
Astroinformatics
Proceedings IAU Symposium No. 325, 2016
M. Brescia, S.G. Djorgovski, E. Feigelson,
G. Longo & S. Cavuoti, eds.

c© International Astronomical Union 2017
doi:10.1017/S1743921316012734

The analysis of VERITAS muon images
using convolutional neural networks

Qi Feng1,†, Tony T. Y. Lin1

for the VERITAS Collaboration2

1Physics Department, McGill University, Montreal, QC H3A 2T8, Canada
2http://veritas.sao.arizona.edu/

†qi.feng2@mcgill.ca

Abstract. Imaging atmospheric Cherenkov telescopes (IACTs) are sensitive to rare gamma-ray
photons, buried in the background of charged cosmic-ray (CR) particles, the flux of which is
several orders of magnitude greater. The ability to separate gamma rays from CR particles is
important, as it is directly related to the sensitivity of the instrument. This gamma-ray/CR-
particle classification problem in IACT data analysis can be treated with the rapidly-advancing
machine learning algorithms, which have the potential to outperform the traditional box-cut
methods on image parameters. We present preliminary results of a precise classification of a
small set of muon events using a convolutional neural networks model with the raw images as
input features. We also show the possibility of using the convolutional neural networks model
for regression problems, such as the radius and brightness measurement of muon events, which
can be used to calibrate the throughput efficiency of IACTs.
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1. Introduction
In the past decade, our understanding of the very-high-energy (VHE; 100 GeV � Eγ �

100 TeV) gamma-ray sky has greatly progressed by the use of stereoscopic imaging atmo-
spheric Cherenkov telescopes (IACTs). These IACTs record the images of an extensive
air shower induced by an incident VHE gamma-ray photon or a cosmic-ray (CR) par-
ticle. The air-shower images are then analyzed to reconstruct the information of the
incident photons or the CR particles, the latter of which form a substantial background
in VHE gamma-ray astronomy. The ability to separate gamma rays from CR particles is
important, as it is directly related to the sensitivity of the instrument.

A few geometric image parameters, e.g. width and length, of an air-shower image
are shown to be effective in discriminating gamma rays from CR background (e.g. Hillas
1985). These parameters exploit our knowledge of the well-understood air shower physics,
specifically the fact that a CR shower typically produces a wider image as it generally
carries a larger transverse momentum as a result of hadronic interactions. The long-
established analysis method is to apply box cuts to the image parameters (e.g. Hillas
1985). It is simple and effective, therefore has been the standard analysis method for two
decades.

However, the box-cuts method mentioned above can be augmented by more compli-
cated analysis methods. Some of these advanced methods exploit more details in the air
showers or their images, e.g. 3-D reconstruction of air showers (e.g. Lemoine-Goumard
et al. 2006), adding timing structure (e.g. Aliu et al. 2009), fitting a 2-D Gaussian to
shower images (e.g. Christiansen 2012), using a 3-D maximum likelihood analysis (e.g.
Cardenzana 2015), and matching image templates (e.g. Vincent 2015). Others use the
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same image parameters but more sophisticated classification models compared to box
cuts. An actively pursed approach of such by the current major IACTs is the application
of machine learning models using the image parameters as input features, e.g. Bayesian
multivariate analysis (e.g. Aharonian et al. 1991), artificial neural networks (e.g. Reynolds
1993), random forest (e.g. Albert et al. 2008) and boosted decision trees (e.g. Acero et al.
2009; Park 2015; Staszak 2015; Krause et al. submitted 2016).

On the frontier of computer vision, machine learning algorithms have improved dramat-
ically in the past decade, thanks to the increasing computing power of CPUs and GPUs,
as well as large public databases with hand-labelled images (e.g.
http://image-net.orgImageNet). Recently, a particularly powerful algorithm, convolu-
tional neural networks (CNN), has gained popularity for its performance (e.g. Krizhevsky
et al. 2012). A CNN model uses images (arrays of pixel values) as input, and usually con-
sists of several convolutional layers followed by pooling (down-sampling) layers, the out-
put of which are then fed into fully-connected layers, and finally to the output. Dropout
layers can be used in between the above layers to regularize the CNN model and prevent
overfitting. The number of parameters in a CNN model can be very large, easily exceed-
ing 105. Therefore, the training process is computationally intensive, calling for the use
of GPUs.

The image parameters in VHE gamma-ray data analysis greatly reduce the dimension
of the data using domain knowledge. However, the use of fitted parameters inevitably
leads to information loss. We propose to apply CNN models to raw images of VHE
gamma-ray events, exploiting pixel-level information in the data. We show that our simple
CNN model works well on single-telescope images, being able to correctly classify ring-
like muon images at a nearly perfect area-under-the-curve (AUC) score. We also show
that it is possible to use the output of convolutional layers as the input to fully-connected
regression layers and produce continuous output values (instead of categorical values).

2. The VERITAS array and the standard data analysis
VERITAS (the Very Energetic Radiation Imaging Telescope Array System) is an array

of four IACTs located in southern Arizona (30◦40’N 110◦57’W, 1.3 km a.s.l.; Holder
2011). It is sensitive to gamma rays in the energy range from 85 GeV to >30 TeV with
an energy resolution of ∼15% (at 1 TeV). Each of the four telescopes is equipped with a
12-m diameter Davies-Cotton reflector comprising 355 identical mirror facets, and a 499-
pixel photomultiplier tube (PMT) camera covering a field of view of 3.5◦ at an angular
resolution (68% containment) of ∼0.1◦ (at 1 TeV). Coincident Cherenkov signals from at
least two out of the four telescopes are required to trigger an array-wide read-out of the
PMT signals. The array-level trigger occurs at a typical rate of ∼400 Hz. Most of these
triggers come from CR particles. For a comparison, the brightest steady VHE source,
the Crab Nebula, is typically observed by VERITAS at a rate of <15 gamma rays per
minute, much lower than the CR trigger rate of ∼400 Hz.

In this work, we focus on muon events, which are produced in CR showers and observed
as rings or partial rings. Selected observations are first analyzed using one of the standard
VERITAS data analysis packages named VEGAS (Cogan 2008). The VEGAS analysis
of muon events follows the procedure described below:

(a) calculate the brightness-weighted average coordinates as the image centroid, and
use them as the initial muon-ring center;

(b) calculate the mean (r̄) and the variance (σ2
r ) of the distances between all image

pixels and the initial centroid, and use r̄ initial muon radius;
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Figure 1. Examples of VERITAS images. The top row shows a muon event, and the bottom
show shows a non-muon event. The left column shows the raw images, in which the hexagonal
arrangement of the PMTs is apparent, and the right column is the oversampled 54 × 54 images
with a stretch along the vertical direction.

(c) move the initial centroid around by a small step, repeat step (b) and check if the
variance σ2

r decreases; if so, update the centroid r̄ and the variance σ2
r ;

(d) repeat step (c) to cover a predefined region around the initial centroid, and return
the optimal centroid and radius that minimize σ2

r ;
(e) check if >70% of the pixels fall into the a predefined accepted annulus e.g. (r̄ −

1.5σr , r̄ + 1.5σr ); if so, accept this event as a muon event.
A double-pass method based on the above procedure is used in the analysis, and bad

pixels are corrected for. We use the analysis described above to label signal events for
the training/test data, with an additional requirement that r̄ � 0.5◦.

Four 30-minute observations are used as training and validation data in this study.
Our analysis yields 1597 muon events, which are used as signal events. We randomly
chose 4800 events in the remainder of the same observations as background events. Two
more 30-minute observations independent from the training/validation set are used as
test data, which consists of 630 muon events and 2400 randomly-selected non-muon
events. The “true” signal and background hereafter in this work refer to the VEGAS -
identified muon and non-muon events. The raw images of two VERITAS events are shown
as examples in the left column of Fig. 1, where subfigure (a) shows a muon event and
subfigure (c) shows a non-muon event.
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3. The convolutional neural networks classification model, the
training, and the evaluation

The only preprocessing of the data in the presented model is the image oversampling,
which we use to approximately convert the image from its natural hexagonal coordinate
(due to the geometry of the PMT arrangement) into a square coordinate. We first use
a rectangular lattice to cover the pixels, so that each pixel is divided into four equal-
sized rectangles. Then we stretch the rectangular lattice to a square one. This converts
a 499-pixel hexagonal image into a 54 × 54 pixel square image, and stretches the image
roughly by 15%. In the right column of Fig. 1, we show the oversampled images of the
same two VERITAS events shown in the left column. These images illustrates that the
oversampling process only introduces a small amount of stretch, and spatial relation
between different pixels is maintained, which is important for CNN models. We refer to
“pixel” as in the oversampled 54 × 54 space hereafter.

The oversampled 54 × 54 pixel images of the signal muon events and the background
events are used as the input feature into a convolutional neural networks model, which
is implemented using the keras Python deep learning library (Chollet 2013) running on
top of TensorFlow (Abadi et al. 2016). The structure of the CNN model is a simplified
“VGG”-style model (Simonyan & Zisserman 2014), with only three layers of small filters,
average pooling and dropout in between filter layers, and a two-layer fully-connected
neural network classification model after the convolutional layers.

The first convolutional layer has 32 filters, each of which is 6 × 6 pixel with a 2-pixel
stride (roughly corresponding to the physical pixel size 3 × 3 with stride 1 as a result of
the oversampling); the second and third convolutional layers are 3 × 3 with stride 1. The
average pooling is performed after each convolutional layer over a 2 × 2 pixel window,
and dropout at a ratio of 25% is carried out after each pooling layer to regularize the
model. The two fully-connected dense layers contain 256 and 64 neurons, respectively.
Dropout at a ratio of 50% is applied after each fully-connected layer. Rectified linear unit
is used as the activation function of all the layers (both convolutional layers and fully-
connected ones) except the output layer, which uses a sigmoid function as the activation
function.

Figure 2. The distribution of the predictions of
the training (filled histogram) and the test (step
unfilled histogram) events. The signal events are
shown in blue, and the background events are
shown in red. The X-axis shows a projection
of the probability of an event being signal (see
text), and the Y-axis is shown in log scale to
highlight the few outliers.

The CNN model described above was
first trained on randomly-selected 70% of
the training data, and cross-validated on
the remaining 30% of the training data.
The binary cross-entropy is used as the
cost function, which is optimized using
stochastic gradient descent with a mini-
batch size of 128 and a momentum of
0.9. The learning rate is initially set at
0.01, and decays by 10−6 after each iter-
ation. We set an early stop criterion so
that the training stops if the cost func-
tion stops improving for 10 epochs. The
training process stopped after 38 epochs,
which took roughly 5 minutes running on
an NVIDIA R©TeslaTM C2050 GPU. This
trained model achieved a training AUC
score of 0.999995, and a validation AUC
score of 0.999925.
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(a) The input radius vs. the predicted radius. (b) The input size vs. the predicted size.

Figure 3. The input values vs the prediction values of the muon-ring radius and brightness.
Each dot corresponds to a muon event. The training events are shown in blue, the validation
events are shown in cyan, and the test events are shown in red. The solid lines are the best-fit
linear models, the slope a and the intercept b of which are shown in the legend.

To further evaluate the trained CNN model, we passed the independent test dataset
through the model, and obtained a test AUC score of 0.999962. Fig. 2 shows the his-
tograms of the predictions from the trained model. We linear transform the probability
P of an event being a signal muon event to (2P − 1), to be consistent with the output
convention in the ROOT TMVA package (Brun & Rademakers 1997) used in previous
work on gamma-hadron separation. The good agreement between the training and the
test histograms indicates that overfitting is minimal.

4. The CNN regression model
To build a CNN regression model for predicting continuous variables, we first train a

CNN classifier following the procedure described in the previous section. Then we extract
only the convolutional layers from the trained CNN classifier model. The VERITAS data
used for the regression training and testing are from two 30-minute observations different
from the classifier training/test data. The new training data are processed through the
trained convolutional layers, and the output of the convolutional layers is used as the
input to a new fully-connected regressor model. We performed a crude grid search and
construct the regressor as two fully-connected layers with 2048 and 64 neurons, respec-
tively. We apply dropout at 30% ratio after each of the two layers. Rectified linear unit
is used as the activation function of both layers, as well as the output activation.

Two regressor models on the radius of the muon rings and the brightness (or size
as measured in digital counts) of the muon images, respectively, are built and trained.
The training process is similar to the classifier model. The mean squared error (MSE) is
used as the cost function, and the Adam optimizer (Kingma & Ba 2014) with an initial
learning rate of 10−3 and exponential-decay parameters β1 = 0.9 and β2 = 0.999. The
weights are updated in mini batches of size 128. We set an early stop criterion so that
the training stops if the cost function stops improving for 50 epochs. The model setup
and training for the brightness regressor is similar.

The scatter plots of the “true” radius and size calculated by VEGAS versus the pre-
dicted radius and size using the two trained regressor models are shown as Fig. 3a and
Fig. 3b, respectively. A general linear correlation is apparent, although with a noticeable
amount of variance. The model tends to over-predict smaller values and under-predict
larger values, as indicated by the best-fit slope < 1. The regressor for the brightness
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performs worse compared to that for the radius, likely due to the lack of image cleaning.
The relatively large variance and bias in the model need to be addressed.

5. Implications
Using the simple case of muon-ring images as a pathfinder for gamma/hadron separa-

tions, we demonstrated that it is possible to use the raw images of an IACT as a direct
input into a state-of-the-art CNN model and obtain very accurate classification results. It
has the potential to exploit subtle features in the Cherenkov shower images, while being
resistant to noise even without image cleaning. Moreover, with the ability of regression,
there is a potential to use CNN models for the direction and energy reconstructions of
the primary gamma rays, and produce high-level scientific results. It is worth noting that
the prediction is fast once the model is trained, therefore such reconstructions can be
realtime.

For future work, we plan to investigate the effect of adding different levels of image
cleaning in the preprocessing, improve the regressor models so that they can be used
for the calibration of throughput efficiency of VERITAS, and build classifier models for
gamma-hadron separation, the biggest challenge of which is to obtain reliable labels of
gamma-ray events. Crowdsourcing like Zooniverse (e.g. Simmons et al. 2016) provides
one viable solution.
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