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Using thermal convection in liquid metal, we show that strong spatial confinement not only
delays the onset Rayleigh number Rac of Rayleigh–Bénard instability but also postpones
the various flow-state transitions. The Rac and the transition to fully developed turbulence
Rayleigh number Raf depend on the aspect ratio Γ with Rac ∼ Γ −4.05 and Raf ∼ Γ −3.01,
implying that the stabilization effects caused by the strong spatial confinement are weaker
on the transition to fully developed turbulence when compared with that on the onset.
When the flow state is characterized by the supercritical Rayleigh number Ra/Rac (Ra is
the Rayleigh number), our study shows that the transition to fully developed turbulence
in strongly confined geometries is advanced. For example, while the flow becomes fully
developed turbulence at Ra ≈ 200Rac in a Γ = 1 cell, the same transition in a Γ = 1/20
cell only requires Ra ≈ 3Rac. Direct numerical simulation and linear stability analysis
show that in the strongly confined regime, multiple vertically stacked roll structures
appear just above the onset of convection. With an increase of the driving strength,
the flow switches between different-roll states stochastically, resulting in no well-defined
large-scale coherent flow. Owing to this new mechanism that only exists in systems with
Γ < 1, the flow becomes turbulent in a much earlier stage. These findings shed new light
on how turbulence is generated in strongly confined geometries.
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1. Introduction

Thermally driven turbulence in liquid metal occurs widely in geophysical and astrophysical
systems (Lohse & Shishkina 2023), e.g. in the outer core of the Earth, the convection
of liquid iron is believed to be responsible for the generation of Earth’s magnetic field
(Glatzmaier et al. 1999). In these systems, the stabilizing forces produced by rotation or
magnetic field are always found to inhibit turbulence (Chandrasekhar 1961), leading to
unexpected enhancement of heat transport (see e.g. Zhong et al. 2009; Lim et al. 2019).
Recent studies demonstrate that the stabilizing force introduced by spatial confinement
in thermal turbulence shows surprisingly similar behaviour as the dynamic constraint by
rotation, leading to condensation of the coherent structures and unexpected heat transport
enhancement (Huang et al. 2013; Chong et al. 2017; Xia et al. 2023). It thus becomes
essential to understand how the stabilization effects generated by spatial confinement
alter the flow-state evolution, especially the transition to fully developed turbulence in
liquid-metal convection.

The classical Rayleigh–Bénard convection (RBC) system is usually employed as a
model system to study thermally driven flow. It contains a horizontally infinite fluid layer
heated from below and cooled from above (for reviews, see e.g. Ahlers, Grossmann &
Lohse 2009; Lohse & Xia 2010; Chillá & Schumacher 2012; Xia 2013). The system is
governed by the Oberbeck–Boussinesq equations and the continuity equation below:

∂u
∂t

+ (u · ∇)u = −∇p +
√

Pr
Ra

∇2u + Tẑ,
∂T
∂t

+ (u · ∇)T =
√

1
RaPr

∇2T, ∇ · u = 0.

(1.1a–c)

The equations (1.1a–c) have been made dimensionless using the cell height H,
the temperature difference across the cell �T , the free-fall velocity uff = √

αg�TH
and the free-fall time scale τff = H/uff . Here u, p and T are the velocity vector,
pressure and temperature, respectively. The vertical unit vector is denoted as ẑ. The
RBC system is controlled by two dimensionless parameters, i.e. the Rayleigh number
Ra = αg�TH3/(νκ) and the Prandtl number Pr = ν/κ . Here α, ν and κ are the
thermal expansion coefficient, the kinematic viscosity and the thermal diffusivity of
the working fluid, respectively. The applied temperature difference and the gravitational
acceleration constant are denoted as �T and g, respectively. Studying the regime
with strong spatial confinement, characterized by the aspect ratio Γ =D/H < 1
(D is the cell diameter) is of particular importance because, from the definition of Ra, one
recognizes that Ra ∝ H3. It thus becomes relatively easy to achieve high Ra with Γ < 1
for a cell with fixed D. However, compared with many studies in the Γ ≥ 1 regime (see,
for example, Funfschilling et al. 2005; Bailon-Cuba, Emran & Schumacher 2010; Van Der
Poel, Stevens & Lohse 2011; Wang et al. 2020), the effects of the spatial confinement on
the flow-state evolution in liquid-metal convection remain obscure.

For the onset of convection, recent theories show that the onset Rayleigh number
Rac ∼ Γ −4 in the limit of Γ � 1 (Chandrasekhar 1961; Shishkina 2021; Ahlers et al.
2022; Zhang & Xia 2023). For a cell with Γ = 1/10, similarities between the fluctuations
of velocity and temperature statistics are found when compared to a cell with Γ = 25
(Pandey et al. 2022). In turbulent liquid-metal convection with Γ = 1/2, the collapse
of the large-scale circulation was reported (Schindler et al. 2022) and a strong coupling
between the internal flow structure and heat transport efficiency was found (Chen et al.
2023). As Ra increases, the liquid-metal convection exhibits rich dynamics, i.e. the flow
evolves from conduction to convection, oscillation, chaos and turbulence (Verzicco &
Camussi 1997; Ren et al. 2022). How the flow-state transitions, especially the onset of
981 R2-2
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convection and the transition to fully developed turbulence, will be altered in the strongly
confined regime motivates the present experimental and numerical study.

We will show that with increasing spatial confinement, the flow-state evolution
mentioned above remains. The transitional Ra between different flow states is postponed
due to the stabilization effect in the strongly confined cells. However, the transition to
the fully developed turbulent state is accelerated in cells with Γ � 1 if the flow state is
characterized by a supercritical Rayleigh number Ra/Rac. For example, while the flow
becomes fully developed turbulence at Ra ≈ 200Rac in a Γ = 1 cell, the same transition
in a Γ = 1/20 cell only requires Ra ≈ 3Rac. Using direct numerical simulation (DNS)
and linear stability analysis (LSA), we will show that when Γ � 1, the system develops
multiple vertically aligned rolls just above the onset of convection, allowing more vertical
high-wavenumber modes to develop with decreasing Γ . The frequent transitions between
different vertical flow modes when Ra is increased results in the flow becoming turbulent
in a much earlier stage when Γ � 1.

2. The experimental and numerical set-ups

The experiment was carried out in cylindrical RBC cells with liquid-metal alloy
gallium-indium-tin (GaInSn) as the working fluid. The physical properties of GaInSn
are documented in Ren et al. (2022). Its Prandtl number is Pr = 0.029 at a mean fluid
temperature of 35 ◦C. To cover a large Ra range, two sets of convection cells with diameters
of D = 20.14 mm and D = 40.37 mm were constructed. They are referred to as set A and
set B hereafter. For set A, the aspect ratio of the cells vary in the range of 1/20 ≤ Γ ≤ 1.
For set B, the aspect ratio changes in the range of 1/3 ≤ Γ ≤ 1. The details on the cell
diameter D and height H can be found in table 2 in the Appendix. In addition, table 2
lists some parameters of the experiment, such as the range of �T , applied heat flux at the
bottom plate q and the range of Biot number Bi.

In total eight convection cells were constructed. They were identical in design. The
detailed construction of the convection cell and experimental procedure can be found
in Ren et al. (2022). We mention here the essential features of a cell from set A with
Γ = 1. It consists of a top copper cooling plate, a bottom copper heating plate, and a
Plexiglas sidewall. The top plate with a diameter of 20.14 mm was cooled by circulating
temperature-regulated cooling water. The temperature stability of the cooling water is
better than 0.01 K (Julabo, Dyneo DD-1000). The bottom plate was heated with a wire
heater embedded in grooves on its backside. The heater was connected to a power supply
with a long-term stability of 99.99 % (Ametex, XG 1500). The sidewall with a height of
H = 20.03 mm was made of Plexiglas. Its thermal conductivity is 0.192 W (mK)−1.

Temperatures of the top (bottom) plate were measured using 3 (4) thermistors (Omega,
44031), from which Ra and Pr were calculated. The thermistor heads were located at
a distance of 3 mm from the fluid–plate contact surface. The heat flux q supplied at
the bottom plates was calculated using the measured current I and voltage V supplied
to the heater with a four-wire method, i.e. q = 4VI/(πD2). The Nusselt number, which
quantifies the ratio between the heat flux transported by the system and that by conduction
alone, is calculated using Nu = qH/(λ�T) with λ = 24.9 W (mK)−1 being the thermal
conductivity of GaInSn. The resistances of the thermistors and the voltage supplied to
the heater were measured using a digital multimeter (Keysight, 34972A) at a sampling
rate of 0.35 Hz. The heat leakage was minimized by adding temperature-controlled side
and bottom thermal shields to the cell. The convection cells were levelled better than
0.029◦. The temperature boundary condition at the sidewall is approximately adiabatic.
The time-averaged spatial temperature homogeneity as measured by 4 (3) embedded
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thermistors in the bottom (top) plate is within 3 % of �T . The root-mean-square (r.m.s.)
temperatures of the top and bottom plates are within 2 % of �T for most of the cells.
Two exceptions are the set B cells with Γ = 1/2 and 1/3. It is observed that the r.m.s.
temperature of the bottom plate in these two cells reaches 6 % and 4 % of �T . A thermistor
with a head diameter of 0.38 mm and a time constant of 30 ms in liquid (Measurement
Specialties, GAG22K7MCD419) was placed at the cell centre to probe the temperature
fluctuation. In addition, a multi-thermal probe method (Xie, Wei & Xia 2013) was used
to measure the large-scale flow (LSF) structures inside the convection cell. This method
could measure the structure and dynamics of LSF in liquid-metal convection accurately
(Zürner et al. 2019; Ren et al. 2022). Combining the measurements of the temperature
fluctuation at the cell centre and the LSF structure and dynamics, the flow states in the five
cells with different Γ can be determined. We refer to Ren et al. (2022) for more details on
determining the flow states.

Complementary DNS of the governing Oberbeck–Boussinesq equations was carried
out using the CUPS code in the 1/50 ≤ Γ ≤ 1 range. The simulation was conducted
in cylindrical domains with no-slip velocity boundary conditions at all walls, adiabatic
temperature conditions at the sidewall, and isothermal boundary conditions at the top and
bottom plates. For details on the CUPS code and its verification, we refer to Chong, Ding
& Xia (2018). The Rac was evaluated from the DNS data. The flow structure at Ra = 3Rac
(note Rac depends on Γ ) was simulated to illustrate how spatial confinement alters the flow
structures. In addition, LSA was carried out to determine the stability curve of different
vertical flow modes.

3. Results and discussions

3.1. The critical Rayleigh number Rac for the onset of convection vs Γ

In this section, we study how confinement affects the onset of convection. Note that Rac
is independent of Pr from LSA (Chandrasekhar 1961). Figure 1(a) plots the measured
Nu − 1 as a function of Ra together with the scaled time-averaged amplitude δ/�T of the
first Fourier mode measured from the azimuthal temperature profile at the midheight of a
Γ = 1 cell. We have Nu − 1 = 0 and δ/�T = 0 in the conduction state. The measured δ

aligns with the smallest temperature difference we can resolve experimentally (the dashed
line in the figure). However, due to unknown parasitic heat leakage, the Nu measured in the
conduction state is slightly above 1. Combining Nu and δ measurements, we conclude that
the system starts from the conduction state at Ra ∼ 4000 and evolves into the convection
state with increasing Ra. The inset shows the streamlines of the flow field obtained at
Ra ≈ Rac numerically in a Γ = 1 cell with red and blue colours representing ascending
and descending flow, respectively. The LSF is a single-roll structure, consistent with the
observation that the first Fourier mode is the dominant mode obtained from the sidewall
temperature profiles.

It was predicted theoretically that the Nu just above the onset of convection depends
linearly on Ra (Malkus & Veronis 1958). Thus, by fitting the Nu data deviated from the
horizontal dashed line (the conduction state) and finding the intersection point between the
extrapolation of this linear fitting function with the horizontal dashed line, we determine
Rac = 5170 from Nu measurement. Figure 1(a) also shows that δ/�T increases linearly
with Ra just above onset. Similar to Nu − 1, we can also determine Rac from δ/�T by the
linear fitting method, which yields Rac = 5095. The two values of Rac agree with each
other within 2 %.
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Figure 1. (a) Determination of the critical Rayleigh number Rac for the onset of convection in a Γ = 1 cell
based on Nu (squares) and the amplitude δ/�T of the LSF (circles) obtained from experiment. (b) The Rac vs
Γ from present experiment and DNS. The dashed line marks Rac ∼ Γ −4.05 fitted to the data with Γ ≤ 1/10.
The solid line is a theoretical prediction from Shishkina (2021). The triangles are Rac measured in the Γ ≥ 1
regime with Pr = 28.9 from Hébert et al. (2010).

The above analysis of Nu measured experimentally in the range of 1/20 ≤ Γ ≤ 1/2
and that obtained numerically for 1/50 ≤ Γ ≤ 1 were repeated. The so-determined
Rac as a function of Γ is plotted in figure 1(b). The experimentally determined Rac
agrees with the numerically obtained Rac. Similar to the observation by Zhang &
Xia (2023) and Müller, Neumann & Weber (1984), with decreasing Γ , Rac shows a
rapid increase. For comparison, we also plot in the figure Rac measured experimentally
for Γ ≥ 1 in a working fluid with Pr = 28.9 from Hébert et al. (2010) and the theoretical
prediction of Rac,Γ = (2π)4(1 + (1.4876/Γ 2))(1 + (0.3435/Γ 2)) from Shishkina (2021)
with adiabatic sidewall temperature boundary conditions. Figure 1(b) shows the
experimental data, numerical data and theoretical prediction agree excellently with each
other over almost three decades in Γ . The results also imply the sidewall boundary
condition of the experiment can be treated as adiabatic to a good approximation. In
addition, when Γ ≤ 1/10, the data can be fitted by Rac = 915Γ −4.05 (the dashed line).

3.2. Flow-state evolution in spatially confined cells (Γ < 1)
We now study the flow-state evolutions when Ra increases beyond Rac. Previous studies
in liquid-metal convection with Γ = 1 show that the flow evolves from the convection
state to an oscillation state, a chaotic state, a transition-to-turbulence state and a fully
developed turbulent state (Verzicco & Camussi 1997; Ren et al. 2022). The different flow
states exhibit different natures of the temperature fluctuations at the cell centre. For the
convection state, there is hardly any temperature fluctuation. The scaled r.m.s. temperature
at the cell centre σTc/�T increases beyond zero when the system becomes time-dependent,
i.e. in the oscillation state. In the chaotic state and the transition-to-turbulence state,
σTc/�T increases with Ra. But these two states are characterized by different scaling
relations between σTc/�T and Ra. The σTc/�T reaches maximum at the boundary
between the transition-to-turbulence state and the fully developed turbulence state. When
the system becomes fully developed, one observes a negative scaling law between σTc/�T
and Ra that is widely observed in working fluid like water (see, for example, Xie et al.
2019). Thus, the transitional value of Ra between different states can be determined based
on the temperature fluctuation measured at the cell centre.

Figures 2(a)–2(d) plot the scaled temperature fluctuation in cells with Γ = 1/2, 1/3,
1/10 and 1/20, respectively. Following Ren et al. (2022), the temperature fluctuations
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Figure 2. Determination of the flow state based on the experimentally measured scaled temperature
fluctuations at the cell centre σTc/�T as a function of Ra in cells with (a) Γ = 1/2; (b) Γ = 1/3; (c) Γ = 1/10
and (d) Γ = 1/20. The blue squares represent data measured in the set A cells and the red circles in (a,b) are
data measured in the set B cells. In (b) the SR and DR refer to single-roll and double-roll, respectively.

for different states are fitted by respective power laws. The transitional Rayleigh
numbers between different states are then determined when two power laws cross. The
so-determined flow states are labelled in figure 2. Note the flow-state transition can also
be determined from the dynamics of the LSF, i.e. its flow strength δ, azimuthal orientation
θ , and their respective fluctuations. The boundaries between different flow states show no
noticeable qualitative difference based on either the temperature fluctuation method or the
dynamics of the LSF.

To study systematically the effects of Γ on flow-state evolution, we plot the flow state
in a two-dimensional phase space composed of either Γ − Ra or Γ − (Ra/Rac). The
results are plotted in figures 3(a) and 3(b), respectively. Note in figure 3(b), Ra for each
Γ is normalized by its own Rac. We first examine the flow-state evolution in the Γ − Ra
plot. One sees that the flow in cells with 1/20 ≤ Γ ≤ 1 all exhibit a conduction state,
a convection state, an oscillation state, a chaotic state, a transition-to-turbulence state
and a fully developed turbulent state. However, with decreasing Γ , significant changes
in the flow-state transition can be observed. Not only Rac is postponed to larger values
as discussed in § 3.1. The transitional values of the other flow states are all postponed to
larger Ra due to the stabilization effect caused by spatial confinement. The transitional
Rayleigh number to the fully developed turbulent state, defined as Raf here (see purple
left-pointing triangles in figure 3a) can be fitted by a power law with Γ for Γ ≤ 1/3, i.e.
Raf = 5.40 × 104Γ −3.01. The results suggest that the damping effect on the transition to
the fully developed turbulent state by the stabilization effects of the wall when decreasing
Γ becomes weak when compared with that on the onset of convection, which is Rac ∼
Γ −4.05. It should be noted that the Raf ∼ Γ −3.01 scaling is only valid in the studied
parameter range, i.e, 1/20 ≤ Γ ≤ 1/3. In addition, we note if the observed scaling is
valid for Γ � 1, one obtains Raf /Rac ∼ Γ −3.01/Γ −4.05 ∼ Γ . However, since the Γ is
not asymptotically small and the range of Γ in the present study is limited, one sees that
Raf /Rac ∼ Γ 1.33 to the first order as shown in figure 3(b). It will be very interesting to
study what will happen when Γ becomes even smaller than the present study.
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Figure 3. (a) Experimentally obtained flow-state evolution in the Γ − Ra phase space. The flow states are
marked by different colours indicated in the legend. The symbols are experimentally determined transitional
Rayleigh numbers between different flow states. The solid lines are used to guide the eye. The lower dashed
line marks the onset Rayleigh number Rac = 915Γ −4.05 and the upper dashed line marks the transition to
fully developed turbulence Rayleigh number Raf = 5.40 × 104Γ −3.01. (b) The phase diagram plotted in the
Γ − (Ra/Rac) phase space. The dashed line is a fitting of Raf /Rac ∼ Γ 1.33.

Although we do not have a theoretical understanding of this Γ −3.01 dependence, we note
a similar Γ −3 dependence for the transition to the ultimate state in turbulent RBC with gas
as the working fluid was reported (Roche et al. 2010; Ahlers et al. 2022; He, Bodenschatz
& Ahlers 2022). As we will show later, the transition to the fully developed turbulent state
is characterized by the loss of spatial coherence of the LSF. In contrast, the transition to
the ultimate regime results from the boundary layer becoming turbulent (Kraichnan 1962).
Thus, the two Γ −3 scalings may originate from different flow physics.

Now let us discuss the flow-state evolution in the Γ − (Ra/Rac) plot shown in
figure 3(b), which is usually employed when studying flow-state transitions in the vicinity
of onset. When Γ is changed from 1 to 1/2, one sees that all the transitions are advanced,
occurring at smaller values of Ra/Rac. The initiation of the oscillation instability occurs at
Ra/Rac ≈ 1.6, and it is almost independent of Γ for 1/20 ≤ Γ ≤ 1/3. For 1/20 ≤ Γ ≤
1/10, the transition from the oscillation state to the chaotic state and that from the chaotic
state to the transition-to-turbulence state occur at Ra/Rac = 1.68 and Ra/Rac = 1.86,
respectively. Both seem to be independent of Γ . The enlarged portion of the oscillation
state and the consequent delay of the chaotic state in the cell with Γ = 1/3 originates from
a bifurcation of the flow from a single-roll (SR) structure to a double-roll (DR) structure,
which we will discuss in detail elsewhere (authors’ unpublished observations). Figure 3(b)
also reveals that the transition to fully developed turbulence occurs at a much earlier
stage for smaller Γ , e.g. the flow in the Γ = 1 cell becomes fully developed turbulence
at Ra ≈ 200Rac. It occurs at Ra ≈ 3Rac in the cell with Γ = 1/20. The observation
suggests that despite delaying the onset of convection due to the stabilization effects caused
by strong spatial confinement, it advanced the transition to turbulence. Thus, slender
geometries could be utilized to achieve fully developed turbulence in a relatively accessible
way by reducing the cell diameter.

Recently, Zhang & Xia (2023) studied heat transport in slender cuboid RBC
using water as the working fluid with the Pr = 4.38. They classified the flow states
in their quasi-one-dimensional cells based on the heat transport behaviour of the
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Figure 4. Numerically obtained instantaneous flow structure at Ra/Rac = 3 for (a) Γ = 1 with number of
rolls being n = 1 ; (b) Γ = 1/2, n = 1; (c) Γ = 1/3, n = 2; (d) Γ = 1/5, n = 3; (e) Γ = 1/10, n = 6;
and ( f ) Γ = 1/20, n = 8. For each panel, the left subplot shows the streamlines with red and blue colours
representing ascending and descending flow, respectively. The right subplot shows the vertical profiles of the
horizontally averaged normalized squared horizontal velocity Eh(z) = ∑

i=x,y〈u2
i (z)〉S/U2

S(z) (blue line) and
the squared vertical velocity Ev(z) = 〈u2

z (z)〉S/U2
S(z) (red line). Here 〈· · · 〉S means averaging over a horizontal

cross-section and U2
S(z) = ∑

i=x,y,z〈u2
i (z)〉S is the total energy at a certain z. The horizontal dashed lines mark

the boundary between adjacent rolls.

system, i.e. a viscous-dominated regime, a plume-controlled regime and a classical
boundary-layer-controlled regime. The present study differs from Zhang & Xia (2023)
in two ways: firstly, we are working with Pr which is two orders of magnitude smaller than
that reported in Zhang & Xia (2023); secondly, the phase diagram shown in figure 3 is not
based on the heat transport, but based on the structure and dynamics of the flow.

3.3. Dynamics of the LSF with decreasing Γ

To reveal the mechanism that accelerates the transition to turbulence in strongly
confined cells, we study the structure and dynamics of the LSF. Figures 4(a)–4( f )
show the instantaneous flow structure numerically obtained at Ra/Rac = 3 in cells with
1/20 ≤ Γ ≤ 1. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.
86 showing the temporal evolution of the flow structure. While the flow is in the convection
state for Γ = 1, the oscillation state for Γ = 1/2 and 1/3, the chaotic state for Γ =
1/5, it is in the turbulent state for Γ ≤ 1/10. Following Zwirner, Tilgner & Shishkina
(2020), we use the relation between the horizontally averaged squared horizontal velocity
Eh = ∑

i=x,y〈u2
i 〉S/U2

S and the squared vertical velocity Ev = 〈u2
z 〉S/U2

S to identify the
flow structures. Here 〈· · · 〉S means averaging over a horizontal cross-section and U2

S =∑
i=x,y,z〈u2

i 〉S is the total energy at a certain horizontal cross-section. The left subplot
of each panel in figure 4 shows the streamlines with red and blue colours representing
ascending and descending flow, respectively. The right subplot of each panel shows the
vertical profiles of Eh (blue line) and Ev (red line). For a continuous vertical roll to exist,
we require Ev(z) > Eh(z). To determine the junction between two neighbouring rolls, we
first find two neighbouring Ev(z) = Eh(z) points. The midpoint of these two neighbouring
points with Eh(z) > Ev(z) is then defined as the junction between two rolls (see the dashed
line in the right subplots of each panel in figure 4). From figure 4(a,b), one sees that for
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Figure 5. Time series of the number of rolls n (blue solid line), the Nusselt number Nu (black dashed line)
and the Reynolds number Re (red dash-dotted line) in cells with (a) Γ = 1/3; (b) Γ = 1/5; (c) Γ = 1/10; and
(d) Γ = 1/20 obtained numerically at Ra/Rac = 3. In the vertical axis title, X represents either Nu, Re or n,
and σX represents their respective r.m.s. value.

Γ = 1/2 Γ = 1/3 Γ = 1/5 Γ = 1/10 Γ = 1/20

n τ P% Nu τ P% Nu τ P% Nu τ P% Nu τ P% Nu

1 248.58 99.6 1.53 14.61 72.9 1.80 6.93 51.0 2.03 1.85 13.9 2.21 0.75 0.8 2.27
2 1.06 0.4 1.27 5.21 26.8 1.27 2.44 33.5 1.47 1.36 27.7 1.90 0.66 5.1 2.30
3 — — — 0.59 0.1 1.19 1.88 14.2 1.31 1.13 28.5 1.73 0.63 13.3 2.12
4 — — — — — — 0.34 0.5 1.33 0.88 18.1 1.57 0.55 19.9 1.98
5 — — — — — — — — — 0.71 7.9 1.47 0.45 20.0 1.89
6 — — — — — — — — — 0.41 1.5 1.39 0.38 15.7 1.79
7 — — — — — — — — — 0.33 0.3 1.30 0.36 11.2 1.70
8 — — — — — — — — — — — — 0.30 5.8 1.65
9 — — — — — — — — — — — — 0.26 2.3 1.62
10 — — — — — — — — — — — — 0.18 0.6 1.56
11 — — — — — — — — — — — — 0.26 0.3 1.52

Table 1. The mean lifetime τ in units of free-fall time τff , the probabilities of occurrence P and the mean heat
transport efficiency Nu of the n-roll flow mode for Ra/Rac = 3 at Pr = 0.029. The symbol ‘—’ means no such
flow modes are observed in the study. Each simulation runs at least 1800 τff after the system has reached a
steady state.

Γ = 1 and 1/2, the LSF is in the form of a single-roll structure similar to the onset of
convection (inset of figure 1a). This is also verified by the observation that Ev > Eh for
the entire cell except for the locations very close to the top and bottom boundaries where
large parts of the flow in the boundary layers are in the horizontal directions, resulting in
Eh > Ev . When Γ ≤ 1/3, the flow structure becomes complex: a double-roll structure in
the Γ = 1/3 cell and a triple-roll structure in the Γ = 1/5 cell. There are eight vertically
stacked rolls for the extreme case with Γ = 1/20.

To study systematically the temporal evolution of the flow structure, we show in figure 5
the time trace of the number of rolls n, the corresponding Nu and Re. Table 1 summarizes
the statistics of different flow modes in cells with 1/20 ≤ Γ ≤ 1/2, including their mean
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lifetime τ , the probability of occurrence P and the corresponding Nu. The symbol ‘—’
means no such flow mode is observed during the simulation, which runs at least 1800 τff .
In the Γ = 1 cell (not shown), the structure of the LSF is a stable single roll similar to the
instantaneous examples shown in figure 4(a). When decreasing Γ , one sees that, firstly, the
maximum number of rolls the system can develop nmax increases significantly from nmax =
1 for Γ = 1 to nmax = 11 for Γ = 1/20. Secondly, the system switches more frequently
between flow mode with different n for smaller Γ , e.g. for the Γ = 1/3 cell, the system
switches almost periodically between the n = 1 and n = 2 modes; it switches frequently
and chaotically between flow modes from n = 1 to n = 13 in the Γ = 1/20 cell. As a
result of the increased number of rolls and frequent switching among them, the average
lifetime of each mode decreases dramatically with decreasing Γ . For example, in the Γ =
1/3 cell, the mean lifetime τ for the n = 1 and the n = 2 modes are τ1 = 14.61τff and
τ2 = 5.21τff , respectively. In contrast, in the Γ = 1/20 cell, due to the frequent transitions
between modes with different n, the mean lifetime of each mode is less than τff . The
maximum lifetime observed is τ1 = 0.75τff and the minimum mean lifetime observed is
τ10 = 0.18τff . These observations suggest that in the strongly confined cells, the single-roll
large-scale circulation observed in systems with Γ ∼ 1 collapses. As a result of this new
dynamical process of flow-mode transition discussed above that exists only in confined
geometries, the flow becomes turbulent very quickly after the onset of convection.

The change in the flow state with Γ is also reflected on the Nu and Re time series shown
in figure 5. One sees that both Nu and Re oscillate periodically in the cell with Γ = 1/3.
With decreasing Γ , the fluctuation of Nu and Re increases. They reach up to four times the
r.m.s. value in the Γ = 1/20 cell. Consistent with the finding by Zwirner et al. (2020), for
a given Γ , the higher the number of vertical rolls, the smaller the heat transport efficiency
of the system. For example, in the cell with Γ = 1/20, the maximum Nu observed for
n = 1 mode is 50 % higher than Nu of the n = 11 mode. It should also be noted that there
is a negative time delay between n and Nu or Re, suggesting that the flow-mode change is
probably the cause for the variation in Nu and Re.

Finally, let us try to understand the origin of the multiple vertically stacked rolls based on
LSA. We consider an RBC cell with no-slip and constant temperature boundary conditions
at the top and bottom walls. The two horizontal directions are periodic. The height of the
cell H is fixed to be 1. Thus, its aspect ratio is Γ = D/H = D. Limiting the discussion
with only one cell in the horizontal direction requires kxD = π. Following the standard
LSA procedure (Chandrasekhar 1961), we obtain the marginal stability curve for the cell
with the horizontal wavenumber k2 = k2

x + k2
y = 2k2

x and different numbers of vertically
stacked rolls n. Here kx and ky are the two horizontal wavenumbers. Next we replace k from
the LSA analysis with Γ using the relation Γ = π/kx = π/ky = √

2π/k. Figure 6(a) plots
the marginal stability curve from n = 1 to n = 10 vertically stacked rolls in the Ra − Γ

diagram. Firstly, it is seen that the marginal stability curves for different modes do not
cross each other with decreasing Γ . Secondly, the curves for the n > 1 modes gradually
approach the limit of Rac,n=1 = 390Γ −4 (the dashed line) for Γ � 1, suggesting that in
the strongly confined regime, the high-order modes become unstable just above the onset
of convection. This can be seen more clearly from figure 6(b), where the marginal stability
curves for the n > 1 modes are normalized by that of the n = 1 mode. The figure suggests
that for Ra = 3Rac and Γ < 1/10, all modes up to n = 9 will grow, consistent with the
DNS observation.
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Figure 6. (a) Marginal stability curve for different numbers of vertically aligned rolls n vs the aspect ratio Γ .
The dashed line marks Rac ∼ Γ −4 for the n = 1 mode. (b) The marginal stability curve of the n > 1 modes
normalized by that of the n = 1 mode as a function of Γ .

4. Conclusion

We have systematically studied the flow-state evolution in liquid-metal convection in a
strongly confined regime. Combining experiment, DNS and LSA, we show that not only
the onset of Rayleigh–Bénard instability is delayed due to the stabilizing effect in strongly
confined geometries, but the various flow-state transitions are all postponed. The onset
Rayleigh number Rac and the transition to fully developed turbulence Rayleigh number
Raf depend on the aspect ratio Γ with Rac ∼ Γ −4.05 for Γ ≤ 1/10 and Raf ∼ Γ −3.01

for Γ ≤ 1/3, implying that the stabilization effects are weaker on the transition to fully
developed turbulence when compared with that on the onset. The study shows that spatial
confinement facilitates the transition to turbulence if the flow-state transition is expressed
in terms of a supercritical Rayleigh number, i.e. Ra/Rac. The reason for this can be
attributed to a new mechanism for transition to turbulence in the strongly confined limit.
The LSA shows high-order vertical flow modes appear just above the onset of convection
in strong spatially confined cells. With increasing Ra, the system stochastically switches
between different vertical flow modes. As a result of this frequent flow-mode switching,
the usually observed single-roll structure in the Γ ∼ 1 regime breaks down, and the system
becomes fully developed turbulence in an early stage. Turbulence with stabilization forces
is common in nature and industry, such as rotation and magnetic fields in geophysical
and astrophysical applications. The newly discovered mechanism for transition to fully
developed turbulence may find applications in other turbulent flows.

Supplementary movies. Supplementary movies showing the temporal evolution of the large-scale flow
structure in different Γ cells are available at https://doi.org/10.1017/jfm.2024.86.
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Appendix

Table 2 lists some of the parameters of the convection cells and of the experiment in the
present study. In total, eight convection cells were used. In the table, the cell diameter
D, height H, the aspect ratio Γ , the range of temperature difference between the top and
bottom plate �T , the range of the heat flux q supplied at the bottom plate and the Biot
number Bi are listed.

Cell D (mm) H (mm) Γ (nominal Γ ) �T (K) Heat flux q (W cm−2) Biot number

A 20.14 20.03 1.01 (1) 1.82∼11.40 0.26∼3.30 0.051∼0.134
39.88 0.50 (1/2) 1.47∼24.15 0.11∼5.81 0.026∼0.111
59.84 0.34 (1/3) 1.62∼26.05 0.08∼4.65 0.018∼0.083

200.15 0.10 (1/10) 4.50∼30.71 0.07∼1.51 0.006∼0.023
399.9 0.05 (1/20) 6.88∼29.92 0.07∼0.61 0.003∼0.009

B 40.37 40.04 1.01 (1) 0.51∼26.91 0.05∼8.67 0.034∼0.152
80.05 0.50 (1/2) 0.48∼26.70 0.03∼6.67 0.020∼0.119

119.83 0.34 (1/3) 0.50∼22.28 0.02∼4.41 0.011∼0.094

Table 2. Some parameters of the convection cells and of the experiment. Here Γ = D/H is the aspect ratio of
the cell with D and H being the cell diameter and height, respectively. The nominal Γ is used to refer to each cell
in the main text; �T = Tbot − Ttop denotes the time-averaged temperature difference between the bottom plate
Tbot and the top plate Ttop. The heat flux supplied at the bottom plate is listed as q. The range of the Biot number,
defined as Bi = Nu(λ/λCu)(HCu/H)), is shown in the last column for each cell with λCu = 401 W (mK)−1 and
HCu = 19 mm for the bottom plate and 15 mm for the top plate.

REFERENCES

AHLERS, G., et al. 2022 Aspect ratio dependence of heat transfer in a cylindrical Rayleigh–Bénard cell. Phys.
Rev. Lett. 128, 084501.

AHLERS, G., GROSSMANN, S. & LOHSE, D. 2009 Heat transfer and large scale dynamics in turbulent
Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503–537.

BAILON-CUBA, J., EMRAN, M.S. & SCHUMACHER, J. 2010 Aspect ratio dependence of heat transfer and
large-scale flow in turbulent convection. J. Fluid Mech. 655, 152–173.

CHANDRASEKHAR, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
CHEN, X.-Y., XIE, Y.-C., YANG, J.-C. & NI, M.-J. 2023 Strong coupling of flow structure and heat transport

in liquid metal thermal convection. J. Fluid Mech. 975, A21.
CHILLÁ, F. & SCHUMACHER, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys.

J. E 35, 58.
CHONG, K.L., DING, G. & XIA, K.-Q. 2018 Multiple-resolution scheme in finite-volume code for active or

passive scalar turbulence. J. Comput. Phys. 375, 1045–1058.
CHONG, K.L., YANG, Y., HUANG, S.-D., ZHONG, J.-Q., STEVENS, R.J.A.M., VERZICCO, R., LOHSE, D.

& XIA, K.-Q. 2017 Confined Rayleigh–Bénard, rotating Rayleigh–Bénard, and double diffusive
convection: a unifying view on turbulent transport enhancement through coherent structure manipulation.
Phys. Rev. Lett. 119, 064501.

FUNFSCHILLING, D., BROWN, E., NIKOLAENKO, A. & AHLERS, G. 2005 Heat transport by turbulent
Rayleigh–Bénard convection in cylindrical samples with aspect ratio one and larger. J. Fluid Mech. 536,
145–154.

981 R2-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

86
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://orcid.org/0000-0001-5093-9014
https://orcid.org/0000-0001-5093-9014
https://orcid.org/0000-0002-2159-4579
https://orcid.org/0000-0002-2159-4579
https://doi.org/10.1017/jfm.2024.86


Transition to fully developed turbulence

GLATZMAIER, G.A., COE, R.S., HONGRE, L. & ROBERTS, P.H. 1999 The role of the Earth’s mantle in
controlling the frequency of geomagnetic reversals. Nature 401, 885–890.

HE, X., BODENSCHATZ, E. & AHLERS, G. 2022 Universal scaling of temperature variance in
Rayleigh–Bénard convection near the transition to the ultimate state. J. Fluid Mech. 931, A7.

HÉBERT, F., HUFSCHMID, R., SCHEEL, J. & AHLERS, G. 2010 Onset of Rayleigh–Bénard convection in
cylindrical containers. Phys. Rev. E 81, 046318.

HUANG, S.-D., KACZOROWSKI, M., NI, R. & XIA, K.-Q. 2013 Confinement-induced heat-transport
enhancement in turbulent thermal convection. Phys. Rev. Lett. 111, 104501.

KRAICHNAN, R.H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 1374–1389.
LIM, Z.L., CHONG, K.L., DING, G.-Y. & XIA, K.-Q. 2019 Quasistatic magnetoconvection: heat transport

enhancement and boundary layer crossing. J. Fluid Mech. 870, 519–542.
LOHSE, D. & SHISHKINA, O. 2023 Ultimate turbulent thermal convection. Phys. Today 76, 26–32.
LOHSE, D. & XIA, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev.

Fluid Mech. 42, 335–364.
MALKUS, W.V.R. & VERONIS, G. 1958 Finite amplitude cellular convection. J. Fluid Mech. 4, 225–260.
MÜLLER, G., NEUMANN, G. & WEBER, W. 1984 Natural convection in vertical Bridgman configurations.

J. Cryst. Growth 70, 78–93.
PANDEY, A., KRASNOV, D., SCHUMACHER, J., SAMTANEY, R. & SREENIVASAN, K.R. 2022 Similarities

between characteristics of convective turbulence in confined and extended domains. Physica D 442, 133537.
REN, L., TAO, X., ZHANG, L., NI, M.-J., XIA, K.-Q. & XIE, Y.-C. 2022 Flow states and heat transport in

liquid metal convection. J. Fluid Mech. 951, R1.
ROCHE, P.-E., GAUTHIER, F., KAISER, R. & SALORT, J. 2010 On the triggering of the ultimate regime of

convection. New J. Phys. 12, 085014.
SCHINDLER, F., ECKERT, S., ZÜRNER, T., SCHUMACHER, J. & VOGT, T. 2022 Collapse of coherent large

scale flow in strongly turbulent liquid metal convection. Phys. Rev. Lett. 128, 164501.
SHISHKINA, O. 2021 Rayleigh–Bénard convection: the container shape matters. Phys. Rev. Fluids 6, 090502.
VAN DER POEL, E.P., STEVENS, R.J.A.M. & LOHSE, D. 2011 Connecting flow structures and heat flux in

turbulent Rayleigh–Bénard convection. Phys. Rev. E 84, 045303.
VERZICCO, R. & CAMUSSI, R. 1997 Transitional regimes of low-Prandtl thermal convection in a cylindrical

cell. Phys. Fluids 9, 1287–1295.
WANG, Q., VERZICCO, R., LOHSE, D. & SHISHKINA, O. 2020 Multiple states in turbulent large-aspect-ratio

thermal convection: what determines the number of convection rolls? Phys. Rev. Lett. 125, 074501.
XIA, K.-Q. 2013 Current trends and future directions in turbulent thermal convection. Theor. Appl. Mech. Lett.

3, 052001.
XIA, K.-Q., HUANG, S.-D., XIE, Y.-C. & ZHANG, L. 2023 Tuning heat transport via coherent structure

manipulation: recent advances in thermal turbulence. Nat. Sci. Rev. 10, nwad012.
XIE, Y.-C., CHENG, B.-Y.-C., HU, Y.-B. & XIA, K.-Q. 2019 Universal fluctuations in the bulk of

Rayleigh–Bénard turbulence. J. Fluid Mech. 878, R1.
XIE, Y.-C., WEI, P. & XIA, K.-Q. 2013 Dynamics of the large-scale circulation in high-Prandtl-number

turbulent thermal convection. J. Fluid Mech. 717, 322–346.
ZHANG, L. & XIA, K.-Q. 2023 Heat transfer in a quasi-one-dimensional Rayleigh–Bénard convection cell.

J. Fluid Mech. 973, R5.
ZHONG, J.-Q., STEVENS, R.J.A.M., CLERCX, H.J.H., VERZICCO, R., LOHSE, D. & AHLERS, G.

2009 Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating
Rayleigh–Bénard convection. Phys. Rev. Lett. 102, 044502.

ZÜRNER, T., SCHINDLER, F., VOGT, T., ECKERT, S. & SCHUMACHER, J. 2019 Combined measurement of
velocity and temperature in liquid metal convection. J. Fluid Mech. 876, 1108–1128.

ZWIRNER, L., TILGNER, A. & SHISHKINA, O. 2020 Elliptical instability and multiple-roll flow modes of the
large-scale circulation in confined turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 125, 054502.

981 R2-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

86
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.86

	1 Introduction
	2 The experimental and numerical set-ups
	3 Results and discussions
	3.1 The critical Rayleigh number Rac for the onset of convection vs 
	3.2 Flow-state evolution in spatially confined cells (<1)
	3.3 Dynamics of the LSF with decreasing 

	4 Conclusion
	A Appendix
	References

