THE DUAL STRUCTURE OF CROSSED PRODUCT C*-ALGEBRAS WITH FINITE GROUPS

FIRUZ KAMALOV

(Received 10 August 2012; accepted 19 September 2012; first published online 18 January 2013)

Abstract

We study the space of irreducible representations of a crossed product C^* -algebra $A \rtimes_{\sigma} G$, where G is a finite group. We construct a space $\widetilde{\Gamma}$ which consists of pairs of irreducible representations of A and irreducible projective representations of subgroups of G. We show that there is a natural action of G on $\widetilde{\Gamma}$ and that the orbit space $G \setminus \widetilde{\Gamma}$ corresponds bijectively to the dual of $A \rtimes_{\sigma} G$.

2010 Mathematics subject classification: primary 46L55; secondary 46L05.

Keywords and phrases: irreducible representations, crossed product C^* -algebra, finite groups, dual structure.

1. Introduction

Let A be a C^* -algebra and let G be a locally compact group acting as automorphisms of A via a homomorphism σ into $\operatorname{Aut}(A)$. It has been a long-standing problem to describe the ideal structure of the crossed product $A \rtimes_{\sigma} G$. One approach to describing $\operatorname{Prim}(A \rtimes_{\sigma} G)$ is to construct a set X whose structure can be understood and then realise $\operatorname{Prim}(A \rtimes_{\sigma} G)$ as the quotient space of X. Perhaps the best example of such an approach is given by Williams in [7], where A and G are assumed to be abelian. In this case, $\operatorname{Prim}(A \rtimes_{\sigma} G)$ can be realised as the quotient space of $X = \widehat{A} \times \widehat{G}$. In general, the problem of constructing the appropriate space X seems to be very difficult. Even in special cases where A is Type I or G is amenable the problem remains open [2].

The purpose of this paper is to describe the dual space $A \rtimes_{\sigma} G$ of $A \rtimes_{\sigma} G$, that is, the set of all unitary equivalence classes of irreducible representations of $A \rtimes_{\sigma} G$, when G is finite. The study of crossed products involving finite groups goes back to Rieffel [5]. More recently, it was shown by Arias and Latremoliere in [1] that every irreducible representation of $A \rtimes_{\sigma} G$ is induced from an irreducible representation of a certain subsystem. In Section 2 we construct a space $\widetilde{\Gamma}$ which consists of pairs of unitary equivalence classes of irreducible representations of A and irreducible projective representations of certain subgroups of A. There is a natural action of A on A0 on A1 we define a map A2 from A3 into the set of equivalence classes of irreducible covariant representations of the dynamical system A3. In Section 3 we show

^{© 2013} Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

that the map Φ is surjective. This result is also proved in [1, Theorem 3.4], but we provide an alternative approach. Our main result is Theorem 3.3, where we identify $\widehat{A} \rtimes_{\sigma} G$ with the set of orbits in $\widehat{\Gamma}$.

Recall that a covariant representation of (A, G, σ) on a Hilbert space \mathcal{H} is a pair (π, U) , where π is a nondegenerate representation of A on \mathcal{H} and U is a homomorphism of G into the unitary group of $\mathcal{B}(\mathcal{H})$ such that

$$U(s)\pi(a)U(s)^* = \pi(\sigma_s a)$$

for all $a \in A$ and $s \in G$. There exists a one-to-one correspondence between the covariant representations of the system (A, G, σ) and the nondegenerate representations of $A \rtimes_{\sigma} G$. Therefore, the study of representations of $A \rtimes_{\sigma} G$ is equivalent to that of covariant representations of (A, G, σ) .

2. The action of G on Γ

Let (A, G, σ) be a dynamical system, where G is a finite group. The action of G on A induces a natural action of G on \widehat{A} given by $[\pi] \mapsto [\pi \circ \sigma_s]$ for all $[\pi] \in \widehat{A}$ and $s \in G$. Define $G_{\pi} = \{s \in G : [\pi] = [\pi \circ \sigma_s]\}$ to be the stability group for each $[\pi] \in \widehat{A}$. Then for each $s \in G_{\pi}$ there is a unitary V_s such that $V_s \pi V_s^* = \pi \circ \sigma_s$. A routine calculation shows that the map $s \mapsto V_s$ defines a projective representation of G_{π} . Let ω be the multiplier of the projective representation V. The multiplier ω and the projective representation V do not depend on the choice of π but only on the equivalence class $[\pi]$. Let W_{ω} be an ω -representation of G_{π} . Then according to [4], $\overline{W_{\omega}}$, the adjoint of W_{ω} , is an ω^{-1} -representation. We can construct a covariant representation of (A, G_{π}, σ) by

$$\pi_{\omega} = \pi \otimes 1$$
 and $U_{\omega} = V \otimes \overline{W_{\omega}}$. (2.1)

The map $W_{\omega} \mapsto (\pi_{\omega}, U_{\omega})$ sets up a one-to-one correspondence between the set of ω -representations of G_{π} and the set of all covariant representations of (A, G_{π}, σ) of the form $(\pi \otimes 1, V \otimes \overline{W_{\omega}})$. Moreover, the commutant of $(\pi_{\omega}, U_{\omega})$ is isomorphic to the commutant of W_{ω} under the canonical correspondence [6, Lemma 5.2]. In particular, if W_{ω} is irreducible, then so is $(\pi_{\omega}, U_{\omega})$.

Let Γ be the set of all pairs (π, W_{ω}) , where π is an irreducible representation of A and W_{ω} is an irreducible ω -representation of G_{π} . There exists a natural action of G on the set Γ which we now describe. For each $s \in G$, we have $G_{\pi \circ \sigma_s} = s^{-1}G_{\pi}s$. So given a projective representation W_{ω} of G_{π} we can construct a projective representation of $G_{\pi \circ \sigma_s}$ by $(s \cdot W_{\omega})(s^{-1}ts) = W_{\omega}(t)$ for all $t \in G_{\pi}$. Thus we can define the action of G on Γ by

$$(\pi, W_{\omega}) \mapsto (\pi \circ \sigma_s, s \cdot W_{\omega}).$$

In order to establish a connection between Γ and $A \rtimes_{\sigma} G$ we need to extend a representation of (A, G_{π}, σ) to a representation of (A, G, σ) . We will use the Mackey–Takesaki construction of induced representations for this purpose. Since we are working with a finite group G, induced representations are easy to describe. Let H

be a subgroup of G and let (π, U) be a covariant representation of (A, H, σ) on a Hilbert space \mathcal{H}_0 . Let \mathcal{H} be the space of all \mathcal{H}_0 -valued functions ξ on G satisfying $\xi(ts) = U(t)\xi(s)$ for all $t \in H$ and all $s \in G$. Define \overline{U} to be the homomorphism of G into the unitary group of $\mathcal{B}(\mathcal{H})$ given by

$$(\overline{U}(t)\xi)(s) = \xi(st)$$

for all $\xi \in \mathcal{H}$ and $s, t \in G$. For each $a \in A$, define an operator $\overline{\pi}(a)$ on \mathcal{H} by

$$(\overline{\pi}(a)\xi)(s) = \pi(\sigma_s a)\xi(s)$$

for all $\xi \in \mathcal{H}$ and $s \in G$. Then $(\overline{\pi}, \overline{U})$ is the induced covariant representation of (A, G, σ) .

Let H be a subgroup of G and let (π, U) be a representation of (A, H, σ) . Let $s \in G$. Define a representation $(\pi \circ \sigma_s, U_s)$ of $(A, s^{-1}Hs, \sigma)$ by $U_s(s^{-1}ts) = U(t)$ for all $t \in H$. We want to establish that (π, U) and $(\pi \circ \sigma_s, U_s)$ lead to equivalent representations.

Lemma 2.1. Let (A, G, σ) be a dynamical system, where G is a finite group. Let H be a subgroup of G and $s \in G$. Suppose that (π, U) and $(\pi \circ \sigma_s, U_s)$ are as above and that $(\overline{\pi}, \overline{U})$ and $(\overline{\pi} \circ \overline{\sigma_s}, \overline{U_s})$ are the corresponding induced representations of (A, G, σ) . Then $(\overline{\pi}, \overline{U})$ is unitarily equivalent to $(\overline{\pi} \circ \overline{\sigma_s}, \overline{U_s})$.

PROOF. Let \mathcal{H} denote the representation space for $(\overline{\pi}, \overline{U})$ and \mathcal{H}_s denote the representation space for $(\overline{\pi} \circ \overline{\sigma_s}, \overline{U_s})$. Define a unitary V from \mathcal{H} to \mathcal{H}_s by $(V\xi)(r) = \xi(sr)$ for all $\xi \in \mathcal{H}$ and $r \in G$. For each $\eta \in \mathcal{H}_s$,

$$(V\overline{\pi}(a)V^*\eta)(r) = (\overline{\pi}(a)V^*\eta)(sr)$$

$$= \pi(\sigma_{sr}a)(V^*\eta)(sr)$$

$$= \pi(\sigma_{sr}a)\eta(r) = (\overline{\pi} \circ \overline{\sigma_s}(a)\eta)(r)$$

for all $r \in G$ and $a \in A$. Similarly,

$$(V\overline{U}(t)V^*\eta)(r)=\eta(rt)=(\overline{U_s}(t)\eta)(r)$$

for all $t, r \in G$. It follows that $(\overline{\pi}, \overline{U})$ is equivalent to $(\overline{\pi \circ \sigma_s}, \overline{U_s})$ via the unitary V. \square

Let $(\pi_{\omega}, U_{\omega})$ be a representation of (A, G_{π}, σ) as in (2.1). For each representation of the form $(\pi_{\omega}, U_{\omega})$, we can induce a representation $(\overline{\pi_{\omega}}, \overline{U_{\omega}})$ of (A, G, σ) . The commutant of $(\pi_{\omega}, U_{\omega})$ is isomorphic to the commutant of $(\overline{\pi_{\omega}}, \overline{U_{\omega}})$. In particular, if $(\pi_{\omega}, U_{\omega})$ is irreducible, then so is $(\overline{\pi_{\omega}}, \overline{U_{\omega}})$. Let (π_1, W_{ω_1}) and $(\pi_2, W_{\omega_2}) \in \Gamma$. We will say that (π_1, W_{ω_1}) is equivalent to (π_2, W_{ω_2}) if π_1 is unitarily equivalent to π_2 and π_2 and π_3 is unitarily equivalent to π_3 . Note that the action of G on G induces the action of G on G.

Lemma 2.2. Let (A, G, σ) be a dynamical system, where G is a finite group. Let $(\pi_1, W_{\omega_1}), (\pi_2, W_{\omega_2}) \in \Gamma$ and let $(\overline{\pi_{\omega_1}}, \overline{U_{\omega_1}}), (\overline{\pi_{\omega_2}}, \overline{U_{\omega_2}})$ be the corresponding representations of (A, G, σ) . If $(\overline{\pi_{\omega_1}}, \overline{U_{\omega_1}})$ is unitarily equivalent to $(\overline{\pi_{\omega_2}}, \overline{U_{\omega_2}})$, then (π_1, W_{ω_1}) is equivalent to $(\pi_2 \circ \sigma_s, s \cdot W_{\omega_2})$ for some $s \in G$. 246 F. Kamalov [4]

PROOF. Let \mathcal{H} and \mathcal{K} be representation spaces for $(\overline{\pi_{\omega_1}}, \overline{U_{\omega_1}})$ and $(\overline{\pi_{\omega_2}}, \overline{U_{\omega_2}})$ respectively. Let $\{r_i\}$ be the set of right coset representatives of G_{π_1} in G. Define $\mathcal{H}_i = \{\xi \in \mathcal{H} : \xi(t) = 0 \text{ for all } t \notin G_{\pi_1} r_i\}$, that is, \mathcal{H}_i is the set of functions in \mathcal{H} supported on the coset $G_{\pi_1} r_i$. Then $\overline{\pi_{\omega_1}}_{|\mathcal{H}_i|}$ is equivalent to $\pi_{\omega_1} \circ \sigma_{r_i}$ for each r_i and $\overline{\pi_{\omega_1}}$ decomposes as a direct sum of disjoint representations

$$\overline{\pi_{\omega_1}} = \bigoplus_i \pi_{\omega_1} \circ \sigma_{r_i}.$$

Similarly, $\overline{\pi_{\omega_2}} = \bigoplus_j \pi_{\omega_2} \circ \sigma_{s_j}$, where $\{s_j\}$ is the set of right coset representatives of G_{π_2} in G. Since $(\overline{\pi_{\omega_1}}, \overline{U_{\omega_1}})$ is unitarily equivalent to $(\overline{\pi_{\omega_2}}, \overline{U_{\omega_2}})$ there is a unitary V such that $V\overline{\pi_{\omega_1}} = \overline{\pi_{\omega_2}}V$ and $V\overline{U_{\omega_1}} = \overline{U_{\omega_2}}V$. We can view V as a matrix operator with respect to decomposition $\mathcal{H} = \bigoplus_i \mathcal{H}_i$ and $\mathcal{K} = \bigoplus_j \mathcal{K}_j$. Since $\{\pi_1 \circ \sigma_{r_i}\}_i$ are mutually inequivalent representations and $\{\pi_2 \circ \sigma_{s_j}\}_j$ are also mutually inequivalent, V is a permutation matrix whose nonzero entries are unitaries. Therefore, there exists a unitary V_{j1} such that $V_{j1}\pi_{\omega_1} = (\pi_{\omega_2} \circ \sigma_{s_j})V_{j1}$ for some s_j . It follows that π_1 is equivalent to $\pi_2 \circ \sigma_{s_j}$ and $G_{\pi_1} = s_j^{-1}G_{\pi_2}s_j$. Observe that the restriction of $\overline{U_{\omega_1|\mathcal{H}_1}}$ to G_{π_1} is equivalent to the representation U_{ω_1} and the restriction of $\overline{U_{\omega_2|\mathcal{K}_1}}$ to G_{π_2} is equivalent to the representation U_{ω_2} . Since $V\overline{U_{\omega_1}} = \overline{U_{\omega_2}}V$, $V_{j1}\overline{U_{\omega_1|\mathcal{H}_1}}(r) = \overline{U_{\omega_2|\mathcal{K}_j}}(r)V_{j1}$ for all $r \in G_{\pi_1}$. Also $\overline{U_{\omega_2|\mathcal{K}_j}}(s_j^{-1}ts_j)$ is equivalent to $\overline{U_{\omega_2|\mathcal{K}_1}}(t)$ for all $t \in G_{\pi_2}$. Therefore, $U_{\omega_1}(s_j^{-1}ts_j)$ is equivalent to $U_{\omega_2}(t)$ for all $t \in G_{\pi_2}$. It follows that (π_1, W_{ω_1}) is equivalent to $(\pi_2 \circ \sigma_{s_j}, s_j \cdot W_{\omega_2})$.

Define a map Φ from $\widetilde{\Gamma}$ into the set of equivalence classes of irreducible covariant representations of (A, G, σ) by

$$\Phi(\pi, W_{\omega}) = (\overline{\pi_{\omega}}, \overline{U_{\omega}}). \tag{2.2}$$

If (π_1, W_{ω_1}) is equivalent to (π_2, W_{ω_2}) , then $\Phi(\pi_1, W_{\omega_1})$ is equivalent to $\Phi(\pi_2, W_{\omega_2})$. So Φ is well defined. The next result follows directly from Lemmas 2.1 and 2.2.

Corollary 2.3. Let (A, G, σ) be a dynamical system, where G is a finite group. Suppose that (π_1, W_{ω_1}) and $(\pi_2, W_{\omega_2}) \in \widetilde{\Gamma}$. Then $\Phi(\pi_1, W_{\omega_1}) = \Phi(\pi_2, W_{\omega_2})$ if and only if $(\pi_2, W_{\omega_2}) = (\pi_1 \circ \sigma_s, s \cdot W_{\omega_1})$ for some $s \in G$.

3. The main result

The remaining step in obtaining our main result is to show that the map Φ , as defined in (2.2), is surjective. We first need the following elementary lemma about projections.

Lemma 3.1. Let \mathcal{H} be a Hilbert space and \mathbb{A} be a von Neumann algebra in $\mathcal{B}(\mathcal{H})$. Let p_1 and p_2 be a pair of projections in \mathbb{A} . Suppose that $q = p_1 - (p_1 \wedge p_2)$. Then $q \wedge p_2 = 0$. Moreover, if p_2 is a minimal projection, then $(p_1 \vee p_2) - p_1$ is a minimal projection in \mathbb{A} .

PROOF. Suppose that $qh_1 = p_2h_2$ for some $h_1, h_2 \in \mathcal{H}$. Since $q \le p_1$, we have $p_1p_2h_2 = p_2h_2$. Hence, $(p_1 \land p_2)h_2 = p_2h_2$. It follows that $(p_1 \land p_2)h_2 = qh_1$. But $q \land (p_1 \land p_2) = 0$, so $qh_1 = 0$.

To prove the second part of the statement let $e = (p_1 \lor p_2) - p_1$. Suppose that there exists a nonzero projection $e' \in \mathbb{A}$ such that $e' \leq e$. Then $p_2e' \neq 0$ and $p_2e'\mathcal{H} \subseteq p_2\mathcal{H}$. Let p'_2 be the projection onto the closure of the range of p_2e' . Then $p'_2 \in \mathbb{A}$ and $p'_2 \leq p_2$, which is a contradiction. It follows that e is a minimal projection.

Let (π, U) be a covariant representation of (A, G, σ) on a Hilbert space \mathcal{H} . There is a natural action of G on the von Neumann algebra $\pi(A)'$ given by $T \mapsto U(s)TU(s)^*$ for all $T \in \pi(A)'$. We say that the action of G on a von Neumann algebra \mathbb{A} is ergodic if the only elements of \mathbb{A} that are fixed by the group action are the scalar multiples of the identity operator. It was shown in [1, Theorem 3.1], using a powerful result of [3], that von Neumann algebras which admit ergodic action by a finite group are necessarily finite-dimensional. We present this result below with an alternative proof.

PROPOSITION 3.2. Let U be a unitary representation of a finite group G on a Hilbert space \mathcal{H} . Suppose that G acts ergodically on a von Neumann algebra \mathbb{A} in $\mathcal{B}(\mathcal{H})$. Then there exists a finite family of minimal projections $p_i \in \mathbb{A}$ such that $\bigoplus p_i = 1_{\mathcal{H}}$.

PROOF. We will first show that there exists a minimal projection $p \in \mathbb{A}$ together with a subset $S \subseteq G$ such that $\bigvee_{s_j \in S} U(s_j) p U(s_j)^* = 1_{\mathcal{H}}$ and $(\bigvee_{j \le i-1} U(s_j) p U(s_j)^*) \land U(s_i) p U(s_i)^* = 0$ for all $s_i \in S$. To this end, let $p \in \mathbb{A}$ and $S' \subseteq G$ such that

$$\left(\bigvee_{j\leq i-1}U(s_j)pU(s_j)^*\right)\wedge U(s_i)pU(s_i)^*=0\quad\text{ for all }s_i\in S'.$$

Suppose that p is not a minimal projection. It will be enough to show that there is a projection $p' \in \mathbb{A}$ and $t \in G - S'$ such that

$$\left(\bigvee_{j\leq i-1}U(s_j)p'U(s_j)^*\right)\wedge U(s_i)p'U(s_i)^*=0\quad\text{for all }s_i\in S,$$

where $S = S' \cup \{t\}$. Since G is finite we will eventually obtain a minimal projection. For each projection $q \in \mathbb{A}$, we have $\sum_G U(s)qU(s)^* \in \mathbb{A}$. Moreover,

$$U(t)\left(\sum_{G} U(s)qU(s)^{*}\right)U(t)^{*} = \sum_{G} U(s)qU(s)^{*}$$

for all $t \in G$. Since the group action is ergodic, $\sum_G U(s)qU(s)^* = c1_{\mathcal{H}}$ for some complex number c. It follows that

$$\bigvee_{G} U(s)qU(s)^* = 1_{\mathcal{H}}$$
(3.1)

for all nonzero projections $q \in \mathbb{A}$. Assume, without loss of generality, that $1_G \in S'$. Moreover, by replacing p with a proper, nonzero subprojection we can assume

that $\bigvee_{s \in S'} U(s)pU(s)^* < 1_{\mathcal{H}}$. By (3.1), there exists $t \in G$ such that $U(t)pU(t)^* \nleq \bigvee_{s \in S'} U(s)pU(s)^*$. Note that $t \notin S'$. Let

$$q = U(t)pU(t)^* - \left(U(t)pU(t)^* \wedge \left(\bigvee_{s \in S'} U(s)pU(s)^*\right)\right).$$

By Lemma 3.1, $q \wedge (\bigvee_{s \in S'} U(s)pU(s)^*) = 0$. Then $p' = U(t)^*qU(t)$ is the desired projection.

We will now describe how to transform the set of minimal projections $\{U(s_i)pU(s_i)^*\}_{s_i\in S}$ obtained above into a set of orthogonal minimal projections. Let $q_i = U(s_i)pU(s_i)^*$ for all $s_i \in S$. For each $i \geq 2$, define

$$p_i = \bigvee_{1 \le j \le i} q_j - \bigvee_{1 \le j \le i-1} q_j$$

and $p_1 = q_1$. Then $p_i \in \mathbb{A}$ for all i, and $p_i \perp p_j$ for all $i \neq j$. Moreover, by the second part of Lemma 3.1, each p_i is a minimal projection.

Suppose that (π, U) is an irreducible representation of (A, G, σ) . Then the action of G on $\pi(A)'$ is ergodic. Applying Proposition 3.2 to the algebra $\pi(A)'$, we get that π decomposes as a direct sum of finitely many irreducible representations. Let ρ be an irreducible subrepresentation of π . It follows from [1, Theorem 3.4] that there exists an irreducible ω -representation of G_{ρ} such that (π, U) is unitarily equivalent to $(\overline{\rho_{\omega}}, \overline{U_{\omega}})$. It follows that the map Φ , as defined in (2.2), is surjective. We are now in position to state our main theorem.

THEOREM 3.3. Suppose that $A \rtimes_{\sigma} G$ is a crossed product C^* -algebra, where G is a finite group. Let $\widetilde{\Gamma} \backslash G$ be the set of orbits in $\widetilde{\Gamma}$ under the group action. Then there exists a bijective correspondence between $\widetilde{\Gamma} \backslash G$ and the dual space $A \rtimes_{\sigma} G$.

PROOF. Recall that there is a canonical correspondence between the irreducible representations of $A \rtimes_{\sigma} G$ and (A, G, σ) . By the preceding discussion the map $\Phi : \widetilde{\Gamma} \mapsto A \widehat{\rtimes_{\sigma}} G$ is surjective. Moreover, by Corollary 2.3, $\Phi(\pi_1, W_{\omega_1}) = \Phi(\pi_2, W_{\omega_2})$ if and only if (π_2, W_{ω_2}) is in the orbit of (π_1, W_{ω_1}) .

References

- A. Arias and F. Latremoliere, 'Irreducible representations of C*-crossed products by finite groups', J. Ramanujan Math. Soc. 25(2) (2010), 193–231.
- [2] S. Echterhoff and D. Williams, 'Inducing primitive ideals', Trans. Amer. Math. Soc. 360(11) (2008), 6113–6129.
- [3] R. Hoegh-Krohn, M. Landstad and E. Stormer, 'Compact ergodic groups of automorphisms', Ann. of Math. (2) 114(1) (1981), 75–86.
- [4] G. Mackey, 'Unitary representations of group extensions, I', Acta Math. 99 (1958), 265–311.
- [5] M. Rieffel, 'Actions of finite groups on C*-algebras', Math. Scand. 47 (1980), 176–257.

- [6] M. Takesaki, 'Covariant representations of C*-algebras and their locally compact automorphism groups', Acta Math. 119 (1967), 273–303.
- [7] D. Williams, 'The topology on the primitive ideal space of transformation group C^* -algebras and CCR transformation group C^* -algebras', *Trans. Amer. Math. Soc.* **266** (1981), 335–359.

FIRUZ KAMALOV, Mathematics Department, Canadian University of Dubai, Dubai, UAE e-mail: firuz@cud.ac.ae