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Breakage dynamics and scaling of wet aggregates
of rigid particles
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The mechanical behaviour of wet particle aggregates is crucial in many granular processes
such as wet granulation and soil degradation. However, the interplay of capillary and
viscous forces for aggregate stability and breakage have remained elusive due to the
complexity of granular dynamics. We use particle dynamics simulations to analyse the
deformation and breakage of wet aggregates colliding with a flat wall. The aggregates
are composed of spherical particles and the effect of liquid bonds is modelled through
capillary and lubrication forces acting between particles. We perform an extensive
parametric study by varying surface tension, impact velocity and liquid viscosity in a broad
range of values. We show that when lubrication force is neglected, aggregate breakage is
fully controlled by the reduced kinetic energy ξ , defined as the ratio of incident kinetic
energy to the initial capillary energy. At low values of ξ , the aggregate deforms without
breakage due to inelastic energy loss induced by rearrangements and loss of capillary
bonds, whereas above a critical value of ξ it breaks into smaller aggregates due to the
transfer of kinetic energy from aggregate to fragments. In the presence of lubrication
forces, the crossover from capillary to viscous regime is controlled by the capillary
number, defined as the ratio of viscous dissipation to capillary energy. We find that the
critical value of ξ for aggregate breakage in the viscous regime increases as a power law
with capillary number while the effective restitution coefficient follows the same trend as
in the capillary regime.
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1. Introduction

Granular materials are omnipresent in nature and industry. Their discrete nature and
frictional contact interactions lead to a highly nonlinear rheology with solid-like,
liquid-like and gas-like features described in terms of contact networks, collective particle
rearrangements and inelastic collisions (Jaeger, Nagel & Behringer 1996; Radjai, Roux
& Daouadji 2017). This picture is even more intricate in the presence of cohesive and
viscous forces induced by a binding liquid between particles (Brewster et al. 2005;
Mitarai & Nori 2006; Rognon et al. 2008; Lefebvre & Jop 2013). Capillary adhesion
implies broader ranges of stability in the stress space, development of tensile forces,
higher levels of porosity, aggregation, enhanced inhomogeneity of the microstructure
and radically different flow behaviour under gravity. Liquid viscosity induces lubrication
forces depending on particle surface roughness and the amount of liquid (Radjai &
Richefeu 2009; Mani, Kadau & Herrmann 2013; Jarray et al. 2019). Even small amounts of
liquid condensed from the vapour phase within contact zones between particles (capillary
bridges) in an assembly of sub-mm particles gives rise to significant cohesive stress of the
order of γs/d, where γs is liquid–vapour surface energy and d is mean particle diameter
(Iveson et al. 2001; Richefeu et al. 2008).

During the past 20 years, the mechanical strength and failure of cohesive granular
materials have been at the focus of several experimental and numerical studies (Pierrat &
Caram 1997; Delenne et al. 2004; Fournier et al. 2005; Vo et al. 2018). Wet granular flows
have been investigated in various geometries (Huang et al. 2005; Richefeu, El Youssoufi &
Radjai 2006a; Richefeu, Radjai & El Youssoufi 2006b; Rognon et al. 2006, 2008; Radjai &
Richefeu 2009; Gu, Chialvo & Sundaresan 2014; Guo & Curtis 2015; Saingier, Sauret &
Jop 2017; Mandal, Nicolas & Pouliquen 2020; Shi et al. 2020). The impact of viscous
forces on the rheology of granular materials have also been considered independently
of cohesion (Boyer, Guazzelli & Pouliquen 2011; Trulsson, Andreotti & Claudin 2012;
Amarsid et al. 2017; Gnoli et al. 2018; Macaulay & Rognon 2021). The effect of capillary
cohesion on mixing rates and size segregation has also been a subject of extensive research
(Geromichalos et al. 2003; Chou, Liao & Hsiau 2010; Liu, Yang & Yu 2013a; Lim & Wee
2014; Liao 2018). Furthermore, the particle-scale mechanisms underlying the macroscopic
cohesion of aggregates have been investigated by means of particle dynamics simulations
(Feng & Yu 2000; Radjai & Richefeu 2009; Berger et al. 2016).

Wet aggregates are of special interest in this context as they are often naturally present
in wet granular materials. For example, the behaviour of water-stable aggregates in soils is
an important factor for the erodibility of lands by water and wind, the potential of soils
to crust, soil permeability, infiltration rates and capacity of soils to sustain long-term
crop production. Understanding the impact of various environmental changes such as
drying–wetting cycles and mechanical forces on the breakdown of soil aggregates is
therefore essential for modelling soil degradation (Xu, Hong & Song 2017). The physics
of the nucleation, growth and breakage of wet aggregates underlies also wet granulation
(agglomeration), which is a widespread process in industry. Capillary forces have been
extensively studied in this context (Ennis, Tardos & Pfeffer 1991; Bocquet et al. 1998;
D’Anna 2000; Geromichalos et al. 2003; Liu, Yang & Yu 2013b; Raux & Biance 2018;
Vo et al. 2022; Walls, Thompson & Brown 2022). The nucleation stage is governed by
wetting thermodynamics during the first contact between powder and binder. The growth
of aggregates inside a granulator occurs as a result of coalescence or snowballing of
aggregates and powder particles. The collisions lead either to rebound or aggregation
depending on the amount of available liquid binder and the ratio of inertial to viscous or
capillary stresses. The breakage of wet aggregates is a limiting factor for the final aggregate
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Breakage dynamics and scaling of wet particle aggregates

size and content in number of aggregates. It involves the granule mechanical strength and
the viscosity of the binder.

Despite extensive research work, the criteria for the growth and breakage of wet
aggregates remain highly elusive. Even today, because of the short duration of interactions
and often small sizes of the particles and aggregates, experimental techniques are unable to
provide detailed quantitative information on these processes. In contrast, particle dynamics
simulations based on the discrete element method (DEM) provide far more detailed
information on the positions and velocities of all particles of the aggregate and the
forces acting between them during a simulation (Thornton, Ciomocos & Adams 1999).
Furthermore, DEM-based simulations make it possible to control the underlying physical
interactions, eluding thereby material complications of real materials, in order to focus
on the generic behaviour. More parametric studies can be performed in a second stage to
single out the effects of specific input parameters in higher physics-fidelity models of real
granular materials.

In this paper we use extensive particle dynamics simulations to analyse the breakage
dynamics of wet aggregates composed of spherical particles interacting via elastic,
capillary and viscous forces. The simulations consist in preparing stable aggregates with
different values of liquid surface tension and viscosity, and performing impact tests with
a rigid wall for different incident velocities. Although impact tests are commonly used to
quantify dynamic mechanical properties of materials, such as elasticity, energy dissipation
and failure, there have been few studies dealing with impact tests of wet granular materials
(Fu et al. 2005; Marston, Mansoor & Thoroddsen 2013; Peters, Xu & Jaeger 2013;
Schaarsberg et al. 2016; Khalilitehrani et al. 2018; Chen et al. 2021). Less attention has also
been paid to the impact dynamics of wet aggregates containing a small amount of liquid
(Nguyen et al. 2015; Khalilitehrani et al. 2018; Chen et al. 2021), where the latter is in the
form of binary bridges between the particles, the so-called pendular state (Lian, Thornton
& Adams 1993; Pitois, Moucheront & Chateau 2000; Mitarai & Nori 2006; Richefeu et al.
2006a).

We are interested in the combined effects of impact velocity, capillary adhesion and
lubrication force on the behaviour of aggregates. During impact, the incident kinetic
energy is converted into deformation energy, which can lead to small elastic deformation
of the aggregate and its rebound, plastic deformation with aggregate shape change, damage
with the creation of cracks or breakage as a result of the rupture of a large number
of capillary bridges. Such phenomena may occur simultaneous or consecutively. For
example, breakage may occur after significant plastic deformation of the aggregate. As we
shall see, the evolution of kinetic energy, and in particular the kinetic energy after impact,
as compared with the initial capillary energy of the aggregate carries a clear signature of
crossover between these regimes. Moreover, the effect of liquid viscosity is well captured
by the capillary number with regard to both the critical incident energy above which
the aggregate breaks and the amount of kinetic energy restituted to the fragments upon
breakage.

In the following, we first describe in § 2 the numerical procedures for impact
simulations. The model used to mimic inter-particle forces is carefully described, as well
as the method implemented to build stable aggregates. In § 3 the impact dynamics of
aggregates is studied by neglecting viscous dissipation inside capillary bridges and varying
incident velocity and liquid surface tension in a broad range of values. The effects of liquid
viscosity are investigated in § 4. We conclude in § 5 with a summary of our main findings
and potential extensions of this work.
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Figure 1. Geometry of a capillary bridge between two particles with gap (a) and overlap (b).

2. Numerical procedures

An in-house three-dimensional DEM-based particle dynamics platform, named cFGd3D,
was used in this work. This code is based on a velocity-Verlet scheme for stepwise
integration of the equations of motion of a collection of spherical particles. In the
following, we present and discuss the interaction model and our method to build stable
aggregates for impact tests.

2.1. Interaction model
The normal force fn acting at the contact point between two particles is modelled as the
sum of a visco-elastic force fed and a force fbridge due to the presence of a capillary bridge:

fn = fed + fbridge. (2.1)

The distance δn between particles is used to represent elastic deflection when it is negative
(overlap) and capillary bond length when it is positive (gap). The force fed is expressed
as the sum of a linear elastic repulsion force f e

n = −knδn and a viscous damping force
f d
n = −γnδ̇n, where γn is the damping coefficient and δ̇n is the relative normal velocity;

see figure 1 (Johnson 1985). Hence,

fed =
{−knδn − γnδ̇n if fed > 0 and δn ≤ 0,

0 otherwise, (2.2)

By convention, we have δ̇n > 0 when two particles move away from each other and f e
n > 0.

Just before separation (at δn = 0), f d
n is negative while f e

n tend to zero and, as a result, fed
can be negative. Equation (2.2) ensures the physical condition of normal force positivity
by imposing fed to vanish when f e

n + f d
n < 0. This condition holds for dry contacts, i.e. in

the absence of a capillary bridge. When the bridge forces are added, the total force can
become negative (attractive) as a result of the action of the capillary force.

The liquid is assumed to be in the pendular state, i.e. in the form of small bridges joining
pairs of particles. Higher amounts of liquid can lead to the funicular state characterized
by higher-order clusters such that liquid bridges span several particles. Experiments and
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Breakage dynamics and scaling of wet particle aggregates

numerical simulations show that capillary stress increases with the amount of liquid in the
pendular state as the number of binary bridges increases. But the adhesion stress remains
nearly constant as the amount of liquid is further increased in the funicular state (Scheel,
Geromichalos & Herminghaus 2004; Delenne, Richefeu & Radjai 2015). For this reason,
the approximation of capillary interaction by a binary force law holds in the pendular state,
but it may be also relevant for higher amounts of liquid.

The total force fbridge due to a liquid bridge between two particles is the sum of capillary
and viscous contributions:

fbridge = fcap + fvis. (2.3)

We assume that the liquid coats all particles and part of the liquid migrates from the surface
to the contact zone when a contact is formed between two particles. The typical transfer
time of liquid is tr ∼ ηd/γs, where η is liquid viscosity (Mohan et al. 2014). When this time
is small compared with the typical lifetime of a contact or duration of collision between
two particles, we may consider that a capillary force fcap appears spontaneously between
two particles as soon as they touch each other. When this is not the case, the amount of
liquid Vb in the capillary bond reflects the history of the deformations of the assembly.
In our impact tests, tr is small in the whole range of values of system parameters. We
therefore assume instantaneous formation of capillary bridges when the particles touch.

A capillary bridge between two particles persists when they move away from each other
up to a debonding distance drupt where the liquid bridge is not stable anymore. The energy
released by debonding is dissipated during the redistribution of the liquid. The debonding
distance is directly related to the bond volume (Lian et al. 1993; Lian, Thornton & Adams
1998)

drupt =
(

1 + θ

2

)
V1/3

b , (2.4)

where θ is the particle–liquid–gas contact angle. We assume that all capillary bridges share
the same parameters, in particular, that they are formed with the same quantity of water Vb.
In other words, it is assumed that there is a sufficient amount of liquid available whenever
a contact is formed between two particles. This mean-field assumption makes it possible to
implement efficient DEM simulations without having to deal with the thermodynamics or
hydrodynamics of bridge formation that would make the simulations impractical or limited
to very small number of particles and bridges.

The capillary force fcap is obtained from the numerical solution of the Young–Laplace
equation (Mikami, Kamiya & Horio 1998). This solution can be approached by an explicit
expression (Richefeu et al. 2008),

fcap =
{−πdγs cos θ for δn < 0,

−πdγs cos θe−δn/λ for 0 ≤ δn ≤ drupt,
(2.5)

where λ is a characteristic length. In the quasi-static limit, λ is given by (Richefeu et al.
2006b)

λ � 0.9
(

2Vb

d

)1/2

. (2.6)

The Young–Laplace equation is based on thermodynamic equilibrium and, thus, its
use for high-speed impacts of aggregates is justified only if the liquid bridges follow
the motions of particles. In the absence of experimental data on the full dynamics and
rupture of a capillary bridge at high distortion rates of liquid bridges, we may rely on
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Description Value

Number of particles, Np 1229
Aggregate diameter, D 4 × 10−3 m
Particle diameter, d 3 × 10−4 m
Particle density, ρ 2.5 g cm−3

Normal stiffness, kn 1 × 104 N m−1

Normal damping, γn 1 × 10−2 N s m−1

Friction coefficient, μ 0
Contact angle, θ 5◦
Time step, dt 1 × 10−7 s
Impact velocity, v (0.10–2.00 m s−1)

Debonding distance, drupt 3 × 10−5 m
Liquid surface tension, γs (0.01–0.35 N m−1)

Fluid viscosity, η (0.00–0.30 Pa s)
Capillary characteristic length, λ 1.26 × 10−4 m

Table 1. Numerical and physical parameters.

the orders of magnitude of the time scales involved in the impact problem. Obviously, the
initial aggregate is in static equilibrium and the Young–Laplace equation is fully legitimate
in this limit. During impact, this equation can provide a suitable approximation of the
capillary force under two conditions: (1) The distortion of the liquid bond must occur at
low Reynolds number, and (2) The return time of the liquid bridge to equilibrium must be
short as compared with the rearrangement time of the particles.

The particulate Reynolds number is given by Re = ρ�ud/η, where u is the average
relative speed between particles and ρ� is the liquid density. The order of magnitude of
u is the same as the impact velocity v although actually u is generally lower than v due
to energy dissipation. The value of d and the range of values of η are given in table 1.
For ρ� = 1000 kg m−3, the highest value of Re is 2. Hence, even for our highest impact
velocities, the liquid bridge remains in the laminar regime.

The return time of the liquid bridge is similar to the transfer time tr ∼ ηd/γs (Mohan
et al. 2014).

In the simulations, given the range of parameter values used, the largest return time
is ∼9 ms. This time can be compared with the impact time whose value is ti ∼ 1 ms (its
value being controlled by contact stiffness and impact velocity). Hence, it can be argued
that during the impact the capillary bridges have not enough time to be distorted. For this
reason, we kept (2.5) for the capillary force and we released the values of λ. More precisely,
we tested λ in the range [0.037d, 0.42d], as shown in figure 2(a), while keeping the same
debonding distance drupt = 0.1d. According to (2.6), the value λ = 0.037d corresponds to
the quasi-static limit for drupt = 0.1d. As λ increases, the capillary force comes closer to
a constant value that is the maximum value of fcap, resembling the case where the speed
of separation between two particles is too fast to change the value of the force before the
liquid bridge deforms or breaks. In other words, in this limit the post-impact relaxation of
the particles begins with a higher value of the capillary force. However, as we shall see,
the value of λ has little influence on the impact. This is mainly due to the fact that over
90 % of capillary bonds in the initial state are at the contact points between particles or the
gaps are very small.

Another relevant time is the post-impact rearrangements of the particles. This process
being fully dynamic, its characteristic time t∗ can be defined as the time required for a
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Figure 2. (a) Capillary force fcap normalized by γsd as a function of the gap distance δn normalized by
particle diameter d for different values of the parameter λ, with a debonding distance drupt = 0.1d. (b) Normal
lubrication force fvis normalized by the characteristic force ηδ̇nd as a function of the normalized gap δn/d for
drupt = 0.1d. In both cases, the dashed line indicates the hysteresis of bond formation/breakage: when the gap
decreases between two particles, a liquid bond is formed spontaneously only when the two particles touch each
other. This formation of the liquid bond is shown by the vertical dashed line at the origin. Then, the variation
of the force as a function of gap follows the solid line and is reversible. The bond breaks up at the debonding
distance and the force drops to zero. This is shown by the vertical dashed line at δn/d = 0.1.

particle subjected to a force γsd to move a distance equal to particle diameter d. Hence,

t∗ =
√

m
γs

∼
√

ρd3

γs
, (2.7)

where ρ is the solid density of the particles. For the liquid bridges to follow the
particle motions, we require that the relaxation time of the liquid tr is smaller than the
rearrangement time t∗ of the particles under the action of capillary forces. This leads to
the condition η < η∗ = √

ρdγs. This condition always holds for η = 0. Otherwise, for the
range of values of γs used in the simulations, the lowest value of η∗ is ∼0.08 Pa s and
its largest value is ∼0.5. On the other hand, the largest value of η in the simulations is
0.3 Pa s but most values are indeed below 0.08 Pa s. As we shall see, the results for the
two largest values of η are indeed different due to incomplete relaxation. It must also be
borne in mind that these are only the orders of magnitude of the typical times. In practice,
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tr depends on the degree of distortion while for its evaluation we have assumed that the
liquid is distorted over a distance of the order of the particle size. The values of tr are
therefore overestimated. We may conclude that, with the range of our parameter values,
the use of the Young–Laplace equation is to a large extent justified and the error increases
with the ratio η/

√
ρdγs.

The presence of a liquid bridge between two particles induces also a lubrication force
fvis. The tangential lubrication force being significantly lower than the normal lubrication
force (Lefebvre & Jop 2013), we consider here only the normal lubrication force, which
for two infinitely smooth spheres, fvis is given by (Brenner 1961)

fvis = 3π

8
ηd2 δ̇n

δn
. (2.8)

This expression diverges when δn → 0, corresponding to the theoretical limit where no
contact can form between two particles. However, in the case of rough spheres a natural
cutoff occurs at a distance δn0, representing the average height of the asperities. The
lubrication force can therefore be approximated as

fvis =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3π

8
ηd2 δ̇n

δn + δn0
for drupt > δn > 0,

3π

8
ηd2 δ̇

δn0
for δn ≤ 0.

(2.9)

As in the case of capillary force, a hysteresis is introduced since fvis is not effective in the
absence of a liquid bridge. The hysteresis path is shown in figure 2(b).

The bridge force fbridge acts along the contact normal. We neglect the tangential
lubrication force, which is an order of magnitude weaker than normal lubrication force. We
also keep the friction coefficient μs between the grains and with the wall equal to zero to
focus on the effects of liquid-induced forces. As a result, particle rotations are immaterial
in our simulations. As discussed previously, the influence of parameters such as friction
coefficient, debonding distance, tangential lubrication force, particle size distribution and
particle shape can be evaluated in comparison to the breakage behaviour in the simpler
case investigated in this paper with only three control parameters: impact velocity, surface
tension and liquid viscosity.

2.2. Building stable aggregates
The aggregate is composed of spherical particles of the same size d interacting through
the contact and liquid bond forces. For impact tests, we need aggregates of nearly spherical
shape in stable equilibrium. We proceed in three steps. First, the primary spherical
particles are deposited under gravity in a rectangular box by setting the friction coefficient
and bond force to zero. Because of zero friction, the particles get jammed in a bed of
highest packing fraction Φ � 0.64 and a coordination number Zc � 6, corresponding to
the connectivity of frictionless particles in the isostatic state (Agnolin & Roux 2007a). We
use Zc for the average number of contact neighbours per particle, to be distinguished from
Znc, corresponding to the average number of bonds without contact per particle (nc for ‘no
contact’) when capillary bridges are present.

In a second step, a spherical aggregate composed of ∼1200 particles is extracted from
the bed. A small homothety is applied to the centres of all particles to reduce the overlaps
induced by gravity and the corresponding elastic energy. This transformation lowers Zc to a
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value slightly below 4. While reducing the overlaps, the applied homothety is small enough
to keep most gaps between particles below the debonding distance drupt. Under these
conditions, the capillary energy is large enough to prevent the aggregate from explosion
as a result of the release of elastic energy. In a third step, gravity is removed and capillary
force law is activated for all pairs of particles with a separation distance δn below the
debonding distance. The aggregate is allowed to relax under the action of capillary forces
until a stable configuration in static equilibrium is reached. Note that, in exception to the
initial state where the capillary bridges are added to all gaps between particles below
the debonding distance, the general capillary force law with hysteresis is applied during
relaxation and later during impact tests.

The aggregate is in an unstable state after the removal of gravity and addition of capillary
forces. Its subsequent evolution results from simultaneous action of elastic repulsion due to
initial overlaps and capillary attraction due to added bonds. Its evolution can be tracked by
following the average kinetic energy per particle Ek = 〈1

2 mv2〉, where m is particle mass
and v is particle velocity. A reference adhesion energy Eref = γsd2 can be defined from
the surface tension, with which the kinetic energy can be compared. Figure 3(a) shows the
evolution of Ek/Eref as a function of time t during relaxation for three different values of
γs. We see that in all cases Ek rapidly increases with time due to the action of capillary
forces and particle rearrangements before declining as a result of energy dissipation by
inelastic collisions and rupture of a fraction of bonds. The time needed to reach the peak
value of Ek decreases with increasing γs. We may use the characteristic time t∗ to scale
the times. The kinetic energy data of figure 3(a) are displayed in figure 3(b) as a function
of scaled time t/t∗. The kinetic energy for the three values of γs follows nearly the same
evolution, suggesting that the dynamics of relaxation is controlled by surface tension and
the inertia of the particles and t∗ is indeed the relevant rearrangement time. We also note
that the peak value of the normalized kinetic energy is the same, indicating that the kinetic
energy induced by capillary force scales with γsd2.

The average capillary energy per bond Ec normalized by Eref is plotted in figure 4 as a
function of scaled time. The energy of a bond is the energy required for its breakage. For a
bond with given length (gap or overlap) δn, it can be calculated by integrating the capillary
force fcap from δn to infinity (actually to drupt beyond which the force is zero), i.e.

Ec =
〈∫ drupt

δn

fcap(x) dx
〉
, (2.10)

where the average is taken over all bonds (with their different values of δn). As expected,
Ec increases with time mainly as a result of the creation of new capillary bonds during
relaxation but levels off at t � t∗ when no new bonds can be created by rearrangements.
This implies that the evolution of Ek/Eref beyond this point takes place without significant
rearrangements and mainly through dissipation by damped vibrations.

The contact coordination number Zc, gap (non-contact) coordination number Znc and
bond coordination number Zb = Zc + Znc are shown in figure 5 as a function of scaled
time. After an initial increase, Zc declines to a minimum before increasing again towards
6, corresponding to the topology of an isostatic state. The minimum occurs at the same
time as the peak value of Ek, and the corresponding value of Zc increases with γs. This
observation is consistent with the higher adhesion energy at larger γs. Here Znc follows
a mirror evolution with respect to Zc, showing that the dynamics of relaxation occurs
essentially within the debonding distance. The bond coordination number Zb declines and
tends to a constant value while at the same time most non-contact bonds transform to
contact bonds (decrease of Znc and increase of Zc). Hence, the evolution of the bonding
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Figure 3. Evolution of the average kinetic energy Ek per bond normalized by the reference adhesion energy
Eref during the relaxation of an aggregate for three different values of surface tension as a function of
time t (a) and as a function of scaled time t/t∗ (b).

1.96

2.00

2.04

2.08

2.12

2.16

0.70
0.17
0.04

10−3 10−2 10−1 100 101 102

E c
/
E r

ef

γs(N m−1)

t/t∗

Figure 4. Evolution of average capillary energy per bond Ec normalized by the reference adhesion energy Eref
during the relaxation of an aggregate for three different values of surface tension as a function of scaled time
t/t∗.
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Figure 5. Evolution of (a) contact coordination number Zc, (b) gap (non-contact) coordination number Znc
and (c) bond coordination number Zb (including both contacts and gap bonds) as a function of scaled time
t/t∗.

structure continues beyond t = t∗ until t � 10t∗, where both Zc and Znc reach a plateau.
Before this point, the dynamics is governed by particle rearrangements and continuous
decrease of Zb as a result of the loss of bonds as observed in figure 5(c).

The relaxed aggregates are characterized by a high packing fraction Φ � 0.64, a high
contact coordination number (Zc � 6), a low gap coordination number (Znc < 2), a stable
configuration with negligibly small kinetic energy Ek and the highest capillary energy Ec
for each value of surface tension γs. Figure 7 displays a snapshot of a relaxed aggregate.
We see that the forces induced by capillary attraction between particles are composed of
both compressive and tensile forces that ensure the stability of the aggregate. Here Ec
in static equilibrium represents the strength of the aggregate as it is the average energy
required to break a bond. For a single contact between two particles at static equilibrium,
Ec is the sum of two energies:

∫ 0
δc

fcap(x) dx + ∫ drupt
0 fcap(x) dx, where δc = −fc/kn is the

overlap at equilibrium with fc = πdγs cos θ according to (2.5). Simple algebra yields

Emax
c = (πdγs cos θ)2

2kn
+ πdγs cos θλf , (2.11)

with
λf = λ(1 − e−drupt/λ). (2.12)

1000 A39-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

79
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.798


L. Braysh, P. Mutabaruka, F. Radjai and S. Mora

0.90

1.00

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35

λ

0.037 d
0.106 d
0.196 d
0.302 d
0.420 d

γs(N m−1)

Ei c /
Em

ax
c

Figure 6. Ratio of the average capillary energy per bond Ei
c in relaxed aggregates to the maximum bond

energy Emax
c as a function of surface tension γs for several values of the parameter λ.

Note that the length λf varies between λ for λ� drupt and drupt for λ� drupt. Hence,
if drupt is much smaller than particle size, fcap does not decrease significantly before the
capillary bridge fails, and therefore, λ is not relevant at first order. On the contrary, if drupt
is large compared with λ and particle size, then the bridge is significantly stretched before
breaking.

The first term in (2.11) is the elastic energy Ee stored in the contact

Ee = (πdγs cos θ)2

2kn
, (2.13)

whereas the second term is the energy Eg stored in the gap bond

Eg = πdλf γs cos θ. (2.14)

The ratio Ee/Eg ∼ γsd/(knλf ) is small in our simulations (and more generally for highly
rigid particles) so that the elastic energy can be neglected and we have

Emax
c � πdλf γs cos θ. (2.15)

In the next section we use Ec (as directly measured from simulations) to analyse the
breakage of aggregates although, up to a prefactor, Emax

c or simply γsdλf also represent
the capillary energy with a good approximation. During impact with a wall, the aggregate
may undergo plastic deformations and breakage, and Ec evolves with time. We denote by
Ei

c the capillary energy per bond in the relaxed state before impact and we will refer to it as
the initial (or impact) capillary energy or cohesive energy of the aggregate. Figure 6 shows
the ratio Ei

c/Emax
c as a function of γs for different values of λ. For all values of γs and λ,

this ratio varies between 0.92 and 0.94. As we shall see, this small difference between the
two quantities is due to about 10 % of bonds that have no contact (gap bonds).

We prepared as many relaxed stable aggregates as the number of different values of
surface tension used to investigate breakage dynamics. All aggregates have the same values
of d, kn, ρ, θ and drupt. The impact velocity v, surface tension γs and liquid viscosity
η were varied in a broad range. The values and ranges of all simulation parameters are
given in table 1. The normal damping parameter γn is set to a value such that, together
with the values of ρ, kn and d, implies a normal restitution coefficient e′

n � 0.4 between
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Figure 7. Snapshot of a relaxed aggregate. The lines joining particle centres represent forces. Line thickness
and colour code are proportional to the normal force fn normalized by γsd. Compressive and tensile forces are
of positive and negative signs, respectively.

primary particles. This value of e′
n should, however, be considered as a measure of the

inelasticity of contact without adhesive forces. In the presence of adhesion force between
particles the rebound and effective restitution coefficient depend not only on γn but also on
adhesion and contact stiffness. As we shall see below, an effective restitution coefficient
en can be defined for the aggregate as a whole from the total kinetic energy of primary
particles.

3. Impact dynamics in the capillary regime

3.1. Impact simulations
The impact simulations were performed by using the relaxed aggregates and assigning the
same velocity v to all its primary particles in a direction perpendicular to a flat wall. As the
gravity is set to zero, the orientation of the wall is immaterial. To focus on the dynamics
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and breakage of the aggregates, we assume that there is no friction and no capillary bonds
can form between the wall and the primary particles of the aggregate. This means that
the wall is hydrophobic. The aggregate is placed close to the wall and its evolution is
monitored during and after impact with the wall. In all results presented in this section,
the viscosity of the liquid bonds is set equal to zero in order to focus on the capillary
cohesion. The influence of normal lubrication forces induced by liquid viscosity will be
analysed in the next section.

The behaviour of the aggregate upon impact naturally depends on the relative
importance of the impact kinetic energy per particle Ei

k = mv2/2 = ρπd3v2/12 and the
initial internal capillary energy per bond Ei

c ∼ Emax
c . Their ratio defines a dimensionless

number

s = Ei
k

Ei
c

� d
12 cos θλf

dρv2

γs
. (3.1)

Up to a prefactor of the order of 1 for small values of liquid volume, s is the deformation
number introduced in the theory of agglomeration together with pore saturation to define
the aggregate growth map (Adepu et al. 2016). This ratio can also be portrayed as the ratio
of kinetic stress (kinetic energy per unit volume ρv2) and the cohesive stress γs/d.

Using s is convenient as it is defined from the system parameters γs, d and v. However, in
simulations we have access to the real value of Ei

c and it is interesting to work directly with
the ratio of the initial total kinetic energy and the total capillary energy of the aggregate:

ξ = NpEi
k

Ni
bEi

c
= 2

Zi

Ei
k

Ei
c

= 2
Zi s. (3.2)

Here Np is the total number of particles, Ni
b is the total number of bonds before impact and

Zi represents the coordination number of the aggregate before impact. We will refer to ξ

as the reduced kinetic energy of the aggregate before impact.
The kinetic energy is partially dissipated during the impact with the wall. Figure 8 shows

the evolution of the total kinetic energy NpEk normalized by the total initial capillary
energy Ni

bEi
c as a function of time for four different values of ξ . The kinetic energy keeps

a constant value until the aggregate collides with the wall. The impact lasts for a few
milliseconds during which the kinetic energy of the aggregate declines to a final value,
which remains constant due to the rebound of the aggregate as a whole or the rebound of
its fragments when breakage occurs.

Figure 9 shows the evolution of the contact coordination number Zc and bond
coordination number Zb as a function of time for two different values of ξ . We observe that,
as soon as the aggregate hits the rigid plane (at time t = 0), both Zc and Zb drop and then
increase again to some extent depending on the value of ξ . The large post-impact increase
of Zc is a consequence of the relaxation of particles inside the generated fragments under
the action of capillary forces. In this way, all contacts lost within the debonding distance,
i.e. without the rupture of the capillary bond, are regained after a short time. In contrast,
the smaller post-impact increase of Zb is due to a limited number of collisions between the
generated fragments. Note that these re-aggregation events are, however, fundamentally
different from the observed re-assembly of magnetized particles, which are governed by
the action of long-range magnetic forces (Vledouts, Vandenberghe & Villermaux 2015).

Figure 10 displays side-view snapshots of the aggregate during impact for each value of
ξ . The top views of the last states are shown in figure 11 in two cases. For the lowest value
of ξ , the aggregate keeps its initial shape but it may rotate upon impact. The evolution
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Figure 8. Evolution of reduced kinetic energy of the aggregate with time for four different values of the
initial reduced kinetic energy ξ : (a) ξ = 0.007, γs = 0.3 N m−1, v = 0.1 m s−1; (b) ξ = 2.20, γs = 0.2 N m−1,
v = 1.5 m s−1; (c) ξ = 3.78, γs = 0.15 N m−1, v = 1.7 m s−1; (d) ξ = 78.5, γs = 0.01 N m−1, v = 2 m s−1.
Snapshots of the aggregates are shown in figure 10.
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Figure 9. Evolution of the contact coordination number Zc and bond coordination number Zb as a function of
time during impact with the wall for two different values of ξ . The impact occurs at time t = 0.

of its kinetic energy in figure 8 shows a minimum value followed by a rebound with
restitution of kinetic energy. For larger values of ξ , the aggregate remains in one piece
and slightly bounces back off the surface. After impact, it loses its initial spherical shape
and becomes flattened due to the plastic deformation of the aggregate. The evolution of its
kinetic energy shows high dissipation and only a small amount of restitution. At even larger
values of ξ , the aggregate remains in one piece but is damaged by losing a few particles and
undergoes much larger local deformations modifying its boundary. For example, holes are
distinguishable and its boundaries are jagged. In this case, the rebound of the ensemble is
almost not observable but part of the energy is carried away by the detached particles. For
the largest value of ξ , the aggregate is fragmented. Some fragments and primary particles
are ejected from the aggregate and part of the kinetic energy is transferred to the fragments.

These four regimes are visually in qualitative agreement with what we observed in our
preliminary experiments. Figure 12 displays top-view snapshots of the final configurations
of wet aggregates fallen on a flat surface with different initial velocities. A mould of
spherical shape (diameter 16 mm) was filled with glass beads (density 2.4 g m−3, diameter
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Figure 10. Side-view snapshots of the evolution of aggregates during impact for four different values of the
initial reduced kinetic energy ξ . The evolution of kinetic energy in each case is displayed in figure 8. The
colours of the particles encode the particle velocities during impact. Results are shown for (a) ξ = 0.007,
(b) ξ = 2.20, (c) ξ = 3.78 and (d) ξ = 78.5.

150 ± 25 μm) and mixed with a certain amount of pure water to obtain the desired
liquid content (5 % of the weight). The mold was then shaken in a mixer to improve the
homogeneity of the distribution of water. Finally, the aggregate was delicately removed
out of the mold and released above a horizontal rigid plate from a height depending on
the desired impact velocity. The snapshots show that at low enough impact velocities
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(a)
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(b)

Figure 11. Top views of the last states of the damaged and fragmented aggregates shown in figure 10(c,d).
Results are shown for (a) ξ = 3.78 and (b) ξ = 78.5.

no significant deformation of the aggregate occurs. At higher velocities, the aggregate
is deformed, and as the velocity is further increased, cracks also appear and the aggregate
gets damaged or broken. Above v = 3.42 m s−1, the aggregate breaks into an increasingly
large number of pieces. In contrast to simulations, we observe no rebound of the aggregate
in these experiments due to gravity and wet contacts with the flat surface.

In the following, we analyse the simulation data to identify quantitative signatures of the
observed regimes. In particular, we consider two key issues. (1) Does the initial reduced
kinetic energy ξ alone control the crossover to the aggregate fragmentation regime?
(2) How does the final average kinetic energy per particle E f

k , after impact, as shown
in figure 8, depend on ξ?

3.2. Phase space of breakage
By looking at the snapshots in figure 10, we see that case (c), where the aggregate is
deemed ‘cracked’, appears as an intermediate regime between regime (b), where the
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Figure 12. Results of experimental impact tests with different initial impact velocities. Here, eight different
wet aggregates having the same amount of liquid but different impact velocities are viewed from above after
impact. The particles appear in white while the target surface is black.

aggregate is highly deformed but no particle is detached, and regime (d), which is deemed
‘broken’. In real experiments such as those of figure 12, the loss of a few particles is
not physically meaningful for the behaviour of the aggregate whereas in simulations with
a much lower number of particles we need to set up a clear criterion to distinguish the
regimes. We adopt therefore a criterion to qualify the aggregate as ‘broken’ based on the
proportion of detached particles. We qualify the aggregate as ‘broken’ when it loses at
least 1 % of the total number of its constitutive particles. This criterion makes it possible
not to consider as broken those aggregates whose particles would be, from the initial
configuration, abnormally weakly linked to the others. Based on this criterion, aggregates
that lose less than 1 % of their particles are not considered as broken. However, when
the same impact test with nearly the same or close values of impact energy are repeated,
the aggregate may either break or not. Most of time when the aggregate is not broken
according to the above criterion, it loses a few particles. In this sense, the cracked regime
can be qualified as the regime where the probability of breakage is high but the aggregate
may not break.

As discussed previously, the phase space in this section is simply defined by the initial
total kinetic energy NpEi

k and the initial total capillary energy Ni
bEi

c. In figure 13 the
outcomes of 182 simulations have been represented in this space. Each point corresponds
to one simulation with its coordinates in the space (NpEi

k, Ni
bEi

c) and three different
symbols are used for the three regimes ‘deformed’, ‘cracked’ or ‘broken’. The data
presented in this phase space were obtained from simulations for λ = 0.42d. Note that,
here we do not distinguish the case of ‘elastically deformed’ aggregates, i.e. case (a) in
figure 10, from plastically deformed aggregates, i.e. case (b) in figure 10, since the shape
change of the aggregate is less obvious to define than detachment of particles used to
qualify the breakage of aggregates. However, as we shall see, the signature of regime (a)
is more easily defined from energy dissipation.

Figure 13 clearly shows three domains well separated by straight lines passing through
the origin: (1) the domain of deformed aggregates in which the aggregates are never
fragmented after the impact (open circles), (2) the domain of broken aggregates (full
circles), and (3) the intermediate domain of cracked aggregates (half-full circles) or, put
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Figure 13. Phase space of particle breakage. The simulation data points are placed according to their total
initial kinetic energy NpEi

k and total initial capillary energy Ni
bEi

c by full circles for broken aggregates, open
circles for deformed aggregates and half-open circles for intermediate cases. The dashed lines are approximate
boundaries between the three types of outcomes.
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Figure 14. Phase space of particle breakage with the total initial kinetic energy NpEi
k and the initial reduced

kinetic energy ξ as coordinates. As in figure 13, full circles represent broken aggregates, open circles deformed
aggregates and half-open circles intermediate cases. The dashed lines (ξ = ξ1 = 2.1 and ξ = ξ2 = 4.7) design
the boundaries between the three domains. The symbols in magenta represent 62 simulations performed in
addition to those represented in figure 13 to confirm the results and better estimate the boundaries.

more accurately, domain of high probability of breakage. The frontier lines show that the
ratio ξ = NpEi

k/(N
i
bEi

c), i.e. the initial reduced kinetic energy, is enough to determine to
which of the three regimes the system belongs. The boundaries between the domains can
be more clearly defined by placing the data points in coordinates (NbEi

c, ξ) as in figure 14
with an additional 62 simulations (presented in a different colour). These additional
simulations were performed with samples having the same parameters as previous ones,
but with different initial configurations of the aggregates. In this space, the boundaries
for crossover to the intermediate regime and to breakage are ξ1 = 2.1 and ξ2 = 4.7,
respectively. According to (3.2), we would obtain a similar phase space up to a prefactor if
the parameter s or deformation number dρv2/γs were used instead of ξ . We also checked
that these boundaries are almost independent of the choice of the value of λ. We therefore
conclude that ξ is the key parameter controlling the breakage behaviour of aggregates
irrespective of the values of γs, λf and v when the viscosity of liquid bridges is neglected.
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As discussed previously, the unpredictability associated with the intermediate domain
is due to the finite number of particles forming the aggregate. We have not investigated the
width of this domain as a function of the number of particles Np nor the effect of primary
particle size d. Instead, we focus below on the kinetic energy after impact and the change
of the microstructure due to impact with the goal of further characterizing the transitions
observed between different regimes.

3.3. Effective restitution coefficient
To characterize the dissipation of kinetic energy during impact, we define an effective
normal restitution coefficient en of the aggregate from the total final kinetic energy NpE f

k
and the total initial kinetic energy NpEi

k:

en =
(

E f
k

Ei
k

)1/2

. (3.3)

This definition is similar to that usually used to describe the inelasticity of particles
during collisions, with 1 − e2

n corresponding to the fraction of kinetic energy dissipated
in the centre of mass of the system. Here, en represents a collective restitution of energy:
although the initial kinetic energy is carried by the aggregate as a whole, the kinetic energy
after impact either continues to be carried by the aggregate if it does not break or by its
fragments and individual particles if it breaks. We measured the kinetic energy 24 ms after
the beginning of impact. As the evolution curves of kinetic energy in figure 8 show, for all
simulations, this period of time is sufficiently long for the final value to correctly represent
the post-impact energy. As we shall see in the next section, this is not always the case in
the viscous regime. In the following, until the end of the paper, we omit the superscript ‘f ’
and all quantities refer to their post-impact values (for example, Ek represents E f

k ) and all
initial values are explicitly denoted by superscript ‘i’.

In contrast to the expected and confirmed role of ξ as the control parameter for transition
from a plastic deformation regime to a breakage regime, it is not obvious that en should
be fully controlled by a single parameter such as ξ . In particular, the issue is whether the
evolution of en is controlled by ξ in all the identified regimes. Figure 15 shows en as a
function of ξ on log-linear and log-log scales for all our simulations. We see that the data
collapse on a single curve as a function of ξ , encompassing all regimes. This confirms the
stronger role of ξ as a control parameter of impact dynamics of the aggregate.

The observed dependence of en on ξ is not trivial. Below ξ1 � 2.1, which we identified
as the upper bound of the plastic deformation regime, en is a decreasing function of ξ

whereas beyond ξ1, en increases with ξ up to values comparable to those at very low levels
of ξ (en � 0.2). It is noteworthy that the values of en around the transition point are very
low (below 10−3), indicating that nearly the whole initial kinetic energy is dissipated. In
other words, a reduced kinetic energy ξ1 � 2.1 is sufficient to fully deform an aggregate
from its initially nearly spherical shape to a flattened shape as seen in figure 10(b). This
energy is dissipated as a result of the loss of capillary bonds and normal damping during
particle rearrangements. At this point, particle deformation by rearrangements is fully
exhausted and the extra kinetic energy supplied beyond this limit (i.e. higher values of
ξ ) can only be consumed in crack nucleation and breaking the aggregate. For this reason,
the cracking regime lies just after the minimum value of en. The increase of en with ξ is an
indication that the extra energy does not merely propagate across the aggregate to break
a maximum number of bonds, but is partially transferred to particles that get loose from
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Figure 15. Effective restitution coefficient en of aggregates as a function of the initial reduced kinetic energy
ξ from all our simulation data in the capillary regime in log-linear (a) and log–log (b) scales. The symbols are
the same as in figure 13 with the two vertical dashed lines marking the crossover values of ξ . The full lines are
fitting forms from (3.4) and (3.5) for the ranges below and above ξ = ξ1 � 2.1, respectively.

the aggregate. In this range, the behaviour is fluctuating and energy dissipation is likely to
depend on the details of the microstructure. However, energy transfer is amplified when
the aggregate breaks at higher values of ξ where an increasing amount of kinetic energy
moves away with the generated fragments and en increases as a result. In the deformation
regime (before the minimum value of en), the restitution is due to the rebound of the whole
aggregate.

Two points are important for a better understanding of this non-monotonic variation of
en. First, the total energy dissipation increases with ξ even beyond ξ1. Hence, the increase
of en simply means that a lower fraction of the supplied kinetic energy is dissipated beyond
ξ1 and, thus, a higher fraction is transferred to the fragments. The second point is that this
difference is due to the rearrangements and plastic deformation before the aggregate can
break. In other words, for ξ > ξ1, the aggregate is first almost fully deformed before it
begins to split. The amount of kinetic energy needed for the deformation phase is always
the same. This is the energy dissipated by the deformation of the aggregate from an initial
spherical shape to its nearly flattened shape. For this reason, the remaining reduced kinetic
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energy for breakage and restitution is ξ − ξ1 and it increases linearly with ξ . This energy
is available for breaking the capillary bonds and transfer to the fragments, both increasing
therefore as a function of ξ − ξ1. Finally, as the number of fragments increases, the number
of breakable bonds decreases and, therefore, a lower amount of energy is consumed for
bond breakage (see § 3.4). As a result, an increasing amount of energy is transferred to the
fragments or detached particles and en increases.

At highest values of ξ , both the plastic deformation energy (ξ1) and the total energy
needed to break all bonds become small compared with ξ and, thus, en reflects mainly the
dissipation due to collective rebound on the wall. For this reason, en increases to values
comparable to those at very low levels of ξ where no rearrangements occur and the energy
is only dissipated by rebound on the wall. The highest value of en is around 0.3, which is
slightly below the restitution coefficient e′

n = 0.4 between primary particles due to both
the impact with the wall and the damped oscillations of the primary particles inside the
fragments.

In figure 15 we can also clearly distinguish two subregimes below and above
ξ = ξ0 � 0.3 inside the deformation regime (below ξ1). The dependence of en on ξ in
this regime is asymptotically well fit to two power laws with different exponents, as seen
in figure 15(b). The data can actually be fitted by a functional form combining the two
power laws, i.e.

en = 1
A(ξ/ξ0)α + B(ξ/ξ0)β

, (3.4)

with A = B � 35, α � 1/2 and β � 2. This form is shown in figure 15 and we see
that it provides a functional description of the transition between the two subregimes.
The transition occurs at ξ0 with restitution coefficient en � 0.015. The first subregime
corresponds to inelastic rebound of the aggregate without plastic shape change, as
observed in figure 10(a). The value of en declines slowly as ξ increases (with an exponent
−α = −1/2 since the term B(ξ/ξ0)

2 in (3.4) can be neglected in this range). This decrease
can be interpreted as a consequence of the increasing loss of capillary bonds. As we
shall see, the number of bonds decreases with ξ . Plastic deformation occurs in the second
subregime with a stronger decrease of en as ξ increases (with an exponent −β = −2 since
the term A(ξ/ξ0)

1/2 in (3.4) can be neglected in this range).
Interestingly, the breakage regime beyond ξ1 can also be well fitted to a double

power-law function, i.e.

en = 1

A′ (ξ/ξ3)
α′ + B′ (ξ/ξ3)

β ′ , (3.5)

with A′ � 5, B′ � 2, α′ � −0.23, β ′ � −4.5 and ξ3 � 10. The fitting function (3.5) is
shown in figure 15. In the breakage regime, en increases very fast with ξ up to a crossover
around ξ3 to a much slower increase due to a more efficient use of incident energy for
breakage of the bonds. In other words, in this transition as more fragments are generated
due to higher impact energy, less energy is transported by each fragment. The snapshots
of figure 10(d) belong to this regime, where we see that the aggregate is fully flattened and
the breakage occurs within a thin layer of particles in contact with the wall.

The power-law dependence of restitution coefficient on ξ in all regimes may be
attributed to the absence of an intermediate characteristic length scale. The kinetic energy
is supplied at the scale of the aggregate but dissipated at the scale of particles. Energy is
dissipated at all scales from aggregate down to primary particles. Note that the specific
values ξ0, ξ1, ξ2 and ξ3, identified from the breakage criterion, and dependence of en on ξ ,
do not represent typical values of ξ in each regime but rather the crossover points between
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regimes that depend on the way energy is dispatched between bond breakage, normal
damping and transfer to particles. Among these crossover values, ξ2 is the only one that
has no signature on the en(ξ) curve. However, ξ2 is quite close to ξ3, suggesting that if the
breakage criterion used to define broken aggregates is slightly increased, ξ2 may coincide
with ξ3. It is also noteworthy that for the range of impact velocities applied in this work,
we did not observe the breakage of aggregates into several large pieces. It seems therefore
that full plastic deformation always precedes the breakage of the aggregate. This does not,
however, elude piecewise breakage at very high impact velocities due to shock waves.

3.4. Fragment size distributions
In this section we focus more specifically on the cracking regime (ξ > ξ1). We discussed
above the increase of the restitution coefficient in this regime with ξ and attributed it to the
decrease of the number of capillary bonds, leading to the increase of the fraction of energy
transferred to the fragments. For a better understanding of this evolution, we consider here
the variation of the contact coordination number Zc and bond coordination number Zb,
which, as we shall see, are correlated with the numbers and sizes of fragments due to the
isostatic nature of the fragments in the absence of friction. As the plots of the evolution
of energy in figure 8 show, the time elapsed (24 ms) after the beginning of impact is long
enough to allow for substantial (if not full) relaxation of the aggregate or the generated
fragments to a state close to static equilibrium.

We have seen that Zi
c varies slightly in the initial aggregate due to the internal pressure

generated by capillary forces. Up to these small variations, Zc is equal to its isostatic value
of 6. If the aggregate is not broken, we expect that Zc remains equal to 6 after impact.
Figure 16 shows Zc and Zb after impact as a function of ξ . We see that Zc is indeed close
to 6 in the deformation regime (ξ < ξ1). This is a confirmation that the aggregate has
sufficiently relaxed after impact to reach the expected equilibrium value of Zc. The small
observed variations are due to those of γs for different groups of data points. While Zc
remains nearly constant, Zb declines with increasing ξ first slowly in the elastic regime
(ξ < ξ0) and then faster in the plastic regime (ξ0 < ξ < ξ1). The loss of capillary bonds in
these regimes can be understood as a consequence of the hysteresis of the capillary force,
which allows the formation of new bonds only when particles undergo sufficient collective
rearrangements before they can touch one another and form new bonds.

In the cracking and breaking regimes ξ > ξ1, Zc declines almost logarithmically with
ξ from 6 down to values as low as Zc = 3.8. A few data points with lower values of
Zc in figure 16 and escaping the general trend may be attributed to insufficiently relaxed
fragments. We also see that Zb continues to decrease in the cracking and breaking regimes
down to Zb = 4 for ξ > 20. The fact that the values of Zc and Zb collapse on a master
curve as a function of ξ is an indication that the dynamics of breakage is fully controlled
by ξ . Figure 16(a) shows also the values of Zc predicted by the model described below.

To interpret the decrease of Zc as a function of ξ in the cracking and breaking regimes,
while the system is assumed to be isostatic, we must account for the sizes of the generated
fragments. Here Zc is calculated from the total number N∗

p of particles having at least
one contact (thus excluding floating particles, i.e. those that have no contact) and the total
number Nc of contacts, i.e.

Zc = 2Nc

N∗
p

, (3.6)

independently of whether the particles and their contacts belong to one or more
fragments. Let P0 be the proportion of floating particles. Then, we have N∗

p = Np(1 − P0).
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Figure 16. Contact coordination number Zc (a) and bond coordination number Zb (b) after impact as a function
of ξ . The black symbols are direct measurements from simulations whereas red crosses in (a) are the values of
Zc predicted by (3.9) by using the numerical values of N2, Na and P0.

The condition of isostaticity implies that

Nc = 3N∗
p − k, (3.7)

where, because of a zero friction coefficient, only normal relative displacements and forces
are assumed, and for spherical particles, the rotations are not introduced. The parameter k
is the number of soft modes or mechanisms, i.e. the velocity fields that do not change the
state of the system (Agnolin & Roux 2007b). In our system, adding a uniform velocity
or rotation to an aggregate composed of three or more particles does not change the
configuration of the aggregate. Hence, for each fragment, we have k = 6. For binary
fragments (composed of only two particles), we have k = 5 due to the axial symmetry
of the fragment around the common contact point.

Let Na be the total number of fragments composed of three or more particles and N2 the
number of fragments composed of two particles. Then, we have

k = 6Na + 5N2. (3.8)

Equations (3.6), (3.7) and (3.8) lead to the following expression of Zc:

Zc = 6
(

1 − 2
Na

Np(1 − P0)
− 5

3
N2

Np(1 − P0)

)
. (3.9)
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This relation explains the decrease of Zc as a function of ξ when the aggregate breaks
or P0 increases. Below ξ1, the aggregate is not broken, and we have Na = 1, N2 = 0 and
P0 � 0, implying Zc = 6 − 12/Np � 6. Above ξ1, Na, N2 and P0 begin to increase as a
function of ξ and Zc begins to decrease as a result.

Figure 17 shows the evolution of P0, N2 and Na as a function of ξ . We see that both P0,
N2 and Na begin to increase essentially from ξ2, i.e. when the aggregate breaks, although a
few particles are detached in the cracking regime. This is consistent with our criterion of at
least 1 % detached particles for an aggregate to be deemed ‘broken’. For the largest kinetic
energy, the breakage of the aggregate generates only about 14 % of floating particles and
the largest number of binary aggregates is N2 � 0.05Np. Hence, according to (3.9), the
binary aggregates are responsible for a maximum loss of 0.6 in the value of Zc. However,
figure 16(a) shows that at high values of ξ , Zc declines from 6 to 3.6, which is a decrease
of 2.4. This decrease is therefore mainly due to the generated fragments of three or more
particles at high impact energies. Hence, for all values of ξ , we may consider that N2 � Na
and the average number of particles per fragment Np/a can be expressed and approximated
as

Np/a = Np(1 − P0)

Na
� 12

6 − Zc
. (3.10)

This estimation includes the initial aggregate, which is not fully broken and its size is
larger than the smaller detached aggregates. This distinction is not necessary at higher
values of ξ as the initial aggregate disappears and we may assume that (3.10) provides a
correct estimate of the average size of the aggregates.

The plot of Zc estimated from (3.9) is shown in figure 16(a) together with the values
directly measured from the simulations as a function of ξ . For this estimation, we used
the numerical values of P0, Na and N2 shown in figure 17. We see that the estimated
values have basically the same trend as the measured values, but they are systematically
higher and the difference increases with ξ . Since the model is based on the assumption of
isostaticity, the only plausible explanation of this discrepancy is that, when the number of
contacts is evaluated from the simulations (24 ms after impact), the fragments are not fully
relaxed and, therefore, the number of contacts is underestimated.

Figure 18 shows the directly measured and estimated values of Np/a as a function of ξ .
We see that both values of Np/a decline from Np (i.e. the initial aggregate size when it does
not break) down to values below 10. The lowest non-zero value of Zc corresponds to the
limit where Na � N2, which can be reached at much higher impact velocities than those
used in our simulations. In this limit, we have N2/Np = 0.5 and Zc = 1. The slightly lower
level of the estimated values of Np/a as compared with the measured values has the same
origin as the discrepancy observed between the predicted and measured values of Zc.

4. Effect of lubrication forces

In this section we are interested in the effect of lubrication forces on the impact behaviour
of wet aggregates. We varied the viscosity η in a broad range of values up to 0.3 Pa s for
a total number of 303 simulations. The initial aggregates were the same as those used for
the impact simulations with zero viscosity for the same range of values of surface tension
γs. We discuss below the lubrication effects along three lines: How does the transition
between the deformation and breakage regimes depend on η? How does η influence the
effective restitution coefficient en of the aggregate? How do the post-impact coordination
numbers Zc and Zb vary with η?
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Figure 17. Proportion of floating particles P0 (a), the number of fragments composed of two particles N2 (b)
and the total number of fragments composed of three or more particles (c) after impact as a function of ξ .
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Figure 18. Average number of particles per fragment Np/a as a function of ξ both from direct measurement
of fragment statistics (black squares) and from (3.10) (red crosses).

4.1. Transition from deformation to breakage
To characterize the breakage phase space, we extend the parametric space to include η. The
main contribution of η is to introduce a new source of energy dissipation. As ξ reflects the
relative importance of the initial kinetic energy Ei

k to the initial capillary energy Ei
c, we

introduce η on the basis of the amount of energy Ev dissipated by viscosity per bond as
compared with Ei

c. At constant relative normal velocity vr between two particles, viscous
dissipation can be evaluated by integrating the lubrication force fv given by its expression
in (2.8) from the current gap distance δn to debonding distance and averaging over all
bonds:

Ev =
〈∫ drupt

δn

fvis(x) dx
〉
. (4.1)

This is the amount of viscous energy dissipated when a bond breaks between two particles.
The largest value Emax

v of viscous dissipation occurs for a contact in equilibrium, in
which case δn = δc. Hence, we obtain

Emax
v = 3π

8
ηd2vr

{
ln
(

drupt

δn0

)
+ πd

δn0

γs

kn

}
. (4.2)

Since γs/kn � 1, the second term can be neglected. We have seen previously that most
bonds inside the initial relaxed aggregate before impact are contact points. For this reason,
as in the case of capillary energy, Emax

v is generally a reasonable approximation of Ev .
The relative normal velocity vr between particles is proportional to the impact velocity

v. Assuming that the aggregate deforms uniformly across its diameter, the scale factor is
d/D, where D is the diameter of the aggregate:

vr � v
d
D

. (4.3)

We therefore define a reduced viscous dissipation as Emax
v normalized by Ec:

κ = Emax
v

Emax
c

� 3π

8
d
λf

ln
(

drupt

δn0

)
ηvd
γsD

. (4.4)

1000 A39-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

79
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.798


L. Braysh, P. Mutabaruka, F. Radjai and S. Mora

0 0.05 0.10 0.15 0.20 0.25 0.30

η (Pa s)

Ca
10−6

10−3

10−2

10−1

100

101

102

103

10−5 10−4 10−3 10−2 10−1 100 101 102

ξ

Figure 19. Phase space of particle breakage defined by the initial reduced kinetic energy ξ and capillary
number Ca. The simulation data points are represented by full circles for broken aggregates, open circles
for deformed aggregates and half-open circles for cracked aggregates. The full line is a fitting form, given by
(4.6), for the approximate borderline defining the crossover between the deformation and cracking regimes.

Note that up to a numerical factor depending on drupt, δn0 (surface roughness) and λf , the
reduced viscous dissipation is the same as the viscous capillary number defined by

Ca = ηvd
γsD

. (4.5)

Figure 19 displays all data points in the parametric space defined by the coordinates
ξ and Ca on the logarithmic scale. The data points are placed with three different
symbols as in the previous section for the three regimes ‘deformed’, ‘cracked’ and
‘broken’. Remarkably, despite the nearly random values of γs, v and η, the data suggest
a well-defined borderline between the deformation/cracking and breaking regimes. We
also see that a transition occurs from the zone of low values of Ca, where the borderline
corresponds to ξ = ξ2 as in the purely capillary case, and the zone of higher values of Ca,
where the value of ξ at the crossover point increases with Ca. A single functional form
nicely fits the borderline:

ξ = ξ2 +
(

Ca
Ca∗

)h

. (4.6)

Here Ca∗ � 0.003 and h � 2/3. The value of Ca∗ corresponds to a transition from the
capillary regime to the viscous regime as Ca increases. The capillary regime (Ca < Ca∗)
is characterized by a negligible effect of viscosity, and energy dissipation is essentially due
to the dynamics of capillary bonds whereas in the viscous regime (Ca > Ca∗), viscous
dissipation prevails. The observed higher values of ξ in the viscous regime for crossover
to the breaking regime means that the breakage of aggregates requires a larger impact
velocity or lower surface tension due to the absorption of a significant amount of the
impact energy by liquid viscosity.

From (4.6) we obtain an equation that combines all impact parameters by replacing ξ

by its approximate expression from (3.2) and Ca by its expression from (4.5). Starting
with parameter values such that the impact test takes place on the borderline, this relation
predicts the effect of changing any of the parameters. For example, either increasing
the incident velocity or decreasing the surface tension always leads to particle breakage
independently of where on the borderline we are since the velocity appears on both sides
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Figure 20. Effective restitution coefficient en as a function of ξ for all impact tests including those with
non-zero viscosities (shown in black) for different values of the capillary number Ca.

of relation (4.6). Moving on the borderline implies a combined variation of the parameters
such that ξ − (Ca/Ca∗)h remains constant and equal to ξ2. Furthermore, the same relation
predicts that increasing η without changing any other parameter leads to the stabilization of
the aggregate whereas increasing aggregate size D leads to its breakage. These predictions
need to be checked by means of further simulations.

4.2. Effective restitution coefficient
As in the capillary regime, we consider here the effective restitution coefficient en of the
aggregate as a function of both ξ and Ca. Figure 20 shows en as a function of ξ for all
impact tests with different values of η, including those with zero viscosity. We see that
viscosity does not affect the general dependence of en on ξ . For all values of Ca, en
declines with increasing ξ , passes by a minimum at ξ = ξ ′

1 and then increases with ξ . It
is interesting that our data points collapse on the same curve in the descending phase but
they differ in the ascending phase according to the value of the liquid viscosity. Note that
many data points on the descending branch of figure 20 correspond to impact tests with
non-zero viscosity. In the presence of lubrication forces, the descending branch extends to
lower values of en than in the inviscid case and the transition to the ascending branch takes
place at higher values of ξ ′

1. This is consistent with a transition from capillary regime to
viscous regime, as discussed in the previous section for crossover to the cracking regime.
Nevertheless, we see that this transition to an ascending branch does not necessarily imply
the fracture of the aggregates. Indeed, independently of viscosity, no breakage occurs when
en < 10−3. The increase of the transition point ξ ′

1 with Ca simply means that, due to liquid
viscosity, more energy dissipation occurs in the capillary regime.

The general trend of en as a function of ξ in the breaking regime is similar for different
values of Ca. We do not have a sufficient number of data points for a quantitative
description of the evolution of en for each value of Ca. But figure 20 suggests that, as
Ca increases, the transition point ξ ′

1 and the ascending curve of en are shifted to higher
values of ξ . On the other hand, for each value of ξ , en in the breaking regime declines as
Ca increases. This shift is consistent with the fact that a higher proportion of energy is
dissipated during plastic deformation and breakage of the aggregate due to the effect of
lubrication forces. Technically, this means that the toughness of the aggregate increases
with Ca for a given value ξ .
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4.3. Coordination numbers
Figure 21 shows the evolution of an aggregate during impact with the wall in the
viscous regime for Ca = 2.25 and ξ = 177, as well as the top view of its last registered
configuration. The phenomenology of impact, spreading and fracture of the aggregate is
very similar to what was observed in the inviscid case. As in the inviscid case, the fracture
process can be quantified from the final values of the coordination numbers. Figure 22
shows both Zc and Zb as a function of ξ for all values of Ca, including the impact tests
with η = 0. The trends are globally similar to those observed in the inviscid case but with
higher values for each value of ξ . The contact coordination number Zc has a constant value
close to 6 in the range ξ < ξ ′

1 corresponding to the deformation regime. For higher values
of ξ , Zc decreases at a rate that is nearly the same for all values of Ca. But since ξ ′

1 increases
with Ca, Zc also increases with Ca for a given value of ξ . As a result, according to (3.9),
the number of fragments decreases with increasing Ca. The bond number Zb follows a
similar trend in the breaking regime. However, in contrast to Zc, Zb decreases also in the
deformation regime as a function of ξ as in the inviscid case.

In figure 22(a) we also observe that the fragments with the two highest values of
viscosity show anomalously low values of Zc. The corresponding bond coordination
numbers are, however, well behaved without any apparent anomaly. These extremely low
values of Zc can be explained by the long return time of the fragments to equilibrium.
When the impact occurs, many contacts are lost without losing their liquid bridge. Such
contacts can be regained subsequently under the action of the capillary force between
particles provided the lubrication force is overcome before the end of the simulation,
i.e. 24 ms after impact. For our two highest viscosities, the return time is longer than
the simulation time. This is more directly evidenced in figure 23(a), which shows the
proportions P0 of floating particles as a function of ξ for increasing values of the capillary
number Ca: P0 has anomalously high values for the two largest values of the liquid
viscosity.

Consistently with other data, both P0 (figure 23a) and Na (figure 23b) begin to increase
from zero in the breaking regime as a function of ξ , but at a rate that declines as Ca
increases. Figure 24 displays Np/a as a function of Zc from all simulations with different
values of ξ and Ca. In exception to the data points corresponding to our two highest
viscosities, all data points collapse well on a master curve, which is closely approximated
by the calculation of Np/a using (3.10) with the values of P0 and N2 shown in figure 23.
Here also the discrepancy is due to the overestimation of Zc by the model.

5. Conclusion

We conducted extensive particle dynamics simulations to investigate the impact of wet
aggregates on a rigid plane with varying impact velocity, surface tension and viscosity.
The objective was to characterize different regimes and identify scaling parameters
controlling the behaviour. By focusing on particle breakage or cracking, post-impact
kinetic energy and aggregate connectivity, four distinct regimes were delineated: inelastic
rebound, plastic deformation via particle rearrangements, cracking and breakage. The
transitions between these regimes were analysed, revealing that they are fully governed by
two dimensionless parameters: (1) the ratio of impact energy to the initial capillary energy
of the aggregate (initial reduced kinetic energy), and (2) the capillary number defined
from the ratio of viscous dissipation to capillary energy. An interesting finding of this
study was the non-trivial relationship between these two numbers for breakage conditions.
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Figure 21. (a) Side-view snapshots of the time evolution of the impact of an aggregate in the viscous regime
with Ca = 2.25 and ξ = 177. (b) Top view of the last configuration of the same impact test.

Furthermore, a transition from a capillary to a viscous regime was observed at a critical
value of the capillary number.

The proposed scaling is grounded in a rigorous analysis of simulation data, yet it
involves parameters that were not varied in this study, requiring further investigation for
a comprehensive description of the impact process. One such parameter is the size of
primary particles constituting the aggregates, suggesting that larger particle sizes may
diminish aggregate stability and strength. Additionally, the influence of varying debonding
distances is crucial to understanding their influence on capillary energy and the overall
dynamics elucidated in this study.

In our simulations we set the friction coefficient to zero to build dense aggregates with
high packing fractions in a well-defined isostatic state. Subsequently, during impact tests,
we maintained a zero friction coefficient. This assumption is physically plausible in the
case of an ideally smooth particle surface, where lubrication forces prevail. However, real
particles always have some degree of surface roughness and friction can play a substantial
role. Introducing a non-zero friction coefficient during initial particle relaxation would
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Figure 22. Variation of the contact coordination number Zc (a) and bond coordination number Zb as a function
of the reduced initial kinetic energy ξ for different values of capillary number Ca. Black symbols are data points
of the inviscid case.

yield less-compact aggregates with lower coordination numbers. The effect of a non-zero
friction coefficient during impact tests depends on the competing effects of reduced
aggregate strength due to lower packing fractions and connectivity and enhanced strength
resulting from reduced particle mobility. This interplay is anticipated to impact the onset
of particle breakage and transitions between different regimes. A detailed parametric study
can shed light on the efficacy of these competing mechanisms and their influence on
regime crossovers. However, we anticipate that the fundamental physical insights derived
from this study will remain intact.

In this work we also assumed that the target wall is hydrophobic and no capillary bonds
can form between the primary particles and the wall. The presence of such bonds can
enhance dissipation and reduce the effective restitution coefficient of the aggregate. It can
also influence the spreading dynamics of the aggregate on the wall before its possible
split into fragments. Comparing further simulations involving a wet wall with the results
presented in this paper can allow for a clear quantification of wet wall effects. Further
simulations encompassing a broader parametric space and laboratory impact experiments
are necessary to verify and validate our findings about the scaling behaviour, different
regimes, dynamics of spreading and breakage, transition values and effects of various
system parameters.
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Figure 23. Proportions of floating particles (a) and total number of fragments composed of three or more
particles after impact as a function of the initial reduced kinetic energy ξ for different values of capillary
number Ca. Black symbols are data points for the inviscid case.
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Figure 24. Average fragment size (in number of particles) Np/a as a function of contact coordination number
Zc from simulations with different values of Ca (symbols) and the model prediction according to (3.10) (black
solid line).
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