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CONSTANCY OF THE HILBERT–SAMUEL FUNCTION

VINCENT COSSART , OLIVIER PILTANT and BERND SCHOBER

Abstract. We prove a criterion for the constancy of the Hilbert–Samuel

function for locally Noetherian schemes such that the local rings are excellent

at every point. More precisely, we show that the Hilbert–Samuel function is

locally constant on such a scheme if and only if the scheme is normally flat along

its reduction and the reduction itself is regular. Regularity of the underlying

reduced scheme is a significant new property.

§1. Introduction

The Hilbert–Samuel function and the multiplicity function are fundamental locally

defined invariants on Noetherian schemes. They have been playing an important role in

desingularization for many years [3], [5], [6], [11], [15], [17], [18], and others. Bennett

studied upper semicontinuity of the Hilbert–Samuel function on schemes and linked it with

Hironaka’s invariant ν∗. He also proved that it is nonincreasing under permissible blowing

ups. The latter are blowing ups at regular subschemes along which the singular scheme

is normally flat. For the definition of the Hilbert–Samuel function of X and the notion of

normal flatness, we refer to Definitions 2.1 and 2.4(1), respectively.

For a reduced scheme, the Hilbert–Samuel function is locally constant if and only if it is

regular: this translates the question of resolution of singularities into a problem of lowering

the Hilbert–Samuel function. We show here that this result can be extended to nonreduced

schemes, as follows.

Theorem 1.1. Let X be a locally Noetherian scheme such that OX ,x is excellent for

every x ∈ X . The Hilbert–Samuel function is locally constant on X if and only if Xred is

everywhere regular and X is normally flat on Xred.

In the case where X is not reduced of characteristic 0 or of dimension ≤ 2, using

Hironaka’s results, there exists a projective morphism composition of permissible blowing

ups (cf. Definition 2.4(2))

X ′ −→X

such that the Hilbert–Samuel function is locally constant on X ′. As a consequence of our

theorem, there exists a projective morphism X ′ −→X such that X ′
red is everywhere regular

and X ′ is normally flat along X ′
red (see [6, Cor. 6.19 and Rem. 6.20] and [2, Claim 2.11]).

At any rate, this sheds a new light on [13, Th. I*, p. 138] reformulated in [5, Th. 11.14].

Let us note that in [17, Prop. 6.14], Villamayor gets a similar and finer result for the

multiplicity function instead of the Hilbert–Samuel function, in the case where X is an

equidimensional scheme of finite type over a perfect field k : the strata defined by the

multiplicity on Xred and X coincide. This is achieved from a local algebraic and differential
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2 V. COSSART, O. PILTANT AND B. SCHOBER

description of the maximal multiplicity locus of a variety (see also [1]). Nonetheless, the

hypotheses of Theorem 1.1 are much more general.

Apart from classical results on Hilbert–Samuel functions, this article makes essential use

of Hironaka’s characteristic polyhedron [15] which is an essential ingredient in the proof of

Theorem 1.1. These notions and relevant properties are recalled in the next section.

A substantial difficulty here consists in dealing with nonperfect residue fields of positive

characteristic. For instance, Theorem 1.1 is not obvious even for cones in affine space over

such a field. To overcome this, we recall part of Giraud’s theory of presentations [12] in §3
and derive as a byproduct a general result on the Hilbert–Samuel stratum for affine cones

(see Proposition 3.4). The notions of directrix and ridge of a cone play an important role,

and we recall them beforehand in §2 (Definition 2.8). Finally, the proof of Theorem 1.1 is

given in the last section, where the main argument involves characteristic polyhedra.

Conventions 1.2. We follow the convention that zero is a natural number, N= Z≥0.

Further, we denote by NN the set of functions N → N. We equip NN with the product

ordering: for α,β ∈ NN, we write α≤ β if and only if α(n)≤ β(n) for every n ∈ N.

We use multi-index notation. For example, we write XA = XA1
1 · · ·XAn

n for X =

(X1, . . . ,Xn) and A= (A1, . . . ,An) ∈ Nn.

All schemes are assumed to be finite-dimensional.

§2. Invariants of singularities

Fix a locally Noetherian scheme X and a point x ∈ X (not necessarily closed). We begin

by recalling the definition of local invariants for the singularity of X at x. For a reference

providing more details on the different notions, we refer to [6, Chaps. 2 and 3].

Definition 2.1 ([6, after Lem. 2.22 and Def. 2.28]).

1. Let O be a Noetherian local ring (which is not necessarily regular) with maximal ideal

n and residue field κ. The Hilbert–Samuel function H
(0)
O : N→ N of O is defined by

H
(0)
O (n) := dimκ(n

n/nn+1), for n ∈ N.

Furthermore, one defines H
(t)
O : N→ N, for t ∈ N and t > 0, via the recursion

H
(t)
O (n) :=

n∑
i=0

H
(t−1)
O (i), for n ∈ N.

2. Let X be a locally Noetherian catenary scheme and fix N ≥ dim(X ). The modified

Hilbert–Samuel function HX :=HN
X : X → NN is defined by

HX (x) :=H
(φX (x))
OX ,x

∈ NN,

where φX (x) :=N−min{codimY(x) | Y ∈ Irr(x)} and Irr(x) denotes the set of irreducible

components of X containing x. Often, we call HX just the Hilbert–Samuel function of X .

Furthermore, we define, for ν ∈ NN,

X (≥ ν) := {x ∈ X |HX (x)≥ ν}
X (ν) := {x ∈ X |HX (x) = ν}

and call X (ν) the Hilbert–Samuel stratum of X for ν.
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CONSTANCY OF THE HILBERT–SAMUEL FUNCTION 3

Using the Cohen Structure Theorem for complete Noetherian local rings, we may assume,

after some ring extension, and when necessary that at x ∈ X , there is an embedding

(X ,x) ⊂ (Z,x) in a regular Z. Hence, we reduce the setting to a nonzero ideal I ⊂ R

in a (complete) regular local ring R. More precisely, R :=OZ,x is the local ring of Z at x

and I is the ideal describing X locally at x. We denote by m ⊂ R the maximal ideal of R

and by k :=R/m the residue field of R.

The graded ring of R at m is defined as grm(R) :=
⊕

s≥0m
s/ms+1. If we fix a

regular system of parameters (z) = (z1, . . . , zn) for R, then there is an isomorphism

grm(R)∼= k[X1, . . . ,Xn], where Xi := zimodm2 for i ∈ {1, . . . ,n} and n := dim(R).

Definition 2.2. Let (R,m,k) be a regular local ring.

1. Let f ∈R\{0} be a nonzero element in R. The initial form inm(f) ∈ grm(R) of f (with

respect to m) is defined as the class of f in md/md+1, where d := ordm(f) := sup{a ∈N |
f ∈ma} is the order of f at m. Moreover, we set inm(0) := 0.

2. Let I ⊂R be a nonzero ideal. The ideal of initial forms inm(I) of I (with respect to m)

is defined as the ideal in grm(R) generated by the initial forms of all f ∈ I,

inm(I) := (inm(f) | f ∈ I)⊆ grm(R).

In our setting, x ∈ X ⊂ Z with OX ,x
∼= R/I, the initial ideal defines the tangent cone

Cx(X ) of Xat x,

Cx(X ) := Spec(grm(R)/ inm(I))⊆ Spec(grm(R))∼= An
k ,

which is a first approximation of the singularity of X at x.

Definition 2.3. Let X be a locally Noetherian scheme, which is embedded in a regular

Z, and let x ∈ X be any point. Let I ⊂ R be the ideal defining X locally at x, where

(R :=OZ,x,m,k) is the respective regular local ring.

1. A system of elements (f) = (f1, . . . ,fm) ∈Rm is called a standard basis of I at m if:

(a) inm(I) = (inm(f1), . . . , inm(fm)),

(b) inm(fi) /∈ ( inm(f1), . . . , inm(fi−1)), for every i ∈ {2, . . . ,m}, and
(c) if we set νi := ordm(fi) for i≥ 1, we have ν1 ≤ ν2 ≤ ·· · ≤ νm.

2. The ν∗-invariant of X ⊂ Z at x is defined as

ν∗x(X ,Z) := ν∗m(I,R) := (ν1, . . . ,νm,νm+1, . . . ,),

where (ν1, . . . ,νm) is determined by a standard basis of I at m and νj = ∞ for all

j ≥m+1.

Even though the definition of the ν∗-invariant seems to depend on the choice of a standard

basis, this is not the case. For details, we refer to [6, Chap. 2] or [14]. Following Hironaka,

we denote

ν∗x(X ,Z) =: (ν1x(I,R), . . . ,νmx (I,R),νm+1
x (I,R), . . . ,). (2.1)

Hironaka’s ν∗-invariant is an invariant measuring the complexity of the singularity of X
at x, which is closely related to the Hilbert–Samuel function in the embedded case. In order

to make the latter more concrete, we introduce the following notation.
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4 V. COSSART, O. PILTANT AND B. SCHOBER

Definition 2.4 ([6, Def. 3.1]). Let X be a locally Noetherian scheme, and let D ⊂ X
be a reduced closed subscheme. Let ID ⊂OX be the ideal sheaf of D in X .

1. The scheme X is normally flat along D at x ∈ D if the stalk grID(O)x of grID(O) :=⊕
t≥0 I

t
D/It+1

D is a flat OD,x-module. Furthermore, X is normally flat along D if X is

normally flat along D at every point of D.

2. We say that D is permissible for X at x ∈D if the following three conditions hold:

(a) D is regular at x,

(b) X is normally flat along D at x, and

(c) D contains no irreducible component of X containing x.

Moreover, D is permissible for X , if D is permissible for X at every point of D.

Remark 2.5. It follows from [6, Th. 3.3] that if D is regular and y is the generic point

of the irreducible component of D containing x, then X is normally flat along D at x if and

only if HX (x) =HX (y).

The following result, which is included in [6, Th. 3.10], shows the close connection between

the Hilbert–Samuel function and Hironaka’s ν∗-invariant from the perspective of resolution

of singularities.

Theorem 2.6 (cf. [6, Th. 3.10]). Let X be an excellent scheme, or a scheme which is

embeddable in a regular scheme Z. Let D ⊂ X be a permissible closed subscheme, and let

πX : X ′ := BlD(X ) → X (resp. πZ : Z ′ := BlD(Z) → Z) be the blowing up with center D.

Take any points x ∈D and x′ ∈ π−1
X (x). Then:

1. HX ′(x′)≤HX (x) (with respect to the product ordering on NN).

2. ν∗x′(X ′,Z ′)≤ ν∗x(X ,Z) (with respect to the lexicographical ordering).

3. HX ′(x′) =HX (x) if and only if ν∗x′(X ′,Z ′) = ν∗x(X ,Z).

Definition 2.7 ([7, Def. 3.13(1)]). Let the hypothesis be as in Theorem 2.6. A point

x′ ∈ π−1
X (x) is near to x if HX ′(x′) =HX (x).

Using the notation of Theorem 2.6, if X is embedded in a regular Z, then x′ ∈ π−1
X (x) is

near to x if and only if ν∗x′(X ′,Z ′) = ν∗x(X ,Z).

If x′ ∈π−1
X (x) is not near to x, the Hilbert–Samuel function (resp. the ν∗-invariant) detects

a strict improvement of the singularity. Hence, for proving resolution of singularities, it is

necessary to find additional invariants (resp. tools) able to detect an improvement at x′ if

the center is chosen suitably. The directix and the ridge of X at x are objects, which reveal

information on the singularities of the tangent cone Cx(X ). They play a crucial role for the

task of controlling the locus of near points.

Recall that a polynomial f(X) = f(X1, . . . ,Xn) ∈ k[X1, . . . ,Xn] is called additive if

f(X +Y ) = f(X)+ f(Y ), where (Y ) = (Y1, . . . ,Yn) is a system of indeterminates and we

abbreviate (X+Y ) := (X1+Y1, . . . ,Xn+Yn).

Definition 2.8. Let I ⊂ S := k[X1, . . . ,Xn] be an ideal, which is generated by

homogeneous elements.

1. Let T (I)⊂
⊕n

i=1 kXi be the smallest k-vector subspace such that(
I ∩k[T (I)]

)
·S = I,

where k[T (I)] = Symk(T (I)) ⊆ S. The directrix of the cone Spec(S/I) is the closed

subscheme Dir(S/I)⊆ Spec(S/I) defined by the surjection S/I → S/T (I)S.

https://doi.org/10.1017/nmj.2024.13 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2024.13


CONSTANCY OF THE HILBERT–SAMUEL FUNCTION 5

2. The ridge of the cone Spec(S/I) is the maximal additive subgroup of Spec(S) ∼= An
K

(considered as an additive group scheme), which leaves the cone Spec(S/I) stable under
translation.

If x ∈ X is a point of a locally Noetherian scheme X , with an embedding (X ,x)⊂ (Z,x)

for some regular Z, then the directrix Dirx(X ) (resp. ridge Ridx(X )) of X at x is defined

as directrix (resp. ridge) of the tangent cone Cx(X ) of X at x, embedded in the Zariski

tangent space Tx(Z).

In fact, one can define the directrix and the ridge of a locally Noetherian scheme X at x

without the assumption of an embedding in a regular (Z,x). Both definitions of directrix

and ridge coincide via the embedding Tx(X )⊂ Tx(Z). For details, we refer to [6, Chap. 2],

[11, Chap. I, §5)], or [4].
The last notion which we need to recall is Hironaka’s characteristic polyhedron [15] (see

also [6, Chap. 18]). It captures refined information on the singularity of X at x, which is

not detected by the tangent cone, the directrix, or the ridge.

Definition 2.9. Let (R,m,k) be a regular local ring, and let I ⊂R be a nonzero ideal.

We fix a system (u) = (u1, . . . ,ue) in R, which can be extended to a regular system of

parameters for R and such that grm(R)/T (inm(I)) ∼= k[U1, . . . ,Ue] (using the notation of

Definition 2.8), where Ui := uimodm2 is the image of ui in the graded ring grm(R).

1. Let (y) = (y1, . . . ,yr) be a system of elements in R such that (u,y) is a regular system

of parameters for R. Let (f) = (f1, . . . ,fm) be a standard basis for I. For every

i ∈ {1, . . . ,m}, consider expansions fi :=
∑

(A,B)∈Z
e+r
≥0

CA,B,iu
AyB with coefficients

CA,B,i ∈ R× ∪{0}. The projected polyhedron Δ(f ;u;y) of (f) with respect to (u,y) is

defined as the smallest convex subset of Re which contains all points of the set{
A

νi−|B| +Re
≥0

∣∣∣∣CA,B,i �= 0 ∧ |B|< νi

}
,

where νi := ordm(fi), for all i ∈ {1, . . . ,m}.
For a vertex v ∈Δ(f ;u;y) and i ∈ {1, . . . ,m}, the initial form of fi at v is defined as

inv(fi) :=
∑

B:|B|=νi

C0,B,iY
B +

∑
(A,B): A

νi−|B|=v

CA,B,iU
AY B ∈ k[U,Y ],

where CA,B,i := CA,B,i modm and Yj := yj modm2 for j ∈ {1, . . . , r}.
2. For fixed (u), the characteristic polyhedron Δ(I;u) of I at m is defined as the

intersection of all projected polyhedra Δ(f ;u;y), where one varies the choice of (f ;y)

fulfilling the properties of the first part of the definition,

Δ(I;u) :=
⋂
(f ;y)

Δ(f ;u;y).

Given a vertex v of Δ(g;u;z), we say that (g;z) is prepared at v if (g;u;z) is normalized at

v [6, Defs. 8.12 and 8.11] and v is not solvable [6, Def. 8.13]. We say that (g;z) is a suitable

choice if (g;u;z) is prepared at every vertex v of Δ(g;u;z) [6, Defs. 8.11–8.13]. The first

condition (normalized) is an appropriate choice for the generators of I, while the second

means that for every vertex v ∈Δ(g;u;z) it is impossible to find a change in (z) such that

corresponding projected polyhedron is contained in Δ(g;u;z), v not being a vertex.
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6 V. COSSART, O. PILTANT AND B. SCHOBER

For example, if I is the ideal generated by f1 := y21−2u2
1y+u4

1−u5
2, then Δ(f1;u;y1) has

two vertices, namely v := (2,0) and w := (0, 52). It is easy to verify that v is a solvable vertex:

if we introduce z1 := y1−u2
1, then f1 = z21 −u5

2 and the unique vertex w is not solvable. In

particular, it follows that (f1;z1) is a suitable choice.

By [15, Th. 4.8], we have the following equality for a suitable choice (g;z)

Δ(g;u;z) = Δ(I;u),

and in particular this proves that Δ(I;u) is actually a polyhedron. In [15], Hironaka proved

that at least in the m-adic completion R̂ of R, there exists a suitable choice (ĝ, û) for

(IR̂;u) such that Δ(ĝ;u; ẑ) = Δ(I;u). In general, it is not clear, whether there exists a

suitable choice without passing to the completion. It is shown in [8], [10] that Hironaka’s

result holds without passing to the completion if we assume R to be excellent and if we

additionally require mild technical conditions, which are fulfilled in many cases, for example,

if the residue field of R is perfect, or if R is Henselian, or in polynomial situations.

While the definition of the characteristic polyhedron depends on an embedding, it is

still a useful source for invariants of the singularity of X at x. For example, the number

δ(Δ(I;u)), defined just below, is actually an invariant of Spec(R/I). This topic has been

investigated in great details in [7].

Definition 2.10. Let Δ ⊆ Re
≥0 be a nonempty, closed, convex subset such that

Δ+Re
≥0 =Δ, where + denotes the Minkowski sum. Set

δ(Δ) := min{v1+ · · ·+ve | v = (v1, . . . ,ve) ∈Δ}.

We define the first face of Δ as the face of Δ consisting of all points v = (v1, . . . ,ve) ∈Δ

with v1+ · · ·+ve = δ(Δ).

§3. Giraud’s presentations and their application to cones

To prove Theorem 1.1, we need Giraud’s Theory of presentations [12]. In particular,

we require Theorem 3.1 below, which is a refinement of [12, Prop. 4.3]. A presentation P
consists of the following data:

(S;R;z1, . . . , ze;I;f1, . . . ,fm;n1, . . . ,nm;E;P1, . . . ,Pe;q1, . . . , qe;s1, . . . , se),

where:

(a) S ⊆R are regular local rings with respective maximal ideals N and M , such that the

residue field extension is trivial, say k :=R/M = S/N , and such that the natural morphism

of graded rings grN (S)→ grM (R) is flat.

Further, (z1, . . . , ze) are differential local coordinates of R/S (in the sense of [12, définition

2.2(iii)]).

(b) I ⊂R is an ideal such that grM (R/I) is flat over grN (S).

(c) f1, . . . ,fm are elements in I such that their images in R0 := R/NR form a standard

basis1 for the ideal I0 := IR0 and n1, . . . ,nm are positive integers such that ν∗M0
(I0,R0) =

(n1, . . . ,nm,∞, . . .), for M0 :=MR0.

1 To ask that it is a standard basis is slightly more restrictive than Giraud’s original definition, but it is
important for our setting.
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Moreover, E ⊆ Ze
≥0 is a certain subset fulfilling E+Ze

≥0 =E (the so-called exponents of

the ideal I0 with respect to (z)) such that for all i ∈ {1, . . . ,m} and A = (A1, . . . ,Ae) ∈ E

with |A|=A1+ · · ·+Ae < ni, we have D
(z)
A fi ≡ 0. Here, D

(z)
A fi denotes the Hasse–Schmidt

derivative of fi = fi(z) with respect to zA, meaning the coefficient of TA in the Taylor

expansion of fi(z+T ) = fi(z1 +T1, . . . , ze +Te) with respect to T = (T1, . . . ,Te) (when it

does exist, e.g., in the completion of R).

(d) P1, . . . ,Pe ∈S[XA,i |A∈Ze
≥0, i∈ {1, . . . ,m} : |A|<ni] are polynomials with coefficients

in S that are homogeneous of degree qi if we assign to XA,i the degree ni−|A|.
Finally, s1, . . . , se ∈ R are elements in R such that sj = Pj(D

(z)
A fi) for all j ∈ {1, . . . , e}.

Additionally, there is also a condition on the Hilbert–Samuel series of R0/(s)R0, which will

be automatically fulfilled in our setting as the elements si will form a triangular system.

Thus, we do not recall the details here.

For the precise definition of a presentation, we refer to [12, définition 3.1].

Theorem 3.1. Let P be a presentation as recalled just before. Suppose that S is excellent

and contains a field. Let x∈X be the closed point corresponding to the maximal ideal M ⊂R.

Using the notation of the definition, we further set

X := Spec(R/I) Xi := Spec(R/(fi)), and Yj := Spec(R/(sj)),

for i ∈ {1, . . . ,m} and j ∈ {1, . . . , e}. The Hilbert–Samuel stratum of X at x fulfills the

following equality:

HSX ,x =

m⋂
i=1

HSXi,x ⊂
e⋂

j=1

HSYj ,x,

where we abbreviate HSX ,x := X (HX (x)) for the Hilbert–Samuel stratum (Definition 2.1)

and analogously for HSXi,x and HSYj ,x.

Proof. Let H be a reduced irreducible subscheme of Z := Spec(R). In the case that H
is regular, we have by [12, Prop. 4.3],

H⊆HSX ,x ⇐⇒ H⊆
m⋂
i=1

HSXi,x

and H⊆
e⋂

j=1

HSYj ,x, if H⊆HSX ,x .

(3.1)

Suppose that H is singular at x. We choose a curve Γ such that x ∈ Γ ⊂H, Γ �⊂ Sing(H).

We perform a sequence of blowing ups

Z =: Z0
π1←−Z1

π2←− ·· · πn←−Zn←−·· · , (3.2)

where π1 : Z1 →Z0 is the blowing up with center x, and for i ∈ {1, . . . ,n−1}, πi+1 : Zi+1 →
Zi is the blowing up with center some closed point xi ∈ Zi, exceptional for πi and on the

strict transform Γi of Γ. By [3, (2.2.3), p. 71], there exists N ∈ N such that, for n ≥ N ,

ν∗xn
(Hn,Zn) = ν∗xN

(HN ,ZN ), where Hn (resp. HN ) is the strict transform of H and Zn

(resp. ZN ) of Z := Spec(R). Of course, for N big enough, Γn is regular at xn for n ≥ N .

Then, by [3, Prop. (3.1), p. 74], Γn is permissible for Hn at xn: the Hilbert–Samuel function

of Hn is constant along Γn in a neighborhood of xn, so Hn is regular at xn. Furthermore,
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8 V. COSSART, O. PILTANT AND B. SCHOBER

n is defined to be any natural number such that the strict transform Hn of H is regular

at xn.

Notice that Hn is an irreducible component of the Hilbert–Samuel stratum of the strict

transform of X (resp. Xi, resp. Yj) at xn in Zn if and only if H is an irreducible component

of the Hilbert–Samuel stratum of X (resp. Xi, resp. Yj) at x. Let Pn be the transform

of P, that is, the presentation defined by an induction of [12, Th. 5.2] (which requires the

assumption that S contains a field). Since Hn is regular at xn, we may apply [12, Prop. 4.3]

locally at xn. Therefore, (3.1) holds for Hn (with the respective transforms of X ,Xi, and Y)

and thus the statements also hold for H. This proves the assertion.

Next, we apply Theorem 3.1 in the setting of cones. Let us fix the notation: let k be

a field, and let I ⊂ k[X1, . . . ,Xn] be an ideal generated by homogeneous polynomials.

We set C := V (I). Let J,J be the ideals of the directrix and of the ridge of I,
respectively (Definition 2.8). Then, by [12, §1.5, Lem. 1.6] or [11, Prop. 5.4, p. I-27], up to

renumbering the variables, there exist (F1, . . . ,Fm) homogeneous generators of I of degree

ni = deg(Fi), 1≤ i≤m, with

D
(X)
A Fi ≡ 0 for A ∈ exp(I) =: E, i ∈ {1, . . . ,m} with |A|< degFi, (3.3)

where exp(I) := {exp(h) | h ∈ I \ {0} homogeneous} and exp(h) denotes the dominant

exponent of the polynomial h with respect to the lexicographical ordering on Nn.

Furthermore, J is generated by a triangular basis of additive homogeneous polynomials

(s1, . . . , se) with

si =Xqi
i +

∑
j>i

ci,jX
qi
j , ci,j ∈ k, 1≤ i≤ e, with q1 ≤ q2 ≤ ·· · ≤ qe. (3.4)

By [12, §1.5, Lem. 1.7] or [11, Prop. 5.4, p. I-27], there are polynomials P1, . . . ,Pe,

Pi ∈ k[XA,j | 1 ≤ j ≤ m, |A| < ni], 1 ≤ i ≤ m, homogeneous of degree qi when we give

to XA,j the degree ni−|A|, such that

sj = Pj(D
(Z)
A Fi). (3.5)

To draw the connection with the notion of presentation of [12], we denote

Zi :=Xi, 1≤ i≤ e, R := k[Z1, . . . ,Ze,Xe+1, . . . ,Xn]M , M := (X1, . . . ,Xn),

S := k[Xe+1, . . . ,Xm]N ,N := (Xe+1, . . . ,Xm).

The reader will verify that:

Proposition 3.2.

P := (S;R;Z1, . . . ,Ze;I;F1, . . . ,Fm;n1, . . . ,nm;E;

P1, . . . ,Pe;q1, . . . , qe;s1, . . . , se)
(3.6)

is a presentation as defined by Giraud.

By [12, lemme 1.6], this presentation has the following supplementary property:

Fi ∈ k[s1, . . . , se], 1≤ i≤m. (3.7)

Remark 3.3. By Theorem 3.1 and (3.7), the Hilbert Samuel strata of the origin of the

cone C and of its ridge locally coincide.
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The word locally may be skipped; indeed, these strata coincide in the full affine scheme

Speck[X1, . . . ,Xn], as stated in the proposition below which makes more precise M.-J.

Pomerol’s theorem [16, Prop. 2.2].

Proposition 3.4. With the notations of the beginning of this section, the Hilbert–

Samuel strata of the origin of the cone C and of its ridge coincide in Speck[X1, . . . ,Xn].

Their ideals are, respectively, the reduction of

(D
(X)
A Fi |A|< ni, 1≤ i≤m)

and the reduction of

(D
(X)
A si |A|< qi, 1≤ i≤ e)

which both coincide.

Proof. Denote by R the ridge of C. Let us blow up the origin. The strict transforms of C

and R are the tautological line bundles over Projk[X]/I and Projk[X]/J , respectively. So

the strict transforms of the Hilbert–Samuel strata are empty or line bundles over Hilbert–

Samuel strata of Projk[X]/I and Projk[X]/J , respectively: these Hilbert–Samuel strata

are subcones of Speck[X1, . . . ,Xn] and by Remark 3.3, they coincide. The equalities of the

ideals are consequences of Theorem 3.1.

Proposition 3.5. Let k be a field, and let I ⊂ k[X1, . . . ,Xn] be an ideal generated by

homogeneous polynomials; we set C := V (I). Let J,J be, respectively, the ideals of the

directrix and of the ridge of I. The Hilbert–Samuel function is constant on C if and only

if Ired = Jred = J .

Proof. By Proposition 3.4 above, it is enough to prove the statement when I = J .

Let us note that, when char(k) = 0, additive polynomials are homogeneous of degree 1.

Hence, J = I and C is the intersection of hyperplanes of Speck[X1, . . . ,Xn], which implies

the proposition in this easy case.

Now we consider the case char(k) = p > 0. As seen above (viz., before stating

Proposition 3.2), there exist variables (Z1, . . . ,Ze;W1, . . . ,Wd) in k[X1, . . . ,Xn] (d+ e = n)

such that I = (σ1, . . . ,σe), where σi are homogeneous additive polynomials of degrees qi
with q1 ≤ q2 ≤ ·· · ≤ qe and

σi = Zqi
i + ti(Zi+1, . . . ,Ze,W1, . . . ,Wd).

When Ired = J , by definition of the directrix, after translations on (Z1, . . . ,Ze) if neces-

sary, we get Cred = V (Z1, . . . ,Ze). Furthermore, for any point x ∈ C, we have ν∗x(C,A
n) =

(q1, . . . , qe,∞,∞, . . .), where An
k := Speck[Z1, . . . ,Ze;W1, . . . ,Wd] (Definition 2.3(2)). This

implies that C is normally flat over Cred [6, Th. 3.2(2)], which is equivalent to the constancy

of the Hilbert–Samuel function on C [6, Th. 3.3]. This proves the converse implication in

the proposition.

Let us prove the direct implication. We are in the very extreme case where, in

the corresponding presentation (3.6), e = m,Fi = si, 1 ≤ i ≤ e. Then, by Theorem 3.1,⋂m
i=1HSCi,x = HSC,x = Cred. Consider the additive group subscheme D ⊂ An defined by

the equations σ
qe/qi
i ,1 ≤ i ≤ e. Then D is flat over Ad = Speck[W1, . . . ,Wd]. Note that

Dred = Cred.
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As D is a cone, Theorem 3.1 applied to D implies that HSD,x = Dred. In other terms,

it can be assumed that q1 = · · · = qe. In this case, we may replace the σi by some τi =

Zqe
i +ri, ri ∈ k[W1, . . . ,Wd] for 1≤ i≤ e by performing a linear change of coordinates. Since

HSD,x =Dred and since the natural morphism η : D −→ Ad is dominant, each polynomial

τi has a prime factor of order qe as an element of K[Zi], where K = Frac(k[W1, . . . ,Wd]).

Therefore, ri ∈Kqe . Now k[W1, . . . ,Wd] is integrally closed, so ri ∈ k[W1, . . . ,Wd]
qe . Up to

an affine k[W1, . . . ,Wd]-linear change of coordinates on An, we thus have τi =Zqe
i , 1≤ i≤ e,

so the conclusion holds.

§4. Proof of the Theorem

Recall that our goal is to prove that the Hilbert–Samuel function is locally constant on a

Noetherian scheme X such that OX ,x is excellent for every x∈X if and only if its reduction

Xred is regular and X is normally flat along Xred. By [6, Th. 3.3] (see Remark 2.5), we have

only need to prove the following: if the Hilbert–Samuel function is constant on X , then Xred

is everywhere regular.

Lemma 4.1. Let X = SpecA with A a catenary Noetherian local ring, and let x ∈ X be

the closed point. Assume that the Hilbert–Samuel function is constant on X . Let Dirx(X )⊂
Ridx(X )⊂ Tx(X ) be respectively the directrix and the ridge of the tangent cone of X at x,

embedded in the Zariski tangent space Tx(X ) (Definition 2.8 and the following comments).

Then, we have

Dirx(X ) = (Ridx(X ))red.

Proof. When dimX = 0, Dirx(X ) = Ridx(X )red is the origin in Tx(X ). From now on,

we assume

dimX ≥ 1.

Let us note the following remark that we will use later on.

Remark 4.2. Let X ′ −→ X be the blowing up centered at x (with dimX ≥ 1). The

common value of the Hilbert–Samuel function at the generic points of the irreducible

components of X does not change: it is HX (x). Let x′ ∈ X ′ map to x. By specialization

[6, Th. 2.33(1)], HX ′(x′)≥HX (x) and by [11, Th. 3.8, p. II.28], HX ′(x′)≤HX (x):

every point x′ above x is near to x.

Lemma 4.3. Let k be a field, and let I ⊂ R := k[X1, . . . ,Xn] be a homogeneous ideal.

Let J be the ideal of its ridge, and let J be the ideal of its directrix. Assume

J �= Jred.

Let x∈ Spec(R/I) be the origin, and let X ′ −→ Spec(R/I) be the blowing up along x. There

exists x′ ∈ X ′ above x such that

HX ′(x′)<HSpec(R/I)(x).

Proof. By [12, lemme 5.2.2], every point in X ′ is on the strict transform of the ridge

and is near to x as a point of the ridge. Furthermore, a point x′ near to x is on the strict

transforms of Y1, . . . ,Ye, the hypersurfaces of equations σi of degrees q1, . . . , qe, q1 ≤ ·· · ≤ qe,

J = (σ1, . . . ,σe) and near to x for all Yi.
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Let us define, as in the proof of Proposition 3.5, τi = Zqe
i + ri, ri ∈ k[W1, . . . ,Wc],

where Vectk(X1, . . . ,Xn) = Vectk(Z1, . . . ,Ze,W1, . . . ,Wc)) is a renaming of variables after

performing a k -linear change of variables. As J �= Jred, there is at least one ri0 which is

not a qe-th power. So, there is a point x′ ∈ π−1(x) on the strict transform of the (unique)

prime factor of τi0 = Zqe
i0

+ ri0 which is not near to x for the hypersurface of equation τi0 .

Hence, it is not near to x for some Yi: this point x
′ is not near to x for X .

End of the proof of Lemma 4.1. From now on, we suppose that Dirx(X )�Ridx(X )red
and we will deduce a contradiction. By going to the completion, we may suppose that OX ,x

is the quotient of a regular ring OZ,x of residue field k. Let (u,y) := (u1, . . . ,ud,y1, . . . ,yr) be

a regular system of parameters of OZ,x such that the initial forms of (y) (with respect to the

maximal ideal m at x ) are a standard basis for the ideal of the directrix of X at x embedded

in Speck[U,Y ], where Ui := inm(ui) and Yj := inm(yj), for i ∈ {1, . . . ,d}, j ∈ {1, . . . , r}. Let
(f1, . . . ,fm) be a standard basis of I ⊂ OZ,x with respect to (u,y). Let Z ′ −→ Z be the

blowing up along x. Denote by X ′ the strict transform of X and recall that I ⊂OZ,x is the

ideal of X . The fiber above x is canonically isomorphic to the Proj of the tangent cone of

X at x.

Let x′ be a point in this fiber not near to x for the tangent cone. (4.1)

By Lemma 4.3, x′ exists. Let I ′ ⊂OZ′,x′ be the strict transform of I, and let t ∈OZ′,x′ be

a generator of the exceptional ideal. By (4.1), there exists a standard basis (g1, . . . ,gm′) ∈
(OZ′,x′/(t))m

′
of I ′mod (t) with ν∗x′(g1, . . . ,gm′) <lex ν∗x(I) (notation (2.1)); this implies

ν∗x′(I ′)<lex ν∗x(I): x′ is not near to x, this is a contradiction with Remark 4.2.

Lemma 4.4. Let X = SpecR/I, with R an excellent regular local ring, and let x ∈ X
be the closed point, Z := SpecR. Assume that the Hilbert–Samuel function is constant

on X . Then, for any adapted choice of variables, the characteristic polyhedron at x is empty

(Definition 2.9).

Proof. Let us first precise what is an adapted choice of variables : we mean a system

(u) := (u1, . . . ,ud) ∈ Od
Z,x which can be extended to a regular system of parameters

(u,y) = (u1, . . . ,ud,y1, . . . ,yr) of R such that (inm(y1), . . . , inm(yr)) are equations of the

directrix of X at x, where m ⊂ R is the unique maximal ideal. The statement is that

for any such system (u), Δ(I;u) = ∅ where I ⊂ OZ,x is the ideal of X .

Suppose the statement is wrong. Thus, we can find a regular system of parameters

(u,y) = (u1, . . . ,ud,y1, . . . ,yr) and a standard basis f = (f1, . . . ,fm) at x of the ideal I
such that the vertices of the first face of Δ(f ;u;y) (Definition 2.10) are prepared (see

comments right after Definition 2.9). This implies that they are vertices of the characteristic

polyhedron Δ(I;u). Let π1 : Z ′ −→ Z be the blowing up along x, and let x′ be the point

of parameters (u′,y′) := (u1,u2/u1, . . . ,ud/u1,y1/u1, . . . ,yr/u1) (origin of the u1-chart). Set

δ := δ(Δ(f ;u;y)) = δ(Δ(I;u)) (Definition 2.10) to be the modulus of the vertices of the first

face.

As inm(fi) ∈ k(x)[inm(y1), . . . , inm(yr)], 1 ≤ i ≤m, where k := R/m, we have δ > 1. The

usual computations (e.g., analogous to [9, Proof of Prop. 4.15, (4.4)]) show that the smallest

first coordinate of points of Δ(f ′;u′;y′) is δ−1> 0. Moreover, a point v′ with first coordinate

δ−1 is obtained by the affine transformation

(a1,a2, . . . ,ad) �→ (a1+ · · ·+ad−1,a2, . . . ,ad) = (δ−1,a2, . . . ,ad),
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where v := (a1,a2, . . . ,ad) is a point of the first face of Δ(f ;u;y). Note that if v′ is a vertex

of Δ(f ′,u′,y′), then v is a vertex of the first face of Δ(f,u,y).

For j ∈ {1, . . . ,m} and v a vertex, we write the initial form of fj at v (Definition 2.10) as

inv(fj) = Fj(Y1, . . . ,Yr)+
∑

0≤|A|≤mj−1

λAY
AU (mj−|A|)v,

where Fj ∈ k[Y1, . . . ,Yr] is homogeneous of degree mj := ordm(fj). If the corresponding point

v′ := (δ−1,a2, . . . ,ad) ∈Δ(f ′;u′;y′) after the blowing up is a vertex, we have

inv′(f ′
j) =

Fj(Y
′)+

∑
0≤|A|≤mj−1

λAY
′AU ′

1
(mj−|A|)(|v|−1)

U ′
2
(mj−|A|)a2 · · ·U ′

d
(mj−|A|)ad =

Fj(Y
′)+

∑
0≤|A|≤mj−1

λAY
′AU ′

1
(mj−|A|)(δ−1)

U ′
2
(mj−|A|)a2 · · ·U ′

d
(mj−|A|)ad .

(4.2)

Further, since (inv(fj))j∈{1,...,m} is prepared, so is (inv′(f ′
j))j∈{1,...,m}. In particular, v′

is prepared, that is, v′ is a vertex of Δ(I ′;u′) where I ′ is the strict transform of I. By
Remark 4.2, V (y′,u′

1)⊂X ′ is permissible at x′, id est δ−1≥ 1.

Claim 4.5. If δ−1 = 1, we claim that the ideal

Jζ ⊂ grζOZ′,ζ
∼= Fr

(
OZ′,ζ

(u′
1,y

′)

)
[U ′

1,Y
′
1 , . . . ,Y

′
r ]

of the directrix at the generic point ζ of V (y′,u′
1) is generated by the initial forms

(U ′
1,Y

′
1 , . . . ,Y

′
r ) of the elements (u′

1 = u1,y
′
1, . . . ,y

′
r) (abuse of notations with (4.2)).

Proof. For 1≤ j ≤m, the initial forms are (with the obvious abuse of notation)

inζ(fj) = Fj(Y
′
1 , . . . ,Y

′
r )+

∑
0≤|A|≤mj−1

Fj,AY
′AU ′

1
(mj−|A|)(δ−1)

(4.3)

∈ OZ′,x′/(u′
1,y

′)[U ′
1,Y

′
1 , . . . ,Y

′
r ],

by identifying OZ′,x′/(u′
1,y

′) with the polynomial ring k[u′
2, . . . ,u

′
d](u′

2,...,u
′
d)
, where u′

j = u′
j

mod (u′
1,y

′), 2≤ j ≤ d, we get Fj,A ∈ k[u′
2, . . . ,u

′
d].

By [14, Lem. 1.9], (inζ(f1), . . . , inζ(fm)) generate in k(ζ)[U ′
1,Y

′
1 , . . . ,Y

′
r ] the ideal of the

tangent cone of X ′ at ζ. The field extension k(x)−→ k(ζ) = k(x)(ū2
′, . . . , ūd

′) is separable,

so by [6, Lem. 2.10, p.18], the ideal of the directrix of (F1(Y
′
1 , . . . ,Y

′
r ), . . . ,Fm(Y ′

1 , . . . ,Y
′
r ))

in k(ζ)[U ′
1,Y

′
1 , . . . ,Y

′
r ] is (Y ′

1 , . . . ,Y
′
r ). Assume that the ideal Jζ ⊂ k(ζ)[U ′

1,Y
′
1 , . . . ,Y

′
r ] has

codimension ≤ r. Then, we have Jζ = (Z ′
1, . . . ,Z

′
r), with

Z ′
i = Y ′

i +λiU
′
1, λi ∈ k(ζ), 1≤ i≤ r. (4.4)

Furthermore, we have, for 1≤ j ≤m,

inζ(fj) = Fj(Y
′
1 +λ1U

′
1, . . . ,Y

′
r +λrU

′
1) ∈ OZ′,x′/(u′

1,y
′)[U ′

1,Y
′
1 , . . . ,Y

′
r ]. (4.5)

Take any valuation w on k(ζ)[U ′
1,Y

′
1 , . . . ,Y

′
r ] obtained by giving positive weights on

U ′
1, ū

′
2, . . . , ū

′
d and weight 1 on the Yi such that w(Z ′

i) = 1, for 1 ≤ i ≤ r, and inw(Z
′
i) �=

Y ′
i ∈ grw k(ζ)[U ′

1,Y
′
1 , . . . ,Y

′
r ] for at least one i, and such that, for all i, 1≤ i≤ r, inw(Z

′
i) =
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Y ′
i +μiU

′
1u

′
2
a(i,2) · · ·u′

d
a(i,d)

with μi ∈ k, a(i, j) ∈ Z, 2 ≤ j ≤ d. By [15, Cor. 4.1.1, p. 286],

for at least one j, 1≤ j ≤m, inw(Fj) �= Fj(Y
′
1 , . . . ,Y

′
r ): by (4.5), the exponents a(i, j) are all

in N. By taking all the possible w, in (4.4), for all i,1≤ i≤ r, we get λi ∈ OZ′,x′/(u′
1,y

′).

We can find (z1, . . . , zr) ∈Or
Z′,x′ with inζ(zi) = Z ′

i, and Δ(f ′,u′, z) has only vertices with

first coordinate > 1. This contradicts the fact that all vertices of Δ(f ′,u′,y′) of abscissa

δ−1 = 1 are prepared. We arrived to a contradiction which proves the claim.

End of the proof of Lemma 4.4. Assume δ−1 = 1, By Claim 4.5 above, the initial forms

(U ′
1,Y

′
1 , . . . ,Y

′
r ) generate the ideal of the directrix of X ′ at ζ. By Lemma 4.1, (U ′

1,Y
′
1 , . . . ,Y

′
r )

are the equations of the reduced ridge at ζ: let

π2 : X ′′ −→X ′

be the blowing up of X ′ along D := V (y′,u′
1). In X ′′, there is no point near to ζ, as the

Hilbert–Samuel function is constant on X ′. This contradicts Remark 4.2 applied to ζ,X ′.

All this leads to δ−1> 1.

Consider the point x′′ ∈ π−1
2 (D)⊂X ′′ of parameters

(u′′,y′′) := (u′
1,u

′
2, . . . ,u

′
d,y

′
1/u

′
1, . . . ,y

′
r/u

′
1).

Let (f ′′) = (f ′′
1 , . . . ,f

′′
m) be the strict transforms of (f ′). Notice that Δ(f ′′,u′′,y′′) is obtained

from Δ(f ′,u′,y′) by applying the affine transformation

(a′1,a
′
2, . . . ,a

′
d) �→ (a′1−1,a′2, . . . ,a

′
d).

In particular, (a′1 − 1,a′2, . . . ,a
′
d) is a vertex of Δ(f ′′,u′′,y′′) if and only if (a′1,a

′
2, . . . ,a

′
d)

is one of Δ(f ′,u′,y′). For a vertex v′′ := (δ− 2,a2, . . . ,ad) of Δ(f ′′,u′′,y′′) with smallest

first coordinate (arising from a vertex v := (a1, . . . ,ad) of the first face of Δ(f,u,y)) and

j ∈ {1, . . . ,m}, we have

inv′′(f ′′
j ) = Fj(Y

′′)+
∑

0≤|A|≤mj−1

λAY
′′AU ′′

1
(mj−|A|)(δ−2)

d∏
�=2

U ′′
�
(mj−|A|)a� .

As v and v′ := (δ − 1,a2, . . . ,ad) ∈ Δ(f ′,u′,y′) are prepared vertices, so is v′′. Hence,

v′′ ∈ Δ(I ′′,u′′) is a vertex of the characteristic polyhedron, where I ′′ denotes the strict

transform of I ′. This provides that D′ := V (y′′,u′′
1)⊂X ′′ is permissible at x′′ (Remark 4.2)

and thus δ−2≥ 1.

Let ζ ′ be the generic point of D′. If we assume δ−2 = 1, then the analogous arguments

as in the proof of Claim 4.5 provide that the ideal of the directrix at the generic point ζ ′ is

generated by the initial forms (U ′′
1 ,Y

′′
1 , . . . ,Y ′′

r ) of the elements (u′′
1 ,y

′′
1 , . . . ,y

′′
r ). Furthermore,

(U ′′
1 ,Y

′′
1 , . . . ,Y ′′

r ) are the equations of the reduced ridge at ζ ′ by Lemma 4.1. After blowing

up X ′′ with center D′, there exists no point near to ζ ′, as the Hilbert–Samuel function is

constant on X ′′. Again, this is a contradiction to Remark 4.2 (applied for ζ ′ and X ′′).

In conclusion, we have δ−2> 1. An induction on δ leads to a contradiction and therefore

Δ(I;u) = ∅.

End of the Theorem’s proof. Let X = SpecA be an affine scheme, let A be an excellent

local ring, and let x ∈ X be the closed point. Assume that the Hilbert–Samuel function is

constant on X . By Lemma 4.1, the directrix at x coincides with the reduced ridge at x.

This is hypothesis (*) of [10, Prop. 4.1].

https://doi.org/10.1017/nmj.2024.13 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2024.13


14 V. COSSART, O. PILTANT AND B. SCHOBER

Suppose A=R/I for some excellent regular local ring R. The characteristic polyhedron is

empty by Lemma 4.4. By [10, Prop. 4.1], there exist a standard basis f := (f1, . . . ,fm)∈Rm

for the ideal of X at x and a regular system of parameters (u,y) of R expressing the

empty characteristic polyhedron, that is, such that Δ(f ;u;y) = ∅. By Lemma 4.4, V (y) is

permissible for X at x. Since the reduced ridge coincides with the directrix, the blowing

up along V (y) has no point near to x. In a neighborhood of x, V (y) is the Hilbert–Samuel

stratum of X which is Xred: V (y) = Xred. This ends the proof in this case.

If X is not embedded in a regular scheme, the completion Â of the local ring A at its

maximal ideal is the quotient of a regular ring R. By the argument above, there exist regular

parameters (y) in R such that V (y)⊂ Spec(R) is the Hilbert–Samuel stratum of X̂ =SpecÂ.

By [6, Lem. 2.37(2)], V (y) is the preimage of X ’s Hilbert–Samuel stratum which is Xred,

since A is excellent. By [6, Lem. 2.37(2)], Xred is regular at x.

Remark 4.6. There exist excellent schemes X with Xred regular and with a nonconstant

Hilbert–Samuel function, even if X is a complete intersection.

Look at this example: X ⊂ Speck[X1,X2,X3] with ideal

I = (X2
1 +X2X

2
3 ,X

2
2 ).

We have Xred = V (X1,X2). On X , the Hilbert–Samuel function takes different values at

the origin and at the generic point.

Here is a different argument for this: the characteristic polyhedron Δ(I;X3) is not empty.

By Lemma 4.4, the Hilbert–Samuel function of X cannot be constant.
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