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Abstract

We study the space of irreducible representations of a crossed product C∗-algebra AoσG, where G is
a finite group. We construct a space Γ̃ which consists of pairs of irreducible representations of A and
irreducible projective representations of subgroups of G. We show that there is a natural action of G on Γ̃

and that the orbit space G \ Γ̃ corresponds bijectively to the dual of AoσG.
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1. Introduction

Let A be a C∗-algebra and let G be a locally compact group acting as automorphisms
of A via a homomorphism σ into Aut(A). It has been a long-standing problem to
describe the ideal structure of the crossed product A oσ G. One approach to describing
Prim(A oσ G) is to construct a set X whose structure can be understood and then
realise Prim(A oσ G) as the quotient space of X. Perhaps the best example of such
an approach is given by Williams in [7], where A and G are assumed to be abelian. In
this case, Prim(A oσ G) can be realised as the quotient space of X = Â × Ĝ. In general,
the problem of constructing the appropriate space X seems to be very difficult. Even
in special cases where A is Type I or G is amenable the problem remains open [2].

The purpose of this paper is to describe the dual space ̂A oσ G of A oσ G, that
is, the set of all unitary equivalence classes of irreducible representations of A oσ G,
when G is finite. The study of crossed products involving finite groups goes back to
Rieffel [5]. More recently, it was shown by Arias and Latremoliere in [1] that every
irreducible representation of A oσ G is induced from an irreducible representation of
a certain subsystem. In Section 2 we construct a space Γ̃ which consists of pairs
of unitary equivalence classes of irreducible representations of A and irreducible
projective representations of certain subgroups of G. There is a natural action of G
on Γ̃. We define a map Φ from Γ̃ into the set of equivalence classes of irreducible
covariant representations of the dynamical system (A,G, σ). In Section 3 we show
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that the map Φ is surjective. This result is also proved in [1, Theorem 3.4], but we
provide an alternative approach. Our main result is Theorem 3.3, where we identify
̂A oσ G with the set of orbits in Γ̃.

Recall that a covariant representation of (A,G, σ) on a Hilbert space H is a pair
(π, U), where π is a nondegenerate representation of A onH and U is a homomorphism
of G into the unitary group of B(H) such that

U(s)π(a)U(s)∗ = π(σsa)

for all a ∈ A and s ∈G. There exists a one-to-one correspondence between
the covariant representations of the system (A,G, σ) and the nondegenerate
representations of A oσ G. Therefore, the study of representations of A oσ G is
equivalent to that of covariant representations of (A,G, σ).

2. The action of G on Γ

Let (A,G, σ) be a dynamical system, where G is a finite group. The action of G on
A induces a natural action of G on Â given by [π] 7→ [π ◦ σs] for all [π] ∈ Â and s ∈G.
Define Gπ = {s ∈G : [π] = [π ◦ σs]} to be the stability group for each [π] ∈ Â. Then for
each s ∈Gπ there is a unitary Vs such that VsπV∗s = π ◦ σs. A routine calculation shows
that the map s 7→ Vs defines a projective representation of Gπ. Let ω be the multiplier
of the projective representation V . The multiplier ω and the projective representation
V do not depend on the choice of π but only on the equivalence class [π]. Let Wω

be an ω-representation of Gπ. Then according to [4], Wω, the adjoint of Wω, is an
ω−1-representation. We can construct a covariant representation of (A,Gπ, σ) by

πω = π ⊗ 1 and Uω = V ⊗Wω. (2.1)

The map Wω 7→ (πω, Uω) sets up a one-to-one correspondence between the set of ω-
representations of Gπ and the set of all covariant representations of (A,Gπ, σ) of the
form (π ⊗ 1, V ⊗Wω). Moreover, the commutant of (πω, Uω) is isomorphic to the
commutant of Wω under the canonical correspondence [6, Lemma 5.2]. In particular,
if Wω is irreducible, then so is (πω, Uω).

Let Γ be the set of all pairs (π, Wω), where π is an irreducible representation of A and
Wω is an irreducible ω-representation of Gπ. There exists a natural action of G on the
set Γ which we now describe. For each s ∈G, we have Gπ◦σs = s−1Gπs. So given a pro-
jective representation Wω of Gπ we can construct a projective representation of Gπ◦σs

by (s ·Wω)(s−1ts) = Wω(t) for all t ∈Gπ. Thus we can define the action of G on Γ by

(π, Wω) 7→ (π ◦ σs, s ·Wω).

In order to establish a connection between Γ and ̂A oσ G we need to extend a
representation of (A,Gπ, σ) to a representation of (A,G, σ). We will use the Mackey–
Takesaki construction of induced representations for this purpose. Since we are
working with a finite group G, induced representations are easy to describe. Let H
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be a subgroup of G and let (π, U) be a covariant representation of (A, H, σ) on a
Hilbert space H0. Let H be the space of all H0-valued functions ξ on G satisfying
ξ(ts) = U(t)ξ(s) for all t ∈ H and all s ∈G. Define U to be the homomorphism of G
into the unitary group of B(H) given by

(U(t)ξ)(s) = ξ(st)

for all ξ ∈ H and s, t ∈G. For each a ∈ A, define an operator π(a) onH by

(π(a)ξ)(s) = π(σsa)ξ(s)

for all ξ ∈ H and s ∈G. Then (π, U) is the induced covariant representation of
(A,G, σ).

Let H be a subgroup of G and let (π, U) be a representation of (A, H, σ). Let s ∈G.
Define a representation (π ◦ σs, Us) of (A, s−1Hs, σ) by Us(s−1ts) = U(t) for all t ∈ H.
We want to establish that (π, U) and (π ◦ σs, Us) lead to equivalent representations.

L 2.1. Let (A,G, σ) be a dynamical system, where G is a finite group. Let H be a
subgroup of G and s ∈G. Suppose that (π, U) and (π ◦ σs, Us) are as above and that
(π, U) and (π ◦ σs, Us) are the corresponding induced representations of (A,G, σ).
Then (π, U) is unitarily equivalent to (π ◦ σs, Us).

P. Let H denote the representation space for (π, U) and Hs denote the
representation space for (π ◦ σs, Us). Define a unitary V from H to Hs by (Vξ)(r) =

ξ(sr) for all ξ ∈ H and r ∈G. For each η ∈ Hs,

(Vπ(a)V∗η)(r) = (π(a)V∗η)(sr)

= π(σsra)(V∗η)(sr)

= π(σsra)η(r) = (π ◦ σs(a)η)(r)

for all r ∈G and a ∈ A. Similarly,

(VU(t)V∗η)(r) = η(rt) = (Us(t)η)(r)

for all t, r ∈G. It follows that (π, U) is equivalent to (π ◦ σs, Us) via the unitary V . �

Let (πω, Uω) be a representation of (A,Gπ, σ) as in (2.1). For each representation
of the form (πω, Uω), we can induce a representation (πω, Uω) of (A,G, σ). The
commutant of (πω, Uω) is isomorphic to the commutant of (πω, Uω). In particular,
if (πω, Uω) is irreducible, then so is (πω, Uω). Let (π1, Wω1 ) and (π2, Wω2 ) ∈ Γ. We will
say that (π1, Wω1 ) is equivalent to (π2, Wω2 ) if π1 is unitarily equivalent to π2 and Wω1

is unitarily equivalent to Wω2 . Let Γ̃ be the set of all equivalence classes in Γ. Note
that the action of G on Γ induces the action of G on Γ̃.

L 2.2. Let (A,G, σ) be a dynamical system, where G is a finite group.
Let (π1, Wω1 ), (π2, Wω2 ) ∈ Γ and let (πω1 , Uω1 ), (πω2 , Uω2 ) be the corresponding
representations of (A,G, σ). If (πω1 , Uω1 ) is unitarily equivalent to (πω2 , Uω2 ), then
(π1, Wω1 ) is equivalent to (π2 ◦ σs, s ·Wω2 ) for some s ∈G.

https://doi.org/10.1017/S0004972712001049 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712001049


246 F. Kamalov [4]

P. Let H and K be representation spaces for (πω1 , Uω1 ) and (πω2 , Uω2 )
respectively. Let {ri} be the set of right coset representatives of Gπ1 in G. DefineHi =

{ξ ∈ H : ξ(t) = 0 for all t <Gπ1 ri}, that is, Hi is the set of functions in H supported on
the coset Gπ1 ri. Then πω1 |Hi

is equivalent to πω1 ◦ σri for each ri and πω1 decomposes
as a direct sum of disjoint representations

πω1 =
⊕

i

πω1 ◦ σri .

Similarly, πω2 =
⊕

j πω2 ◦ σs j , where {s j} is the set of right coset representatives of

Gπ2 in G. Since (πω1 , Uω1 ) is unitarily equivalent to (πω2 , Uω2 ) there is a unitary
V such that Vπω1 = πω2 V and VUω1 = Uω2 V . We can view V as a matrix operator
with respect to decomposition H =

⊕
i Hi and K =

⊕
j K j. Since {π1 ◦ σri}i are

mutually inequivalent representations and {π2 ◦ σs j} j are also mutually inequivalent,
V is a permutation matrix whose nonzero entries are unitaries. Therefore, there exists
a unitary V j1 such that V j1πω1 = (πω2 ◦ σs j )V j1 for some s j. It follows that π1 is
equivalent to π2 ◦ σs j and Gπ1 = s−1

j Gπ2 s j. Observe that the restriction of Uω1 |H1
to

Gπ1 is equivalent to the representation Uω1 and the restriction of Uω2 |K1
to Gπ2 is

equivalent to the representation Uω2 . Since VUω1 = Uω2 V , V j1Uω1 |H1
(r) = Uω2 |K j

(r)V j1

for all r ∈Gπ1 . Also Uω2 |K j
(s−1

j ts j) is equivalent to Uω2 |K1
(t) for all t ∈Gπ2 . Therefore,

Uω1 (s−1
j ts j) is equivalent to Uω2 (t) for all t ∈Gπ2 . It follows that (π1, Wω1 ) is equivalent

to (π2 ◦ σs j , s j ·Wω2 ). �

Define a map Φ from Γ̃ into the set of equivalence classes of irreducible covariant
representations of (A,G, σ) by

Φ(π, Wω) = (πω, Uω). (2.2)

If (π1, Wω1 ) is equivalent to (π2, Wω2 ), then Φ(π1, Wω1 ) is equivalent to Φ(π2, Wω2 ). So
Φ is well defined. The next result follows directly from Lemmas 2.1 and 2.2.

C 2.3. Let (A,G, σ) be a dynamical system, where G is a finite group.
Suppose that (π1, Wω1 ) and (π2, Wω2 ) ∈ Γ̃. Then Φ(π1, Wω1 ) = Φ(π2, Wω2 ) if and only
if (π2, Wω2 ) = (π1 ◦ σs, s ·Wω1 ) for some s ∈G.

3. The main result

The remaining step in obtaining our main result is to show that the map Φ, as defined
in (2.2), is surjective. We first need the following elementary lemma about projections.

L 3.1. Let H be a Hilbert space and A be a von Neumann algebra in B(H).
Let p1 and p2 be a pair of projections in A. Suppose that q = p1 − (p1 ∧ p2). Then
q ∧ p2 = 0. Moreover, if p2 is a minimal projection, then (p1 ∨ p2) − p1 is a minimal
projection in A.
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P. Suppose that qh1 = p2h2 for some h1, h2 ∈ H . Since q ≤ p1, we have p1 p2h2 =

p2h2. Hence, (p1 ∧ p2)h2 = p2h2. It follows that (p1 ∧ p2)h2 = qh1. But q ∧ (p1 ∧

p2) = 0, so qh1 = 0.
To prove the second part of the statement let e = (p1 ∨ p2) − p1. Suppose that there

exists a nonzero projection e′ ∈ A such that e′ � e. Then p2e′ , 0 and p2e′H ( p2H .
Let p′2 be the projection onto the closure of the range of p2e′. Then p′2 ∈ A and p′2 � p2,
which is a contradiction. It follows that e is a minimal projection. �

Let (π, U) be a covariant representation of (A,G, σ) on a Hilbert spaceH . There is
a natural action of G on the von Neumann algebra π(A)′ given by T 7→ U(s)TU(s)∗ for
all T ∈ π(A)′. We say that the action of G on a von Neumann algebra A is ergodic if
the only elements of A that are fixed by the group action are the scalar multiples of the
identity operator. It was shown in [1, Theorem 3.1], using a powerful result of [3], that
von Neumann algebras which admit ergodic action by a finite group are necessarily
finite-dimensional. We present this result below with an alternative proof.

P 3.2. Let U be a unitary representation of a finite group G on a Hilbert
space H . Suppose that G acts ergodically on a von Neumann algebra A in B(H).
Then there exists a finite family of minimal projections pi ∈ A such that

⊕
pi = 1H .

P. We will first show that there exists a minimal projection p ∈ A together
with a subset S ⊆G such that

∨
s j∈S U(s j)pU(s j)∗ = 1H and (

∨
j≤i−1 U(s j)pU(s j)∗) ∧

U(si)pU(si)∗ = 0 for all si ∈ S . To this end, let p ∈ A and S ′ ⊆G such that( ∨
j≤i−1

U(s j)pU(s j)∗
)
∧ U(si)pU(si)∗ = 0 for all si ∈ S ′.

Suppose that p is not a minimal projection. It will be enough to show that there is a
projection p′ ∈ A and t ∈G − S ′ such that( ∨

j≤i−1

U(s j)p′U(s j)∗
)
∧ U(si)p′U(si)∗ = 0 for all si ∈ S ,

where S = S ′ ∪ {t}. Since G is finite we will eventually obtain a minimal projection.
For each projection q ∈ A, we have

∑
G U(s)qU(s)∗ ∈ A. Moreover,

U(t)
(∑

G

U(s)qU(s)∗
)
U(t)∗ =

∑
G

U(s)qU(s)∗

for all t ∈G. Since the group action is ergodic,
∑

G U(s)qU(s)∗ = c1H for some
complex number c. It follows that∨

G

U(s)qU(s)∗ = 1H (3.1)

for all nonzero projections q ∈ A. Assume, without loss of generality, that 1G ∈ S ′.
Moreover, by replacing p with a proper, nonzero subprojection we can assume
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that
∨

s∈S ′ U(s)pU(s)∗ < 1H . By (3.1), there exists t ∈G such that U(t)pU(t)∗ �∨
s∈S ′ U(s)pU(s)∗. Note that t < S ′. Let

q = U(t)pU(t)∗ −
(
U(t)pU(t)∗ ∧

(∨
s∈S ′

U(s)pU(s)∗
))
.

By Lemma 3.1, q ∧ (
∨

s∈S ′ U(s)pU(s)∗) = 0. Then p′ = U(t)∗qU(t) is the desired
projection.

We will now describe how to transform the set of minimal projections
{U(si)pU(si)∗}si∈S obtained above into a set of orthogonal minimal projections. Let
qi = U(si)pU(si)∗ for all si ∈ S . For each i ≥ 2, define

pi =
∨

1≤ j≤i

q j −
∨

1≤ j≤i−1

q j

and p1 = q1. Then pi ∈ A for all i, and pi ⊥ p j for all i , j. Moreover, by the second
part of Lemma 3.1, each pi is a minimal projection. �

Suppose that (π, U) is an irreducible representation of (A,G, σ). Then the action
of G on π(A)′ is ergodic. Applying Proposition 3.2 to the algebra π(A)′, we get that π
decomposes as a direct sum of finitely many irreducible representations. Let ρ be an
irreducible subrepresentation of π. It follows from [1, Theorem 3.4] that there exists an
irreducible ω-representation of Gρ such that (π, U) is unitarily equivalent to (ρω, Uω).
It follows that the map Φ, as defined in (2.2), is surjective. We are now in position to
state our main theorem.

T 3.3. Suppose that A oσ G is a crossed product C∗-algebra, where G is a finite
group. Let Γ̃\G be the set of orbits in Γ̃ under the group action. Then there exists a
bijective correspondence between Γ̃\G and the dual space ̂A oσ G.

P. Recall that there is a canonical correspondence between the irreducible
representations of A oσ G and (A,G, σ). By the preceding discussion the map Φ :
Γ̃ 7→ ̂A oσ G is surjective. Moreover, by Corollary 2.3, Φ(π1, Wω1 ) = Φ(π2, Wω2 ) if and
only if (π2, Wω2 ) is in the orbit of (π1, Wω1 ). �
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