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AN INDUCTIVE REARRANGEMENT THEOREM 

KONG-MING CHONG 

I n t r o d u c t i o n . In [2, Theorem 3.2, p. 429] and [3, Theorem 2.1, p . 155], the 
author established two induction theorems which gave rise to a series of 
fundamental results in spectral and rearrangement inequalities. In part icular , 
the classical inequalities of Hardy-L i t t l ewood-Pô lya [4, Theorem 108, p. 89] 
and Pôlya [6] were derived and conditions for equalities obtained (see 
[2, Theorem 3.8, p. 433] and [3, Theorem 2.6, p. 157]). In [5, Theorem 6, p. 651 ; 
and Theorem 20, p. 569], Fischer and Holbrook also gave a l ternat ive conditions 
for equalities to hold in the aforesaid inequalities. In this paper, we show t h a t 
the result of Fischer and Holbrook can be proved by induction using an induc­
tive rearrangement theorem which turns out to be a stronger version of the 
induction theorems given in [2, Theorem 3.2, p. 429] and [3, Theorem 2.1, 
p. 155]. 

1. P r e l i m i n a r i e s . Let Rn denote the set of all ^-tuples of real numbers . For 
any w-tuple x = (xi, x2, . . . , xn) G Rw, we denote by 

X* = (Xi*, X2*, . . . , X^) 

the w-tuple the components of which are those of x arranged in decreasing order 
of magni tude. If a = (ai, a2, . . . , an) G Rri and b = (bi, & ? , . . . , bn) G Rn , 
then a < b means tha t 

(1.1) E «i* £ È bf 

for 1 S k ^ n, and we write a < b if, in addition to a < b , there is equal i ty 
in (1.1) for k = n. 

As in [1], we call expressions of the form a < b (respectively a < b ) strong 
(respectively weak) spectral inequalities. T h e spectral inequali ty a •< b 
(respectively a < b ) is said to be strictly strongly (respectively strictly weak) 
if (1.1) is strict for at least one k < n (respectively for k = n). Moreover, the 
spectral inequality a < b (respectively a < b ) is said to be absolutely strong 
(respectively absolutely weak) if (1.1) is strict for every k satisfying 1 ^ k < n 
(respectively 1 rg k ^ n). 

The following proposition gives a characterization of both absolutely strong 
and absolutely weak spectral inequalities. 

PROPOSITION 1.1. / / a = (au a2l . . . , an) and b = (bi, b2, . . . , bn) are 
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n -tuples in Kn, then the spectral inequality a < b [respectively a < b] is abso­
lutely weak [respectively absolutely strong] if and only if 

(1.2) Ê («< - 0+ < Ê (6* - 0+ 

*=1 i = l 

/or a// £ < 5i* [respectively for all t Ç (&n*, &i*) awo7 m7/& equality in (1.2) /or a// 
/ g &„*], w/^re x+ = max {x, 0} /or aw;y x G R. 

Proof. The proof is similar to t ha t given in [4, p. 90]. 

2. An induc t ive r e a r r a n g e m e n t t h e o r e m . To give a short inductive 
proof of the result of Fischer and Holbrook [5, Theorem 6, p. 561 ; and Theorem 
20, p. 569] regarding the case of equalities in the inequalities of Hardy , Lit t le-
wood and Pôlya, we need the following inductive rearrangement theorem 
which is a stronger version of the induction theorem given either in [2, Theorem 
3.2, p. 429] or in [3, Theorem 2.1, p. 155] as all the results obtained in [2] or [3] 
can be derived inductively as a direct consequence of the present theorem. 

T H E O R E M 2.1. Let a = (ai, a2, . . . , an) £ Rw and b = (&i, o2, . . . , bn) f Kn 

be two n-tuples. If a < b [respectively a « b] and if af < Z?i* [respectively 
bn* < ai* < &i*], £feew there exists a smallest integer i, \ < i tk n, such that 

(2.1) (a1*1bt-i* + bf - a^) < (&<_!*, &t*) and 

(2.2) (a2*, a3*, . . . , a„*) 

< (&!*, 62*, . . . , &<_2*, 6,_i* + 6,* - a:*, 6<+1*, . . . , bn*) 

[respectively 

(2.3) (a2*, a8*, . . . , an*) 

« (&!*, o2*, . . . , &,_2*, &,_!* + &,* - ai*, 6 i+i* f . . . , 6n*)]. 

7/ Jfte spectral inequality a < b [respectively a « b] w absolutely strong 
[respectively absolutely weak], then the spectral inequality (2.2) [respectively (2.3)] 
is absolutely strong [respectively absolutely weak]. 

Proof. Since tti* < Oi* and 

re re 

23 ^ = 23 bJ 
3=1 J = l 

(respectively &re* < «i* < Oi*) it is impossible tha t ai* < b* for all 7 > 1 and 
so the existence of a minimum integer i satisfying 1 < i ^ n and 

(2.4) bt* S ai* < bt-!* 

is ensured. 
Finally, (2.1) is a direct consequence of (2.4) while the verification of the 

remaining assertions is straightforward. 
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We can now give inductive proofs for the following theorems ([4, Theorem 
108, p. 89], [5, Theorem 6, p. 561; and Theorem 20, p. 569] and [6]). 

T H E O R E M 2.2. 7/ a = (ah a2, . . . , an) £ Rn and b = {bu & ? , . . . , bn) Ç R" 

are such that a < b , then 

(2.5) i : *(a<) ^ è $(&,) 

/or a// convex functions $ : [&„*, &i*] —•> R. 
/ / a < b is absolutely strong and if $ : [6n*, &x*] —> R is convex, then equality 

occurs in (2.5) i / awrf only if <£ w o//me on [6n*, 6i*]. 
/ / a < b is strictly strong such that the inequality (1.1) is strict for all k < n 

except ki, k2, . . . , km where ki < k2 < . . . < km, and if <ï> : [bn*f &i*] —> R is 
convex, then equality occurs in (2.5) if and only if <ï> is affine on each of the 
intervals 

[ C i i * ] , [ ^ ^ 1 + i * ] [ i » * , ^ + i * ] . 

Proof. The validi ty of (2.5) for the case t h a t n = 2 is easily established 
(cf. [2, Lemma 3.3, p. 430]). In general, suppose by induction t ha t the result 
is t rue for n — 1. Assume t h a t a = (a\, a2, . . . , an) < {b\, b2, . . . , frw.) = b . 
If O]* = &i*, then, obviously, 

(a2*f a3*, . . . , a,*) < (62*, 68*, . . . , &„*) 

and so, by the induction hypothesis, we have 

$(a2*) + $(a3*) + . . . + $ ( 0 g $(&2*) + $(63*) + • • • + $(&»*) 

whence (2.5) follows since 4>(ai*) = $(&i*). If ai* < &i*, then Theorem 2.1 
implies the existence of a smallest integer i, 1 < i ^ n, such t h a t both (2.1) 
and (2.2) hold. By applying the result for the case t h a t n = 2 to (2.1) and the 
induction hypothesis to (2.2), we readily obtain (2.5) as a consequence. 

For the second par t , the case t h a t n = 2 can be derived from [4, Theorem 
90, pp. 74-75] via [2, Lemma 3.3, p. 430]. In general, suppose by induction tha t 
the result is t rue for n — 1. If a = (ax, a2, . . . , an) < (blt b2, . . . , bn) = b is 
absolutely strong, then, by Theorem 2.1, for a smallest integer i such t ha t 
1 < i g n, both (2.1) and (2.2) hold and the la t ter is also absolutely strong. 
If ai* = If, then (2.2) is equivalent to 

(a2*, a3*, . . . , an*) < (&i*, 62*f . . . , J M * , &*+i*. . . . , &„*) 

and so equali ty in (2.5) implies 

$(a2*) + . . . + $(an*) = *(&!*) + $(62*) + . . . + *(6f_i*) 

+ ^(6<+i*) + . . . + $(bn*) 

and so the inductive hypothesis entails the affinity of $ on [bn*, bi*]. 
If ai* < &,*, then both (2.1) and (2.2) are absolutely strong and so the result 
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for n — 2 applied to (2.1) together with the induction hypothesis applied to 
(2.2) will yield the case for any n. 

T h e last pa r t is a direct consequence of the second par t by vir tue of the easily 
proven fact t ha t the last hypothesis is equivalent to 

(akj*, afcj-i*, . . . , akj_l+i*) < (bkj*, bkj-i*, . . . , bkj_l+i*) and 

* ( < 0 + $K-!*) + . . . + *(akj_l+1*) = *(bkj*) + *(&*,-!*) 
+ . . . + *(&*y_1+i*) 

for j = 1, 2, . . . , m + 1, where &0 = 0 and km+i = w. 

T H E O R E M 2.3. If a = (ax, a2, . . . , a j Ç Rw and b = (61, fr2, • . • , &J G Rw 

are swcfe £Âa/ a <£ b , /Ae?z 

(2.6) S *(af) £ £ $00 

for all increasing convex functions $ : [min (afl*, bn*), bi*] —> R. 
If a « b i5 absolutely weak and if $ is increasing and convex, then equality 

holds in (2.6) if and only if <ï> is a constant function on [min (a7i*, / V ) , &i*]. 
7/ a < b is strictly weak such that the inequality (1.1) is s/rid /or a// k ^ n 

except ki, k2, . . . , km where ki < k2 < . . . < km then equality occurs in (2.6) i / 
and only if f is affine on the intervals 

(&*i*, &i*) , ( 6 * , * , & * i + i * ) , . . . , (&*„*, & * w - i + i * ) 

a^d is constant on [min (an*-, 6W*), fr^+i*]. 

Proof. The first par t follows inductively from Theorem 2.1 via [3, Lemma 
2.2, p . 156] as in Theorem 2.2. 

For the second part , while the case tha t n = 2 can be obtained from [4, 
Theorem 90, pp. 74-75] via [3, Lemma 2.2, p. 156], the general case again 
follows inductively from Theorem 2.1. 

Finally, using an analysis similar to the one given in the proof of Theorem 
2.2, we see tha t the last par t is a direct consequence of the second par t above 
and Theorem 2.2. 

Before concluding the present paper, we give a further application of 
Theorem 2.1 to obtaining the following result which turns out to be a sharp­
ening of [2, Theorem 3.9, p. 434] and [3, Theorem 2.7, p. 158] regarding the 
preservation of the strictness or absoluteness of a weak or strong spectral 
inequality by a certain class of convex functions. 

T H E O R E M 2.4. If a = (au a2, . . . , an) and b = (b1} b2, . . . , bn) are n-tuples 

in Rn , then a < b [respectively a < b] if and only if 

(2.7) ( $ ( a 0 , $ ( a 2 ) , . . . , $ ( a n ) ) « ( $ ( 6 0 , $(6 2 ) , . . . , $(&„)) 

for all convex [respectively increasing convex] functions 

<*>: [min (an*, bn*), &i*] - > R . 
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If the spectral inequality a < b [respectively a < b] is absolu tel y strong 
[respectively absolutely weak] and if $ is strictly convex [respectively strictly 
increasing and convex], then the spectral inequality (2.7) is absolutely weak. 

If the spectral inequality a < b [respectively a « b] is absolutely strong 
[respectively absolutely weak] and if <£ is convex, then the spectral inequality (2.7) 
is strong if and only if <ï> is affine [respectively constant]. 

Proof. The first par t follows from Theorem 2.1 as in [2, Theorem 3.9, p. 434] 
and [3, Theorem 2.7, p. 158]. 

For the second part , the case t ha t n = 2 is easily seen to hold by vi r tue of 
[2, Lemma 3.3, p. 430] and [3, Lemma 2.2, p. 156]. To prove the result in 
general, suppose by induction tha t it is t rue for n — 1. If a < b is absolutely 
strong, then Theorem 2.1 implies the existence of a smallest integer i, 
1 < i ^ n, such tha t the spectral inequalities (2.1) and (2.2) hold and the 
lat ter is absolutely strong. The case t ha t n = 2 and the induction hypothesis 
thus imply tha t 

(2.8) ($(«!*) , $(b* + &<__!* - flx*)) « (*(&,-!*), Hbi*)) 

holds and t ha t 

(2.9) ($ (a 2 *) , . . . , $(a„*)) « ($(&i*), . . . , $(&<-2*), $(&<-i* + bt* - </.,*), 

S ( & , + 1 * ) , . . . , *(&„*)) 
is absolutely weak for any strictly convex $ : [bn*, b±*] —» R. I t then follows 
from the characterization obtained in Proposition 1.1 tha t (2.8) and the abso­
lutely weak spectral inequality (2.9) give rise to an absolutely weak spectral 
inequali ty (2.7). T h e case a « b is t reated similarly. 

T h e last pa r t is a direct consequence of Theorems 2.2 and 2.3. 

Acknowledgement. The au thor wishes to thank the referee for his helpful 
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