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Abstract

Given two C∗-correspondences X and Y over C∗-algebras A and B, we show that (under mild hypotheses)
the Cuntz–Pimsner algebra OX⊗Y embeds as a certain subalgebra of OX ⊗ OY and that this subalgebra can
be described in a natural way in terms of the gauge actions on OX and OY . We explore implications for
graph algebras, crossed products by Z, crossed products by completely positive maps, and give a new
proof of a result of Kaliszewski, Quigg, and Robertson related to coactions on correspondences.
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1. Introduction

In what follows, we will attempt to describe the Cuntz–Pimsner algebra of an external
tensor product X ⊗ Y of correspondences in terms of the Cuntz–Pimsner algebras
OX and OY . In particular we will show that, under suitable conditions, OX⊗Y is
isomorphic to a certain subalgebra OX ⊗T OY of OX ⊗ OY . We call this subalgebra
the T-balanced tensor product because it has the property that γX

z (x) ⊗ y = x ⊗ γY
z (y)

for all z ∈ T, x ∈ OX , and y ∈ OY , where γX and γY are the gauge actions on OX

and OY . This idea is inspired by a result of Kumjian in [8] where it is shown that
for a cartesian product E × F = (E0 × F0, E1 × F1, rE × rF , sE × sF) of two graphs,
C∗(E × F) � C∗(E) ⊗T C∗(F) where the balancing is over the gauge action of the two
graphs. Kumjian’s proof uses the groupoid model of graph algebras and is therefore
independent of our main result. However, we will be able to recover Kumjian’s result
for row-finite graphs with no sources by considering the C∗-correspondence model of
a graph algebra.

After proving our main result we will explore some examples including a
generalization of Kumjian’s result to the setting of topological graphs, implications
for crossed products by Z, crossed product by a completely positive map, and we will
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give a new proof of a theorem of Kaliszewski, Quigg, and Robertson which was used
in [5] to study Cuntz–Pimsner algebras of coaction crossed products. In what follows
we will assume that all tensor products are minimal (spatial) unless otherwise stated.

2. Preliminaries

Here we will review the material we will need on correspondences, Cuntz–Pimsner
algebras, actions and coactions. A good general reference on the subject of Hilbert
C∗-modules and C∗-correspondences is [10]. There is also an overview given in [1].
For Cuntz–Pimsner algebras, we refer the reader to Katsura [7] and to the overview
given in [13]. For actions and coactions, we refer to Appendix A of [2] as a general
reference, but since we will only be concerned with coactions of discrete groups
we will also use a lot of facts from [12]. We will begin by reviewing the basics of
C∗-correspondences.

2.1. Correspondences. Suppose that A is a C∗-algebra and X is a right A-module.
By an A-valued inner product on X we shall mean a map

X × X 3 (x, y) 7→ 〈x, y〉A ∈ A

which is linear in the second variable and such that:

(1) 〈x, x〉A ≥ 0 for all x ∈ X, with equality only when x = 0;
(2) 〈x, y〉∗A = 〈y, x〉A for all x, y ∈ X;
(3) 〈x, y · a〉A = 〈x, y〉Aa for all x, y ∈ X and a ∈ A.

Note that this implies that 〈·, ·〉A is A-linear in the second variable and conjugate
A-linear in the first variable. One can prove a version of the Cauchy–Schwarz
inequality for such X, which implies that we can define the following norm on X:

‖x‖A := ‖〈x, x〉A‖1/2.

If X is a right A-module with an A-valued inner product, X is called a right Hilbert
A-module if it is complete under the norm ‖ · ‖A defined above. Note that if A = C then
X is just a Hilbert space and we can think of general Hilbert modules as Hilbert spaces
whose scalars are elements of some C∗-algebra A.

Also note that we can make A itself into a right Hilbert A-module by letting the
right action of A be given by multiplication in A and an A-valued inner product given
by 〈a, b〉A = a∗b. We call this the trivial Hilbert A-module and denote it by AA.

Let A be a C∗-algebra and let X be a right Hilbert A-module. If T : X → X is
an A-module homomorphism, then we call T adjointable if there is an A-module
homomorphism T ∗ (called the adjoint of T ) such that

〈T ∗x, y〉A = 〈x,Ty〉A

for all x, y ∈ X. The operator norm makes the set of all adjointable operators on X into
a C∗-algebra which we denote by L(X).
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Given C∗-algebras A and B, an A–B-correspondence is right Hilbert B-module X
together with a homomorphism φ : A→ L(X) which is called a left action of A by
adjointable operators. For a ∈ A and x ∈ X, we will write a · x for φ(a)(x). If A = B
we call this a correspondence over A (or B). We call the left-action injective if φ is
injective and nondegenerate if φ(A)X = X. We will sometimes write AXB to indicate
that X is an A–B correspondence. Before we continue, we will give a few examples of
correspondences.

Example 2.1 [13, Example 8.6]. Let A be a C∗ algebra and let α be an endomorphism
of A. We can make the trivial module AA into a correspondence over A by defining
φ(a)(x) = α(a)x.

Example 2.2 [6, Definition 3.9]. Let E = {E0, E1, r, s} be a directed graph (in the sense
of [13]). Consider the vector space cc(E1) of finitely supported functions on E1. We
can define a right action of c0(E0) and a c0(E0)-valued inner product as follows:

(x · a)(e) = x(e)a(s(e)),

〈x, y〉c0(E0)(v) =
∑

{e∈E1:s(e)=v}

x(e)y(e).

We can use the norm defined by this inner product to complete cc(E1) into a right
Hilbert module X(E). We can define a left action φ : c0(E0)→L(X(E)) as follows:

φ(a)(x)(e) = a(r(e))x(e).

This makes X(E) into a correspondence which is referred to as the graph
correspondence of E.

This example has the following natural generalization.

Example 2.3 [6, Definition 3.11]. A topological graph is a quadruple E = {E0,E1, r, s}
where E0 and E1 are locally compact Hausdorff spaces, r : E1 → E0 is a continuous
function, and s : E1 → E0 is a local homeomorphism. Let A := C0(E0). We can define
left and right actions of A and an A-valued inner product on Cc(E1) similarly to the
way we did for ordinary graphs. For a ∈ A and x, y ∈ Cc(E1), let

(a · x)(e) := a(r(e))x(e),
(x · a)(e) := x(e)a(s(e)),

〈x, y〉A(v) :=
∑

{e∈E1:s(e)=v}

x(e)y(e).

We denote the completion of Cc(E1) under the norm defined by this inner product by
X(E). It can be shown [13, pages 80–81] that the left action is injective if and only if
r has dense range and the left action is implemented by compacts if and only if r is
proper.
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Let X be a Hilbert module over a C∗-algebra A. Then for any x, y ∈ X, the map
Θx,y : z 7→ x · 〈y, z〉A is an adjointable operator called a rank-one operator. It can be
shown that the closed span of the rank-one operators forms an ideal K(X) in L(X)
which is referred to as the set of compact operators. If X is an A–B-correspondence,
we say that the left action φ of A is implemented by compacts if φ(A) ⊆ K(X).

There are two types of tensor products which are usually defined on
correspondences, an ‘internal’ tensor product and an ‘external’ tensor product. These
are defined as follows (see [10, Ch. 4] for more detail). Let AXB and CYD be
correspondences and let Φ : B→ C be a completely positive map (see [1] for the
basics of completely positive maps). Let X �Φ Y be the quotient of the algebraic tensor
product X � Y by the subspace spanned by

{x · b ⊗ y − x ⊗ Φ(b) · y : x ∈ X, y ∈ Y, b ∈ B}.

This is a right D-module with right action given by (x ⊗ y) · d = (x ⊗ y · d). We define
a D-valued inner product as follows:

〈x ⊗ y, x′ ⊗ y′〉 = 〈y,Φ(〈x, x′〉B) · y′〉D.

For a proof that this is indeed an inner product, we refer the reader to the proof of
Proposition 4.5 of [10]. We refer to the completion of X �Φ Y with respect to the
norm defined by this inner product as the internal tensor product of X and Y and it
is denoted by X ⊗Φ Y . If φA : A→ L(X) is the left action on X, then we can define
a left action of A on X ⊗Φ Y by φ(a)(x ⊗ y) = (φA(a)x) ⊗ y. This makes X ⊗Φ Y an
A–D-correspondence. In many situations we will have B = C and Φ = idB. In this case
we will write the associated internal tensor product as X ⊗B Y .

Example 2.4. If Φ : A→ B is a completely positive map between two C∗-algebras,
then we define the correspondence associated to Φ to be the correspondence
XΦ := AA A ⊗Φ BB B where AA A and BB B are the standard correspondences.

Let AXB and CYD be correspondences. We can define a right action of B ⊗ D and a
B ⊗ D-valued inner product on the algebraic tensor product X � Y as follows:

(x ⊗ y) · (a ⊗ b) = (x · a) ⊗ (y · b),
〈x ⊗ y, x′ ⊗ y′〉 = 〈x, x′〉B ⊗ 〈y, y′〉D.

The completion of X � Y with respect to the norm defined by this inner product is
called the external tensor product of X and Y , which we will denote simply by X ⊗ Y .
We can define a left action of A ⊗C as follows: φ(a ⊗ c)(x ⊗ y) = (φA(a)x) ⊗ (φC(c)y).
This makes X ⊗ Y an A ⊗C–B ⊗ D-correspondence.

If Φ : A→ C and Φ′ : B→ D are completely positive maps, then Φ ⊗Φ′ : A ⊗ B→
C ⊗ D will be a completely positive map as well. In fact we have the following lemma.

Lemma 2.5. Let AXA′ , BYB′ , CZC′ , and DWD′ be correspondences and let Φ : A′ → C
and Φ′ : B′ → D be completely positive maps. Then

(X ⊗Φ Z) ⊗ (Y ⊗Φ′ W) � (X ⊗ Y) ⊗Φ⊗Φ′ (Z ⊗W).
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Proof. Note that the left-hand side is the completion of X � Z � Y �W under a the
norm defined by a certain pre-inner product and the right-hand side is the completion
of X � Y � Z �W under the norm defined by a certain pre-inner product. We can show
that the linear map

σ23 : X � Z � Y � Z → X � Y � Z �W
x ⊗ z ⊗ y ⊗ z 7→ x ⊗ y ⊗ z ⊗ w

extends to a correspondence isomorphism

(X ⊗Φ Z) ⊗ (Y ⊗Φ′ W)→ (X ⊗ Y) ⊗Φ⊗Φ′ (Z ⊗W)

by showing that σ23 preserves the pre-inner products. By linearity it suffices to show
this for elementary tensors. Let 〈·, ·〉1 denote the pre-inner product which gives rise
to (X ⊗Φ Z) ⊗ (Y ⊗Φ′ W). Let 〈·, ·〉2 denote the pre-inner product which gives rise to
(X ⊗ Y) ⊗Φ⊗Φ′ (Z ⊗W). Then

〈σ23(x ⊗ z ⊗ y ⊗ w), σ23(x ⊗ z ⊗ y ⊗ w)〉2
= 〈x ⊗ y ⊗ z ⊗ w, x′ ⊗ y′ ⊗ z′ ⊗ w′〉2
= 〈z ⊗ w, (Φ ⊗ Φ′)(〈x ⊗ y, x′ ⊗ y′〉)(z′ ⊗ w′)〉
= 〈z ⊗ w, (Φ ⊗ Φ′)(〈x, x′〉 ⊗ 〈y, y′〉)(z′ ⊗ w′)〉
= 〈z ⊗ w, (Φ(〈x, x′〉)z′) ⊗ (Φ′(〈y, y′〉)w′)〉
= 〈z,Φ(〈x, x′〉)z′〉 ⊗ 〈w,Φ′(〈y, y′〉)w′〉
= 〈x ⊗ z ⊗ y ⊗ w, x′ ⊗ z′ ⊗ y′ ⊗ z′〉1.

Thus σ23 extends to an isomorphism giving us

(X ⊗Φ Z) ⊗ (Y ⊗Φ′ W) � (X ⊗ Y) ⊗Φ⊗Φ′ (W ⊗ Z). �

Example 2.6. Let Φ : A→ C and Φ′ : B→ D be completely positive maps. Since
AA A ⊗ BB B = (A ⊗ B)A⊗B A⊗B and CC C ⊗ DD D = (C ⊗ D)C⊗D C⊗D, we have

XΦ⊗Φ′ = ( (A ⊗ B)A⊗B A⊗B) ⊗Φ⊗Φ′ ( (C ⊗ D)C⊗D C⊗D)
= ( AA A ⊗ BB B) ⊗Φ⊗Φ′ ( CC C ⊗ DD D).

Applying the preceding lemma gives

� ( AA A ⊗Φ CC C ) ⊗ ( BB B ⊗Φ′ DD D)
= XΦ ⊗ XΦ′ .

Thus XΦ⊗Φ′ � XΦ ⊗ XΦ′ .

The following facts (see [10, Ch. 4]) will be useful in proving our main result:

Lemma 2.7. Let X and Y be C∗-correspondences over C∗-algebras A and B,
respectively. Then K(X ⊗ Y) � K(X) ⊗ K(Y) via the map κ which takes S ⊗ T ∈
K(X) ⊗ K(Y) to the linear map x ⊗ y 7→ S x ⊗ Ty. Further, if the left actions of A
and B are injective and implemented by compacts then so is the left action of A ⊗ B on
X ⊗ Y.
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Before we end this section, we will give another example of an external tensor
product.

Example 2.8. Let E = {E0, E1, r, s} and F := {F0, F1, r′, s′} be topological graphs.
Define

E × F := {E0 × F0, E1 × F1, r × r′, s × s′}

(i.e. the topological analog of the product graph in [8]). Since the product of two
continuous maps is continuous and the product of two local homeomorphisms is a
local homeomorphism, E × F is a topological graph. Let ρ : C0(E0) ⊗ C0(F0)→
C0(E0 × F0) and σ : C0(E1) ⊗ C0(F1)→ C0(E1 × F1) be the standard isomorphisms.
Note that σ(Cc(E1) ⊗Cc(F1)) ⊆ Cc(E1 × F1) and that

σ((a ⊗ b) · (x ⊗ y))(e, f ) = σ(a · x ⊗ b · y)(e, f )
= a(r(e))x(e)b(r′( f ))y( f )
= a(r(e))b(r′( f ))x(e)y( f )
= ρ(a ⊗ b)(r(e), r′( f ))σ(x ⊗ y)(e, f ).

Similarly,

σ((x ⊗ y) · (a ⊗ b))(e, f ) = σ(x ⊗ y)(e, f )ρ(a ⊗ b)(s(e), s′( f )).

Let A = C0(E0) and B = C0(F0). If 〈·, ·〉1 is the A ⊗ B-valued tensor product associated
to the external tensor product X(E) ⊗ X(F) and 〈·, ·〉2 is the C0(E × F)-valued inner
product associated to X(E × F), then

ρ(〈x ⊗ y, x′ ⊗ y′〉1)(v,w) = ρ(〈x, x′〉A ⊗ 〈y, y′〉B)(v,w)
= 〈x, x′〉A(v)〈y, y′〉B(w)

=
∑

s(e)=v,s′( f )=w

x(e)x′(e)y( f )y′( f )

=
∑

s(e)=v,s′( f )=w

x(e)y( f )x′(e)y′( f )

=
∑

s(e)×s′( f )=v×w

σ(x ⊗ y)(e, f )σ(x′ ⊗ y′)(e, f )

= 〈σ(x ⊗ y), σ(x′ ⊗ y′)〉2(v,w).

Extending linearly and continuously, we see that (ρ, σ) gives an isomorphism of
correspondences: X(E × F) � X(E) ⊗ X(F).

2.2. Cuntz–Pimsner algebras. In order to describe the Cuntz–Pimsner algebra of
a correspondence, we will first need to discuss representations of correspondences.
Given a correspondence X over a C∗-algebra A, a Toeplitz representation of X in a
C∗ algebra B is a pair (ψ, π) where ψ : X → B is a linear map and π : A→ B is a
∗-homomorphism such that:

(1) ψ(a · x) = π(a)ψ(x) for all a ∈ A and all x ∈ X;
(2) ψ(x · a) = ψ(x)π(a) for all a ∈ A and all x ∈ X;
(3) π(〈x, yA〉) = ψ(x)∗ψ(y) for all x, y ∈ X.
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(Note that (2) is actually implied by (3), but we include it for clarity.) We will write
C∗(ψ, π) for the C∗-subalgebra of B generated by the images of ψ and π in B. It can
be shown that there is a unique (up to isomorphism) C∗-algebra TX , called the Toeplitz
algebra of X, which is generated by a representation (iX , iA) which is ‘universal’ in
the sense that for any representation (ψ, π) of X in any C∗-algebra B, there is a unique
∗-homomorphism ψ × π : TX → B such that ψ = (ψ × π) ◦ iA and π = (ψ × π) ◦ iX . This
construction if due to Katsura and is discussed in detail in [7], for instance.

Let X⊗n denote the n-fold internal tensor product of X with itself; by convention
we let X⊗0 = A. Given a Toeplitz representation (ψ, π) of X in B, we define a map
ψn : X⊗n → B for each n ∈ N as follows: we let ψ0 = π and ψ1 = ψ and then, for each
n > 1, we set ψn(x ⊗ y) = ψ(x)ψn−1(y) where x ∈ X and y ∈ X⊗n−1.

Let X be a correspondence over A and let (ψ, π) be a Toeplitz representation of X.
Then, Proposition 2.7 of [7] states that

C∗(ψ, π) = span{ψn(x)ψm(y)∗ : x ∈ X⊗n, y ∈ X⊗m}.

From [7, Lemma 2.4] we get the following result. Let (ψ, π) be a Toeplitz
representation of X in B. For each n ∈ N there is a homomorphism ψ(n) : K(X⊗n)→ B
such that:

(1) π(a)ψ(n)(k) = ψ(n)(φ(a)k) for all a ∈ A and all k ∈ K(X⊗n);
(2) ψ(n)(k)ψ(x) = ψ(kx) for all x ∈ X and all k ∈ K(X⊗n).

Let X be a correspondence over a C∗-algebra A. We define the Katsura ideal of A to
be the ideal

JX = {a ∈ A : φ(a) ∈ K(X) and ab = 0 for all b ∈ ker(φ)},

where φ is the left action. This is often written more compactly as JX = φ−1(K(X)) ∩
(ker(φ))⊥. In many cases of interest, one can consider only correspondences whose
left actions are injective and implemented by compacts. In this case we have JX = A.

The Katsura ideal is also sometimes described as the largest ideal of A which maps
injectively onto the compacts. This is made precise by the following proposition
(see [7]).

Proposition 2.9. Suppose that X is a correspondence over a C∗-algebra A, φ is the left
action map, and I is an ideal of A which is mapped injectively into K(X) by φ. Then
I ⊆ JX .

We are now ready to define the Cuntz–Pimsner algebra OX . A Toeplitz represen-
tation is said to be Cuntz–Pimsner covariant if ψ(1)(φ(a)) = π(a) for all a ∈ JX . The
Cuntz–Pimsner algebra OX is the quotient of TX by the ideal generated by

{i(1)
X (φ(a)) − iA(a) : a ∈ JX}.

Letting q : TX → OX denote the quotient map, it can be shown that OX is generated
by the Cuntz–Pimsner covariant representation (kX , kA) = (q ◦ iX , q ◦ iA) and that this
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representation is universal for Cuntz–Pimsner covariant representations: if (ψ, π) is a
Cuntz–Pimsner covariant representation of X in B, then there is a ∗-homomorphism
ψ × π : OX → B such that ψ = (ψ × π) ◦ kX and π = (ψ × π) ◦ kA. This construction is
also due to Katsura and is discussed in detail in [7].

Example 2.10. If E is a directed graph and X(E) is the graph correspondence of
Example 2.2, then one can show that OX(E) � C∗(E) where C∗(E) is the C∗-algebra
of the graph (see [13] for details). For this reason, if F is a topological graph, the
graph algebra of F is defined to be OX(F).

One of the most important results about Cuntz–Pimsner algebras is the so-called
‘gauge-invariant uniqueness theorem’. In order to state this theorem we need the
following definition. Let (ψ, π) be a Toeplitz representation of a correspondence X.
Then we say that C∗(ψ, π) admits a gauge action if there is an action γ of T on C∗(ψ, π)
such that:

(1) γz(π(a)) = π(a) for all z ∈ T and all a ∈ A;
(2) γz(ψ(x)) = zψ(x) for all z ∈ T and all x ∈ X.

When such an action exists, it is unique.

Theorem 2.11 (Gauge invariant uniqueness theorem [7, Theorem 6.4]). Let X be a
correspondence over A and let (ψ, π) be a Cuntz–Pimsner covariant representation of
X. Then the ∗-homomorphism ψ × π : OX → C∗(ψ, π) is an isomorphism if and only if
(ψ, π) is injective and admits a gauge action.

2.3. Actions, coactions and gradings. We will make use of the relationship
between the gauge action of T and the natural Z-grading of Cuntz–Pimsner algebras.
This relationship comes from the duality between actions of an abelian group and
coactions of the dual group. We will briefly recall the basics of actions and coactions
here. By an action of a locally compact group G on a C∗-algebra A, we shall mean a
strongly continuous group homomorphism α : G→ Aut(A). We will refer to the triple
(A,G, α) as a C∗-dynamical system. For s ∈ G we will write αs for the automorphism
α(s). Let G be a discrete group. Then the group C∗-algebra C∗(G) is generated by a
unitary representation G 3 s 7→ us ∈ UC∗(G). We will abuse notation and write s for
us. The function δG : C∗(G)→ C∗(G) ⊗ C∗(G) defined by s 7→ s ⊗ s for all s ∈ G is
called the comultiplication map on C∗(G). There is a comultiplication map defined
for any locally compact group, but in general it will map into M(C∗(G) ⊗ C∗(G)).
See [2, appendix] for more details.

A coaction of a group G on a C∗-algebra A is a nondegenerate, injective
homomorphism δ : A→ M(A ⊗C∗(G)) such that:

(1) δ(A)(1 ⊗C∗(G)) ⊆ A ⊗C∗(G);
(2) (δ ⊗ idG) ◦ δ = (idA ⊗ δG) ◦ δ where both sides are viewed as maps A→ M(A ⊗

C∗(G) ⊗C∗(G)).
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A coaction is called nondegenerate if the closed linear span of δ(A)(1 ⊗ C∗(G)) is
equal to A ⊗ C∗(G). We will also refer to the triple (A,G, δ) as a coaction. Note that
if G is discrete then C∗(G) is unital (with unit ue) and thus δ(A) ⊆ δ(A)(1 ⊗ C∗(G))
so by condition (1), δ maps into A ⊗ C∗(G). In fact, the results of [12] tell us that
(nondegenerate) coactions of discrete groups correspond to group gradings. We will
discuss this more formally in a moment, but first we will state precisely what we mean
by a grading of a C∗-algebra. Let G be a discrete group and A a C∗-algebra. By
a G-grading of A we shall mean a collection {As}s∈G of linearly independent closed
subspaces of A such that the following hold:

(1) AsAt ⊆ Ast for all s, t ∈ G;
(2) A∗s = As−1 ;
(3) A = spans∈G(As).

We will say that a grading is full if we have AsAt = Ast for all s, t ∈ G. We
summarize [12, Lemmas 1.3 and 1.5] as follows.

Lemma 2.12. A nondegenerate coaction of a discrete group G on a C∗-algebra A gives
a G-grading of A. Specifically, we let As = {a ∈ A : δ(a) = a ⊗ s} for each s ∈ G.

Remark 2.13 [2, Example A.23]. If G is abelian, then every coaction of G corresponds
to an action of the dual group Ĝ and vice versa. To see this, we first identify C∗(G)
and C0(Ĝ) using the abstract Fourier transform: F (x)(χ) = χ(x). We also recall that,
in this situation, condition (1) from the definition of coactions is equivalent to δ
taking values in Cb(Ĝ, A) ∈ M(A ⊗ C∗(G)) (see [2] for details). With this in mind,
if (A,G, δ) is a coaction, then we define an action αδ of Ĝ by setting αδχ(a) = δ(a)(χ).
Conversely, given an action α of Ĝ on a C∗-algebra A, we define a coaction δα by
letting δα(a)(χ) = αχ(a).

Let (A,G, α) be a C∗-dynamical system with G compact and abelian and let
(A, Ĝ, δα) be the associated coaction of the dual group Ĝ. Since G is compact, Ĝ
will be discrete and therefore δα will give a Ĝ-grading of A as in Lemma 2.12.
Identifying A ⊗ C∗(Ĝ) with A ⊗ C(G) and this with C(G, A), the elementary tensor
a ⊗ uχ corresponds to the map s 7→ χ(s)a. Therefore if a ∈ Aχ then αs(a) = δα(a)(s) =

χ(s)a and so the sets Aχ can be thought of equivalently as

Aχ = {a ∈ A : αs(a) = χ(s)a}.

Thus each Aχ coincides with the so-called spectral subspace associated to χ.
Just as every action of a compact abelian group determines a grading by the dual

group, every grading by a discrete abelian group determines an action of its dual group.
To see this, just note that a G-grading of A makes A into a Fell bundle over G and, as
in [12], we get a coaction of G associated to this Fell bundle which corresponds to an
action of Ĝ as follows.

Proposition 2.14. Let A be a C∗-algebra and suppose that {As}s∈G is a G-grading of A.
Let χ ∈ Ĝ. For each s ∈ G and each a ∈ As define αχ(a) = χ(s)a. The maps αχ extend
to automorphisms of A such that α : χ 7→ αχ is an action of Ĝ on A.
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3. Tensor products balanced over group actions or group gradings

We wish to show that the Cuntz–Pimsner algebra of an external tensor product
X ⊗ Y of correspondences is isomorphic to a certain subalgebra OX ⊗T OY of the tensor
product OX ⊗ OY . This subalgebra is called the T-balanced tensor product of OX and
OY . Following [8], we define the general construction as follows.

Definition 3.1. Let G be a compact abelian group, and let (A,G, α) and (B,G, β)
be C∗-dynamical systems. We define the G-balanced tensor product A ⊗G B to be
the fixed point algebra (A ⊗ B)λ where λ : G→ A ⊗ B is the action characterized by
λs(a ⊗ b) = αs(a) ⊗ βs−1 (b).

Proposition 3.2. If a ⊗ b ∈ A ⊗G B then αs(a) ⊗ b, a ⊗ βs(b) ∈ A ⊗G B for all s ∈ G and
αs(a) ⊗ b = a ⊗ βs(b).

Proof. To show that αs(a) ⊗ b ∈ A ⊗G B note that for any t ∈ G we have

αt(αs(a)) ⊗ βt−1 (b) = αs(αt(a)) ⊗ βt−1 (b)
= (αs ⊗ idB)(αt(a) ⊗ βt−1 (b))
= (αs ⊗ idB)(a ⊗ b)
= αs(a) ⊗ b,

showing that a ⊗ βs(b) ∈ A ⊗G B is similar. Now that this has been established, the
equality follows easily:

αs(a) ⊗ b = αs−1 (αs(a)) ⊗ βs(b)
= a ⊗ βs(b). �

Thus the actions α ⊗ ιB and ιA ⊗ β coincide on A ⊗G B where ιA and ιB are the
trivial actions. We will refer to the restriction of α ⊗ ιB to A ⊗G B (or equivalently the
restriction of ιA ⊗ β to A ⊗G B) as the balanced action of G, and we will denote it by
α ⊗G β.

The main result of this paper can be stated roughly as

OX⊗Y � OX ⊗T OY

for suitable X and Y where we are balancing over the gauge actions on OX and OY .
This generalizes the following example from [8].

Example 3.3. Let E and F be source-free, row-finite discrete graphs and let E × F
denote the product graph as in Example 2.8. Then C∗(E × F) � C∗(E) ⊗T C∗(F).

As we noted above, actions of compact abelian groups correspond to gradings of
the dual group. It will be useful to be able to describe T-balanced tensor products in
terms of the corresponding Z-gradings. But first we will need a fact which follows
from the Peter–Weyl theorem [4, Theorem VII.1.35].
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Lemma 3.4. Let G be a compact abelian group with a normalized Haar measure and
let χ be a character (i.e. a continuous homomorphism G→ T). Then∫

G
χ(s) ds =

1 χ is the trivial homomorphism
0 otherwise.

Now we are ready to describe G-balanced tensor products in terms of gradings of Ĝ.

Proposition 3.5. Let (A,G, α) and (B,G, β) be C∗-dynamical systems with G abelian.
Then, as discussed in the previous section, the coactions δα and δβ give Ĝ-gradings of
A and B:

Aχ = {a ∈ A : αs(a) = χ(s)a},
Bχ = {b ∈ B : βs(b) = χ(s)b}.

Let
Sχ := {a ⊗ b : a ∈ Aχ, b ∈ Bχ}

and let
S :=

⋃
χ∈Ĝ

Sχ.

Then A ⊗G B = span(S ).

Proof. First, note that if a ⊗ b ∈ S , then a ⊗ b ∈ Sχ for some χ and so, for all s ∈ G,

λs(a ⊗ b) = αs(a) ⊗ βs−1 (b)

= χ(s)a ⊗ χ(s−1)b

= χ(s)χ(s−1)(a ⊗ b)
= a ⊗ b

so a ⊗ b ∈ A ⊗G B and hence S ⊆ A ⊗G B. Since A ⊗G B is a C∗-algebra, we have that
span(S ) ⊆ A ⊗G B.

Now, since A is densely spanned by the Aχ and B is densely spanned by the Bχ,
the tensor product A ⊗ B will be densely spanned by elementary tensors a ⊗ b where
a ∈ Aχ and b ∈ Bχ′ for some χ, χ′ ∈ Ĝ. More precisely, let

Tχ, χ′ = {a ⊗ b : a ∈ Aχ, b ∈ Bχ′}

and let
T =

⋃
χ, χ′∈Ĝ

Tχ, χ′ .

Then we have A ⊗ B = span(T ). Let ε : A ⊗ B→ A ⊗G B be the conditional expectation
c 7→

∫
G λs(c) ds. Then, since ε is continuous, linear and surjective, ε(T ) densely spans

A ⊗G B. Let a ⊗ b ∈ T , say a ⊗ b ∈ Tχ, χ′ . Then using Lemma 3.4 and the fact that a
product of two characters is a character, we have
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ε(a ⊗ b) =

∫
G
λs(a ⊗ b) ds

=

∫
G

(χ(s)a ⊗ χ′(s−1)b) ds

=

( ∫
G
χ(s)χ′(s) dz

)
a ⊗ b

=

( ∫
G

(χχ′)(s) ds
)
a ⊗ b

=

1 if χχ′ is trivial
0 otherwise.

But χχ′ will be trivial if and only if χ = χ′. This means that if χ , χ′ (i.e. a ⊗ b ∈
T\S ) then ε(a ⊗ b) = 0 and if χ = χ′ (i.e. a ⊗ b ∈ S ) then ε(a ⊗ b) = a ⊗ b. This implies
that ε(T ) = S and thus, since T densely spans A ⊗ B, the linearity and continuity of ε
imply that S densely spans ε(A ⊗ B) = A ⊗G B. Therefore A ⊗G B = span(S ). �

Proposition 2.14 tells us that the Ĝ-grading of A ⊗G B just described should give us
an action of G on A ⊗G B. We will now show that this action coincides exactly with
the balanced action.

Proposition 3.6. Let {Sχ}s∈Ĝ be the Ĝ-grading of A ⊗G B described in the previous
proposition and let γ be the action associated to this grading by Proposition 2.14.
Then γ = α ⊗G β.

Proof. It suffices to check that these maps coincide on each Sχ. Let a ⊗ b ∈ Sχ. Then
for each s ∈ Ĝ we have γs(a ⊗ b) = χ(s)(a ⊗ b) by definition. On the other hand, since
a ∈ Aχ,

(α ⊗G β)s(a ⊗ b) = αs(a) ⊗ b
= (χ(s)a) ⊗ b
= χ(s)(a ⊗ b)

so γs(a ⊗ b) = (α ⊗G β)s(a ⊗ b) for every s ∈ G and every a ⊗ b in Sχ. �

The following lemma will be useful later.

Lemma 3.7. Let {An}n∈Z and {Bn}n∈Z be saturated Z-gradings of C∗-algebras A and B
and let {Sn}n∈Z be the Z-grading of A ⊗T B as in the previous propositions. Then A ⊗T B
is generated by S1.

Proof. First, we will show that SnSm = Sn+m. We already have that SnSm ⊆ Sn+m so it
suffices to show the reverse inclusion. Let a ⊗ b ∈ Sn+m. Then a ∈ An+m and b ∈ Bn+m

so a =
∑

aia′i and b =
∑

bib′i with ai ∈ An, a′i ∈ Am, bi ∈ Bn, and b′i ∈ Bm. Therefore
a ⊗ b =

∑
i, j(ai ⊗ b j)(a′i ⊗ b′j) where ai ⊗ b j ∈ Sn and a′i ⊗ b′j ∈ Sm so Sn+m ⊆ SnSm and

hence SnSm = Sn+m.
Since 1 generates Z as a group, S1 generates span

⋃
Sn = A ⊗T B as a C∗-algebra. �
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4. Ideal compatibility

In this section we introduce technical conditions which we will need for our main
result to hold.

Definition 4.1. Let X and Y be correspondences over C∗-algebras A and B and let JX ,
JY , JX⊗Y be the Katsura ideals (i.e.

JX = {a ∈ A : φ(a) ∈ K(X) and aa′ = 0 if φX(a′) = 0}

and so on). We say that X and Y are ideal-compatible if JX⊗Y = JX ⊗ JY .

The simplest way for this condition to hold is if the left actions of A and B on X and
Y are injective and implemented by compacts. In this case it will also be true that the
left action of A ⊗ B on X ⊗ Y will be injective and implemented by compacts. Thus we
will have that JX = A, JY = B, and JX⊗Y = A ⊗ B so ideal compatibility is automatic.
Thus we have established the following proposition.

Proposition 4.2. Let XA and YB be correspondences such that the left actions of A and
B are injective and implemented by compacts. Then X and Y are ideal-compatible.

The following two lemmas are inspired by [5, Lemma 2.6].

Lemma 4.3. Let X and Y be correspondences over A and B. Then JX ⊗ JY ⊆ JX⊗Y .

Proof. Since φX maps JX injectively into K(X) and φY maps JY injectively into K(Y),
φX⊗Y = φX ⊗ φY will map JX ⊗ JY injectively into K(X) ⊗ K(Y), but K(X) ⊗ K(Y) =

K(X ⊗ Y) so φX⊗Y maps JX ⊗ JY injectively into K(X ⊗ Y). Thus by Proposition 2.9,
JX ⊗ JY ⊆ JX⊗Y . �

Recall that if A and B are C∗-algebras and C is an subalgebra of A, the triple (C,A,B)
is said to satisfy the slice map property if

C ⊗ B = {x ∈ A ⊗ B : (idA ⊗ ω)(x) ∈ C for all ω ∈ B∗}.

Lemma 4.4. Let X and Y be correspondences over C∗-algebras A and B and suppose
that Y is an imprimitivity bimodule. If (JX , A, B) satisfies the slice map property, then
X and Y are ideal-compatible.

Proof. It suffices to show that JX⊗Y ⊆ JX ⊗ JY . Since Y is an imprimitivity bimodule
we have that the left action φY is an isomorphism B � K(Y) and thus φY maps all of B
maps injectively into K(Y), so JY = B. We must show that JX⊗Y ⊆ JX ⊗ B.

Let c ∈ JX⊗Y . Since (JX , A, B) satisfies the slice map property, showing that
c ∈ JX ⊗ B is equivalent to showing that (id ⊗ ω)(c) ∈ JX for all ω ∈ B∗. Recalling
the definition of JX , this means we must show that φX((id ⊗ ω)(c)) ∈ K(X) and that
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(id ⊗ ω)(c)a = 0 for all a ∈ ker(φX). With this in mind, let ω ∈ B∗. Since φX is linear,
we have that

φX((idA ⊗ ω)(c)) = (φX ⊗ ω)(c)

= (φX ⊗ (ω ◦ φ−1
Y ◦ φY ))(c)

= (idK(X) ⊗ (ω ◦ φ−1
Y )) ◦ (φX ⊗ φY )(c)

= (idK(X) ⊗ (ω ◦ φ−1
Y )) ◦ φX⊗Y (c).

To see that this is inK(X), note that since c ∈ JX⊗Y by assumption, we know that φ(c) ∈
K(X ⊗ Y) = K(X) ⊗K(Y). Note that since Y is an imprimitivity bimodule, φ−1

Y is well
defined as a map K(Y)→ B. Since (idK(X) ⊗ (ω ◦ φ−1

Y )) maps K(X) ⊗ K(Y)→K(X)
we have that

(idK(X) ⊗ (ω ◦ φ−1
Y )) ◦ φX⊗Y (c) ∈ K(X)

so (id ⊗ ω)(c) ∈ K(X).
Next, let a ∈ ker(φX) and factor ω as b · ω′ for some b ∈ B and ω′ ∈ B∗ (where

(b · ω′)(b′) = ω′(b′b)). Then

(id ⊗ ω)(c)a = (id ⊗ ω)(c(a ⊗ 1))
= (id ⊗ b · ω′)(c(a ⊗ 1))
= (id ⊗ ω′)(c(a ⊗ 1)(1 ⊗ b))
= (id ⊗ ω′)(c(a ⊗ b))

but

a ⊗ b ∈ ker(φX) ⊗ B
⊆ ker(φX ⊗ φY )
= ker(φX⊗Y ).

Therefore, since c ∈ JX⊗Y we must have c(a ⊗ b) = 0 and hence

(id ⊗ ω)(c)a = (id ⊗ ω′)(c(a ⊗ b)) = 0.

Thus, we have established that (id ⊗ ω)(c) ∈ JX for any c ∈ JX⊗Y and ω ∈ B∗ so by the
slice map property we have that JX⊗Y ⊆ JX ⊗ B = JX ⊗ JY and thus (by the previous
lemma) JX⊗Y = JX ⊗ JY . �

In [13, Example 8.13], it is shown that if E is a discrete graph, then

JX(E) = span{δv : 0 < |r−1(v)| <∞},

where X(E) is the associated correspondence and δv ∈ c0(E0) denotes the characteristic
function of the vertex v ∈ E0. With this in mind, we give the following proposition.

Proposition 4.5. Let E and F be discrete graphs and let X = X(E) and Y = X(F) be
the associated correspondences. Then X and Y are ideal-compatible.
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Proof. Recall that X ⊗ Y = X(E × F). Thus

JX⊗Y = span{δ(v,w) : 0 < |r−1
E×F(v,w)| <∞}.

By definition, rE×F = rE × rF so r−1
E×F(v,w) = r−1

E (v) × r−1
F (w) and thus |r−1

E×F(v,w)| =
|r−1

E (v)| · |r−1
F (w)|, but 0 < |r−1

E (v)| · |r−1
F (w)| < ∞ if and only if 0 < |r−1

E (v)| < ∞ and
0 < |r−1

F (w)| <∞. Thus we have that

JX⊗Y = span{δ(v,w) : 0 < |r−1
E (v)|, |r−1

F (w)| <∞}.

Since δ(v,w) = δvδw, if we identify c0(E0 × F0) with c0(E0) ⊗ c0(F0) in the standard
way, we see that δ(v,x) = δv ⊗ δw. Thus

JX⊗Y = span{δv ⊗ δw : 0 < |r−1
E (v)|, |r−1

F (w)| <∞}
= span{ f ⊗ g : f ∈ JX , g ∈ JY }

= JX ⊗ JY .

Therefore, X and Y are ideal-compatible. �

Definition 4.6. Let X be a correspondence over a C∗ algebra A. We will call this
correspondence Katsura nondegenerate if X · JX = X.

Example 4.7. Let X be a correspondence over a C∗-algebra A such that the left action
is injective and implemented by compacts. In this case we have that JX = A. Thus,

X · JX = X · A
= X.

Definition 4.8. Recall that a vertex in a directed graph is called a source if it receives
no edges. We will call such a vertex a proper source if it emits at least one edge.

Proposition 4.9. Let E be a directed graph. Then X(E) is Katsura nondegenerate if
and only if E has no proper sources and no infinite receiver emits an edge.

Proof. Suppose there is v ∈ E0 such that |r−1(v)| =∞ and |s−1(v)| > 0. Then for every
f ∈ JX we have f (v) = 0. Thus for any g ∈ Cc(E1), f ∈ JX , and e ∈ s−1(v), we have
(g · f )(e) = g(e) f (s(e)) = g(e) f (v) = 0. Thus h(e) = 0 for all h ∈ Cc(E1) · JX and, taking
the limit, x(e) = 0 for all x ∈ X · JX . Thus δe < X · JX since δe(e) = 1 , 0 but δe ∈ X.
Therefore X , X · JX , that is, X is not Katsura nondegenerate.

Similarly, suppose that E has a proper source v. Then, since |r−1(v)| = 0 we must
have f (v) = 0 for all f ∈ JX . Then for any g ∈ Cc(E1) and e ∈ s−1(v), we have that
(g · f )(e) = g(e) f (v) = 0 for f ∈ JX . Thus by similar reasoning to that above we have
that x(e) = 0 for all x ∈ X · JX and so δe < X · JX but δe ∈ X, and we can again conclude
that X , X · JX so X is not Katsura nondegenerate.

On the other hand, suppose that E has no proper sources and no infinite receiver
in E emits an edge. Let e ∈ E1 and let v = s(e). Then |r−1(v)| < ∞ and |r−1(v)| > 0
by assumption, so a function in JX can be supported on v. In particular, δv ∈ JX .
Since δe · δv = δe we know that δe ∈ X · JX . Since e was arbitrary, we have that all
such characteristic functions are contained in X · JX . But these functions densely span
Cc(E1) and thus densely span X, so we have that X ⊆ X · JX and therefore X = X · JX
so X is Katsura nondegenerate. �
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5. Main result

We will begin with a few lemmas.

Lemma 5.1. Let X and Y be correspondences over C∗-algebras A and B, respectively.
Suppose that (πX , ψX) and (πY , ψY ) are Toeplitz representations of X and Y in
C∗-algebras C and D. Let π := πX ⊗ πY and ψ := ψX ⊗ ψY . Then (π, ψ) is a Toeplitz
representation of X ⊗ Y in C ⊗ D.

Proof. This follows from the following computations:

ψ((x ⊗ y) · (a ⊗ b)) = ψX(x · a) ⊗ ψY (y · b)
= ψX(x)πX(a) ⊗ ψY (y)πY (b)
= ψ(x ⊗ y)π(a ⊗ b),

ψ((a ⊗ b) · (x ⊗ y)) = ψX(a · x) ⊗ ψY (b · y)
= πX(a)ψX(x) ⊗ πY (b)ψY (y)
= π(a ⊗ b)ψ(x ⊗ y),

ψ(x ⊗ y)∗ψ(x′ ⊗ y′) = ψX(x)∗ψX(x′) ⊗ ψY (y)∗ψY (y′)
= πX(〈x, x′〉A) ⊗ πY (〈y, y′〉B)
= π(〈x, x′〉A ⊗ 〈y, y′〉B)
= π(〈x ⊗ y, x′ ⊗ y′〉A⊗B). �

Lemma 5.2. If (π, ψ) is the Toeplitz representation of X ⊗ Y in the previous lemma, then

ψ(1)(κ(S ⊗ T )) = ψ(1)
X (S ) ⊗ ψ(1)

Y (T )

where κ is as in Lemma 2.7.

Proof. Let x, x′ ∈ X and y, y′ ∈ Y . Then

ψ(1)(κ(Θx,x′ ⊗ Θy,y′)) = ψ(1)(Θx⊗y,x′⊗y′)
= ψ(x ⊗ y)ψ(x′ ⊗ y′)∗

= (ψX(x) ⊗ ψY (y))(ψX(x′) ⊗ ψY (y′))∗

= ψX(x)ψX(x′)∗ ⊗ ψY (y)ψY (y′)∗

= ψ(1)
X (Θx,x′) ⊗ ψ

(1)
Y (Θy,y′).

Since the rank-ones have dense span in the compacts, this result extends to any
S ∈ K(X) and T ∈ K(Y). �

Lemma 5.3. Let X and Y be ideal-compatible correspondences over A and B. Then if
(πX , ψX) and (πY , ψY ) are Cuntz–Pimsner covariant, then so is (π, ψ).

Proof. Let c ∈ JX⊗Y . Since X and Y are ideal-compatible we have that JX⊗Y = JX ⊗ JY

so we can approximate c by elements of JX � JY , that is, by finite sums
∑

i ai ⊗ bi with
ai ∈ JX and bi ∈ JY for each i.
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Notice that

ψ(1)
(
φ
(∑

i

ai ⊗ bi

))
= ψ(1)

(∑
i

φ(ai ⊗ bi)
)

= ψ(1)
(∑

i

κ(φX(ai) ⊗ φY (bi))
)

=
∑

i

ψ(1)
X (φX(ai)) ⊗ ψ

(1)
Y (φY (bi))

=
∑

i

πX(ai) ⊗ πY (bi)

=
∑

i

π(ai ⊗ bi),

where we have used the Cuntz–Pimsner covariance of (πX , ψX) and (πY , ψY ). Thus if
(c j) is a sequence in JX � JY converging to c, we have ψ(1)(φ(c j)) = π(c j) for all j.
Since ψ(1), φ, and π are all continuous, we have that ψ(1)(φ(c)) = π(c). This establishes
that (π, ψ) is Cuntz–Pimsner covariant. �

We are now ready to prove the main result of this paper.

Theorem 5.4. Let X and Y be ideal-compatible correspondences over C∗-algebras A
and B. Then OX⊗Y can be faithfully embedded in OX ⊗T OY . If X and Y are Katsura
nondegenerate, then OX⊗Y � OX ⊗T OY .

Proof. We will begin by showing the existence of a homomorphismOX⊗Y →OX ⊗ OY .
To show this, we will construct a Cuntz–Pimsner covariant representation of X ⊗ Y in
OX ⊗ OY and then apply the universal property of Cuntz–Pimsner algebras.

Let (kX , kA) and (kY , kB) be the Cuntz–Pimsner covariant representations of X
and Y in OX and OY , respectively. Let ψ = kX ⊗ kY and π = kA ⊗ kB. Then by
Lemma 5.3, (ψ, π) is Cuntz–Pimsner covariant and so we have a homomorphism
F : OX⊗Y →OX ⊗ OY such that

(ψ, π) = (F ◦ kX⊗Y , F ◦ kA⊗B).

In particular,

F(kA⊗B(A ⊗ B)) = π(A ⊗ B) = (kA ⊗ kB)(A ⊗ B), (5.1)
F(kX⊗Y (X ⊗ Y)) = ψ(X ⊗ Y) = (kX ⊗ kY )(X ⊗ Y). (5.2)

Let {On
X}n∈Z and {On

Y }n∈Z denote the Z-gradings ofOX andOY associated to the standard
gauge actions γX and γY . Then by Proposition 3.5, the subspaces

Sn := {x ⊗ y : x ∈ On
X , y ∈ O

n
Y }

give a Z-grading of OX ⊗T OY . Since (5.1) shows that π(A ⊗ B) ⊆ S0 and (5.2) shows
that ψ(X ⊗ Y) ⊆ S1, we can see that C∗(ψ, π) ⊆ OX ⊗T OY and that the action of T on
OX ⊗T OY guaranteed by Lemma 2.14 is a gauge action:

γz(π(c)) = π(c), c ∈ A ⊗ B,
γz(ψ(w)) = zψ(w), w ∈ X ⊗ Y.
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Also, since kA, kB, kX and kY are injective, π = kA ⊗ kB and ψ = kX ⊗ kY are injective
too. Hence by the gauge invariant uniqueness theorem, F is injective. Thus we have
established the first part of the theorem.

Now suppose that X and Y are Katsura nondegenerate. We will show that (ψ, π)
generates OX ⊗T OY by showing that (ψ, π) generates S1 and applying Lemma 3.7.
Since O1

X is densely spanned by elements of the form kn+1
X (x)kn

X(x′)∗, and O1
Y is densely

spanned by elements of the form kn+1
Y (y)kn

Y (y′)∗, we have that S1 is densely spanned by
elements of the form

kn+1
X (x)kn

X(x′)∗ ⊗ km+1
Y (y)km

Y (y′)∗. (5.3)

By symmetry, we may assume m = n + l for some nonnegative l. Then we may assume
that y = y1 ⊗ y2 and y′ = y′1 ⊗ y′2 with y1, y′1 ∈ Y⊗n and y2, y′2 ∈ Y⊗l. Further, since X
is Katsura nondegenerate, we can factor x = x0a and x′ = x′0a′ with x0, x′0 ∈ X and
a, a′ ∈ JX . Now we can factor (5.3) as follows:

kn+1
X (x)kn

X(x′)∗ ⊗ km+1
Y (y)km

Y (y′)∗

= (kn+1
X (x) ⊗ km+1

Y (y))(kn
X(x′)∗ ⊗ km

Y (y′)∗)

= (kn+1
X (x0)kA(a) ⊗ kn+1

Y (y1)kl
Y (y2))(kA(a′)∗kn

X(x′0)∗ ⊗ kl
Y (y′2)∗kn

Y (y′1)∗)

= (kn+1
X (x0) ⊗ kn+1

Y (y1))(kA(a) ⊗ kl
Y (y2))(kA(a′)∗ ⊗ kl

Y (y′2)∗)(kn
X(x′0)∗ ⊗ kn

Y (y′1)∗)

= (kn+1
X (x0) ⊗ kn+1

Y (y1))(kA(aa′∗) ⊗ kl
Y (y2)kl

Y (y′2)∗)(kn
X(x′0)∗ ⊗ kn

Y (y′1)∗)

= (kn+1
X (x0) ⊗ kn+1

Y (y1))(k(1)
X (φX(aa′∗)) ⊗ k(1)

Y (Θy2,y′2 ))(kn
X(x′)∗ ⊗ kn

Y (y′1)∗)

= ψn+1(x0 ⊗ y1)(ψ(1)(φX(aa′) ⊗ Θy2,y′2 ))ψn(x′0 ⊗ y′1)∗.

Since ψn+1(x0 ⊗ y1), ψ(1)(φX(aa′∗) ⊗ Θy2,y′2 ), and ψn(x′0 ⊗ y′1) are in the algebra
generated by (ψ, π), we now know that (ψ, π) generates S1 and so by Lemma 3.7
(ψ, π) generates all of OX ⊗T OY . Therefore F is surjective hence an isomorphism
OX⊗Y � OX ⊗T OY . �

6. Examples

We will now give some examples.

Example 6.1. Let (A, Z, α) and (B, Z, β) be C∗-dynamical systems. Let X be the
C∗-correspondence AA with left action given by a · x = α1(a)x and let Y be the
correspondence BB with left action given by b · y = β1(b)y. This action is injective
and implemented by compacts, and we have that OX � A oα Z and OY � B oβ Z by
isomorphisms which carry the gauge action of T to the dual action of T (see [11]).

Consider the external tensor product X ⊗ Y . As a right Hilbert module this is AA ⊗

BB, it carries a right action of A ⊗ B characterized by (x ⊗ y) · (a ⊗ b) = x · a ⊗ y · b, but
since the right actions on X and Y are given by multiplication in A and B, this action of
A ⊗ B on X ⊗ Y is just multiplication in A ⊗ B. Further, the A ⊗ B-valued inner product
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on X ⊗ Y is given by

〈x ⊗ y, x′ ⊗ y′〉A⊗B = 〈x, x′〉A ⊗ 〈y, y′〉B
= x∗x′ ⊗ y∗y′

= (x ⊗ y)∗(x′ ⊗ y′),

but this is precisely the inner product on (A ⊗ B)A⊗B. Thus idA ⊗ idB gives a right
Hilbert module isomorphism X ⊗ Y � (A ⊗ B)A⊗B. The left action of A ⊗ B on X ⊗ Y
will be the tensor product of the action of A on X and the action of B on Y . Thus

(a ⊗ b) · (x ⊗ y) = α1(a)x ⊗ β1(b)y
= (α1(a) ⊗ β1(b))(x ⊗ y).

Thus, as an A ⊗ B correspondence, X ⊗ Y can be identified with the correspondence
associated to the automorphism α1 ⊗ β1 on A ⊗ B. Since (α1 ⊗ β1)◦n = (αn ⊗ βn) and
(α1 ⊗ β1)−1 = (α−1 ⊗ β−1), the action of Z generated by α1 ⊗ β1 will be the diagonal
action α ⊗ β of Z on A ⊗ B. Thus we have that OX⊗Y � (A ⊗ B) oα⊗β Z.

Therefore, in this context our main theorem says that

(A ⊗ B) oα⊗β Z � (A oα Z) ⊗T (B oβ Z).

In later work, we hope to investigate whether this result generalizes to groups other
than Z.

Example 6.2 (Products of topological graphs). Let E = (E0, E1, r, s) and F =

(F0, F1, r′, s′) be source-free topological graphs with r and r′ proper. Then the left
actions of X(E) and X(F) will be injective and implemented by compacts. Recall from
Example 2.8 that X(E) ⊗ X(F) � X(E × F) where E × F is the product graph. Our
main result says that OX(E×F) � OX(E) ⊗T OX(F), which translates to

C∗(E × F) � C∗(E) ⊗T C∗(F).

Note that if E and F are discrete graphs, this coincides with Kumjian’s result in [8].

Example 6.3 (Products of discrete graphs). Let E and F be discrete graphs with no
proper sources and such that no infinite receiver emits an edge. From the discussion in
Section 4 we know that the graph correspondences X(E) and X(F) are ideal-compatible
and Katsura nondegenerate. By the same reasoning as in the previous example we have
that

C∗(E × F) � C∗(E) ⊗T C∗(F).

Note that this stronger than the result in [8] where the graphs are required to be source-
free and row-finite.

Example 6.4. Let A and B be C∗-algebras, and let X be a correspondence over A.
Viewing B as the correspondence BB B, we can form the A ⊗ B correspondence X ⊗ B.
Suppose that X and B are ideal-compatible and Katsura nondegenerate (in fact B
will automatically be Katsura nondegenerate). Recall that OB � B ⊗ C(T) with gauge
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action ι ⊗ λ where ι is the trivial action and λ is left translation. Thus our main
result says that OX⊗B � OX ⊗T (B ⊗ C(T)). Identifying C(T) with C∗(Z), we have
OX⊗B � OX ⊗T (B ⊗C∗(Z)), and characterizing the T-balanced tensor product in terms
of the Z-gradings as we have been, we see that

OX⊗B � span{x ⊗ b ⊗ w ∈ On
X ⊗ B ⊗C∗(Z)n : n ∈ Z}.

But since C∗(Z)n = span(un) (where un denotes the unitary in C∗(Z) associated to n)
we can rephrase this as

span{x ⊗ b ⊗ un ∈ OX ⊗ B ⊗C∗(Z) : x ∈ On
X}. (6.1)

Now let γ denote the gauge action of T on OX and let δγ be the dual coaction of
Z. Recall that this coaction can be characterized by the property that δγ(x) = x ⊗ un

whenever x ∈ On
X . Since the subspaces On

X densely span OX , their images under δγ will
densely span δγ(OX). Therefore,

δγ(OX) = span{x ⊗ un : x ∈ On
X},

(δγ ⊗ idB)(OX ⊗ B) = span{x ⊗ un ⊗ b : x ∈ On
X , b ∈ B},

σ23 ◦ (δγ ⊗ idB)(OX ⊗ B) = span{x ⊗ b ⊗ un : x ∈ On
X , b ∈ B}.

Noting that idB, and σ23 are isomorphisms (where σ23 is the map which exchanges the
second and third tensor factors) and δγ is an injective ∗-homomorphism, we see that
σ23 ◦ (δγ ⊗ idB) is an injective ∗-homomorphism and is thus an isomorphism onto its
image. But its image is span{x ⊗ b ⊗ un : x ∈ On

X , b ∈ B} and by (6.1) this is isomorphic
to OX⊗B. Therefore we have shown that

OX⊗B � OX ⊗ B.

This result is already known, and was used in [5] to prove facts about coactions on
Cuntz–Pimsner algebras.

Example 6.5. Given a C∗-algebra A and a completely positive map Φ, Kwasniewski
defines [9, Definition 3.5] a crossed product of A by Φ denoted by C∗(A,Φ). In [9,
Theorem 3.13], it is shown that C∗(A,Φ) � OXΦ

where XΦ is the correspondence
associated with Φ as in Definition 2.4. If Φ is an endomorphism this reduces to the
Exel crossed product [3].

Suppose that A and B are C∗-algebras and Φ : A→ A and Ψ : B→ B are completely
positive maps. Furthermore, suppose that the associated correspondences XΦ and XΨ

are ideal-compatible and Katsura nondegenerate. Then our main result states that
OXΦ⊗XΨ

� OXΦ
⊗T OXΨ

. Recalling that XΦ ⊗ XΨ � XΦ⊗Ψ and using the crossed product
notation, we get

C∗(A ⊗ B,Φ ⊗ Ψ) � C∗(A,Φ) ⊗T C∗(B,Ψ).
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