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Transition metal oxides constitute a most interesting family of materials thanks to the interplay between 

structure, electronic and orbital degrees of freedom, which are related to collective phenomena like 

magnetism, ferroelectricity, superconductivity, electron transfer, etc. Interfaces between complex oxide 

materials provide a promising scenario for novel physical phenomena to arise. The crystal and electronic 

structures of these interfaces determine their physical behaviors [1]. In particular, distortions from the 

perfect cubic perovskite structure, such as deformations in the BO6  oxygen octahedron around the 

cations and collective tilts and displacements of the oxygen sub-lattice, play an important role in the 

electronic properties [2]. In order to harness the macroscopic properties of oxide interfaces, techniques 

capable of real space simultaneous characterization of these systems with atomic resolution are needed. 

Aberration-corrected scanning transmission electron microscopy (STEM) combined with electron 

energy loss spectroscopy (EELS) is a most powerful tool to study the structure, chemistry and electronic 

properties of these oxide interfaces down to the atomic scale and in real space. The high spatial 

resolution achieved allows the acquisition of annular bright field (ABF) images, sensitive to light atoms 

like oxygen, and atomic resolution spectrum images [3]. 

Here, we use both techniques to study the oxygen distortions in different manganite/titanate interfaces. 

First, we will discuss the interface between the Mott insulator LaMnO3  (LMO) and the band insulator 

SrTiO3  (STO) in superlattices with different thickness ratios. In this system, the macroscopic physical 

properties can be tuned by adjusting the relative LMO/STO layer thicknesses, resulting in different 

behaviors from a ferromagnetic metal to a non-magnetic insulator [4]. The LMO/STO thickness ratio 

can be used to tune the degree of mismatch strain in the system and hence it has strong effects on the 

interface structure. We have measured the strain through the samples and also the octahedral geometry 

(by imaging the oxygen positions) using atomic resolution energy-loss spectrum images, as shown in 

Figure 1. We find significant changes in the oxygen octahedral tilts both in STO and LMO when the 

thickness ratio between the manganite and the titanate is varied. These structural variations could be 

related to differences in the transport and magnetic properties of this system. 
 

We have also studied the multiferroic system between the ferromagnetic La0.7Sr0.3MnO3 (LSMO) and 

the ferroelectric BaTiO3  (BTO). In this case, the strain across the interface can have profound 

implications on the ferroelectricity in BTO, as well. In order to understand the system properties, 

monitoring the atomic positions across the interfaces is a must. We can measure the atomic column 

positions directly on the ABF images obtained by STEM, as shown in Figure 2, which allows the 

calculation of relative displacements between the oxygen and titanium atoms, and hence, the study of 

polarization at a local scale. We observe polarization gradients between the manganite and the 

ferroelectric, possibly associated with strain gradients, and the presence of oxygen vacancies that may 
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help to accommodate these lattice distortions. Finding subtle aspects of the material structural, 

electronic and chemical properties could explain the relationship between the microscopic and 

macroscopic physical behaviors of these systems and help in the designing of devices with novel 

functionalities and in the development of novel materials. 
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Figure 1. (a) High angle annular dark field image obtained in a Nion UltraSTEM100 of an interface 

between LMO and STO, down the (110) orientation. (b) EELS oxygen K edge integrated signal map 

from the area marked in (a). The pink crosses mark the oxygen atoms positions. Some spatial drift is 

visible. Adapted from reference [5]. 
 

 

 

 

 

 

 

 

 

 

Figure 2. (a) Annular bright field image of BTO down the pseudocubic (110) axis obtained in a Nion 

UltraSTEM200 of BTO with a sketch of the unit cell structure (b) ABF image of a LSMO/BTO 

superlattice with a titanium-oxygen relative displacements map superimposed. Each pixel in the map 

corresponds to one unit cell. 
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