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Parabolic Muckenhoupt Weights Characterized by Parabolic
Fractional Maximal and Integral Operators with Time Lag
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Abstract In this article, motivated by the regularity theory of théugimns of doubly non-
linear parabolic partial dierential equations the authors introduce ttiediagonal two-
weight version of the parabolic Muckenhoupt class with tilsgg Then the authors intro-
duce the uncentered parabolic fractional maximal operithrtime lag and characterize its
two-weighted boundedness (including the endpoint casiyins of these weights under an
additional mild assumption (which is not necessary for meéght case). The most novel-
ty of this article exists in that the authors further introdwa new parabolic shaped domain
and its corresponding parabolic fractional integral withet lag and, moreover, applying the
aforementioned (two-)weighted boundedness of the parabaktional maximal operator
with time lag, the authors characterize the (two-)weightedndedness (including the end-
point case) of these parabolic fractional integrals in teohthe df-diagonal (two-weight)
parabolic Muckenhoupt class with time lag; as applicatidhe authors further establish
a parabolic weighted Sobolev embedding and a priori eséirfaatthe solution of the heat
equation. The key tools to achieve these include the paraBalderon—-Zygmund-type de-
composition, the chaining argument, and the parabolicaltdlinequality which is obtained
by making the utmost of the geometrical relation betweerptr@bolic shaped domain and
the parabolic rectangle.
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1 Introduction

The Muckenhoupt class, introduced by Muckenhoupt [75],fiflundamental importance in
harmonic analysis and partialffiirential equations. Le&j € (1, ) andw be aweighton R",
that is, a nonnegative locally integrable function. It islvk@own that some classical operators
(for instance, the Hardy—Littlewood maximal operator amel €alderon—Zygmund operators) are
bounded on theveighted Lebesgue space

LI, ) 1= {f L I fllLagng) = [[RnIf(X)chu(X)dx]a < oo}

if and only if w belongs to théVluckenhoupt class £R"), that is,

_ 1 1 ERE
(1) 6l = swp 5 [ ooay{ g [Tl o <o

where the supremum is taken over all culizs R" whose edges are all parallel to the coordi-
nate axis. Furthermore, the Muckenhoupt weights have dempections with the elliptic partial
differential equation

(1.2) div (|Vu/P?vu) = 0,

wherep € (1, ). So far, the Muckenhoupt classes and the theory of weigfuection spaces
have been developed in a comprehensive manner; see, fopkexdi®, 20, 21, 22, 38, 39, 40,
41]. Moreover, there exists a well-established theoryteeldo the Muckenhoupt weights with
applications in partial dierential equations; see, for example, [28, 36, 37, 54, 5[/, 71

From the perspective of partialfterential equations, in addition to the Muckenhoupt class-
es related to (1.2), there also exist parabolic Muckenholgsses with time lag, introduced by
Kinnunen and Saatri [50], tailored to the doubly nonlineaapalic partial diterential equation

(1.3) % (lulP2u) - div (IVulP~2Vu) = 0.

Here and thereafter, waways fix pe (1, o). The definition of parabolic Muckenhoupt weights
with time lag is based on the following definition of parabalectangles. For any € R" and
L € (0, ), let Q(x, L) be thecubein R" centered ak with edge length .

Definition 1.1. Let (x,t) € R™! andL € (0, ). A parabolic rectangle Rentered atxt) with
edge lengthL is defined by setting

R:=R(xt, L) := Q(x, L) x (t—LP, t +LP).

Lety € [0,1). They-upper part R(y) and they-lower part R (y) of R are defined, respectively,
by settingR*(y) := Q(x, L) x (t + yLP,t + LP) and

RT(y) == Q(x L) x (t - LP,t —yLP),
wherey is called theime lag

Denote byR[*! the set of all parabolic rectanglesif?**. For any locally integrable function
f onR™! and for any measurable sktc R™* with |A| € (0, ), let

1
f::—ff.
Ji Al Ja

Here and thereafter, walways omitthe diferentialdx dtin all integral representations to sim-
plify the presentation if there exists no confusion. Thdafeing is the definition of parabolic
Muckenhoupt classes with time lag; see also [50, Definiti@j. 3
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Definition 1.2. Lety € [0, 1) andq € (1, o). Theparabolic Muckenhoupt classify) is defined
to be the set of all nonnegative locally integrable funaieron R™* such that

q-1
(1.4) [wlas) = SUP w[f wﬁ] < oo,
ReRrBL JR(y) R*()

If the above condition is satisfied with the direction of tivee axis reversed, them € A;(y)
which is also called thparabolic Muckenhoupt clasend consists of all such.

Different from the classical case, in (1.4), Euclidean cubek. ) &re substituted by parabolic
rectangles, which respects the natural geometry of (1r8)edd, ifu(x,t) is a solution of (1.3),
then so doesi(1x, A1) for any A € (0, o). It turns out in Moser [72, 73] and Trudinger [89] that
any nonnegative weak solutiorof (1.3) satisfies a scale and location invariant Harnacijuaéty,
that is, for any givery € (0, 1), there is a positive consta@tsuch that, for anyR RB”,

esssupu(x t) < C essinf u(x,t),
(x,t)eFt(y? 0 (xDeR* () (X9

where the time lag appears naturally. The Harnack inequality further impliest any nonnega-
tive weak solution of (1.3) is a parabolic Muckenhoupt weigtth time lag. Kinnunen and Saari
[50] also introduced the centered parabolic Hardy—Litdedr maximal operators with time lag
and showed that these operators are bounded on the weigbbeddue space if and only if the
weight belongs to the corresponding parabolic Muckenhaiggs with time lag. Their results
in [50] were streamlined and complemented by Kinnunen angridginen [45] in which they
replaced the centered maximal operator by the uncentemstbreto include the endpoint case.
On the other hand, as proved in [50, Lemma 7.4], the parablickenhoupt classes with time
lag give a Coifman—Rochberg type characterization of tinetian space with parabolic bounded
mean oscillation which was explicitly defined by Fabes ando@édo [27] and is essential in the
regularity theory for (1.3). We refer to [11, 12, 13, 14, 12, 34, 53, 74, 91] for more stud-
ies about (1.3), to [2, 47, 52, 77, 84, 85] for more studies arfapolic function spaces, and to
[45, 46, 48, 49, 50, 61] for recent studies of the parabolickémhoupt classes with time lag.

The other motivation to study the parabolic Muckenhoupss#a with time lag is due to the
theory of the one-sided Muckenhoupt classes introducedawyy& [86] in connection with er-
godic theory. Recall that, for anye (1, o), theone-sided Muckenhoupt clas§(®) is defined to
be the set of all nonnegative locally integrable functiansn R such that

X x+h 1 a-1
sy i=_sp & [ apay{i [ el ay)

xeR, he(0,00)

is finite. Actually, the parabolic Muckenhoupt classes iitie lag are higher dimensional gener-
alizations of the one-sided Muckenhoupt classes in sonsesdiine one-sided weighted theory has
been extensively investigated; see, for example, [3, 1,/62564, 65, 67, 68, 69, 81]. There also
exists several inspirational studies about higher-dinomas extensions of the one-sided weights
and related topics; see, for example, [8, 9, 29, 30, 31, 56/%9

On the other hand, both the fractional maximal operatorsthedractional integral operators
occupy an important position in potential theory, harmamealysis, and partial fierential equa-
tions; see, for example, [1, 10, 16, 35, 90]. Recall that,alay givens € (0, n), thefractional
maximal operator M and thefractional integral operator 4 are defined, respectively, by setting,
for any locally integrable functiori onR" and anyx € R",

1
Ms(F)(9 == sup ——— f ()l dy
Le(0.) |Q(x, L)IF7 JaxL)
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and

wmm—f|f%ﬁy

LetBe (0,n), 1<r << oo with % —-== ﬁ, andw be a weight oR". It is well known that the
fractional integral operatdg (or the fractional maximal operatddg) is bounded fromL"(R", w")
to LI(R", %) if and only if w belongs to theff-diagonal Muckenhoupt class &R"), that is,

q

(L5) wmﬁw=wm—fwmwd{ fwmwd§ <o
1Ql 1Ql
where the supremum is taken over all cues R" whose edges are all parallel to the coordinate
axis. We refer to [23, 60, 76, 92] for more studies on the oe@tt case and to [23, 26, 70,
51, 55, 80, 87, 88] for more investigations on the two-weiggge of the weighted boundedness
of the fractional integral operators and the fractional immet operators. As for the one-sided
situation, Andersen and Sawyer [6] obtained the charaetgons of the weighted boundedness
of one-sided fractional maximal operators and the Weyl @edRiemann—Liouville) fractional
integral operators in terms of the one-sidéfidiagonal Muckenhoupt classes. For more studies
of the one-sided fractional maximal operators and the daeddractional integral operators, see,
for example, [58, 62, 66, 79, 82]. In the parabolic setting & al. [61] introduced the centered
parabolic fractional maximal operator with time lag andwéd that it is bounded on the weighted
Lebesgue spaces if and only if the weight belongs to the spomding €f-diagonal parabolic
Muckenhoupt class with time lag. Inspired by these, it isir@tto ask what is the most appropriate
definition of parabolic fractional integral operators wiitime lag and whether or not the weighted
boundedness of such operators can characterize the paraffadiagonal Muckenhoupt class
with time lag. We give positive answers to these two questiarthis article (see Definition 5.1
and Theorems 5.8 and 5.10).

The main goal of this article are twofold. One is to genegathze parabolic Muckenhoupt class
with time lag in [45, 50] and thef&-diagonal parabolic Muckenhoupt class with time lag in [61]
to the two-weight case. The other is to characterize suchaight parabolic Muckenhoupt class
with time lag in terms of the weighted boundedness of sonaifiaal operators, namely the cen-
tered and the uncentered parabolic fractional maximalatpes with time lag and the parabolic
fractional integral operators with time lag. More pregyséhspired by the regularity theory of
(1.3), we introduce theftddiagonal two-weight version of the parabolic Muckenhocipss with
time lag. Then we introduce the uncentered parabolic fsaatimaximal operator with time lag
and characterize its two-weighted boundedness (inclutliegendpoint case) in terms of these
weights under an additional mild assumption (which is natessary for one-weight case). The
most novelty of this article exists in that we further intuog a new parabolic shaped domain and
its corresponding parabolic fractional integral with tikag and, moreover, applying the aforemen-
tioned two-weighted boundedness of the uncentered pacdoattional maximal operator with
time lag, we characterize the (two-)weighted boundedriestu¢ling the endpoint case) of these
parabolic fractional integrals in terms of thé&-diagonal (two-weight) parabolic Muckenhoupt
class with time lag; as applications, we further establiprabolic weighted Sobolev embedding
and a priori estimate for the solution of the heat equatidme Key tools to achieve these include
the parabolic Calderén—Zygmund-type decomposition ctiening argument, and the parabolic
Welland inequality which is obtained by making the utmosthef geometrical relation between
the parabolic shaped domain and the parabolic rectangle.

The organization of the remainder of this article is as fao

In Section 2, we introduce the concept of parabolic Muckephbvo-weight classes with time
lag. Several elementary properties of parabolic Muckephdwo weights, such as the nested
property, the duality property, and the forward in time dingproperty, are presented. Moreover,
we give a characterization of the parabolic Muckenhouptiweight class with time lag in the
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endpoint case in terms of the uncentered parabolic maxipgbdor with time lag; see Proposition
2.5.

In Section 3, under an additional mild assumption (whicloismecessary for one-weight case),
applying the chaining argument we show that the parabolickdohoupt two-weight class is
independent of the choice of the time lag; see Theorem 3.1larmapplication, we obtain the
self-improving property of the parabolic Muckenhoupt tweight; see Corollary 3.5.

Section 4 is devoted to characterizing the parabolic Muc&eapt two-weight class with time
lag in terms of the uncentered parabolic fractional maxioparator with time lag; see Theorem
4.1. To achieve this, we utilize a covering argument in [3@] &#heorem 3.1 to change the time lag.
As a corollary, we prove the strong-type parabolic weightedm inequality for the uncentered
parabolic fractional maximal operator with time lag; seedlary 4.4. All these results are both
the fractional variants of the counterparts in [45, 50] amel generalization of the counterpart of
[61] from the centered one to the uncentered one. We alsonathia weak-type parabolic two-
weighted norm inequality for the centered parabolic faw maximal operator with time lag;
see Theorem 4.7. Notice that Theorems 4.1 and 4.7 are regheche generalizations of the
counterparts of [45, 61] from the one weight to two weights.

In Section 5, based on a new parabolic shaped domain, welirteothe parabolic forward
in time and back in time fractional integral operators withd lag; see Definition 5.1. Then
we establish the pointwise relation between the centereabphic fractional maximal operator
with time lag and the parabolic fractional integral operatith time lag by showing a parabolic
Welland type inequality; see Lemmas 5.3 and 5.4. Using tidsprove the weak-type parabol-
ic two-weighted inequality and the strong-type paraboleighted inequality for the parabolic
fractional integrals with time lag; see Theorems 5.5 andad Corollary 5.6.

The aims of Section 6 are two aspects. One is to establishatiabglic weighted boundedness
of the parabolic Riesz potentials introduced in [42] for adsal class of parabolic Muckenhoupt
weights with time lag; see Theorem 6.4. Applying this, wakksh a parabolic weighted Sobolev
embedding theorem and obtain a priori estimate for the isolutf the heat equation; see, respec-
tively, Corollaries 6.6 and 6.7.

At the end of this introduction, we make some conventionsaiation. Throughout this article,
letN := {1,2,...}, Z, := NU {0}, andR?! := R" x (0,0). For anys € R, the symbol[s]
denotes the smallest integer not less tarFor anyr € [1, o], let r’ be the conjugate number
ofr, thatis,2 + 1 = 1. For anyx := (Xs,...,%) € R", let|IX|w := max|x,..., %} and
X := VIxal2 + - + [¥[2. For anyA c R™?, let

pry(A) := {x e R" : there existg € R such that §,t) € A}
and
pri(A) := {t e R : there existsx € R" such thatx, t) € A}

be the projections oA, respectively, onto the spa@' and the time axi®R. Let 0 denote the
origin of R". For anyA c R™! anda € R, letA—-(0,a) = {(x. t—a) : (xt) € A.. For any
measurable se& ¢ R™1, we denote byA| its (n + 1)-dimensional Lebesgue measure. For any
R € R, denote by %, tr) its center and by(R) its edge length. Theop of R € Rj** means
Q(Xr, I(R)) x {tr + [I(R)]P} and thebottomof R meansQ(xg, I(R)) x {tr — [I(R)]"}. Let Lﬁ)c(R””)
(resp.Li (RT1)) be the set of all locally integrable functions Bfi*! (resp. R*1). The symbol

f < g means that there exists a positive constasiuch thatf < Cgand, if f < g < f, we then
write f ~ g. Finally, when we show a theorem (and the like), in its proefaiways use the same

symbols as those appearing in the statement itself of tkat¢im (and the like).
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2 Parabolic Muckenhoupt Two-Weight Classes with Time Lag

In this section, we introduce the concept of parabolic Matiept two-weight classes with
time lag and present their several basic properties. Wenbeigh the following definition.

Definition 2.1. Lety € [0, 1).

() Letl<r << 0. Theparabolic Muckenhoupt two-weight class Ty) with time lagis
defined to be the set of all pairs, {/) of nonnegative functions dR™?! such that

Ta

[u, V]TA*q(V) = sup ud [JC V‘r/] < oo,
’ ReRp ™t JR () R'()

If the above condition holds with the time axis reversedt ibha

[U VIt Ay () 1= SUP uq[f v‘r'] < oo,
’ ReRpt JR' () R

then (i, v) € T Ar4(y) which is also called thparabolic Muckenhoupt two-weight class with
time lagand consists of all suchu(v).

Ta

(i) Let q € [1, ). The parabolic Muckenhoupt two-weight class 1I'dQ<y) with time lagis
defined to be the set of all pairs, {/) of nonnegative functions dR™* such that

-q
U V]Tar () = SU uwi | essinf v(x,t < 0.
[u VT ) RGR?)E’l L P (x.1)
If the above condition holds with the time axis reversedt iha
-q
U Vlta () ;= SU ud| essinf v(xt < o0,
(U VIrag ) Re.R?)El Riy) |[(XDR() Gt

then (,v) € TAI,q(y) which is also called thparabolic Muckenhoupt two-weight class with
time lagand consists of all suchu(v).

Remark 2.2. (i) Lety € [0,1) and 1< r < g < co. Recall that theparabolic Muckenhoupt
class A (y) with time lag introduced in [61], is defined to be the set of all nonnegativ
functionsw onR™?! such that

sup Wl [ JC W™
ReRrp VR (7) R*()

and theparabolic Muckenhoupt class;fy) with time lag introduced in [45, 50], is defined
to be the set of all nonnegative functicaon R™* such that

q
7

< o0

-1
sup w[ essinf w(Xx, t)] < o0,
ReRyLJR () LXDERTE)
Then we are easy to prove thataife Afy(y), then w,w) € TA((y) and, ifw € A{(y),
then, for anys € [1, o), (w%, W%) € TAI,S(V)- Thus, the parabolic Muckenhoupt two-weight
class with time lag in Definition 2.1 is indeed a general@atf bothAf ,(y) and A ().
(i) LetO<y1 <y2<land1l<r << oco. ThenTA'y(y1) € TA4(y2). Moreover, for any

— qa
(U v) € TAG(r1), [U VT A () < (i_—ﬁ)“f’ (U, VIT Aty ()
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For the parabolic Muckenhoupt two-weight class with timg, lae have the following nested
property which can be directly deduced from Definition 2.4 #re Holder inequality.

Proposition 2.3. Lety € [0, 1).

(i) Letl <T <r <q< o. Then T,%tq(y) C TA4(y). Moreover, for anyu,v) € TA;q(y),
[U VA < WAy )

(i) Letl <r <g<q<oo Then TAyy) C Tﬁga(y). Moreover, for any(u,v) € TA (),
g
[u, V]Tﬁfa(y) <[u, V]'IqA,fq(y)'
Next, we introduce the uncentered parabolic fractionalimakfunction with time lag.

Definition 2.4. Lety,B € [0,1). For anyf € Lﬁ)C(R””), theuncentered forward in time parabolic

fractional maximal function l%*(f) with time lagand theuncentered back in time parabolic frac-
tional maximal function I)}/F(f) with time lagof f are defined, respectively, by setting, for any

(x,t) e R™1,
M) = sup RO £ 11
RerpL R'()
(xt)eR™(7)
and

M2~ (F)(x. 1) : R () fl.
(Db = sup RO 1f

ReR+1
(x)eR* (v)

Notice that, for any € [0, 1), Mg+ coincides with the uncentered parabolic parabolic forward
in time maximal operatoM”* with time lag introduced in [45, Definition 2.2]. We presehet
following characterization of the parabolic Muckenhoupbiweight cIassTAI’q(y) in terms of

the uncentered back in time parabolic maximal opermg)_r.

Proposition 2.5. Lety € [0, 1), q € [1, ), and(u, v) be a pair of nonnegative functions &%.
Then(u,v) € TAI’q(y) if and only if there exists @ (0, «) such that, for almost evefy, t) € R,

(2.1) M2~ (U9)(x, 1) < C[v(x, )]9.

Proof. We first show the dficiency. Assume thau(V) satisfies (2.1). By this and Definition 2.4,
we find that, for anyR € R?,*l and for almost everyxt) € R*(y),

JC ut < MIT ) (x. 1) < Clv(x, 1)]9.
R ()
Taking the essential infimum over ak, {) € R*(y), we then obtain

q
JC ul < C[ essinf v(x, t)]
R (y) (xDeR*(y)

and hencey,v) € TAI’q(y) with [u, V]TAIq(y) < C. This finishes the proof of the ficiency.
Now, we prove the necessity. Assume thawj € TAI’q(y) and let

N = {(x, ) eR™: MET (U (%, 1) > [ ViTay ) [V(X, t)]q}-
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To show that (2.1) holds almost everywhere for sdne (0, o), it suffices to prove thaiv| = 0.
Indeed, from Definition 2.4, we infer that, for any givent) € N, there exisRyy) € RB“ and
€ € (0,0) such thatx, t) € R&t)(y) and

1
(2.2) JE ud > _—f ud > [u, VT ar () [V(x 0)]9.
Ruxp®) |R(Xat) Ml +e Ry ™) A

Since p{(Rfo’t)(y)) is an open interval andx(t) € R&t)(y), it follows that there exist§m> =
Q(xo, Lo) X (to — LY, to + L) € R with (xo,t0) € R™! andLg € (0, o) such that the following
statements hold:

(i) (1) € R,y
(i) Ry () € Ry ) andiR; () \ Ry @)l < €
(iii) all the vertices ofQ(xo, Lo) belong toQ" andty — Lg €Q.
Combining (2.2), (ii), andy, v) € TAI’q(y), we conclude that

1
[U VA ()l B < — = f o
Al Rocy O + € Jre, )

q
< JQ W< [uVra )| essinf v(y.s)f
Riy® A 9ere, )

which further implies that

(2.3) V(X t) < essinf v(y,s).
(v.9€R( ()

Let {RdJke be the sequence of @:= Q(z L) x (r — LP,r + LP) € R} with (zr) e R™! and
L € (0, o) such that all the vertices @(z L) belong toQ" andr — LP € Q and, for anyk € N, let

N = {(x, t) € RE(y) : v(x,t) < essinf vy, s)}.
(v.9€R( ()

Then|Ny = 0 for anyk € N. Moreover, from (i), (i), and (2.3), it follows thalv ¢ Uxen Nk
which further implies thatN| < Y. INkl = 0. This finishes the proof of the necessity and hence
Proposition 2.5. m|

Throughout this article, walways omitthe variables X, t) in the notation if there is no am-
biguity and, for instance, for ang ¢ R™?, any functionf on R™?, and anyl € R, we simply
write

An{f>a:={(xt)eA: f(xt)>Aa}.

The following proposition indicates that the parabolic Mechoupt two-weight class is closed
under taking the maximum and the minimum.

Proposition 2.6. Lety € [0,1)and1 < r < g < co. Then, for anyu, v), (U,V) € TA{((¥),

(i) (max{u, U}, maxv, v}) € TA{ (y) and

[maxu, T}, maxv, iy ar ) < [UVITAr ) + [0 V7 A7 )-
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(ii) (minfu, T}, minfv, V}) € T A'4(y). Moreover, if r= 1, then

[min{u, T, minfv, W7 p; ) < max{[U, VITa; 01 W’V]TAL*M}

and, if r € (1, o), then[minfu, T}, min{v, i1y ar ) < [U VT A7) + [U VT Ay 0)-

Proof. Let (u,V), (U,V) € TA{ (y). We first show (i). Let; := maxu, U} andW; := maxyv, V}.
We consider the following two cases far
Case 1) r= 1. In this case, by Definition 2.1(ii), we find that, for any @R € RB”,

Wf SJC ud +JC w
R (y) R (7) R (y)

q
<t o g )

q
+ [0V ) ( )%SESE{L?;) V(X t)]

q
< {[U, Vitar o) + [Hav]TAl_q(y)} [ ( xet)SgsRir(lyf) Wa(X, t)] :

Taking the supremum over & € RB”, we conclude thatWi, W) € TA'{q(y) and
[Wa, Woltar ) < [UMT A () + [GVIT A (-

Case 2) re (1, ). In this case, from Definition 2.1(i), we deduce that, foy givenR € RB”,

a a
7 7

f Wf[f Wz‘f']r s[f uq+f Tﬂ”f Wz‘r']r
R () R*(y) R (y) R (y) R*(y)
r/

a9
7

SJC ud [JC A ]r
R (y) R*(y)
q
+JC oy f V‘r']
R (y) R*(y)

< [uVItar ) + [0 YT A ()

Taking the supremum over &l € RB”, we obtain Wi, W2) € T Af((y) and

[Wi, Wol1 ) < (U VITAr () + [U YT ()

Combining the above two cases, we then finish the proof of (i).

Next, we prove (ii). Letv; := min{u, U} andw, := min{v, V}. Similarly to the proof of (i), we
consider the following two cases for

Case 1) r= 1. In this case, using Definition 2.1(ii), we conclude that,dnyR RB“,

JC W‘fsmin{f uq,f Tﬂ}
R (y) R (y) R (y)

q
< min{[u, V]TAI,q(w) [(S)SGSRU(];) V(X, t)] ,

[‘J’WTAI_q(y) [ ess inf V(x, t)]q}

(x)eR* ()

q
essinf wy(X, t)] .
XeR*(¥)

< max{[U, ViTar () [H’V]TAIq(”}[ )eR*

(
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. l .
Taking the supremum over & € RT™, we find that (v1, w) € TAI,q(?’) and

[wa, Wal Tt (y) < max{[u, ViTa; o) [H,T/]TAIq(y)}-

Case 2) re (1, ). In this case, from Definition 2.1(i), we infer that, for aRy RB”,

q
7

f W? |:f Wz_r/]r
q

elis L]
“Jre HIRFO Jrep)nivem

q

+JC W‘f[ +1 v‘r']r,
R@G) LR Jrmnivaem

3 3
SJC O [JC v +JC ud [JC v‘r']
R (y) R*(y) R (y) R*(y)

< [U VAo + [U VT A )-

Taking the supremum over & € RB”, we obtain (v1, w2) € TA'(y) and

[wa, Wolt Aty () < [U VT A ) + [0 VT A7)
Combining the above two cases then completes the proof)@(d hence Proposition 2.6. O
The following duality property follows directly from Defitidn 2.1(i); we omit the detalils.

Proposition 2.7. Lety € [0,1) and1 < r < g < co. Assume thafu, V) is a pair of positive
functions orR™*. Then(u,v) € TAfy(y) if and only if (v 1, u™) € TA, ()

At the end of this section, we give a characterization of tlagahal parabolic Muckenhoupt
two-weight class in terms of a forward in time doubling cdiwti. In what follows, for any
nonnegative functiorf e Li (R™*) and any measurable stc R™*, we denotef_ f by f(E).

Proposition 2.8. Lety € [0,1) and (u,Vv) be a pair of positive functions oR™?!. Then the
following statements are equivalent.

(i) There exists @ (1, o0) such that(u,v) € T A 4().

(i) There exist Ce (0,), 6 € (0,1), and r € (%,oo) such that, for any Re RB” and any
measurable set [ R*(y),

IE| V)E) |’
(2.4) IR* ()| = C[(uf)(R‘(y))] '

Proof. We first show ()= (ii). Assume that,v) € T Ag4(y) for someq € (1, o). Then, from
the Holder inequality, we deduce that, for 2Ry R?,*l and any measurable detc R*(y),

1
RS SAC VARG N
= 1g = V Vg < Vil v
IR Jrey) R*(7) R*(7) R(7)
1
g 1 -
< vqlE] [uv]d ., [f uq]
[ﬁv(y) TR0 [ Jr- )

B

Qal-
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o V)E T
= [U VI ) [m] ’

which further implies that (2.4) with := g, 6 € (0, é], andC = [u,V]
the proof of (i)= (ii).

Now, we prove (ii)= (i). Assume that (ii) holds. According to (2.4), we conclutiat, for
anyRe R?,*l and any measurable detc R*(y),

P L
TR ) holds. This finishes

|E|
Rt

FixRe R?,*l and, for any givem € (0, ), letE, := R*(y) n{v"" > A}. Then (")(E,) < |IE.l/A.
Combining this and (2.5), we find that, for anye (0, ),

(2.5) cﬁmnwmﬂ rswﬂa

|EAl
IR* ()l

Ed
ﬂ 9

c%wxwmﬂ rswxm§

which further implies that

26 £yl < 6CEIR‘(7)IE _
AT [(U)(R- ()]

Sincer € (%, o0), it follows thatr?' € (0, %). From the Cavalieri principle (see, for example, [34,
Proposition 1.1.4]), the obvious fact tHaf c R*(y) for anya € (0, ), and (2.6), we infer that

’ r’ R
f al :—f TR ) N v > a)| da
R*(7) rJo

1
[T
0 T L

k)

r/ r/
== A7 YE, | dA

r’ (el
S7|R+(*y)|fo AT

e I X"
"R O s

< R0 [JE ur]_T,
R-(»

where the implicit positive constant depends only@rr, andés. Taking the supremum over all
R e RB”, we conclude thatu v) € TA/ (y), which completes the proof of the fiigiency and
hence Proposition 2.8. m|

1
Wr-(y)

3 Independence of Choices of Time Lag
and Self-improving Property of T A7, ()

In this section, under an additional mild assumption (whglmot necessary for one-weight
case), we show that the parabolic Muckenhoupt two-weigdgscls independent of the time lag
and the distance between the upper and the lower parts digigraectangles. As an application,
we prove that the parabolic Muckenhoupt two-weight classthe self-improving property. Recall
that, for anyy € [0, 1), AL(Y) = Ugew) A () and, for anyA c R™! anda e R, A—(0,a) :=
{(x,t—2a): (xt) € A.
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Theorem 3.1. Let0 < y < @ < 1, T € [1, ), and(u, V) be a pair of nonnegative functions on
R™L. Assume that & A% (y). Then the following statements hold.

(i) If1<r<q<oo, then(u,v) € TA () if and only if there exists a positive constant C such
that, for any Re RB”,

q
(3.1) f uq[f v—f’] <C.
R*(@)-(O0r(+a)IRIP) | IR @)

(i) Ifq e[, ), then(u,v) e TAIq(Y) if and only if there exists a positive constant C such that,
for any Re RB”,

—q
(3.2) JC uq[ essinf v(x, t)] <C.
R*(a)-(0,7(L+a)[I(R)]P) (x.H)eR*(a)

Proof. We first show the necessity of (i) and (ii). Assume thatf € TA'(y). Fix R :=
R(x.t,L) € Ry with (x,t) € R™! andL € (0, ). Let

P R[X,t_ (r-1)(1+ a)Lp’[1+ (t-1)(1+a)]? '-J'
2 2
Then
(33) R'(0) ¢ P*(@) and R'(a) - (0, 7(1 + a)LP) € P~(@),

wherea = % € (y,1). Moreover, we have

n
p

(r- 1)2(1+ a) |Ri(a/)| .

(3.4) |P*@)| = 2" [1+

From Remark 2.2(ii), we deduce that ¢) € TA',(a), which, combined with (3.3) and (3.4),
further implies that

q

f uq |:f V—I',:| r’
R*(a@)-(0,7(1+a)LP) R*(a)

L {2”[1+ (t-1)(1+a)

q

n 1+r—, ﬂ/
p f uq [f V_r/:|r
P-@ P+@)

% 1+rﬂ,
} [uVITa,@-

2

L {2”[1+ (t-1)(1+a)

2

This finishes the proof of the necessity of (i). Letting> 1* in the above argument, we find that
the necessity of (ii) holds. Here and thereafter, 1* means that € (1, o) andr — 1.

Then we prove the shiciency of (i) by the chaining argument. Suppose that (3.1ds0oFix
Re RB”. Without loss of generality, we may suppose tRas centered at the origirD(0). Let
m € N be such that there existés= [0, 1) satisfying
1 I 2
+p_l{1+og2 }+ + €.

Partition each spatial edge Bf (y) into 2" equally long intervals and divide the temporal edge of
R*(y) into J :=[(1-1y)2P™/(1- )] equally long intervals. Then we obtaii"2) subrectangles of

1+ @)
1—

1+ @)

(3.5) m = log,
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R*(y) and denote them b{wifj}ieNm[l’znm],jeNﬂ[u]. Fixi e Nn[1,2" andj € Nn[1,J]. Notice
that there exist& ; € R such that the tops of bofR andV/'; coincide,V; c R',(a), and

Vil (@ =-y)2em
@~ @-al

(3.6)

Divide R (y) in the same manner as we partitiBi(y). Then we obtain 2"J subrectangles of
R~ (y) and denote them b{\JUlZL}keNﬁ[l,znnq,LeNm[l,J]. Fixk e NN[1,2"M and: € NN[1, J]. Observe

that there exist&, € R} such that the bottoms of boRy (a) — (0, 7(1 + @)[I(Rc,)]?) andUy,
coincide,U;, ¢ Ry (a) — (0, (1 + a)[I(R.)]?), and

|U|Z,L| _ (1_,y)2pm

3.7 _ _ _ |
o7 R (@) - 0,71+ )[R (1-a)d

We claim that there exist® € R?,*l satisfying that, for any,k € NN [1,2"] and j,¢ €
NN[1, J], there exisN;j, N, € N and chainsf,PL’j}g'io and{ﬁg"}'&"zo consisting of congruent parabolic
rectangles such that the following statements hold.

(i) R c R*(0) andR*(a) — (0,7(1 + @)[I(R)]P) c R*(0).

(i) Foranyie NNn[1,2"andje NnJ[1,J], Pidj =R andPil;ljj =R. Foranyk e NN [1,2"M]
and: € NN [1,J], P& = R, and“%f = R.

(i) Foranyje NnNIJ1,J],

p
p -1

1+ @)
l1-a

71+ @)
Y

) L 43p+l
Nj < 2p1

Forany: e Nn[1,J], N, < 2Cy.
(iv) Foranyie NN[1,2"], je Nn[1,J],andd e NN [1, Nj],

P (@) N (S )@ [ 1
0 €[2n+1’1]’
(P (@)l

where 67))(e) = (P))* (@) - (0,7(1 + @)[I(P,)IP) for anyh € Z, N [0, Nj]. Moreover,
foranyk e NN [1,2"], : e NN [1,J], andd e NN [1,N],

ISK9~(@) N (P )* (@) [ 1 ]
Koy € n+1° 1 ’
I(SK~ ()| 2

where )~ (e) := (P&)* (@) — (0, (1 + a)[I(PI)]P) for anyh € Z, N[0, N,].

Indeed, fixi e NN [1,2" and j € NN [1,J]. We will specify ® andN; and construct the chain
{Pg‘}zlio in the following two steps.

Step 1. In this step, we construct the chain corresponding to dpadidables. Assume that
R.j = Q0. 1) x (tj — 2IP,t;) with (x,tj) € R™! andl := I(R)/2™. Let Qi0 = Q(x,1). For any
d e NN [1, Mj]with M; € N determined later, let

X 6l

(38 Q= Qu1= o7
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whereg; € [1,_\/ﬁ], depending only on the angle betwegnand the spatial axes, is such that
the center ofQ, belongs to the boundary @), ;. Notice that there existly € N N [1,2" - 1],
depending only ofx;|, such that

39) I = 2[R - bil

From this and (3.8), it follows that, to ensure tIﬁ}é\;Ii = Q(0, 1), we need to choose

(3.10) M; Z=%=@—bi=2m—bi.
|

Observe that, for angt € N N [1, M;],

1 1QyNnQy,l 1
(3.11) — < Qd—le‘l <z
2 1Qyl 2
Then{Q‘d}g":i0 forms a chain irR" starting fromQ(x;, |) and ending withQ(0, I).
Step 2.In this step, we specifit andN; and construct the chai{rP:j"}(';'iO based on the chains
in Step 1. Forany € Z, N[0, Mi], let

P = Qi x (t - dr(1 + )IP = 2Pt — dr(1 + )IP).

ThenPy' = Rj and py(Py;) = Q(0,1). To determinek, we first assume that = 1 andi €

N N [1,2"] such thatQ(x;, 1) intersects with the boundary of gR) = Q(0, I(R)). From (3.9) and
(3.10), we infer thab; = 1 and hencéM; = 2™ — 1 in this case. LeN := 2" -1 andR = P'Nl. We

show that (i) holds. Indeed, on the one hand, notice that

(3.12) Qn = Q(0,1) € Q(O,1(R) and t; — Nr(1 + @)IP < ty < [I(R)]".

2

which further implies that @-5m > 2+ and hences - 242 > 0. From this, the definitions

of both J andl, and the fact thats] < 2sfor anys € [1, o), we deduce that

On the other hand, by (3.5), we obtain
1+ @)

1
m> p_1{1+Iog2

t;— (N+ DL+ a)lP = (L= )P

_ 1-v (N+1r(1+a) (1-a)

= _7 + [(1-17)2Pm/(1 - )] - 2pm ~ opm ] [I(R)]P
' 1-y (N+1Lr(l+a) (1-a)

2 _7 + (1—vy)2rml/(1 - ) B 2pm ~ “opm ] [I(R)]P

7 ;p;*i N T:z((lp—Jrl)i) [I(R]P > [7 - % [I(R1IP > 0.

This, together with both the fact that the bottonf(a) — (0, 7(1 + @)[I(R)]P) is
QO, ) x {tg = (N + 1)r(1 + a)IP = (1 - )IP}

and (3.12), further implies that (i) holds.

Then we suppose thgt= 1 andi € N N [1,2"] such thatQ(x,) does not intersect with
the boundary of g(R) = Q(0,[(R)). In this casef; # 1 and henceM; € N N [1,N). For any
de NN[M;,N-1], letP;!, = P;! - (0,7(1 + @)IP). Then we are easy to see tiRj} = R.
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Now, we consider the residual situatigne N N [2,J] andi € N N [1,2"™]. In this case,
we first extend the chaer' J}M' to the cham{P' I\, in the same way as we did in the above
case. Then we can easily verify tha;((m ) = prx(P' l) However, in the temporal variable, the
distance between the top BKI‘ and that ofPy is (j — 1)(1 - y)[I(R)]P/J. We can shift ever)lD

ford e NN [1,2™1] and addM; j parabolic rectangles into the chain to guarantee that tbetesl
parabolic rectangle &. To be specific, we can choogge [0, 1) andM; € Z, such that

2™1Bi(1 - a)[I(RP N Mjr(L+)IRIP _ (j-1)@- NIRIP

(3.13) o o = -

Indeed, notice that there exisis [1, 2) such that

32 {(1 —9)2P™ _ (1 -y)2P™

l1-a l1-a

and hence we can rewrite (3.13) as

(i-D@-a)

(3.14) 2™1B,(1-a) + Mjr(1+a) = ,

ChooseM; € Z, such that

Mj7(1+a) < < (Mj + 1)1+ a).

(-HA-a)
1

That is, letM; € Z, be such that

(-Hd-a , _ (-DA-0)

(3.15) 2r(1+ a) T nr(l+a) -1 M
_(i-Da-0a) _(i-1-a)
T 1(l+e) T t@+a) -
Letg; := U= _ Mj(1 + o). Using this and the choice o}, we find thaig; e [0, 7(1 + ).

SeleciBj € [0, ) such thatj = 2"“,81-(1 — «a). From this and (3.5), we infer that

szzp%ll_l_e( Y )p%l £

l+a/ t@+a)

By this and¢j € [0, 7(1 + «)), we conclude that
1

&1
0<p <2 (=) <3
<Pi<ei\1y5) <3

which, together with the choices of bolsThj andgj, further implies that (3.14) holds. Finally, for
anyd € N n [1, 2™1], we modify the definition o} by setting

Py =Ql x (tj —d[r(1+ ) + (1 - a)|IP - 2P,
tj - d[r(1+a) +8;(1 - )| 1°).

N - N - i ._ pll o
If Mj € N, then, foranyd e Nn[N,N+M;-1], letP ., := P;' (0, 7(1 + a)IP). ThenPNH\Wj =R.
For convenience, ld¥1; := 0.
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. . . i i N+M;
In conclusion, for any € NN[1, 2" and j € NN[1, J], we have constructed a chdiR;'}, ",

starting fromR; j and ending withR. Let N; := N + I\7Ij. Applying the definitions of botiN and
J, (3.15), and (3.5), we obtain

_ i—1)(1-
Nj = 27— 14+ W < 2m g U2 D0

7(1+ )

m, 0-DA-a) n (1-92" 1-a
<20+ 1+ @) <20+ l-a 1(1+a)
71+ ) |P[r(1+ @)

l-«a 0%

P
-1
< 2p w1 < 2—p81+3p+1 P

From (3.11), the fact thag; € [0, 3), and the construction QPij’j}dNio,

i e NN[1,2"M, jeNn[LJ], andd e NN[1, N,

we deduce that, for any

I(P{;‘)+(a)_ n (Sgly) (@) . [ 1 1]
(Py)* (o)l 2
Similarly, for anyk € N N [1,2" and: € N N [1, J], we can construct a cha'{nPd‘}g‘:O such

thatN, € NN [1,2C], P& = R, “kN. =R, and

I(SKY)~ (@) N (P )* (@) [1 ]
— € y
I(SK)~ ()l 2ml

for anyd € N n[1, N,]. This finishes the proof of (ii)-(iv) and hence the aboverula
Next, based on (i)-(iv), we can build a chain connectityg andi‘(’m for anyi,k € Nn[1,2"]
and j,c € NN [1,J]. More precisely, for anyi,k € NN [1,2"], j,t € Nn[1,J], andd €
Z, N[0, N, + Nj], let
sk Py’ ifdeZ+m[9:ﬁL], ~
d TP ifdez, NN+ LN + N
N,+N;j-d

and 8" (@) := (P} (a) - (0.7(1 + )[I(P}*]P). Then, for anyi.k € N N [1,2"]

andj,. € Nn[1,J], we have constructed a cha\ﬁﬁij’j’k"}gl‘:BNj consisting of congruent parabolic

rectangles. From (i) through (iv), it follows that the folling statements hold.
(v) Foranyi,k e NN[1,2"] j,c e NN[1,J], andd € Z, N[0, N, + Nj], pidj,k,L cR

(vi) Foranyi,ke Nn[1,2" andj,ce NN[1,J], P = R, andP" ™ =R ;.
0 N ’J

. +N;

(vii) Foranyi,k e NN[1,2"], .. e NN [1,J], andd e N N [1, N, + Nj],

|ﬁywwmmmiﬁwm|[1
(85") (@) am

Now, we prove that there exists a positive cons@nsuch that, for any givenk € NN[1, 2"M]
andj,ce NN[1,J],

(3.16) JQ o f< CZJC ul.
Re (@)-(0.r(1+)[I(Re)]P) R (@)-(Or(L+a)[I(R )]P)

A

https://doi.org/10.4153/50008414X25000185 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25000185

ParABOLIC FRACTIONAL INTEGRALS WiTH TIME LAG 17

Indeed, by [50, Lemma 7.4], [45, Theorems 3.1 and 4.1], aachisumption that € Al (y), we
find that there exisK, § € (0, o) such that, for anR € RB“ and any measurable détc R*(a),

R @)’

B | @E).

UD (R*(@) - 0.7(1+ )I(RP)) < K[

From this and (vii), we infer that, for anmye N N [1, N, + Ni],

Jf"“)() o= m( q)(( i) (“))

K (P (@) r
|(s' M- @185 (@) n P+ (@)l

X (@)((S™) @ (P4 @)
sz(””)&ka ud,
(S5 (@)

Iterating this inequality and using (vi) and (iii), we obtai

JC ud = JC N ud
F~§; (@)—(0.7(1+a)[I(R.)]P) (S}j"k“)’ (@)

< [2(n+1)6 K] N+N;

d
S @
ﬁl+Nj

< [2t 10 K]3C1 f W,
R (2)-Or(Lra)lIR,)IP)

Hence (3.16) holds witlT, := [2(M19K]3C,
To show (1,v) € TA'4(y), we still need the following estimate. From the fact theit< 2s for
anyse [1, «), (3.5), and the definition af, we deduce that

(3.17) 2my = | E=N2T] 17 oo
l1-«a B 1—a/
- 1-vy(l+a\"P(1+a\" 2"*§+3(n+p)+1 -C
T l-a\l-a y 3

Applying the obvious facts that

2nm 2nm
R*(y) = UUV+ and R™(y) = UUUkL,
i=1 j=1 k=1 (=1

Vi, ¢ Rfj(e) foranyi e Nn[1,2"and j e NN [1, J], (3.6),U,, C R;; (@) - (0, 7(1 + @)I(Re,)P)
for anyk e NNJ[L1,2" and: € Nn[1,J], (3.7), (3.16), (3. 17) (3 1), the definition df and the
fact that[s] < 2sfor any s € [1, ), we conclude that

(3.18) f % [JC v—r’]r
R (y) R*(y)
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(LA
=\ 2nm3 2PM(1 —y)
znm J 2nm ﬂ,
ud JE
; Z‘ J%l ()~ (1+a)[I(Re)IP) ] l; ; i ]
1+ 9 1+3
7 (1-a)d v nm 1y -1
(2nm;|) [me(l -7) max{l, e }
2nm rﬂ,
SSE el ]
.;1 ,Z‘l (@~Or(L+)[I(Re)IP) Ri@
1A\M7 [ 1-)d |7 Ca
5 (2nmJ) [zpm(l - 7)] max{l @ }
2nm Tﬂ/
S5 f “If0]
.;1 uzl "/ (@)~(0r(1+a)[I (R )1P) Ri@)

< ot max{l cy }czc
Taking the supremum over &l € RB”, we obtain @,v) € TA/,(y) and
1 q 1—3,
[u, v]TA;q(y) <2+t max{l, C, ' }CZC,

which completes the proof of the ffigiency of (i).

Finally, to prove the present theorem, it remains to showsthigciency of (ii). Indeed, using
[34, Exercises 1.1.3(a)] and letting—~ 1* in (3.18) with the assumption therein replaced by (3.2),
we find that the sfliciency of (ii) holds, which then completes the proof of Therar3.1. m|

Remark 3.2. (i) The assumption that € A%, (y) is only used to prove the fiiciency of Theo-
rem 3.1.

(i) Theorem 3.1 when both = g andu = v coincides with [45, Theorem 3.1].
The following is a direct consequence of Theorem 3.1.

Corollary 3.3. Lety € (0,1), 1 <r < g < o0, and(u, V) be a pair of nonnegative functions on
R™L. Assume that & A% (y). Then the following statements hold.

(i) Foranya € (0,1), (u,v) € TA (y) if and only if(u, v) € T A 4(a).

(i) (u,v) € TAy(y) if and only if there exists a positive constant C such thatafty Re RB”,

£ ol e
R~(y) R*(y)

where R™(y) := R™(y) - (0. (1 + »)[I(R)]P).

e

Remark 3.4. Corollary 3.3 wheru = v coincides with [61, Lemma 2.1(3)].

Using Corollary 3.3, we obtain the following self-improgiproperty of the parabolic Muck-
enhoupt two-weight class with time lag.

Corollary 3.5. Lety € (0,1), 1 <r < g < oo, and(u,v) € TA (). If u € AL(y), then there
existsdg € (0, ), depending only on n, p;, r, g, and[u, v]TA;_q(y), such that, for any € (0, dp),

(u,v) € TA{thré(y).
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Proof. From the assumption that € A/ (y) and [50, Lemma 7.4], it follows that there exists
Qu € (1, 00) such thawd € Aj (y). By this and [45, Corollary 5.3], we conclude that theresexi
positive constant€ andsg, depending only om, p, y, g, and the weight constant afl, such that,
foranyR e RB“,

1

[f uq(1+50)]r60 S Cf uq’
R R*()

1

1
[JE uq(1+5o)] oo [JE V—r’] v
R=(y) R*(y)

1

1
q S 1
SC[JC uq] [JC v‘r] <Clu,V]3 ., ...
R-() R*0) TAL0)

From this and Corollary 3.3(ii), we infer that,V) € TA{jq+50(y). This, together with Proposition
2.3(ii), further implies that, for any € (0, dp), (u,Vv) € Tﬁqq+5(y). This finishes the proof of
Corollary 3.5. m|

which further implies that

4 Characterizations of Weighted Boundedness of
Parabolic Fractional Maximal Operators with Time Lag

In this section, we characterize the parabolic Muckenh@pb-weight) class with time lag
in terms of the (weak-type) weighted boundedness of thebpécafractional maximal operator.
Recall that, for any giveq e [1, ) and any nonnegative locally integrable functioonR"*, the
weighted weak Lebesgue spad(R™1, w) is defined to be the set of all measurable functions
f onR™! such that

1

IfllLac @ity = sup A[w({|f] > A})]2 < co.
/16(0,00)

Specifically, ifw = 1, thenL%*(R™!, 1) is exactly thaveak Lebesgue spaead we simply write

L& (R™1) := L°(R™1, 1). The following theorem is the main result of this sectigve borrow

some ideas and techniques from [29, 45].

Theorem 4.1. Lety € (0,1), 4 € [0,1),1 <r <qg< oo, f =2 - é and (u,v) be a pair of
nonnegative functions oR™?. If u € A% (y), then(u,v) € TA(y) if and only if there exists a
positive constant C such that, for anyefL" (R™?1, V),

(4.1) Mz ()| < ClIflir ey

Lq,oo(Rm-l’uq)
Proof. We first show the diciency. Assume that (4.1) holds for affy e L"(R™!, V). Fix
Re RB”. From Definition 2.4, we deduce that, for atye (0, [R"(y)P (V" )r+(,)) and for aimost
every  t) € R°(y),

A<ROF (Vg = RO ﬁw) v < M2 (VT dregy) (60,

which further implies thaR (y) c {Mg+(V“'/1R+(y)) > A} up to a set of measure zero. Combining
this and (4.1), we obtain

q
r

a < (M (v = -
L(y) ut < (u )({Mﬁ (V 1R+(7)) g /l}) : A9 [fRW)V ] '
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Letting 2 — [R*(y)P(v"")re(), dividing both sides byR*(y)|, and usingt — £ = g, we find that

1
aq

q
JC uq[f v‘r'] <C.
R (7) R*(y)

Taking the supremum over d € RB”, we conclude thati(v) € TAf,(y) and L, VIt a0 < C,
which completes the proof of the figiency.

Next, we prove the necessity. Let () € TA((y), f € LT (R™L, V"), andA € (0, c0). We need
to show that (4.1) holds. To this end, we divide the proof thifollowing five steps.

Step 1.In this step, we make the following simplification.

(i) We may assume thdtis bounded and has compact support. Indeed, fokanid, let
fk := max{|f], k} 1ro,0)-

Then, for anyk € N, fi is bounded and has compact support §nd> f almost everywhere
onR™1! ask — oo. From this and the monotone convergence theorem, it foltbats

(4.2) f |fk|rvr—>f ||V
RN+1 RN+1

ask — oo. In addition, by an argument similar to that used in the pa¥¢d8, Lemma 3.30]
and the monotone convergence theorem again, we find that

W ({MF*(fi) > A}) > @ (M (F) > 1))

ask — oo. From this and (4.2), we deduce that, to prove (4.1)ffait suffices to show that
(4.1) holds for anyfx with k € N and the positive constaftindependent ok, A, andf.

(i) We may assume that botlf' andV' have a lower bound for someA € (0, «). Indeed,
1
applying Proposition 2.6, we conclude that (maxAds}, maxyv, A%}) € TA4(y). If we
have

T

(max(u, A} ({M)*(£) > a) < ﬂ—lq[fwlﬂr max{v', A}| ,

where the implicit positive constant is independenioft, and f, then we obtain (4.1) by
letting A — 0 and taking the supremum ovégk (0, o).

(i) Fix a€ (0,1). Let M[Z; denote thdéruncated uncentered parabolic forward in time maximal

operator, that is, for anyg € Li (R™?) and & t) € R™,

. B
MEexo= s [ROFf
RerDF1 R*(y)
(xt)eR™ (7). I(R)e[a,0)

To prove (4.1), we only need to show that
9

(4.3) W ((mMzah) > 4)) < ﬂ—lq(le |f|fv')

where the implicit positive constant is independentpof, and f. Indeed, in (4.3), letting
a — 0 and taking the supremum ovée (0, =), we then obtain (4.1).
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(iv) To prove (4.3), it stfices to show that

q
+ 1 ’
(4.4) W ({1 < M5(f) < 24)) < = ( fR . |f|rv’) ,
where the implicit positive constant is independentpf, and f. Indeed, from (4.4), we
infer that

W (M0 > ) < 3T W ([ < Mz < 2432))

keZ,

q
1 (f r
S Iflr\/)
kEZZ+ qu/lq RN+1
1 :
~ r
/lq (mel |f| Vr)

(v) Fix any compact sef c {1 < Mﬁy;(f) < 21}. Then, to prove (4.4), it fices to show

and hence (4.3) holds.

@9 @ s ([ )

where the implicit positive constant is independenkog, 4, andf. Indeed, using the inner
regularity of the Lebesgue measure (see, for example, [B8prEm 2.14(d)]) and taking

the supremum over all compact subset$io& Mﬁy;(f) < 21}, we then obtain (4.4).

Step 2.In this step, we aim to prove that there exibe N and a sequeno{é’i}i’i1 of parabolic
rectangles such that

N
(4.6) W (K) <2 (W (P(),
i=1

wherea = % To begin with, from the definitions of botk and M[Zfa, we deduce that, for any

given (x,t) € K, there existdR(yy) € R?,*l such that ¢, t) € R(‘x’t) (), (Rixy) € [a ), and

@.7) A< |R&t)(y)|5£ | < 2.

) (»

Using the assumption ofiin (i) of Step 1, we find thaf e LY(R"!). This, together with (4.7),
further implies that

1
-8

neq _ n+p _ |p+ }
2"(1~7) [I(Rixy)] |qu,t)(y)|<[ ; fRz mm'f'l

1
f n+1y | T8
[II L1 1)] <o

<

i

Combining this and the fact thERx)) € [a, o), we conclude that

||f||L1(Rn+1)]Whﬁ> [ 1 rp

(4.8) a<l(Ryp) < [ 2 (1—7)
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Let Pxy) := BRixy). Here and thereafter, for amy:= [T [yi —Li, Vi + Li] X (s— LP, s+ LP) c R™?
with {yi}1; € R, {Li}L; € (0,»), s € R, andL € (0, ) and for anyA € (0, ), defineAR :=

L [yi — AL yi + ALi] x (s— (AL)P, s+ (AL)P). Then it is easy to verify tha‘ﬁ?x’t)(y) C P(+x,t)(“)
and R(‘X,t)(y) C P(_x,t)(“)- In addition, from the fact thaK is compact and (4.8), it follows that
Uxtek Pixty is bounded and hena# is integrable on ek Pixy. Applying this, the absolute
continuity of the Lebesgue integral, (4.8), and (ii) in Stepwve find that there exists € (0, 1)
such that, for anyxt) € K,

(W) (A + )Py (@) \ Py (@)
< A2"SMPAMP(1 - a) < AP (@)] < (%) (Ppy (@),

which further implies that

(4.9) (U9 (1 + Py (@) < 2(u) (Py (@)
On the other hand, let

(4.10) ‘€ ;= min {(1;;)5 [(1+¢)P - 1]?11 , e}.

From the finite covering theorem and the fact that

Ke [ int(R(xt,588)),

(xt)eK

we deduce that there exidi € N and{(x, tk)}l'z'zl1 c K such that

N]_ Nl
(4.11) K c|_Jint (R(x t. 588)) < |_J RO t. 528).
k=1 k=1

where, for anyE ¢ R™1, int (E) denotes the interior dt.

Now, we select a subsequence{Ia(ka,tk)}'Iz'zl1 by two steps. Assume that, for aky NN[1, Nq],
Rxot = R(Yk> Sk Lx) with (yk, ) € R™! andLy € (0, ). Without loss of generality, we may
assume that the tops {:R(Xkatk)}ll(\lzll are monotonically descending, that is, for &ny € NN[1, Np]
withk < j, s¢+ LP > Sj + L';’; otherwise, we can rearrangé(ka}::':ll in terms of the-coordinates
of their tops.

Then we make the first selection inductively. Selggt ;) and denote it byR(, ). Suppose
that we have selected the subseque{ﬂ@i,tki)}i”:‘l of {R(Xk,tk)}llzl:ll' wherem € N N [1,N;) and
km < Nj. Let

m
jm = min{j €N kn+ j < Npand (X, tigj) ¢ U P(_in’tki)(a)}
i=1

with the convention ind = co. If j;m € N, then selecR . ;.. tn:im) @Nd denote it bRy, 1 ),

otherwise, we terminate the selection process. In this erame have obtained a subsequence

{Rx, ,tki)}i'\fl of {Rixt0}ry» WhereN, € NN [1, Ny]. This finishes the first step of selection process.
Without loss of generality, we may assume that the edge henoft{Rx, ,tki)}i'\fl are monotoni-

cally decreasing; otherwise, we can rearrafiiie, ,tki)}i'\fl in terms of their edge lengths. Then we
make the second selection inductively. SeRgf ) and denote it bR, ., )- Assume that we

have selected the subsequefRg, 1, )}, of {R(in ,tki)}i'\z'zl, wherem e N N [1, Np) andk;,, < Na.
Let

Jrm ::min{jeN: K, + ] <Nzand
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m
P(_Xkrm+jstkrm+j)(a) ¢ U P(_Xkri ’tkri )(a)}
i=1

with the convention in = oo. If j,, € N, then selecRy, . . .;.) and denote it by

Rix L)’ otherwise, we stop the selection process. By this way, we lobtained a sub-

sequenceRy, atkr-)}il\il of {R(in ,th)}i'\z'zl, whereN € N N [1, Ny], which completes the second step

of selection process. For convenience, for aryN N [1, N], we simply WriteR(Xkri i) asR;. In

conclusion, we have selected a subsequ&aﬁgél of {R(Xk,tk)}llzl:ll'
According to the above selection, we conclude that theviolig statements hold.

(i) Foranyi,j e NN[1,N]withi # j,R(y) ¢ Rj‘(y), which is a direct consequence of the
first selection.

(i) Foranyk € N N[1,Ny], there exists € N N [1,N] such that k. t) € P;(a). Indeed, if
Rt € {R()qq ,th)}i'\fl, then, based on the first selection, there exist® N [1, N»] such that
Xk, tk) € P ). | ) € {R}ii., then, in light of the second selection, we have
( ) (Xmatm)( ). If X 1) I’\il h in light of th d selecti h

P ’tki)(cx) c UL, Py ().
(i) Foranyk e NN [1, N;], there exists € N N [1, N] such that
(4.12) R(X«. tk, 5a€) € (1 + €)P; ().
Indeed, lei € NN [1, N] be such that
(X, 1) € P (@) = P, 1, (@)
= Q(Yk, - 5Lk, ) % (S, — (5Lk, )"+ S, — @ (5L, )").

Then||x.— Yk, Il € [0, 5Lk ] and s, —tk € (5L, )P, (5L, )P). From this, (4.8), and (4.10),
we infer that, for anyy, s) € R(x, tk, 5a€),

s<tg+(58)PeP < 5 — cx(SLkri)p + (5a)PeP
<g +(@-a)(5L)
< s - “T“ (5Lk, )" + 1;2“(1+ &P (5L, )"

s>t~ (5a)°&” > 5, — (5Ly, )° ~ (58)°e”
> 5, — (5L, )" (1 +2)

> g, - “Ta (5Lk,)" - %a(“ 9P (5L,)"

and

Iy = Yie, |, < 1y = Xdloo + [ = i, ||,
< 5a€ + SLi, < 5L, 1+e),

which further implies thaty s) € (1 + €)P; (o). By the arbitrariness ofy(s), we obtain
R(X, t, 58€) € (1+ €)P} ().
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(iv) For any giverk € Z andR;, R; € {R}}Y, with I(R).I(R;) € (5. %], we have

(4.13) RINRj(G) =0.

We show this by contradiction. Indeed, from the first setectiwe deduce tha (y) ¢
Pj_(a) or Rj_(y) ¢ Py (). Without loss of generality, we may assume tRaty) ¢ Pj‘(a).
Suppose that there exief € Z andR,, R; € {R}; satisfyingl(R),(R;) € (555 55] and
R-) Ry () # 0. Fix (0. %) € RI() "R (). Then, foranyy.§) € R°() = R,y ),

S, =S y(l_krj)p - a(5Lk,j)p,

s—s,(,j = s—so+so—s,<,j > s—so—(Lkrj)p
- ) - ()
> _(2P(L-y) + 1) (th)IO > (5|_krj)p,
and
[y = vie || < = yolleo + Jyo = i, | < 2Lk, + Lk, < 5L,

which implies thaR™(y) ¢ Pj‘(a). This contradictsR™(y) ¢ Pj‘(a). Thus, (4.13) holds.
Using (4.11) and (4.12), we conclude that

N1 N
K c U R(X, t, 58€) C U(1+ )P, (),
k=1 i=1

which, combined with (4.9), completes the proof of (4.6) hrdce Step 2.
Step 3. In this step, we prove that there exists a positive constastich that, for any e
1
1

NN [1,N],
1
B 1-5
f |f] scl[f |f|l,
R() R ()

(4.14) >
where; == {j e NN [L.N] : R'(») NR!(y) # 0. I(R}) < I(R)}. Fixi € Nn[1,N] and let

j€T;

Tii={jeli: R ¢R ()} andTiz:={jeli: Ri(y) cR M)}

Thenl;, Ul =T andli1NT2 = 0. To show (4.14), it sflices to prove that there exist positive
constantsC, andCs, depending only om, p, andy, such that, for any € {1, 2},

(4.15) TR < Cha R0

j€Tin

Indeed, from this and (4.7), we infer that

™ 2
’;‘ UF;M |f|l i [J‘;u : j;i_zJ [ij*(y) lfll
< (ZA)ﬁ [Z + Z ] |Rj+(7)|
jelia  jeliz
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1
< (C2+ Ca)(2) T R (7)|

< (Cy + C3)27% U |f|l
R'G)

and hence (4.14) holds wit® := (Cy + C3)2T%.
Next, we turn to show (4.15). Léb € Z be such thak(R) € (g7, 55]- We first consider the
caseh = 1. We claim that, for ank € Z N [ko, =), there exists a measurable &tc R™?! such

1
1-8

that
U Rj C Ex
JeTia R)e(r. %]
and
2x3"B =) 1 myn . 2372 -yN ot
|Exl < T['(R)l + T[I(Ra)] P

Indeed, fixk € ZN[ko, ). Denote the @+ 2 faces oR' (y) by {Sm}2™2, whereS; andS, denote,

m=1"
respectively, the top and the bottomRf(y). For any givenj € I'i; such thal(R;) € (%, %],
sinceRj+(y) ¢ Rf(y) and Rj+(y) N R (y) # 0, it follows thatRj+(y) intersects with the boundary of

Rf(y), that s,

2n+2
(4.16) Ri () N [U sm] # 0.

m=1
For anySp, with me N N [1, 2n + 2], there exists a rectangi, ¢ R™* such that
| Rj C Ekm
e, (Rt 5] R ()NSm0
and
B-N[IR) +2AR)[ IR)IP  if me (1.2},

x| = {21R)[IR) + 2R)[ " @~ )
<IRIP+@-NIR)P)  fmeNn[3,2n+2]

Applying this, (4.16))(R;) < I(R), andI(R)) € (. %], we find that

2n+2 2n+2
U RJ‘ZU U RjCUEKmZZEk
i€l m=1 i€l g m=1
IReCrg 5k R)eCorg -5k - R ©InSm0
and
2n+2
Ed < ) [Exn|
m=1
< BRI + 202 BIR)™H4 - 2)[I(R)]°
= 2kp oK 7
_2x3"3-v) n 233712 - y)n n-1+p
= IR+ =R,
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This finishes the proof of the above claim.
Observe that, for any € T’ 1, I(R;) < I(R) and hence

(o0

Ii1= U {j elq: I(Rj) € (zk_l+1 %]}

k=ko

From this, (iv) in Step 2, the above claim, &) € (&, 5], we deduce that

(4.17) >R = Z > RE()|

jelia k=ko {jeri 1 I(R)e (557 51)

Y RGN
k=ko

k=Ko (jeTi 1t I(Ry)e(z1 k1)

2kp-1 2k-3

n n-1/o _
_2{3(3 2 R iR

_ 22p+13n(3 _ ’)’) 1
- 2p_1 2(ko+1)p

+2°34(2 - y)n[I(R)]P

2k0+1}[l<a)1"
22p+13n(3—7) 54n-1 1N+
—_1 2°3 (2—y)n] [I(R)I™P

| 220133 - ) + 253712 - 9)(2° - 1)n "0
= (=)@ - 1) RO

G |RI ()]

which completes the proof of (4.15) whéar= 1.
Now, we prove (4.15) in the case= 2. Let

Qg = {J eliz: I(Ry) € (zkj-ﬂ ij'o]}

For anyk € N N [kg + 1, o0), we defineQ)y inductively by setting

and

. 1 1
Qk Z:{jeri’z I(RJ)€(2k+1 2k

k-1
R0l R =®}.

d=ko meQyqy

LetQ := U;‘;ko Q. Notice that{Qk}f;‘;k0 are pairwise disjoint. In addition, for anye Q, we have
RJ.*(y) Cc Rf(y) and henceRj‘(y) c R. From these two facts and (iv) of Step 2, it follows that

(4.18) DR = i DR = i YR

jeQ k=ko jeQk k=ko jeQk
=2 |UrRo|=|UJUrR®
k=ko |jeQx k=ko jeQx
<R <RO=R
j€Tiz2
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Next, we show that, for angn € T, \ Q, there existsj € Q such thale‘ (v) N Ryp(y) # 0,
Ru(y) ¢ Rj_(y), andl(Rj) € (I(Rm), o). Indeed, leknin € [ko, ) be the smallest integer such
that there existg € Q. satisfyingR(y) N Rj‘(y) # 0. From (i) and (iv) in Step 2, we deduce
thatkmin > ko andRy(y) ¢ Ry (y). Moreover,|(R;) € (I(Rm), ). Otherwise, by the definition of
kmin and (iv) in Step 2, we conclude that there exigtg N N [ko, kmin) Such tham € Q. , which
contradicts the assumption thate I > \ Q. Thus,I(R;) € (I(Ry), ©).

For anyj € Q, define

;= [MeTi2\Q: Ry0)NRG) # 0, Ry() ¢ Ri(7), andi(Re) < I(Ry)}.

Let j € Q. Then there existk € Z N [ko, o) such thal(R;) € (=, ]. We claim that, for any

- 7 ok+17 ok
k € Z N [k, ), there exists a measurable &gtc R™?! such that

(4.19) g Re(7) < Ex
meQj, |(Rm)e(1. 5]
and

223'(1-y)
2kp

223(1 - y)n
2k
Indeed, fixk € Z N [k, o). Denote the @+ 2 faces ofR; (y) by {Sa}3™{2, whereS; andS; denote,

respectively, the top and the bottomRf(y). For any giverm e Q; such thal(Ry) € (751> %
sinceR(y) ¢ Rj‘(y) andR,(y) N Rj‘(y) # 0, it follows thatR;, intersects with the boundary of

(4.20) B < IR)I™ + [(R)]™1P.

Rj‘(y), that is,
2n+2~
(4.21) R-(y) N [U sd] £ 0.
d=1

For anySy with d € N N [1, 2n + 2], there exists a rectangi& g c R™! such that

U R(?) € Exd

I(Rm)e(zli—l,zlk].%(y)ﬂsdiﬂ
and
() + 2R 201 IR if de(1.2)
Bkl = { 2R [IR) + 2R {(1-7)
xURIIP+2(1-NIRwIP}  ifdeNN[3,2n+2].

Applying this, (4.21))(Ry) < I(R;), and!(Ry) € (5. ], we obtain

2n+2
J o= g Ra(?)

Rm)<(7 5] IRm)(x7 k) Rm()nSg#0

2n+2
- U Exa = Ex
d=1
and
2n+2
EEPNET
d=1

https://doi.org/10.4153/50008414X25000185 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25000185

28 WEry1 Kong, DacHUN YANG, WEN Y UAN AND CHENFENG ZHU

<2[3R)][" % Zn% [3R)]" 3-N[IR)]"
B N A L)

This finishes the proofs of (4.19) and (4.20). From this, det that

2

(o)

~ ~ 1 1
Qk:u{megk: I(Rm)E(W,?
k=k

(iv) in Step 2, and(R;) € (=, L], we infer that

ok+1’ ok

(o)

PN EDY > IR

meQ k=k (MeQj: I(Rm)e(zg 1)

Z IRA()| < Z |E]
k=K {meQ;: I(Rm)e(zk% 2—1k]} k=k

<Z{3”(1 7) 3”(1 7)n

2kp-2

IR 1}[I<R,)1“

22p+23n 1
- { 2P — 1 okr)p
B 22p+23n(1 _ 7)
- 2P -1

243”n[|(R,)]P‘ }[I(RJ)]”

+243"1 - y)n] [|(R,-)]”+P

_ 209+ 2P - 9@ - I,
- 20— )@ 1) Ko

163|R}r(7)|-

Combining this and (4.18), we conclude that

S Rol-[3e 3 ko

jeli2 j€Q  meli2\Q

< RO+ D RO

jeQ jeQ meQ;
<D RM+C ) R M| =(Ca+1) Y IR
jeQ jeQ jeQ
< (C3+1)|R ()| = Cs R ()]
which completes the proof of (4.15) whén= 2. This, together with (4.17), further implies that
(4.15) holds and hence (4.14).

Step 4.In this step, we prove that there exists a positive con&antilepending only om and
p, such that, for any € N N [1, N], there exists a measurable $gtc R (y) such that

1 P
(4.22) Wfpime(i’m
and

N
(4.23) D1k <Ca

i=1
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In what follows, for any finite subsét c N, we denote the cardinality @& by §A. For any given
i € NN [1, N], we defineF; by considering the following two cases fiir;.

Case 1Ml < 277 [C1]. Inthis case, leF; := R (y).
Case 24l > Zﬁ [C4]. In this case, for ani € N, let

Ef:=R'(»)n {Z lre) € [k, oo)}.

j€T;
Notice that, for ank, k' € N with k < k', we have

(4.24) EF c EF

and, for any §.t) € R* (),

T

(4.25) Z Le(xt) = Z Lre) (% ).
k=1

j€Ti

Then we defind; := R*(y) \ EZ<".

We show that, for any € N N [1, N], F; satisfies (4.22). We consider the following two cases
for #T7.

Case 1} < Zﬁf [C11. Inthis case, from the definition &% = R"(y) and (4.7), it follows that

1 , — IRF () oo
G fFilfl_R vl ﬁq*(y)me(ﬂ’ 4

Case 2}I; > 275 [C4]. In this case, using (4.245;k C Rf(y) for anyk € N n [1, 7], (4.25),
and (4.14), we obtain

(Mm%ﬁ%mﬂtfmgﬂ)
Bt

1
-8

#T 1_}5 HL; 17113
< fl =] iy e

;Lr] [wm éEl

~ 1 1
I BRI
Y | <am lf Hq
JR) ,EZF i T &R

B =
< (#) T#[C1] [f Ifll ,
R (v)

which, together with (4.7) and the definition I6f, further implies that

1 A 1-8
t= [ it [ fiz5 [ i 5RO
f i “(7) = 2JrRm) 2 Rt

Combing the above two cases, we complete the proof of (4.22).
Now, we turn to prove (4.23). To this end, we first show that oy (x,t) € Fj,

1
(4.26) > 1r:(y(%1) < 27A[C1l.
j€T;
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Indeed, ifi[; < 27 [Cy], then, for any . t) € Fi,

1
(4.27) D repy(x ) < i < 277[Ca].
j€Ti

If 415 > Zﬁf [C1], then, from (4.25), we deduce that, for amnyt] € F;,

2[Cq]
1
D (k8 = ) Le(x 1) < 257Cq),
jeli k=1 I

which, together with (4.27), completes the proof of (4.26).
Then we prove that there exists a positive constantlepending only on, p, andy, such that,
for any given & t) € R™! andk € Z,

(4.28) Z 1R‘+(7)(X’ t) < 64.

iENN[LN] I(R)e(57. ]
To do this, let

1 1
k. ; .
l(X,t) = {I eNm[l’ N] . I(Rl)e(2k+1’?

and (. t) € Rf(y)}

and

1 1 1
Stxy = Q(X, p) x (t— ol W)

Then, for any  t) € R™1,

(4.29) ) R @) < Swp-
iel'(‘x,l)
Indeed, by the definition dit‘x’t), we find that, for any e I&t) and §/,s) € R°(y),
| 1 o1
Iy = Xllo < 2(R) < 57 and [t — o < 2[(R)]" < 507

Therefore, ¥, s) € Sxy) and hence (4.29) holds. From the definitionst&{) andSyy), (iv) in Step
2, and (4.29), we infer that

IR
Z Irrpy(% 1) = Z 1= Z 271 - y)[I(R)I™P

iENN[1,N] i€|k i€|k
IRt %] <9 <9

2(k+1)(n+p)-n

S—a— JR®
I iel'(‘x,t)

2(k+1)(n+p)-n

<1, S|
2k+)(+p)-n 1 o\ o
- 1-vy (Zk—l) 2kp-1
22n+p+2
= =. C4,
1-v
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which completes the proof of (4.28).

Finally, we show (4.23). For any(t) € Ui'\il Fi, there existg € NN[1, N] such thatg,t) € Fj,
andR;; is the largest parabolic rectangle in the following sense:ahyi € N N [1, N] satisfying
(x.1) € Fi, IR| < IRl Letko € Z be such thal(R;,) € (551 551 Applying the construction of,
Fi ¢ R (y) for anyi € NN [1, N], the definition ofl’j;, (4.26), and (4.28), we obtain

iZ:lFi: D D D T

ieNN[1,N] ieNN[LN]
I(%)e(;@;&;] IR 1 k]

IA

~ 1
+ "ty < Ca+ 279[Cy =: Ca
i€NN[LN] i€l
l(&)e(;kﬁ?%]

This finishes the proof of (4.23) and hence Step 4.
Step 5.In this step, we prove (4.5) by considering the following tvases for.
Case 1) re (1, ). In this case, from (4.6), (4.22), the Holder inequally,c R (y), @ = %

P = 5R foranyi e Nn[L,N], - é = $3, Definition 2.1(i), and (4.23), we deduce that

N
(4.30) (W (K) <2> (P (@)
i=1
2q+l N ~ 1 q
< T D) e [ 1

q+1 N AT
<2 Z . - - f ud (f v‘f)
A9 LR Jp(a) Fi

B 2q+15(n+p)(1+rﬂ,)(1_ a,)1+rﬂ,

(1— )47 20
N q

7 7
XZJC uq[f v‘r'l (f|f|rvr)
i-1 YPi(@) P (@) Fi
q q
2015 P ) (1 — )7 [U, VIt Ay (a)

(1-)™7 20

y Z( [ Wf

a 9 g
_ 2 PAINER — )7 U o) Ca
(l _ ,y)l+rﬂ,5p(1+rﬂ,)/lq

lr_l
x(f |f|rvr) )
RN+1

This, together with Corollary 3.3, finishes the proof of {irbthis case.
Case 2) r= 1. In this case, by (4.6), (4.22),= 2, P, = 5R foranyi e Nn[1,N], ¥ - é =B,
Definition 2.1(ii), and (4.23), we conclude that

lo

(o]

N
(W (K) <23 (P (@)
i=1
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oo+l N ) 1 q
<— ;(uq)(Pi (a))[—lRi+(y)|1—ﬁ fFilﬂ]

24 15MP(1 — ) a
< 4[]

i=1

29+ 15MP(1 — @)U, VITAr (o) N q
< TA“‘()Z f|f|v
(1 - 7)/lq Fi

i=1

<

20+1gn+ P(5p -y, V]TAI’q(fY)Cg ‘ q
5P (le | 'V) ‘

This, together with Corollary 3.3, finishes the proof of i this case. Combining this and
(4.30), we obtain (4.5). This finishes the proof of the neitgssid hence Theorem 4.1. O

Remark 4.2. Theorem 4.1 when both= g andu = v coincides with [45, Theorem 6.1].

The proof of Theorem 4.1 also works for the case 0 and we present this result as follows.

Theorem 4.3. LetB € [0,1), 1 < r < Qg < oo, 8 = % - %4 and (u,v) be a pair of nonnega-
tive functions orR™*. Then(u,v) € TA!,(0) if and only I\/g+ is bounded from L(R™?, V) to

[ G0 (Rn+l, UQ) )

Notice that the conditiom € A (y) is only used to show the necessity of Theorem 4.1. More-
over, using [61, Lemma 2.1 (1)] and [49, Lemma 7.4], we find,tfa any 1< r < g < o and
any nonnegative functiom onR™*, w € Al () implies thatw € A (y). These, combined with
Theorem 4.1 withu = v, the self-improving property o’ (y) with 1 < r < g < o (see [61,
Lemma 2.2]), and the Stein—Weiss interpolation theorera, f&& example, [7, Corollary 5.5.2]),
further implies the following corollary. We omit the detail

Corollary 4.4. Lety € (0,1),€[0,1), 1 <r<g<o,f=1 - % andw be a weight orR™?,
Thenw € Af(y) if and only if I\/!g+ is bounded from L(R™?!, w") to LARML, w9).
Remark 4.5. Corollary 4.4 when both = g andu = v coincides with [45, Theorem 6.2].

The following definition of centered parabolic fractionabximal operators can be found in
[61, p. 187].

Definition 4.6. Lety, € [0,1). For anyf € L (R™?'), thecentered forward in time parabolic
fractional maximal functionM?(f) with time lagand thecentered back in time parabolic frac-

tional maximal functionMg‘(f) with time lagof f are defined, respectively, by setting, for any
(x,t) e R™1,

MEF(f)(x1) == sup |R(xt, L)+(7)|'Bf |f]
Le(0,00) R(xt.L)* (7)

and

M= sup Rxt D Of f it
Le(0,00) R(xtL)~ ()

At the end of this section, we prove the following weak-typeabolic two-weighted bounded-
ness of centered parabolic fractional maximal operatotis tivhe lag.

Theorem 4.7. Lety,B € [0,1), 1 <r <g< oo, B = % - % and (u,v) be a pair of nonnegative
functions orR™?*,
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(i) If y € (0,1) and ue AL (y), then(u,v) € TA (y) if and only if My is bounded from
LM (R™L, V) to LR, ud).
(i) (u.v) € TA,(0)if and only ifME* is bounded from L(R™*, V') to L% (R™1, u9).
Proof. We first show the dticiency of both (i) and (ii). Ley € [0, 1). AssumeMgJ“ is bounded
from L"(R™1, V) to L4 (R™, u9). Fix R := R(x.t,L) € R} with (x.t) € R™! andL € (0, o).
DefineS*(y) := R (y) + (1—y)LP +2PyLP and, for any € (0, ), let f, := (v+ €)™ 1s+(,). Then,

forany §,9) € R (y), S*() ¢ R(y,s,2L)*(y) and|R(y, s, 2L)*(y)| = 2"™*P|S*(y)|. From this and
Definition 2.4, it follows that, for anyl e (0, 2MPE-D|S*(y)f(f)s+()) and §, 9) € R (),

A< 206D |5t () (f)g0¢)

<Ry o)f £ f. < M. 9,
R(y.s.2L)*(y)

which further implies thaR™(y) c {MgJ“(fE) > A}. Combining this and the assumption tmalg+
is bounded fronL" (R™?, V') to L% (R™1, u%), we obtain

[ = @R ) < () (M7 > a)
R (7)

q q
E r F_E —r'r ’
S/lq(mel var) _/qu;+(y)(V+€) vr] .

Lettingd — 2(”+p)(ﬁ_1)|8+(y)|'3(f5)5+(y) ande — 0, dividing both sides of the above inequality by
IR*(y)I, using% - % = f3, and taking the supremum over Rlle RB”, we find that

la

AT C
sup ud [ JE v’ ] < ST
reryLJRG) [ Js) 2 pe-1a

Thus, ify = 0, this and Definition 2.1(i) implyy, v) € T Af,(0) and, ify € (0, 1), then applying this
and Theorem 3.1 [here we use the assumptionutlea#\, (y)] we also concludey,v) € T A ,(y),
which then completes the proof of thefBciency of both (i) and (ii).

Next, we prove the necessity of (i). Léte Lﬁ)C(R””). From Corollary 3.3(i) and Theorem
4.1, we infer that, to show tha¥1’" is bounded fronL"(R™1, ) to L% (R™1, u9), it remains to
prove that there exists a positive constintdepending only om, p, v, andg, such that, for any

(x,t) e R™1,
(4.31) M%) < KMET(F)(x.b).

Indeed, fixL € (0, ) and letP := R(x,t + V—Ep L). Then we are easy to show thatt) P‘(%),
R(x.t,L)*(y) c P*(}), and|P* ()| = %|R(x, t, L) (y)|. This further implies that

Rt L ) f 1

ROCLL)* ()
5-1 -1
1- 1- y
< ( Z) f If] < (—Z] M3 (F)(x.1).
1-g P(3) 1-2

()

Taking the supremum over dlle (0, o), we obtain (4.31), which completes the proof of necessity

of (i).
The proof of the necessity of (ii) is a slight modification lét of (i) with Theorem 4.1 replaced
by Theorem 4.3; we omit the details. This finishes the prodftaforem 4.7. m|
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Remark 4.8. In the casau = v, Theorem 4.7 when = ¢ coincides with [50, Lemma 4.2] and
whenr < ¢ coincides with [61, Theorem 1.1].

The following is a simple corollary of Theorem 4.7 with= v, the self-improving property of
Afq(y) with 1 <r < g < oo, and the Stein—Weiss interpolation theorem, which has bbtained
in [50, Theorem 5.4] wheg = 0 and in [61, Theorem 1.3] whehe (0, 1).

Corollary 4.9. Lety,p e (0,1),€[0,1),1<r<qg<o,f=1- % andw be a weight oR™1.
Thenw € Af(y) if and only if/\/tg+ is bounded from (R, w") to LIR™?L, w9).

5 Characterizations of Weighted Boundedness of
Parabolic Fractional Integrals with Time Lag

In this section, we introduce the parabolic forward in tinmel #ack in time fractional integral
operators with time lag. Then we give the weak-type paraltwlb-weighted inequality and the
strong-type parabolic weighted inequality for such opmmat Recall that th@arabolic distance
dp onR™?! x R™1 s defined by setting, for an(t), (y, s) € R™,

(X, 1), (¥, 9) = max{nx— Yllor It = a%}.

We then introduce the definitions of parabolic forward indifnactional integrals with time lag
and parabolic back in time fractional integrals with timg &s follows.

Definition 5.1. Lety,B8 € [0, 1). For anyf € Lﬁ)C(R””), theparabolic forward in time fractional
integral Iﬁ”(f) with time lagand theparabolic back in time fractional integralgr(f) with time

lag of f are defined, respectively, by setting, for amyt] € R™?,

f(x-y,t—9)
77 (F)(x, t) ::f dyds
A ULetosy ROOLY* () [Ap((Ys 9), (0, 0))](+PIA=A)

and

_ f(x—-y,t—9
177 (f)(x, 1) ::f dyds
B ULeoey ROOL)-() [p((Y: 9), (0, 0))]+PI=A)

Remark 5.2. The integral domainJ, ¢(g..) R(0, 0, L)*(y) in Definition 5.1 is the area above the
surfacet = y||x||%. In particular, whem = 1, the integral domain is exactly the area above the
parabola = y|X|P; see the following figure.

t=vyxP

‘ R(0.0,L)"(») /
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We have the following relation between the parabolic fawi integral with time lag and the
centered parabolic fractional maximal operator with tiag: |

Lemma5.3. Lety,B € [0, 1). Then there exists a positive constant C, depending only pnamd
B, such that, for any & L:_(R™?1) and(x,t) € R™?,

loc

(5.1) M (F)(x 1) < CF(f)(x ).

Proof. Let (x,t) € R™! andLg € (0, ). Simply denoteR(x, t, Lg) by R. Observe that, for any
(. 9) € R*(y), dp((x, 1), (¥, 9)) < L. From this, the fact thaR*(y)| = 2"(1 - y)L"*P, and Definition
5.1, we deduce that

RO f 1] < 206D (1 = )P
R*(y)

(. )|
dyd
8 jl;*(y) [dp((x, t), (y, S))] (n+p)(1-B) yas

< 2611 — y)ﬂ_1|g+(l f(x1).

Taking the supremum over dlly € (0, ), we conclude that (5.1) witls := 2n6-1)(1 — y)5-1
holds, which completes the proof of Lemma 5.3. m]

The following lemma is a Welland type inequality in the padb setting. For the Welland
inequality in the elliptic setting, see [92, (2.3)] and [6,3)].

Lemma 5.4. Lety,B € (0,1) ande € (0O, min{3, 1 — B}). Then there exists a positive constant C,
depending only on n, p, 8, ande, such that, for any & LL_(R™!) and(x,t) € R™?,

loc

Nl

(5.2) DE(fD(x8) < C M (D OML DY)

Proof. Let f € Lt

loc

R™), (x,t) € R™1, andQ(y;t) = ULe.0) ROt L)*(y). Without loss of

generality, we may assume thmgi:(f)(x, t)Mgi:(f)(x, t) € (0, ); otherwise, (5.2) holds auto-
matically. Fixs € (0, co) (which will be determined later) and define

Q1 := (1.9 € QU ¢ dp((x1). (1. 9) € [0.6))

andQ; := Q[ \ Q1. Then
. B [f(y. 9)ldyds f
(5.3) 70 = fg R e A
= 1(x 1) + 11(x1).

We first estimate(x,t). Lety := ()7 and, for anyi € N,
Vit = Q(x 7% x (t +y'6P, t+ 5 1sP).
Then the following four statements hold obviously:
(i) Foranyi e Nand §, s) € V', dp((x, 1), (v, 9)) > (yiép)% =n7'6.
(i) Foranyi,jeNwithi=# j,V mVj+ =0.

(iii) Foranyi € N, the bottom ofV;* contains the top o¥;" ;.
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(V) Q1 Ui V7

For anyi € N, letR := R(x, t,n7*25). ThenV;* c R*(y?) and|V;| = ﬁlRﬁ()’Z)l- From this, the
monotone convergence theorem, (i) through (iv), and thietifeat

n+p

R' (y2)| —on (1 _ yz) 20P) (n—i 6) ,

it follows that

1f(y, 9l
(5.4) 106t) < iZN: f + [dp((X, 1), (¥, 5))]("+P(A-A) dyds

_i \(n+pP)(B-1)
< ), (1) I
< oN(L+e=p) (1 _ )/2)1”_'3 nz(n+ p)(1+e-p)

_i o\(n+p)e B—e-1
x>0 R oA [
ieN |%‘Jr()’z)
N(1+e-B) (1 _ ~,2\1+e—B,,2(n+p)(1+e—B)
L2 (I-—y)""n

- n(n+ Pe — 1

5PN (F)(%,1).

Now, we estimatél (x, t) similarly. For anyi € N, let
Uy = Q(X, njé) X (t +y7*26P t 4+ y_j+16p) )
Then the following other four statements hold obviously:
(v) ForanyjeNand{,s) € U], dp((x.1),(y. 9) > (y—i+25p)% = ni=2s.
(vi) Foranyj,k e Nwith j # Kk, Uj+ NnU; =0.
(vii) Foranyj € N, the bottom ofU j++1 contains the top olﬂj+.
(viii)) Q2 € Ujen Uj+.

For anyj € N, let P; := R(x,t,716). ThenU; c Pj+(y2) and|U}| = %yle*(yz)L From this, the
monotone convergence theorem, (v) through (viii), and #uoe that

P}r (y2)| —on (1 _ yz) n2(n+p) (nj_zd)l’wp’

we deduce that

1f(y, 9l
LSRN} [0 0, 0 s Y9

jeEN
j—2 \(+P)(B-1)
=3 "
jeN vy
< PNA-e=p) (l _ yz)l—f—ﬂ 2P (1-ep)

« Z (nj_26)—(n+P)E |P}r(y2)|ﬁ+5_1f If]

jEN PJ+(72)
2n(1—e—,8)(1 _ 72)1—5—Bn2(n+ p)(1-e-p)
= n(Pe — 1

5PN (F)(x, ).
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Combining this, (5.3), and (5.4) and choosing

&WAﬁmeﬂmm

M|

we then obtain (5.2) and hence finish the proof of Lemma 5.4. m|
Next, we are ready to present the first main result of this@ect

Theorem 5.5. Lety,f € (0,1),1<r<qg<oco,f=1- % and (u, V) be a pair of nonnegative
functions orR™?. If u € A% (y), then(u, V) € TA4(y) ifand only if there exists a positive constant
C such that, for any & L"(R™, V),

(5.5) |

v+
Iﬂ (f)”Lq"’“(Rm’l,uq) < C||f|||_r(Rn+1’vr).
Proof. We first prove the diciency. Assume that (5.5) holds. By this, Lemma 5.3, and fidrao
4.7(i), we conclude that(v) € T Af(y), which completes the proof of thefigiency.

Then we show the necessity. Assume thav) € TA/ (y). Let f € L (R™?!) anda € (0, o).

From Corollary 3.5, we infer that there exisis € (0, ) such that ¢,v) € Ar+,q+5(7) for any
6 € (0,6p). Choose: € (0, min{B, 1 — B}) such that

1
(5.6) ————— —9q€(0,60)
1-(+e
and letqs, gz € (1, o0) satisfy
1 1 1 1
(57) a_F_(ﬁ_E) andQ—F—(ﬂﬁ‘E).

Thenl< g <q< g <+ g < . Applying Lemma 5.4 and (4.31), we find that there exists a
positive constan€, depending only om, p, v, 8, ande, such that

?
7

{|Iﬁ7+(f)| > a} c {13 > A} c {c Mﬁj(f)mﬁ+j(f)r > /1}

2, i 2, 1
C {Mﬂ“_g(f) > E} U {M[;‘H(f) > E}

and hence
(5.8 (wWH%V”T>4)S“ﬂ%{M£:“)>é})

+ (uq)({M,ﬁ:(f) > é})

On the one hand, according to the proven conclusion dhat ¢, Proposition 2.3(ii), and

Corollary 3.3(i), we obtainy, v) € Tqul(%z), which, together with (5.7) and Theorem 4.1, further

implies that there exists a positive constint depending only on, p,r, g, 8, €, and L, V]TAr 2y
such that e

q

(5.9) (uq)({M[:Ti:(f) . é}) < % (le |f|fvf)F .
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On the other hand, from the proven conclusions thatg, < g+ g and {, V) € TA{q+5(y) for

anysé € (0, 59) and from Corollary 3.3(i), it follows thatx v) € TA{qz(%z), which, combined with
(5.7) and Theorem 4.1, further implies that there existssitipe constani,, depending only on
n pr,q, B € and |, v]T . such that

A, ()’

(uq)({ M (F) > }) %(fww\/)g.

By this, (5.8), and (5.9), we find that

@(flyoo]- i) ([ re]

Taking the supremum over all € (0, o), we then conclude that (5.5) holds. This finishes the
proof of the necessity and hence Theorem 5.5. m]

For any giverg € [1, =), let AI,q(V) be the set of all nonnegative functionson R™* such that

[w]AIq(y) = [‘“%"“é]TAIq(y) < oo. The following is a direct consequence of Theorem 5.5 when
bothu = vandr = 1; we omit the details.

Corollary 5.6. Lety € (0,1), g€ (1, ), B := 1— 1 ‘andw be a weight olR™?1. Thenw € AIq(?’)
if and only g+ is bounded from H(R™?, ) to L% ""(R”Jf1 9).

The second main result of this section is the following gjrtype parabolic weighted inequal-
ities for parabolic fractional integrals with time Iag.
Theorem 5.7. Lety,8 € (0,1),1 <r < g < 0,8 = 2 — 1 andw be a weight orR™1. Then
w € Afy(y) if and only if g* is bounded from 'I.(R””, w’) to Lq(Rn+1 9).

Proof. To show the sfiiciency, assume thag+ is bounded fromL"(R™1, w") to LIR™?L, w9).
Then, by Lemma 5.3, we find tha‘t/(gr is bounded fromL"(R™1, w") to LYR™?, w9), which,
together with Corollary 4.9, implies that € Af(y). This finishes the proof of the ficiency.
Now, we prove the necessity. Assume that A/y(y). Using Corollary 3.5, we conclude that
there existdg € (0, o0) such thaiw € Ar+ Ls(y) foranyé € (0,00). Fix € € (0, min{s, 1 - g}) such

that (5.6) holds and leg;, gz € (1, o) satlsfy (5.7). Thenk g1 << g < g+ dg < o0 and
L, .1
201 20 d

From this, Lemma 5.4, and the Holder inequality, we infattior anyf e L' (R™?, w"),

(5.10)

|y+(f)|qwq]%

[0
(L] [M;;(f)]g i
S{fRM[Mﬂ(f) wa} {fRH[MEQm qu}ﬁ

=1 xII.

To estimate I, by the fact thag < g and Proposition 2.3(ii), we find that € A’ (y). From this,
(5.7), and Corollary 4.9, we deduce that

1

2r

(5.11) |s(f |f|fwf).
le
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To estimate I, by the proven conclusions that g € (0, 6g) andw € A:q+5(y) foranys € (0, 6p),
we obtainw € Al (y). From this, (5.7), and Corollary 4.9, it follows that

1

2r

I s(f |f|fwf) :
RN+1

Combining this, (5.11), and (5.10), we find thﬁf is bounded fromL"(R™L, ") to LAR™L, w9),
which completes the proof of the necessity and hence Thebrém m|

The following theorem is a direct consequence of CorollaB(iBand Theorems 4.1 and 5.5;
we omit the details.

Theorem 5.8. Lets € (0,1) and1 < r < g < oo satisfyg = ¥ — é Let{y}3, be a sequence

of (0, 1) and (u, v) be a pair of nonnegative functions &*1. Assume that & A% (y). Then the
following statements are mutually equivalent.

(i) (u,v) € TA4(y2)-
(ii) M[Zﬁ is bounded from W(R™1, V) to L& (R™1, u9).
(iii) IIBWr is bounded from L(R™*, V') to L°(R™?1, ud).

Remark 5.9. Whenr € (1, «), if we replace the uncentered fractional maximal opermﬁfr in
Theorem 5.8(ii) by the centered fractional maximal operra@”, then Theorem 5.8 still holds.

The following theorem is a direct consequence of Theoreths#47(i), 5.5, and 5.7 and Corol-
laries 3.3(i), 4.4, and 4.9; we omit the details.

Theorem 5.10. LetB € (0,1) and1 < r < g < oo satisfys = + — %4 Let{yi}”_, be a sequence of
(0,1) andw be a weight oiR"™!. Then the following statements are mutually equivalent.

() we Ayr)

(ii) M[Zﬁ is bounded from L(R™?, w") to L (R™1L, w9).
(i) MJ*" is bounded from L&™?, &) to LIR™?, w9).
(iv) Mg“ is bounded from L(R™*, w") to LI (R™L, 9).
(V) ME“ is bounded from L(R™*, w") to LI(R™1, w9).
(vi) IIBstr is bounded from (R, w") to L& (R™1, w9).

(vii) Iﬁy7+ is bounded from (R, w") to LIR™L, w9).

6 Applications to Parabolic Weighted Sobolev Embeddings
In this section, we establish the weighted boundednessgidahabolic Riesz potentials and the
parabolic Bessel potentials in [4, 5, 33] for some speciahipalic Muckenhoupt weights. Then

we apply the results to show the corresponding paraboliolSelembeddings.
Let p € [2, ) andB € (0,n + p). For any & t) € R™1, let

p-n-p _P;l(ﬂ)p_li
hs(x, t) ;= teeDe™ 7 o) 1 0)(t).
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As noted in [47],hy is a solution of the doubly nonlinear parabolic partiafefiential equation
(1.3) inRYL. In particular, ifp = g = 2, thenh, is the fundamental solution of the heat equation
%—Au = 0inR}™. Notice that, for any givem € (0, 1) and for anyy, s) € Uyc(o.«) R0, 0, L)*(7),

1
[dp((y. ), (0, 0))](™+PA-A)

(6.1) Is(y. )| ~

with the positive equivalence constants depending only, @ v, andg, where
= n+p-p
=1 —
=" m-po+p
Lety € [0,1). Theparabolic Riesz potentiar;“ with time lagis defined by setting, for any
f e Ll (R™Y) and & t) e R™1,

loc

€ (0,1).

I?(f)(x,t) ::f f(x-y,t—9hg(y,sdyds
ULe(0e0) RO0,L)*(7)

According to (6.1) and Theorem 5.7, we easily obtain thefwithg proposition.
Proposition 6.1. Let pe [2,),v € (0,1),8€ (0,n+ p), L <r < g < oo with

rq (p-1(n+p)’

andw be a weight orR™?!. Thenw € Af(y) if and only iffz+ is bounded from L(R™?, w") to
LARML, ).

(6.2) T 1, n+p-p

For any measurable functiorisg onR™?, theconvolution #gof f andg is defined by setting,
for any (x,t) € R™?,

(f * Q(x.1) = fR f(x—y.t - 990, 9 dyds

Recall that, for any3 € (0,n+ p) and f € L{ (R™?), the parabolic Riesz potentil « f of f
coincides WithIS*(f). It was proved in [33] (see also [4, 5]) that, for angX < g < o satisfying
(6.2),Ig+ is bounded fromL"(R™?) to LAR™Y) if r € (1, ) and is bounded from."(R™?) to
L& (R™LY)if r = 1.

Next, we consider the parabolic weighted boundedness gifabolic Riesz potential operator
I§+. Observe that, for any € (0,1), 8 € (0,n+p), andf € L} (R™?), IS*(lfl) > I;+(|f|), which,
together with Proposition 6.1, further implies the follmgiproposition.

Proposition 6.2. Let pe [2,),y € (0,1),8€ (O,n+ p), 1 <r < g < oo satisfy(6.2), andw be
a weight onR™?*. If the parabolic Riesz potential operatd|2+ is bounded from LR, w") to

LIR™L, w9), thenw € Alq).

Remark 6.3. Let p, y, B8, I, 0, andw be the same as in Proposition 6.2. An interesting question
is whether or not the converse of Proposition 6.2 holds,ithathether or not € A/,(y) implies
that 7 2* is bounded fromL"(R™1, w") to LIR™?, w9).

Let1<r < q< o. Recall that, for any giveie c R theone-sided g-diagonal Muckenhoupt
class A(E) is defined to be the set of all nonnegative locally integeebhctionsw on E such
that

e

1 X 1 X+h , r
Wicgo = s & [ o av{s [ o oy}
e N e X
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is finite; see, for example, [6, (1.5)] whéh:= (0, c0). It can be easily verified that, i € A/((R),
then, for anyy € (0, 1),

e

6.3 %fl— h

he(0,00)

[ o avf g2 [ oo )

X+yh
S [o] Alg(R)

with the implicit positive constant depending only gnr, andqg. Note that the fi-diagonal
Muckenhoupt clasg\y o(R") is defined in (1.5). We provide a partial answer to the qoasi
Remark 6.3 as follows.

Theorem 6.4.Let pe[2,),8€ (0,n+ p),1<r < < co with

n+p-4
(P-1+p)

and w be a weight orR™?!. Let ue A q(R"), v € A/((R), and, for any(x.t) € R™!, w(x.t) =
u(x)v(t). Then the parabolic Riesz potentiég+ is bounded from L(R™1, w") to LIR™?L, w9).

=B,

=l

g
q

Proof. Fix y € (0,1) andf € L"(R™?, w"). From the self-improving property @ 4(R") (see, for
example, [60, Lemma 3.4.2]), we deduce that there e#ists (0, o), depending only om, r, g,
and [u] a, =), such that, for any € (0, 6o), U € Ay 415(R"). Choose € (0, min{s, 1-3}) such that

1

—— —q€(0,60)
1-G+o
and letqs, gz € (0, o0) satisfy
1 1 -~ 1 1 ~
—=—-—-(B-¢ and — =-—-(B+e).
O 1 - qQ r B+

Thenl< g1 < < G < g+ dg < . Therefore,u € A g,(R"). On the other hand, by the
Holder inequality, we conclude thate A g (R"). Combining these and (6.3), we find that, for

anyp € (0,71,
(6.4) w € Alg,(0) N ALg(p) N Al (o).
Foranyj € Z,, define
. (X
;= | J rRO.OL) (zi)'
Le(0,00)

From Remark 5.2, it follows that, for anye N and §, s) € Qj \ Qj_1,

IyIID < 2yl < s< Sl < o 1|3/|IO

= 92i = 21 -1
and hence
p. 1
ha(y. ) = spP B (5)™
n+p—,
o1 1 1
< (Z—J)p +1 ! Gl
Y

[dp((y. 9. (0.0)] P
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which, together with the monotone convergence theorem @uig, (further implies that, for any
(x,t) e R™1,

(6.5) TP = I (1 F)(x. 1)

+Zf 1£(y, 9lhs(x -y, t — 9 dy ds

]EN J\ijl

n+p-p
< (l)p +1
Y

: %WHMXD
3B -

nepp
jEN
Combining this, (6.4), and Theorem 5.7, we conclude thaghiowv thatfg+ is bounded from

p-1 _%1( i %
L' (R™L, ") to LYR™1L, w9), it suffices to prove that there exists a positive constamdependent
of f, such that

e 2_
n+p-38
.1 —1
21\p P
(6.6) Z (—) +1
jEN Y

< C||f|||_r(Rn+1’wr).

EaTes

)_I

S EMTD
B

Lq(le’wq)

To show (6.6), fixj € N. From an argument similar to that used in the proof of Lemrdanbth
v therein replaced bgﬁ, we infer that, for anyX, t) € R™?,

2n(1+5—E)+1

ENTIETE

2(n+p)(1+e—p) (n+p)e

A S e (€ e Y
M (D OME (D),

which, together with the Holder inequality and an argunsntilar to that used in the proof of
(4.31), further implies that

L+
6.7) ENQD
ﬂ Lq(le wq)
( i )2(n+p)(1+e B
< 2”(1+E—,3)+17(T HM}J (f)le (f)
(ZJ ) € Bte LA(R™1, )
2 2(n+p):)1+e =)
< 2n(l+e—ﬂ)+1 ( Y )
(2J )(n+p)e B
ol ol
B—e€ |_Q1(Rn+1’wa) pte LqZ(R“"l,qu)

22 [1_@_6)]"'[1_@"'6)] . 2(n+p)(1+e—p)
< 2n(l+e—ﬁ)+1 1- % (27J) i

Y\2 i e
1-(3) (%)Tp -1
2

1
)2 2

x (M2 77 (f)

AV
&

M- %7 (f)

La1 (R"*l,wa) La2 (R"*l,qu)
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i 2(n+p)(1+e—p)
— 4 — 212 2 p
< 2n(1+e—ﬁ)+1 [ Y ] Y

_ A2 i (+pe
4 47 g) P —
Y
1 1
()2 2 )2 2
ST (f M_7 " (f
x|[ME () TN
qu(le’wa) qu(le’qu)

Applying (6.4) and an argument similar to that used in theopaf Corollary 4.4, we find that
there exists a positive constadi, depending only om, p, y, 1, g, [U] A &), and B/]A;q(R), such

that
ﬂ.{_ ﬂ.{_
max{ [[M_ " (f) M
€ qu(le’wa) '8 € qu(le’qu)

S C1||f|||_r(Rn+1’wr).
Combining this and (6.7), we obtain

. 2(n+p)(1+e—p)
271 0

L+
12 (lfl La(RM+1 0 ~ 2i (n+p)e
(R™1,w) (7)—p -

” f”Lr(Rm-l’wr),

where the implicit positive constant is independent aind j. From this and (6.7), we deduce that

2,

n+p—3

o1 -
2i\® Pt
—| +1
Y
n+p-4 2(n+p)(1+e-p)
p

1 b1 (2 o
2y |7 B T syt
(2)""

Y

_p12 || g+
e b )"t 'EZJ (1f))

Lq(le’wq)

|| f ||LV(R“+1,wr)

S ||f|||_r(Rn+l’wr),
and hence (6.6) holds, which completes the proof of Theordm 6 m|
Remark 6.5. (i) Theorem 6.4 whew = 1 coincides with [33, Theorem 3.1] .

(i) Forany givenE c R™!and 1< r < g < oo, defineA, 4(E) to be the set of all nonnegative
locally integrable functions) on E such that

q

r/
. —r’
[w]a.qE) = Sup w(fw ) < oo,
RerlFl JR R

RcE

Obviously, A g(R™1) ¢ Al (R™?!). By (6.5), the fact thatR™?,dp.| - |) is a space of
homogeneous type, and the weighted boundedness of frakiidagrals on spaces of ho-
mogeneous type (see, for example, [43, Theorem 3.3]), welata that, if we replace
the condition that there existe Ar4(R") andv e Al4(R) satisfyingw(x, t) = u(X)v(t) by

w € A q(R™1), then the conclusion of Theorem 6.4 still holds, that isthbfﬁ* andgrg+
are bounded fromh"(R™2, ") to LYR™1, w9).

In what follows, we fixp = 2. Letg € (0,n + 2), g € [1, ), andw be a weight orR™1. The
weighted parabolic Sobolev spacéWR™!, w) is defined by setting

WAARML ) = {hﬂ Q. g€ Lq(R”+l,a))}.
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For anyf € WAI(R™L, w), define|l fllwsagnt o) = 10llLa@n.,), Whereg € LIR™!, w) satisfying
that f = hg 9. Theorem 6.4 and Remark 6.5(ii) immediately imply the failog parabolic
weighted Sobolev embedding result and we omit the details.

Corollary 6.6. LetB € (0,n+2),1<r << oowith 2 — é = £, andw be a weight orR™*. If
either of the following two conditions holds:

(i) there exist Lt Aro(R") and ve Af(R) such thatw(x, t) = u(x)v(t);
(i) we A gR™D,

then WW(R™! ") c LYR™L, w9). Moreover, there exists a positive constant C such that, for
any fe WB'(R™L, "),

” f”Lq(le’wq) S C” f”\Nﬁ,r (le’wr).

We denote byS(R™?) the space of albchwartz functionsnR™?! equipped with a well-known
topology determined by a countable family of norms andSH§R"™!) the space of attempered
distributionsendowed with the weak-topology. In addition, letS’(RM?) := S’(R”*l)lRTl, that
is, the restriction ofS’(R™*) on RM1. Using both the Fourier transform formula bf with
B € (0,n+ 2) (see [33, (2.4)]) and several elementary properties @fRburier transform and
replacingw and f, respectively, byu(X, t)1.«)(t) and f (X, t)1.)(t) in Theorem 6.4 and Remark
6.5(ii), we obtain the following application of Theorem Bwhich presents a priori estimate for
the nonhomogeneous heat equations. We omit the details.

Corollary 6.7. Letl <r < < cowith —% = 25, w be aweight o1, and fe L"(RT*L, w").

If either of the following two conditions holds:
(i) there exist Lt Arg(R") and ve Af(R,) such thatw(x, t) = u(x)u(t),
(i) we AqRTY

and ifge S’ (RMY) n LE_(R71) satisfies

loc
39 n+1
E(X’ t) — Ag(x t) = f(xt), V(xt)eR},

tIin(;l+ g(x,t) =0, ¥ xeR",
then ge LYRT, w9). Moreover, there exists a positive constant C such that

||9|||_q(Rg+1,wq) < C||f|||_r(Rg+l,wr)-
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