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SUBINVARIANCE IN SOLVABLE LIE ALGEBRAS 

CHONG-YUN CHAO AND ERNEST L. STITZINGER 

In a recent paper, Wielandt has continued his investigation of subnormal 
subgroups. Since the analogous concept is also of interest in Lie algebras, this 
note considers the Lie algebra counterparts to Wielandt's results. Generally the 
results do not carry over to all Lie algebras, but do hold in the solvable case. 
In order to state the main results, several definitions are needed and conse
quently we begin by listing some of the consequences. All Lie algebras 
considered here are finite dimensional over a field. 

THEOREM 1. Let L be a solvable Lie algebra and A be a subalgebra of L. Then 
the following are equivalent: 

(1) A is subinvariant in L. 
(2) For each x G L} A is subinvariant in (x, A), the subalgebra generated by 

x and A. 
(3) For each x G L, A is subinvariant in (A, A ad x). 
(4) If x £ (A, A ad x), then x f i . 
(5) For each a G A, L = A + L0(a) where LQ(a) is the Fitting null component 

of did a acting on L and the sum is a vector space sum. 

Note that the equivalence of (1) and (5) for the case where A is nilpotent 
is essentially shown in [4]. 

The following notation is used. A Q L(A < L, A < < L) will stand for A 
is a subalgebra (ideal, subinvariant) in L. If a G A Ç L, then L0(a) and Li(a) 
are the Fitting null and one components of ad a acting on L. CL(A) denotes 
the centralizer of A in L and Z(A) stands for the center of A. AL denotes the 
smallest ideal of L which contains A and is called the normal closure of A in L. 
Aœ will be the intersection of all members of the lower central series of A. 
Following Wielandt, by a property e we mean a class of pairs (A, L) of Lie 
algebras where A Ç. L and the following are taken to be equivalent: 

(A, L) G eand A e l . 

In particular < < denotes all pairs (A, L) of Lie algebras such that A < < L. 
Evidently each of the conditions in Theorem 1 satisfies the following. 

Definition 1. Let e be a property on pairs of Lie algebras. Then e satisfies / 
if whenever A t L and A C B Ç L, then A z B. 

To show that a property satisfying / implies subinvariance, we may assume 
a minimal counterexample and obtain the following situation. 
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Definition 2. Define the property f as follows: A f L if A C L, A is not sub-
invariant in L but A is subinvariant in all B such that A Q B (Z L. 

Also related to various of the conditions in Theorem 1 is the following. 

Definition 3. Define the property m as follows: A m L if A Ç L and 
(a) A is contained in a unique maximal subalgebra M of L; 
(P) A < < M\ and 
(7) for each x £ L such that x & M, (A, A ad x) = L. 

The concepts which have been introduced are related as follows. 

THEOREM 2. Let the a property satisfying I. In the class of solvable Lie algebras 
the following are equivalent: 

( l ) c ç < < 
(2) e C\ m = 0. 

THEOREM 3. In the class of solvable Lie algebras, f = m. 

First we note that these results do not hold for arbitrary Lie algebras as is 
seen in the 3-dimensional simple Lie algebra A1 with basis e, h, g and multiplica
tion [e, h] = 2e, [g, h] = —2g and [e, g] = h. Now (e) is not subinvariant in 
A! but L0(e) = A1 and (5) of Theorem 1 holds. Furthermore (3) and (4) 
also hold. This same example shows that f ^ m since (e)\ A\ while in M = 
(e, h), g Q M but (e, e ad g) £ M 5* AL Hence f $£ m. 

Before beginning the verification of the above results, we note that the 
difference in the Lie algebra and group cases appears in the proof of Theorem 3. 
Here we use a result (Theorem 4) which apparently has no counterpart in 
group theory. The remainder of the results follow by arguments like those in 
the group theory case. 

Proof of Theorem 3. If A m Lf let M be as in Definition 3. If A < < L, 
then (^4,^4adx) Ç AL C L for each x G L. This contradicts Definition 3. 
Suppose A QB CL. Then B C M and A < < B. Hence A f L and m C f. For 
the reverse inclusion we need the following. 

THEOREM 4. Let L be a solvable Lie algebra. Suppose that A \ L and that M is 
a maximal subalgebra of L, A Ç M. Then there exists x G A such that A + LQ(x) 
= M. 

Proof. Note that generally A + L0(x) is only a vector space sum. Also since 
A < < M, it follows that A + L0(x) 3 M for all x Ç A. This holds since 
Mi(x) Ç A, hence M = M0(x) + Mi(x) Ç I 0 ( x ) + i Ç L0(x) + A. Conse
quently we need only show that there exists an x G A such that L0(x) Ç M. 

Case I. Suppose that there exists a minimal ideal C of L such that C Ç M. 
Then {A + C/C) f (L/C). By induction there exists x G A + C/C such that 
L0(x) Q M. Then L0(x) Ç M since if ;y £ Z, and y adnx = 0, then 
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(y + C)ad*(x + C) = (y acftt) + C = C and y G AT. Hence y £ M and 

£o(*) £ M-
Case 77. No minimal ideal of 7, is contained in M. Then L is a solvable 

primitive algebra, and so has a unique minimal ideal D which is self-centralizing 
and complemented by AT. 

Suppose tha t A is nilpotent. Since A < < AT, 7,0(x) 2 M for all x £ A. H 
LQ(X) = L for all x 6 A, then 4̂ < < L by [4, Lemma 5] which contradicts 
A \ L. Hence L0(x) C 7/ for some x £ A and since L0(x) is a subalgebra of L, 
M = L 0(x) which completes the proof in this case. 

Suppose t ha t A is not nilpotent. Now Aœ < M by [3, Theorem 3] and Au ^ 0. 
Hence Aœ contains a minimal ideal B of AT. Since M is solvable, B is abelian. 
Since B < M, LQ(X) 2 M for all x 6 B. Hence either L0(x) = M for some 
x 6 B and we are done or 7,0(x) = L for all x G -B. Assume the second possi
bility holds and let E = D -\- B. Then E is ni lpotent by Engel 's Theorem and 
E < L since E/D ~ 5 < M ~ 7,/7>. Since CL(£>) = £>, CE{D) = D follows. 
Therefore Z(E) C D . But Z ( E ) < L since Z ( E ) is characteristic in E. By 
the minimality of D} either Z(E) = 0, which contradicts the nilpotency of E, 
or Z(E) = D, which yields E = CE(Z(E)) = CE(D) = 7> and B = 0, another 
contradiction. Hence 7,0(x) C M for some x (z A and 7,o(x) + 4̂ = AT. This 
completes the proof of Theorem 4. 

We return to the proof of Theorem 3 and suppose tha t A f L. Let AT be a 
maximal subalgebra of L which contains A and let x G A such tha t M = 
A + 7,0(x). If Mi is a maximal subalgebra of L containing A, then A < < Mi 
and Mi Q A + 7,0(x) = AT. Hence AT = Mi and (a) of Definition 3 is 
satisfied. Also (0) is clearly satisfied. Suppose tha t y G L, y Q M and 
{A, A ad y) ^ L. Then ( 4 , 4 ad y) Ç AT and A ad y Ç AT. Let y = s + /, 
5 G Lo(x), t G i>i(x) and note tha t t G AT since s G 7,0(x) Ç AT and y Q M. 
Then [x, £] = [x, 3/] — [x, s] G AT. On the other hand, ad x is non-singular on 
Li (x) and AT H 7,i(x) is ad x invariant. Hence for any z G 7,i(x), if s ad x G 
AT H L i (x ) , then s G AT H Li (x ) . In particular, this holds for z = tandt G AT, 
a contradiction. Hence (7) of Definition 3 is satisfied and A m L. Therefore 
m = f and Theorem 3 is shown. 

We turn now to the proof of Theorem 2. If e Ç < < , then e H m Ç ( < < ) 
H m = 0. If e ^ < < , then there exists i Ç L such tha t i e l and A is not 
subinvariant in L. Take a minimal such L. Hence A f 7, and 4̂ m L by Theorem 
3. Since A t L, A(t C\ m)L and e C\ m ^ 0. This completes the proof of 
Theorem 2. 

Now for the proof of Theorem 1. The equivalence of (1) and (5) follows 
from Theorem 4. Clearly (1) implies (2) which in turn implies (3). T o show 
t h a t (3) implies (1) assume tha t {A, L) is a minimal counterexample. Then 
A\ L and (A, A ad x) is properly contained in L for all x G 7,. Then for each 
a G A, there exists a positive integer n such tha t L adwa G ^4, hence Li(a) C 4̂ 
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and L0(A) + A = L. Hence (5) holds and (1), (2), (3) and (5) are equivalent. 
In order to show that (4) implies (1), let e be the property: A e L if when 
x £ {Ay A ad x), then x Ç A for all x Ç L. Clearly e satisfies / . Suppose i eL 
and A m L. If x 6 L and x (£ M where M is as in Definition 3, then x £ 
{A, A ad x) = L. Hence x £ 4̂ C AT, a contradiction. Hence e H m = 0 and 
e C < < by Theorem 2. To show that < < Ç e, let 4 < < L and take 
x G L, x $ A. Let N be the normal closure of A in (̂ 4, x). Since N is properly 
contained in {A, x), x $ iV. Also (̂ 4, A ad x) C TV. Hence x d {A, A ad x) and 
< < C e. Hence (1) and (4) are equivalent and this completes the proof of 
Theorem 1. 

Wielandt uses his results to find conditions guaranteeing the nilpotency of 
the normal closure of certain subgroups. In the Lie algebra case we have 

THEOREM 5. Let L be a solvable Lie algebra. If L is of characteristic 0, then 
A Ç N(L) if A is nilpotent and x £ {A, A ad x) implies that x Ç A. The result 
fails at characteristic p. 

Proof. A < < L by Theorem 1 and A is nilpotent. Then for each a Ç A, 
ad a is nilpotent acting on L and the enveloping associative algebra of adz, 
A is nilpotent by Engel's Theorem [2, p. 36] where ad^ A is the Lie algebra 
of all ad a acting on L, a G A. If L is of characteristic 0, then ad^ A is con
tained in the radical of (ad L)*, the enveloping associative algebra of ad L, 
by [1, Theorem 7.2]. Hence A Q N{L) by [2, p. 36, Theorem 3]. 

At characteristic p we consider the example in [2, p. 53]. Let L be the Lie 
algebra with basis e\, . . . , eP1 E, G, H over a field of characteristic p with 
multiplication [eu ef\ = 0, [eu E] = ei+u [et, H] = eu [eu G] = {i — l)e*_i, 
[E, G] = H and [E, H] = [G, H] = 0 (everything mod p). Then N{L) = 
{ei, . . . , ev) and {G) satisfies all the equivalent conditions of Theorem 1 since 
ad G is nilpotent. But G d N(L) and the result fails. 

A concept of interest in finite solvable groups is the subnormalizer S(H) of 
the subgroup H of G, defined to be the largest subgroup of G in which H is 
subnormal, if such a subgroup exists. In solvable Lie algebras, the analogous 
concept always exists as follows from 

THEOREM 6. Let L be a solvable Lie algebra and A be a subalgebra of L. Sup
pose that B and C are subalgebras of L such that A < < B and A < < C. Then 
A < < {B, C). 

Proof. We may assume that L = {B, C). Since A" < B} A" < C by [3, 
Theorem 3], it follows that A03 < L. We can work in L/Aœ, hence we may 
assume that A03 = 0. Thus A is nilpotent and L0(a) = {B, C) for all a G A. 
By [4, Lemma 5], A < < L. 

In part (3) of Theorem 1, the conditions can be weakened. 
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THEOREM 7. Let L be a solvable Lie algebra and A be a subalgebra of L. Then 
the following are equivalent: 

(1) A < < L. 
(2) A < < (A, A ad x) for all y £ L and for all x £ A ad y. 

Proof. By Theorem 1,(1) implies (2). Let e be the property: A e L if when
ever y £ L and x ^ A ad y, then 4̂ <j < (A, A ad x). We need to show that 
c £ <3 < . Since e satisfies / , by Theorem 2 it suffices to show that e H m = 0. 
Suppose i e L and A m L and let AT be the unique maximal subalgebra of L 
containing A. If there exists y 6 L such that 4 ad y Çt M, then there exists 
x G 4̂ ad y and x S Af which implies that L = (A, A ad x) by (7) of Definition 
3. By assumption A < < ( i , i a d x ) = L. Since A m L and m = f this is a 
contradiction. Hence A ad y C M for all y ^ L. Hence L ad a Ç [L, A] C M 
for all a G ^4. Since 4̂ < < M, there exists a positive integer k such that 
M ad*a Q A for all a £ A Hence L ad*+1a C M ad*a C ^ for all a G 4 . 
Hence Li(a) C ^ and L = ,4 + L0(a) for all a G A. By Theorem 1, A < < L 
and this is a contradiction. Hence e P\ m = 0 and e C < <]. 
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