um(s,t)*)S;q = S;q(1® Ui7j(8,t)*)
for any p € {1,...,k}, ¢ € {1,...,n,}, and (i,5,s,t) € T, we have that
Wi (s, )Ty, = Ty Wi j(s,t)*. Hence, T}, ;Wi j(s,t) = Wi ;(s,t)T}, 4. Therefore,

1;16 BZXQ(H). Taking into account that Ar(f,,1) = P, As(I)|,,L, we deduce
that

rank A7 (1,1 ) <rank As(]) = dimH.

Now, we need to show that <I>qsll 0---0 @g’z (Ag(D)) = Pgy,....qp) ® I Indeed, as we
saw in the proof of theorem 3.3,

+1 +1
((I)qsll _q)qs11 )O"‘O((I)g’z _q)(éi ) = Pgy.ooqp) © Tt
Since, due to proposition 2.3,

+1 +1
g o0 @F (As(D) = (2F, — @)oo (B —aF (D),

our assertion follows. Now, using again that M is an invariant subspace under S,
we have

trace @g}l O"'O(I)?FIZ(AT(IML))} = trace {PMLQ)qsll O-~-O‘I>qslz(As(I))|ML}

= trace [PMJ_ (Playay) ® I’H)} .
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Hence, and due to theorem 3.3 and corollary 3.4,

trace [@g}l 0---0 @%’Z (AT(IML))]

curv(T) = lim i
(a1,a5) €ZK. n{t .. nik
) trace [PMJ-(P(ql,...,qk) ® ]H)}
= lim i - -
(a1,-ap) €LY nil - nj

exists. This implies

trace [Pa(Plgy,....q0) ® I1)]

lim
roirezh  trace [Pgy . qu]
_ lim trace [(P(lh ----- ax) ® IH)} _ lim trace [P./\/lL (P(q1 44444 a) ® I'H)]
(a1.-ap)ezk  trace [Py, g (a1, a1) €2, trace [P(g;,...,q,)]
trace |P P ® I
=dimH — lim [ ot Py, an) H)] = dimH — curv(7).
(a1,.-,ar)€ZX trace [P(ln ~~~~~ ‘Ik)]

Now, using again theorem 3.3 and corollary 3.4, one can easily complete the proof.
O

The multiplicity invariant measures the size of the invariant subspaces under S
and I ®U in the Hilbert space £*(F;; x -~ x F; ) ®H. Note that m(¢*(F} x---x

]Ftk) ®H) = dimH, and if M; and My are orthogonal invariant subspaces, then
m(./\/l1 O Ms) = m(./\/ll) + m(My).

COROLLARY 6.2. Under the hypothesis of theorem 6.1, the following statements
hold:

(i) m(M) =dimH — curv(P, 1 Syl L)
(ii) If My,..., M,, are orthogonal invariant subspaces under S and I @, then

cwrv(P g oo mn)L Sl amy o ortn) L)

n

= Zcurv(PM#Su|M¢) —(n—1)dimH.
i=1 ¢ !

(iii) If 7 := P,,1Su|,. and K7 is the noncommutative Berezin kernel
associated with T, then

m(M) = lim A trace [Asu (I = KrK7)(N<(qq,.qp) @ IH)} .
(Q17~~-va)EZ+

Proof. The first relation follows from the proof of theorem 6.1. Item (ii) follows
from item (i) and the fact that m(M; @ ---® M,,) = Y1, m(M;). To prove item
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(iii), we use theorem 5.2 which shows that

curv(T) = lim trace |As, (K7K7)(N<(gq,....qp) ® IH)} .
(ql ..... qk)Gle_
Now, using item (i), we complete the proof. O

COROLLARY 6.3. Let S, be the standard z-twisted multi-shift on 62(15‘:1 X oo X
F; ). If M is an invariant subspace under S, ® I¢ with dim€ < oo, then its
mukltiplicity exists. In particular, if ny = --- = ng = 1, then M is in the vector-
valued Hardy space H?(DF) ® £ and

. trace [Pyp(P<m ® Ig)]
= 1 —
m(M) v trace [P<,]

)

where P<,, is the orthogonal projection on the polynomials of degree < m.

We remark that if ny = -+ = ng = 1, the result of corollary 6.3 is a twisted
version of Fang’s [9] commutative result for H?(D¥) ® £ when z = {1}.
The next result shows that the multiplicity invariant is lower semi-continuous.

THEOREM 6.4 Let Sy be the U-twisted multi-shift withid C B(H) and dimH < oo,
acting on the Hilbert space (*(F)f, x -+ x Fl )@ H. If M and M, are invariant
subspaces of Sy and I @ U such that Pn,, — Pa in the weak operator topology,

then
hprgg.}fm(./\/lp) > m(M)
and
lim supcurv(PMZJ)_ SMlMZJ)_) <eurv (P 1 Syl L)
p—00
PT’OOf. Let B = (Bl, ey Bk) with Bl = (Bi,b ey B%"z) and Bi,s =
P (Sw)isl L. In a similar manner, we define B®) := (B . .,B,(Cp)). As in

the proof of theorem 6.1, we have

trace [Q(gl 0---0 @‘gck (AB(Ipg1))] = trace [Py i (Pg,,....q0) ® I#)]

:’N,(ln ’I’sz dim H — trace [PM(P<q1 YYYY ar) ®I’H)]

and a similar relation associated with B® holds. Since Puny, — Pa in the weak
operator topology, we have

lim trace [Pum,, (Pg,.....q) © In)] = trace [Pa(Pg, ,....qp) © o).

p—o0

Consequently, we obtain

plLII()lo trace [@:517) 0-+0 CIJZZP) (Agm) (IMZJ)_))] = trace [@'gl o0---0 @g“k (Ap(I,1))]
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As in the proof of theorem 3.6, one can show that limsup,_,., curv(BM) <
curv(B). On the other hand, using corollary 6.2, we have

m(M) =dimH — curv(B) and m(M,) = dimH — curv(B®).
Consequently, we obtain liminf,_,. m(M,) > m(M). The proof is complete. [
Since the proof of the next result is straightforward, we should omit it.

PROPOSITION 6.5. Let A = (Ay,...,Ax) € B(H)"1T 1"k be a U-commuting
tuple, and let M C H be an invariant subspace under A andU. If B := P, Al 1,
then the following statements hold:

(i) B is U], 1 -commuting.

(’L’L) ATB(IMJ_) = PMLATA(IH”MJ_ for any r € [0, 1]
(iii) If A€ BA(H), then B € B mL (ML),
(i) If Ae B% (H), then B € Bﬁﬂ% (M),

reg

THEOREM 6.6 Let A := (A1,...,Ar) be an element in the U-twisted polyball
BY(H) such that AA(I) is a positive trace class operator. If M is an invariant

subspace under A and U with dim M < oo, then Py, Al 1 € BYmL (M) has
a positive trace class defect operator and

curv(A) = curv(P,, 1 Al 1)-

Proof. Set B := (By,...,By) and B; := (Bi1,...,Bin;), where B;s =
PMJ_AL'S‘MJ_ for i € {1,...,k} and s € {1,...,n;}. Note that @%i(IML) =
PMltb?;i(IHHMJ_ and Ap(l,,1) = Py1AalIn)l = 0. Consequently,
trace Ap(l,,1) < trace Aa(ly) < oo. It is easy to see that, taking into account
that

| (id = @) oo (id— @) (o)) < 2",
we obtain
trace [(zd - tb%l“) 0---0 (id — @Z’fl) (IH)}
= trace [Pyu (id — @) oo (id — %) (1) oy
+ trace [PM (z’d - <I>Z111+1> 0---0 (id - @Z’fl) (IH)}

< trace [ (id — @3, ) oo (id - @%™) (I )] + 2 dimMm.
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Hence, we deduce that

trace sz — @zlllﬂ) 0---0 (z’d - @?4’“;1) (IH)}
[T (1 +mn+ - +nff)
twace [ (id — ") oo (id - %) (1,,0)]
T (U4 m + - )
2k dim M
Tl (4 0T

Using corollary 3.4, we deduce that curv(A) = curv(B). The proof is complete. O

According to [27], the reducing subspaces under the standard U-twisted multi-
shift Sy, on the Hilbert space ZQ(]FTJ{l x o x Fl ) @ H are of the form M =

C(Fy > xFf )®L, where £ C H is a reducing subspace under all the unitaries
UiJ'(S, t) inl.
Using some results from [28], we prove the following.

PROPOSITION 6.7. Let Sy be the U-twisted multi-shift on (> (b, X e x F,fk) ®H,
and let M be an invariant subspace under Sy and U which does not contain
nontrivial reducing subspaces for Sy. Then, the compression T := P, | SL[|ML has
a characteristic function if and only if M is a Beurling type invariant subspace.

Proof. Under the given hypothesis, M= is a cyclic subspace for S;;. Therefore, Sy

is a minimal isometric dilation of T':= P, | Sul L+ On the other hand, according
to [28] (see theorem 3.3 and its proof) if

Kr: M+ = (F) x-- xFy )®@Dr,  Dr:=Ar(I)(ML),

is the noncommutative Berezin kernel associated with T, then the subspace Kp M=+
is co-invariant under each operator (Sy); s for any i € {1,...,k}, j € {1,...,n;}
and the dilation provided by the relation

Tis = K1 (Suip, )is) K1

is minimal. Due to the uniqueness of the minimal isometric dilation of pure elements
in U-twisted polyballs (see theorem 3.3 from [28]), there is a unitary operator

U C(FS X x B ) @Dp — P(FF x - xFr )M

ny

such that \I/(SM\DT)ZXS = (Su)i,s)¥ and WKy =V, where V is the injection of the

subspace M+ into ¢ (F;'{l X e X IF;'{k) ® H. Since VU is a unitary operator, we also
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educe that U > ) = (Su); V. Consequently,
ded hat ¥ (S Dy s Su)i ¥ C |

\I/(P(c ® IDT) = \IJASLHD (IDT) = ASZ/{ (IH)\IJ = (P(C ® IH)\I/.
T

Hence, we deduce that YD = H. Setting ¢ := \I/\DT : Dy — H and taking into
account that ¥ is multi-analytic, we deduce that ¥ = I ®1. Therefore, ¢ : Dp — H
is a unitary operator such that (I ® ¢¥)Kr = V. Consequently, Kr K} = (I ®
Y* )Py, (I @) and

Asy, (I = KrK7) = (I @ ¢")Agy (Prm)(I © ¢).

Due to the remarks preceding definition 5.7, M is a Beurling type invariant sub-
space if and only if Ag  (Pr) > 0. Using the above identity, we deduce that
Ag,, (I-K7K7) > 0. Due to theorem 6.1 from [28], the later inequality is equivalent
to T having a characteristic function. The proof is complete. O

THEOREM 6.8 Let S be the standard k-tuple of doubly I @U-commuting row isome-
tries on the Hilbert space (*(F} x --- x Ff ) @ H, where dimH < oo. If M is a
Beurling type invariant subspace under S and I @ U which does not contain non-
trivial reducing subspace under S, then the multiplicity operator As(Pap)(N ®1) is
trace class and

m(M) = trace [Ag(Pp)(N ® I)].

In particular, this relation holds for Beurling type invariant subspace under S,® I¢
with dim £ < oo.

Proof. According to proposition 6.7 and its proof, we have
As, (I — KrKp) = (I @ ¢¥")Ag, (Pm)I @ 9) > 0,

where 1 : D — H is a unitary operator. On the other hand, due to corollary 5.4
and its proof, we have

curv(T') = rank Ar(I) — trace[As,, (I — K- K7)(N ® Ip,)].
Consequently, using corollary 6.2, we deduce that
m(M) = dimH — curv(T)
= trace[Ag,, (I — K1 K7)(N ® Ip,.)]

= trace [(I ® ¥*)As,, (Prm)(I @ Y)(N @ Ipy,)
= trace [As(Pm)(N @ 1)].

The proof is complete. O

We remark that if A = (Aq,..., Ag) with 4, = (4;1,.. -’Aimi) is an element
in Bz;’eg(’H) and M is an invariant subspace under A and U, then A|a¢ is not

necessarily in the regular U|a-twisted polyball, where A|nq is defined by taking
the restrictions A; ;| M. However, we have the following result.
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PROPOSITION 6.9. Let A = (Ay,...,Ax) € B(H)"1T" 1"k be a U-commuting
tuple, and let M C H be an invariant subspace under A and U. Then the following
statements hold:

(i) Alam is U pm-commuting.
(1) Avajy (Im) = Ara(Paa)|m for any r € [0,1].
(iii) If A € BY(H), then Alp € BYIM(M).
(iv) If A€ B% (H), then A|y € BZ:J{;V‘ (M) if and only if

reg
ATA(PM) 2> 0, re [Oa 1)
If A is pure, then the later condition is equivalent to A 4(Paq) > 0.

Proof. Since M is an invariant subspace under A and U, item (i) is straightforward
and

AT’AlM(IM):ATA(PM)|M7 re [071)

Since item (iii) is clear, we prove (iv). Assume that A € Bffeg(’;'-[)7 e Avapy (Um) =
0 for any r € [0,1). Let h € H, and consider the orthogonal decomposition h = z+y,
with € M and y € M*. Using the fact that M= is invariant subspace under

each operator AJ ;, we have

(Ara(Prm)(z+y),z +y) = (Ara(Pr)z, z +y) + (Ara(Prm)y, 2 +y)
= (Ava(Pu)z, z) + Iyl > 0.
Consequently, A, 4(Paq) > 0 for any r € [0,1). Conversely, if A, 4(Pprq) > 0, then

it is clear that ArAlM (Ipm) > 0. If, in addition, A is pure and A 4(Ppq) > 0, then,
since ® 4, is a positive linear map, we deduce that

;’;1 (id— ®ay) 00 (id—®a,) (Pr) < (id—Pa,) 0o (id—Pa, ) (Pr)

for any m € N. Taking into account that @Zl (I) — 0 as m — oo, we deduce that
(id — <I>A2)o~ . ~o(id — (IJAk) (Ppq) > 0. Similarly, taking into account that Py € U/,
we can use proposition 2.3 and show that (id - @Al)pl 0---0 (z’d — CIDAk)pk (Pm) >0
for any p; € {0,1}. The later condition implies A, 4(Ppr) > 0 for any r € [0,1).
The proof is very similar to the proof of the implication (ii) = (iii) of proposition
1.2 from [28]. We include a proof for completeness. Since A 4(Ppq) > 0, we deduce
that (I)Al (A(AQ,...,Ak)(PM)) < A(A2>""Ak) (PM), where

A(AQ,A.WAk)(PM) = (Zd* (I)AZ) O--+0 (Zd* (bAk)(PM) Z 0.

Hence, 0 < (I)T'Al (A(A27...,Ak)(PM) < A(A2,‘..7Ak)(PM) for any r € [0, 1), and con-
sequently, we have (id — ®,4,) 00 (id — ®4, )(Pm) > 0. Since Ppg € U', we use
proposition 2.3 to deduce that

(id = ®ay) 00 (id—Py,)o (id—Pray)(Pr) > 0. (6.1)

A similar argument as above, starting with the inequality (id — ®4,) o (id — ®4,) 0
--0(id—®a, )(Pum) > 0, leads to (id—®a4)0- -0 (id—®a, )o(id—Pra,)(Pr) > 0.
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Repeating the argument but starting with the inequality (6.1) shows that
(Zd - (I>A3) ©--+0 (’Ld - (I’Ak) o (Zd - (I>7.A1) o (Zd - (I)TAQ)(PM) Z 0.

Iterating this process, we conclude that A, 4(Px) > 0 for any r € [0,1). The proof
is complete. O

PROPOSITION. Let A := (A, ..., Ay) € BX (M) be a pure k-tuple, and let M C H

reg
be a jointly invariant subspace under A and U. Then, the following statements are

equivalent:

(i) Alm € Bigt (M),

(ii) M is a Beurling type invariant subspace, i.e. there are a Hilbert space &, a
standard multi-shift Syy of doubly I ® W-commuting pure isometries on the
Hilbert space (*(F)f x - x Fl )® €, and a partial isometry W : (2(F)} x
xIF‘,tk)@)E—VH such that

\I/(Sw)i’s = Ai,sqj and \IJ(I@) Wiyj(S,t)) = Uivj(S,t)\I/
and M = (52(1@;1 oo xmk)@g).

Proof. The proof follows from proposition 6.9 and corollary 6.4 from [28]. O

THEOREM Let A € BM(H) be such that A, (I) is a positive trace class operator. If
M is an invariant subspace under A and U such that dim M+ < oo and Aa(Ppy) >
0, then A|y € BYM(M) has a positive trace class defect and

k
leurv(A) — curv(A| )| < dim M* [ (ni - 1).
=1

Proof. Since M is an invariant subspace under all the operators A; s, proposi-
tion 6.9 shows that Aaj, (Im) = Aa(Pa)lm : M — M. Taking into account

that M- is invariant under all A7, we deduce that Ay (Pa)|,, = 0 and con-

sequently, trace[Ay,, (Iam)] = traée[AA (Pp)]. The same proposition shows that
if Aa(Pp) > 0, then AA|M(IM) > 0. On the other hand, taking into account

that Aa(Pyp) = Aa(Iy) — Aa(Py) and dim M+ < oo, we conclude that

trace[A 4 (Par)] < oo. This shows that A|ag is in BYM(M) and has a positive
trace class defect. Therefore, curv(A|aq) exists.
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Using again that M is an invariant subspace under all operators A; 5, we deduce
that

trace [(id— @57 Yoo (id—®%T" ) (1)
= trace [ (id — B4 ) o0 (id— %) (Pay)]
= trace [ (id — &%) o0 (id — %) (1)
— trace | (id — @8, ) oo (id — @) (P
)

[/ . +1 . +1
< trace »(zd — @?411 ) 0--:0 (Zd - ‘bz;kk ) (In)

+ (1401 (14 0™ race [P
Hence, we obtain
. +1 ; +1
trace [(zd — q)qul ) 0.0 (zd - q)qT’Z ) (IH)]
[Ty (o4
trace [(zd —pnt! ) 0.0 (id — k! ) (IM)]

T1lm Tkl m
[Ty (14 i+ )

O S R ()

[T (T mi )

trace [P, 1 ].

If n, = 1 for some ¢ € {1,...,k}, an application of corollary 3.4 shows that
curv(A) = curv(4|p). On the other hand, if all n; > 2, then, using the same
corollary, we obtain the inequality in the theorem. The proof is complete. O

Let A:= (Aj,..., Ag) be an element in the U-twisted polyball BY(#) such that
A 4(I) is a positive trace class operator. If M is an invariant subspace under A and
U, we introduce the multiplicity of M with respect to A to be

trace [PMK;(P(%__,%) ® I)Ka

= li
ma(M) o trace [P

k
(q1,-5a5) €ZT

q1,-~~7qk)]

A close look at the proof of theorem 6.1 reveals that one can replace the standard
multi-shift S with A and the corresponding proof holds true showing that m 4 (M)
exists. Moreover, one can obtain analogues of the asymptotic formulas from theorem
6.1 in the new setting and prove that the following index type formula:

ma(M) = curv(A) — curv(P,, 1 Al 1)-
Note that if M7 and M5 are orthogonal invariant subspaces under A and U, then

ma(Mi @ Ma) = ma(Mi) +ma(Ma).
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We remark that if A = S, then mg(M) = m(M). Indeed, this is due to the fact
that

K§(Plgy,...qp) ® ) Ks = ®g 00 @qS’Z(AS(I)) = Py @ It

7. The range of the curvature and multiplicity invariants

In this section, we determine the range of the curvature and the multiplicity invari-
ants. If (n1,...,ns) € N¥ is such that n; > 2 for some j, we prove that the range
of the curvature over the pure elements in the U-twisted polyballs and the range of
the multiplicity invariant coincide with [0, 00). We also show that the range of the
curvature restricted to the class of doubly U-commuting row isometries with trace

class defect operator is Z .
Let S := (S1,...,8k) with S; := [S;1---Sin,] be the standard multi-shift on

C(F) x - xFl ) associated with ¢ = {Ic}, and let S := (S1,...,Sy) with S; :=
[Si,1 -+ Sin,] be the standard k-tuple of doubly I ®U-commuting row isometries on
the Hilbert space KQ(FZFI X -XIE‘,J{k)@)’H. Foreachi € {1,...,k}and s € {1,...,n;},
we define the block diagonal operator D;,s € B((*(F,}, x -~ xF} ) @) by setting

Dis(X(ar,..ar) ® 1) = X(ar,....a) ®Uia(s,a1) - Ui i—1(s,a-1)h, i€{2,...,k},
and D; , = I'if i=1. Note that S; s = (S;s ® I31)D; 5.

LEMMA 7.1, Let Q C Ff x - x F}

nk7

and let Mq C C(Ff x - x Fl ) be
the smallest invariant subspace under the multi-shift S generated by {xa : « €
Q}. If N C H is an invariant subspace under {U; j(s,t)} js4)er_, where T_ :=
{(i,7,8,t) €T,1 > j}, then Mq QN is an invariant subspace under the multi-shift
S.

Proof. Note that

Mo = Span{x(s,a,,...fpay) * @ €Q,BE F,fl X oo X F,fk

and if h € N, then
Dis(X(81a1,...8p01) @) = X(Braq.....805) @ Uin(s, Praa) -+
Uii1(s,Bi—10i—1)h € Mg ® L.

Since (S;s @ [N(Mq ® L) C Mq® L and S; s = (Sis ® Iy)D; s, the proof is
complete. O

THEOREM 7.2 Let (ny,...,n;) € N¥ be such that n; > 2 for some j. Then, the
following statements hold:

(i) For any t € [0,1], there is an invariant subspace M C 62(15‘;‘;1 X e X ]Fﬁk)
of the z-twisted multi-shift S, on (*(F} x - xF} ) such that

n1

curv(Py 18zl 1) =t and mM)=1-t.
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(ii) For any t € [0,m], there exists a pure element A in the U-twisted polyball
such that rank A = m and curv(A) = t.

(iii) The range of the curvature on the U-twisted polyballs is [0,00).

(iv) P1 Sz|Ml is unitarily equivalent to P, | Sz’|ML if and only if z= 2.

N

Proof. Fix a € (0,1) and consider its n;-arry representation a = szl

d
—£-, where
kP

J
{ky},_, is a sequence of natural numbers with 1 < k; < ky < -+, N € N or
N =00, and d, € {1,2,...,n; —1}. Consider the subsets of IE‘;'{j defined by setting

o= { (gD (g

Q1= {(g)r 01 (gl )01, (gh) e e (g )1 (g, )R (gl e |
p=2,3,...,N,

and let
M= W{X(al,...,ak) D € Uf,vlep and o € inifi ;éj}.

Due to lemma 7.1, M is an invariant subspace under the z-twisted multi-shift S,.
Assume now that k, < ¢; < kp41 and ¢; € Z, if i # j. Note that

trace |:PMP(q1,...,qk):|

trace {P(QL---JIW}

1
T T > <PMP(q1,...,qk)X(o¢1 ..... ak)7X(a1,...,ak)>
nl DRI nk
(al ..... Oék)G]Fn1><~~ X]Fnk
1 2
= Z [PrmX(aq,....ap)l
nl PRI nk + +
(a17"'xak)€Fn1><”'><Fnk
lerl=a1slagl=ag
q;—kq @ a;i—Fkp q:
B diny’ (Hie{l,..,,k}\{j} "iz) + o+ dpny (Hie{l ..... KN} ni])
d d
=t t
n, n.?
j j

Hence and using corollary 6.2, we deduce that

trace [PMP(q17.,.7qk)} N

zl—ZdTpp:l—a.

trace [P(q17qu)} p=1"7;

Curv(PMlSz|Ml) =1- q1,...1,1£:—>oo

On the other hand, we note that curv(S,) =1 (see corollary 5.6) and curv(A) =0
if A is the U-twisted polyball over a finite dimensional Hilbert space. This proves
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item (i) of the theorem. To prove items (ii) and (iii), we use part (i), consider direct
sums of U-twisted polyballs and apply corollary 2.9.

Now, we prove item (iv). Since M= is a cyclic subspace S,, the minimal iso-
metric dilation of PMLSZ|ML is S,. If PMLSZ|ML is unitarily equivalent to
Py S,/ AL then their minimal isometric dilations S, and S,/, respectively, are
unitarily equivalent. Using corollary 4.2, we complete the proof. O

What is the range of the curvature in the particular case whenny = -+ =n, =1
?7 At the moment, we know that the curvature invariant takes all the values in Z, .
Whether these are the only values remains to be seen. We mention that, when
U = {1}, then according to [9], the curvature takes only integer values.

COROLLARY. The range of the s-curvature on the U-twisted polyballs is [0, 00).

We remark that, due to corollary 6.2, if M C 2 (]Fxl X e X IF;'{k) is a proper

invariant subspace of the z-twisted multi-shift S, with dim M* < oo, then
curv(P 1S, 1) =0 and m(M)=1.

However, we have the following result when dim M+ = cc.

PROPOSITION 7.4. If (ny,...,n;) € N* with n; > 2 for some j € {1,...,k}, then

there exist invariant subspaces M C EQ(IF;EI X e X ]sz) of the z-twisted multi-shift
S, with dim M+ = oo such that curv(P, 1 82| 1) = 0.
Proof. Let
S: i1, g : 7"
spatt {Xgé,---,gﬂ Lrgd ) pe } ’

and note that M := S+ is infinite codimensional and invariant under S,. Due to
corollary 6.2, we have

curv(P, 1 S,4] 1)

=1— lim ﬁ Z

q
ql,...,qk—>oo nl e nk
(a17...,ak)€Fn1><-~><]Fnk

<PMP(q1,...,qk)X(al,...,ak)a X(a1,7(1k)>

. 1 )
R [y 1 > IPMX(ace |

+ +
(al,...,ak)€Fn1 ><~~~><]Fnk

log[=q1,--lag|=aqp

4-1, 45 4j+1
nql"'n»{ (n.]—l)n-ﬁ' ook
. 1 7—1 J J+1 k
=1- lim T T = 0.
ql,...,qkﬁoo nl ...nk
The proof is complete. O

THEOREM Let V := (Vi,..., Vi) with V; := [VZ—71-~-V2M] and Vi s € B(H) be a
k-tuple of doubly U-commuting row isometries with a trace class defect operator.
Then the following statements hold:
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(i) curv(V) = trace[Ay (I)] = rank Ay (I) and

curv(V) # 0 if and only if ﬂ ker V", # {0}.
ie{l,....k}
se{l,...,n;}

(i) For each m € Z.,

curv(V) =m if and only if dim m ker V' = m.

ie{1,...,k}
se{l,...,n;}

(iti) If m € Zy, there is a k-tuple V of doubly U-commuting row isometries such
that curv(V) = m.

(w) If carv(V) # 0 and n; > 2 for some j € {1,...,k}, then for any t €
[0, curv(V)], there is an invariant subspace M C H under V and U such
that curv (P, V], 1) =t.

Proof. According to the Wold decomposition of theorem 1.5 from [27], there exist
2% subspaces {Hatacq,...k} (some of them may be trivial) such that K admits a
unique orthogonal decomposition

H= P Ha

Qc{1,...,k}

with the property that, for each subset Q C {1,...,k},

(i) the subspace Hg is reducing for all the isometries V; ,,, where ¢ € {1,...,k}
and m € {1,...,n;};
(ii) if i € Q, then Vil = [Vialag - Vin,lcg] is a pure row isometry;
(iii) if i € Q°, then Vi|yq = [Viilug = Vin, g is a Cuntz row isometry;
(iv) the subspace Hg is reducing for all the unitary operators in U, and the row
isometries

‘/Z|7{Q = [‘/171|HQ‘/177L1|’HQ]7 1€ {la-"7k}7
are doubly L{|HQ—commuting, where Z/I|7.¢Q ={U;; (S,t)|7{9}(i’jys’t)€r‘.

Consequently, we have

curv(V) = > curv(Vly,) and Ay(I)= Aviyy, y,)- (71
QC{1,....k} QC{1,....k}
If @ = {1,...,k} and Hy1, .k} # {0}, then V|H{1,...,k} is a tuple of pure row

isometries which, according to theorem 2.4 and theorem 1.6 from from [27], is

unitarily equivalent to the standard I ® Ulp o k}—twisted multi-shift S on the
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Hilbert space EQ(IF:{l X e X Fjl‘k) ® Ly1,....k}, where

E{l,...,k} = ﬂ kerV;s.
ie€{1,...,k}
s€{l,....,n;}

Hence, we deduce that

75 AR GRS

= trace(S) = rank (Ag()) = dim ﬂ ker Vl*s
ie{l,....k}
se{l,...,n;}

On the other hand, if @ C {1,...,k} and Q # {1,..., k}, then, for any i € Q°, Vi|3,
is a Cuntz isometry, i.e. Z:’:l(VZSVl*Q)\HQ = Ing, which implies curv(V|y,) =0
and AV\HQ (IHQ) = 0. Using relation (7.1), we deduce that

curv(V) = curv(V\H{1 k}) = dim ﬂ ker V"

ie{l,....,k}
se{l,...,ni}
and
rank Ay (1) = rank AV\H{L...,k} B,y

This proves items (i) and (ii). We already know that if S is the standard k-tuple of

doubly I ®U-commuting row isometries on the Hilbert space £2(IE‘;§1 X oo X ]sz RL,

where dim £ < oo, then curv(S) = dim £. This proves part (iii). /
Now, assume that m := curv(V') # 0. Due to the Wold decomposition mentioned

above, we may assume that H = 52(15‘21 X oo X ij) @ L,k |OH and V = S&

V', where V' is a doubly U|,,~commuting tuple of row isometries with Ay (I;,) =
0 and S = @;’;1 Sz(p)’ where m := dim Ly ;. Therefore, we may assume that
the multi-shift S is a direct sum of multi-shifts S, € B(EQ(IFT*L‘1 XX ij)) with the
scalar weights z = (2;,;(5,1)) (i j,s,t)er, Where 2; ;(s,t) € T and z;;(t,s) = z; j(s,t)
for (i,7,s,t) € T.

Due to theorem 7.2, for each ¢, € (0,1], p € {1,...,m}, there is an invariant
subspace M,, C £2(F;; x---xF} )under S (,) such that curV(PM# S, ) |M#) =t,.

Note that (@, M, ) @H’ is invariant under (@;nzl Sz(P)) @ V’* and U. Then

L
M = ((@21:1 My GB’H,’) is an invariant subspace under V = (EBm S (p)) @

p=1%g
V" and U and
curv(P,, 1 V] 1) = ZCUI‘V(PM% S, \M#) + curv(V') = th.
p=1 p=1
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On the other hand, using a similar argument and proposition 7.4, we find a non-
trivial invariant subspace M C H under V such that curv(P,,1 V],,1) = 0. This
completes the proof. O

We recall the following result which is needed in what follows. If M C ¢2 (]Fj1 X
RS IFT*L‘k) ® K is an invariant subspace under the multi-shift Sy and I ® U, then
Su|am is in the regular (I ® U)|a-twisted polyball if and only if M is a Beurling

type invariant subspace for Sy; and I ® U.

PROPOSITION. Let M C 62(ngl X oo X IFIk) be a proper invariant subspace of
the z-twisted multi-shift S,. Then Sz is in the (I ® z)|pm-twisted polyball and
curv(P, 1 82| 1) = 0 if and only if there is an inner sequence {W,}32, for M,

i.e. Uy are isometric multipliers of KQ(IFjl X e X F,fk) with respect to S, such that

Py = i T,
s=1

where the convergence is in the strong operator topology and

. 1 - 2
im e Y D ey ap P = 1

q
zk nyt - —
(a1,--ap) €23 T ko ayl=qq,. lagl=qy s=1

Proof. According to the remarks preceding this proposition, S,|r¢ is in the (I ®
z)| m-twisted polyball if and only if M is a Beurling type invariant subspace under
S,. Therefore, there exist multi-analytic operators ¥, € B(ZQ(IF‘,"L‘1 X oee X IFjl‘k)
such that Py = > oo, ¥, ¥%. Due to theorem 6.1 and corollary 6.2, condition
curv(P, 1 S|, 1) = 0 is equivalent to

. trace [(Zzil v UY) P(ql,u.,qk)}
lim =
(a1:,q5) €28 trace [P(ql,...,qk)}

Now, one can easily complete the proof. O

PROPOSITION 7.7. If M C EQ(Fﬁl X e X IF;L*‘]C) is a proper Beurling type invariant
subspace of multi-shift S;, then

0 <curv(Py,18z]1) <1 and 0<m(M)<1

Proof. As in the proof of proposition 6.7, there is a unitary operator
A4 (I)(M*E) — C such that (I®v¢)K4 =V, where K 4 is the Berezin kernel associ-
ated with A := P, 1 S,|,,1 and V is the injection of M~ into CFf X x IB‘;‘L‘]C)
Hence, we deduce that KoK} = (I @ ¢*)P,,1 (I ® ) and

As, (I — KaK}) = (I @ ¢%)As, (Pam) (I @ 9).

Since M is a Beurling type invariant subspace, we have Ag,(Px¢) > 0, which
implies Ag, (I — KaK?%) > 0. Now, assume that curv(A4) = 1. t Then, curv(4) =
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rank A and, due to corollary 5.5, A is unitarily equivalent to S,. Hence, we deduce
that M* is an invariant subspace for S,. This shows that M' is a reducing
subspace for S,. Since the C*-algebra C*(S,) is irreducible (see [27]), we get a
contradiction. This completes the proof. O

We remark that proposition 7.7 implies that P, 1 S,|,,1 is not unitarily equiv-
alent to S,. It remains an open question whether proposition 7.7 remains true
for arbitrary proper invariant subspace of S,, which is the case when k=1 and
U = {1c} (see [20]).
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