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AN INDUCTIVE REARRANGEMENT THEOREM
KONG-MING CHONG

Introduction. In [2, Theorem 3.2, p. 429] and [3, Theorem 2.1, p. 155], the
author established two induction theorems which gave rise to a series of
fundamental results in spectral and rearrangement inequalities. In particular,
the classical inequalities of Hardy—Littlewood—Poélya [4, Theorem 108, p. 89]
and Poélya [6] were derived and conditions for equalities obtained (see
[2, Theorem 3.8, p. 433] and [3, Theorem 2.6, p. 157]). In [5, Theorem 6, p. 651;
and Theorem 20, p. 569], Fischer and Holbrook also gave alternative conditions
for equalities to hold in the aforesaid inequalities. In this paper, we show that
the result of Fischer and Holbrook can be proved by induction using an induc-
tive rearrangement theorem which turns out to be a stronger version of the
induction theorems given in [2, Theorem 3.2, p. 429] and [3, Theorem 2.1,

p. 155].
1. Preliminaries. Let R" denote the set of all #-tuples of real numbers. For
any n-tuple X = (x1, xs, . . ., x,) € R*, we denote by
X* = (xl*, QC2*, e ,xn*)

the n-tuple the components of which are those of x arranged in decreasing order
of magnitude. If a = (¢4, a9, ...,a,) € R* and b = (by, by,...,0,) € R",
then a < b means that

E k
(1.1) Z a* = Z b*
=1 =1

for 1 £ k < #n, and we write 2 < b if, in addition to a < b, there is equality
in (1.1) for kb = n.

As in [1], we call expressions of the form a < b (respectively a < b) strong
(respectively weak) spectral inequalities. The spectral inequality a < b
(respectively a < b) is said to be sirictly strongly (respectively strictly weak)
if (1.1) s strict for at least one k < n (respectively for k = n). Moreover, the
spectral inequality a < b (respectively a < b) is said to be absolutely strong
(respectively absolutely weak) if (1.1) is strict for every k satisfying 1 < k < n
(respectively 1 < & < #n).

The following proposition gives a characterization of both absolutely strong
and absolutely weak spectral inequalities.

ProrositioN 1.1. If a = (ay, a2, ..., a,) and b = (by, bs, ..., 0,) are
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n-tuples in R”, then the spectral inequality a < b [respectively a < b] is abso-
lutely weak [respectively absolutely strong] if and only if

12) ¥ @ -0"< % -0

Sfor all t < by* [respectively for all t € (b*, b1*) and with equality in (1.2) for all
I £ b,*], where x* = max {x, 0} for any x € R.

Proof. The proof is similar to that given in [4, p. 90].

2. An inductive rearrangement theorem. To give a short inductive
proof of the resuilt of Fischer and Holbrook [5, Theorem 6, p. 561; and Theorem
20, p. 569] regarding the case of equalities in the inequalities of Hardy, Little-
wood and Pélya, we need the following inductive rearrangement theorem
which is a stronger version of the induction theorem given either in [2, Theorem
3.2, p. 429] or in [3, Theorem 2.1, p. 155] as all the results obtained in [2] or [3]
can be derived inductively as a direct consequence of the present theorem.

THEOREM 2.1. Let a = (ay, az, ..., a,) € R and b = (by, bs,...,0,) € R”
be two n-tuples. If a < b [respectively a € b] and if a* < bi* [respectively
b, * < a* < bi*], then there exists a smallest integer 1, 1 < 1 < n, such that

2.1) (% b *+0b* — w*) < (biy* 0*) and
(2.2)  (as*, as*, ..., a,*)
< (by*, bo¥*, oo, bo® 0 b — ad® b, DY)
[respectively
(2.3)  (a*, as*, ..., a,*)
L (b*, be*, o 0 b DX — ot ba®, L 09)).

If the spectral inequality a < b [respectively a < b] 1s absolutely strong
[respectively absolutely weak), then the spectral inequalily (2.2) [respectively (2.3)]
1s absolutely strong [respectively absolutely weak].

Proof. Since «,* < by* and

n n

2 ay= 2

j=1 =1
(respectively 0,* < a,* < b,*) it is impossible that «;* < b;* for all 7 > 1 and
so the existence of a minimum integer ¢ satisfying 1 < ¢ < » and
(24) bi* § (1-1* < bi—l*

is ensured.
Finally, (2.1) is a direct consequence of (2.4) while the verification of the
remaining assertions is straightforward.
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We can now give inductive proofs for the following theorems ([4, Theorem
108, p. 89], [5, Theorem 6, p. 561; and Theorem 20, p. 569] and [6]).

TuEorREM 2.2. If a = (a1, aq,...,a,) € R*and b = (by, by, ..., b,) € R”
are such that a < b, then

n n

(2.5) 2 ®(a) £ ) B(b)

=1 =t
for all convex functions ® : [b,*, b*] = R.

If a < b is absolutely strong and if ® : [b,*, b1*] — R 1s convex, then equality
occurs 1 (2.5) if and only if ® is affine on [b,*, bi*].

If a < b is strictly strong such that the inequality (1.1) s strict for all b < n

except ki, Roy . .., ky where By < ko < ... < ky, and tf ®:[b*, b*] >R s
convex, then equality occurs in (2.5) if and only if ® is affine on each of the
intervals

[bkl*v bl*]r [bkz*v bl\'l-}-l*]v LR [bn*y bkm+l*]'

Proof. The validity of (2.5) for the case that n = 2 is easily established
(cf. [2, Lemma 3.3, p. 430]). In general, suppose by induction that the result

is true for n — 1. Assume that a = (a1, aq, ..., a,) < (b1, by, ...,b,) = b.
If a;* = by*, then, obviously,
(0’2*7 a’3*y ce ey an*) < (Z/?*y b3*7 vy bn*)

and so, by the induction hypothesis, we have
B (as*) + ®(as*) + ...+ ®(a,*) = (*) + ®(0s*) + ... + (0,*)

whence (2.5) follows since ®(a,*) = ®(b,*). If a;* < by*, then Theorem 2.1
implies the existence of a smallest integer 7, 1 < ¢ < %, such that both (2.1)
and (2.2) hold. By applying the result for the case that n = 2 to (2.1) and the
induction hypothesis to (2.2), we readily obtain (2.5) as a consequence.

For the second part, the case that # = 2 can be derived from [4, Theorem
90, pp. 74-75] via [2, Lemma 3.3, p. 430]. In general, suppose by induction that
the result is true for n — 1. If a = (ay, as, ..., a,) < (b1, by, ...,b,) = b is
absolutely strong, then, by Theorem 2.1, for a smallest integer ¢ such that
1 <4 £ #n, both (2.1) and (2.2) hold and the latter is also absolutely strong.
If a* = b;*, then (2.2) is equivalent to

(as*, as*, ..., a*) < (b1*, bo*, ..., bid®, bupt™, ..., 0,%)
and so equality in (2.5) implies
P(a*) + ... + 2(a,*) = ®(0:*) + 202*) + ... + ®(bi1¥)
+ ®0ua*) + ...+ 2(0,F)

and so the inductive hypothesis entails the affinity of & on [b,*, b:*].
If a;* < b* then both (2.1) and (2.2) are absolutely strong and so the result
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for n = 2 applied to (2.1) together with the induction hypothesis applied to
(2.2) will yield the case for any #.

The last part is a direct consequence of the second part by virtue of the easily
proven fact that the last hypothesis is equivalent to

<(lk;*1 (ij—l*v LRI v(l’k;—l-i-l*) < (bkj*y bkj—l*y LRI ) bkj—l+l*) and
<I>((l,,;].*) + q’((lk,-—l*) + ...+ <b(a'kj_1+l*) = q’(l)k,‘*) + ‘I:‘(bk,-—l*)
o B, )

forj=1,2,...,m + 1, where ky = 0 and %k, = n.

THEOREM 2.3. If a = (a1, az,...,a,) € R*and b = (by, be,...,0,) € R”
are such that a < b, then

n n

2:6) 2, @) = 2, 20

i= =

for all increasing convex functions ® : [min («,*, b,*), b1*] — R.
If a < b is absolutely weak and tf ® is increasing and convex, then equality
holds in (2.6) if and only if ® is a constant function on [min («,*, ,*), 01*].
If a K b is strictly weak such that the inequality (1.1) s strict for all k < n
except ky, ko, . .., Ry where by < ky < ... < ky, then equality occitrs in (2.6) if
and only if f is «ffine on the intervals

(bkl*7 bl*)v (bkz*v bk1+1*), vy (bkm*! bkm—1+1*)
and 1is constant on [min (a,*, b,*), byni1*].

Proof. The first part follows inductively from Theorem 2.1 via [3, Lemma
2.2, p. 156] as in Theorem 2.2.

For the second part, while the case that n = 2 can be obtained from [4,
Theorem 90, pp. 74-75] via [3, Lemma 2.2, p. 156], the general case again
follows inductively from Theorem 2.1.

Finally, using an analysis similar to the one given in the proof of Theorem
2.2, we see that the last part is a direct consequence of the second part above
and Theorem 2.2.

Before concluding the present paper, we give a further application of
Theorem 2.1 to obtaining the following result which turns out to be a sharp-
ening of (2, Theorem 3.9, p. 434] and [3, Theorem 2.7, p. 158] regarding the
preservation of the strictness or absoluteness of a weak or strong spectral
inequality by a certain class of convex functions.

THEOREM 2.4. If a = (a1, a2, . .., a,) and b = (by, by, . .., b,) are n-tuples
in R®, then a < b [respectively a K b] if and only if

2.7 (®(a1), ®(az), ..., ®(a,)) L (2(1), ®(bs), ..., (b))

for all convex [respectively increasing convex) functions
® : [min (a,*, b,*), 0:*] = R.
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If the spectral inequality a < b [respectively a < b] 1s absolutely strong
[respectively absolutely weak)] and if & is strictly convex [respectively strictly
increasing and convex], then the spectral inequality (2.7) s absolutely weduk.

If the spectral inequality a < b [respectively a < b] is ubsolutely strong
[respectively absolutely weak] and if ® is convex, then the spectral inequality (2.7)
is strong if and only if ® is affine [respectively constant).

Proof. The first part follows from Theorem 2.1 as in [2, Theorem 3.9, p. 434]
and [3, Theorem 2.7, p. 158].

For the second part, the case that n = 2 is easily seen to hold by virtue of
[2, Lemma 3.3, p. 430] and [3, Lemma 2.2, p. 156]. To prove the result in
general, suppose by induction that it is true for # — 1. If a < b is absolutely
strong, then Theorem 2.1 implies the existence of a smallest integer 1,
1 < 7 £ #n, such that the spectral inequalities (2.1) and (2.2) hold and the
latter is absolutely strong. The case that # = 2 and the induction hypothesis
thus imply that

(2.8) (®(w*), 20> 4+ bia™ — a1*)) L (®(bi™), 2(0:*))
holds and that

(2.9) (®(as*), ..., ®(@,*)) < (P(*), ..., ®,—o*), ®.* +bF — «v™*),
(I)(bi+1*)v ) (b(bn*))

is absolutely weak for any strictly convex ® : [b,*, b:*] — R. It then follows
from the characterization obtained in Proposition 1.1 that (2.8) and the abso-
lutely weak spectral inequality (2.9) give rise to an absolutely weak spectral
inequality (2.7). The case a < b is treated similarly.

The last part is a direct consequence of Theorems 2.2 and 2.3.
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