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Abstract

We study the stability map from the rigid analytic space of semistable points in P3 to convex sets in the
building of Sp2 over a local field and construct a pure affinoid covering of the space of stable points.

2000 Mathematics subject classification: primary 14M17; secondary 32PO5, 2OG25.

0. Introduction

Drinfeld introduced a p-adic symmetric space and used it to study the representations
of GL(2) over a function field. Schneider and Stuhler use the map from the p-adic
symmetric space to the building of GL(n) to study the cohomology of p-adic symmetric
space. It is natural to ask for these results for any semisimple group. First we observe
that the p-adic symmetric space of Drinfeld is the variety of points in the variety of
Borel subgroups which are stable under the action of all maximal tori. The other point
is that the map from the p-adic symmetric space to the building is just the interval
of stability map. Everything make sense for any semisimple group except that in
general the linearization used in the definition of stable points may result in the variety
of stable points becomes smaller than the variety of semi-stable points. When this
happens the interval of stability map will map a point in the p-adic space to a convex
subset of the building. This phenomenon will almost always occur when the Borel
subgroup is replaced by an arbitrary parabolic subgroup P of the semisimple group G.
As a result it is not known how to prove in general even a result like Proposition 2.4 in
Mumford [10]. Yet p-adic spaces constructed out of the flag varieties G/P could be
interesting moduli space of periods (see Rapoport [13]). Also Moy [9] showed that the
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displacement function in a Bruhat-Tits building is convex and that convex sets in the
Bruhat-Tits plays an important role in the representation theory of the group over the
local field. It will be interesting if there is a relation between the representations of the
group and the geometry of the variety of semi-stable points via the interval of stability
map. In [5] Hsia Liang-Chung uses rigid geometry to study p-adic dynamic systems
constructed out of a tree. It would be nice to have an analogue for a building. Thus
we believe that it is worthwhile if only as experimental data to study the p-adic spaces
when the variety of stable points is not the same as the variety of semi-stable points.
The case we have chosen is the rank 2 group Sp2 being the first case after SL(2) and
P is the maximal parabolic subgroup such that G/ P is the protective 3-space. We
point out that the calculations for other parabolics are also 'embedded' inside this
case. We study in this paper those properties of the C2 building which are related to
the properties of the stable points in P3; in particular we shall use the SL{2) x Si,(2)
sub-building of the Sp2 building to construct a pure affinoid covering of the p-adic
space associated to G/P.

Let us describe the p-adic space we are studying. The maximal torus contained
in the parabolic subgroup P acts on the flag variety G/ P and we obtain the variety
of stable points for this action as defined in Mumford [11]. Let Y^ denote the rigid
analytic variety (see [1]) which has the same set of closed points as the variety of
stable points above. The p-adic space we study here is Ys := f\eG(f) 8 ' ^U- ^n t n e

case when the stable points and the semistable points are the same these problems
are studied by van der Put and Voskuil [12]. The case of quasi-split rank 1 group
is studied by Voskuil [16]. This work started from a conversation with Voskuil in a
cafe in Newtown. I would like to thank him for his generosity in sharing these ideas.
Finally a raison d'etre for Sp2 is a response to Paul Sally's question: 'Do we know
everything about Sp2T (Luminy Conference on Sp2 1998) — I would like to thank
him for his suggestion.

1. Buildings and flag varieties

In this section we give a summary of the general results on the p-adic spaces
constructed out of the variety of stable points in flag varieties.

1.1. Let F be a p-adic field with ring of integers G. Assume that p is odd. In
this section we let G be an absolutely simple Chevalley group scheme over G. Fix a
maximal split torus T defined over F in G and choose a Borel subgroup B over F of G
containing T. This fixes an ordering of the root system 4> of (G, T). Let SC\T) (re-
spectively J£**(r)) be the lattice of characters (respectively one parameter subgroups)
of T. Denote by (•, •) the perfect pairing between 5£(J) and 3C*{T). Extend this to
a pairing of 3C{T) ® K and SCt{J) ® R.
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[3] C2 building and projective space 385

Fix a uniformiser n of F. Normalise the additive valuation v of F by v(rc) = 1.
Define the map v : T -+ ^T»(r)®R by (x, v(t)) = - v ( * ( 0 ) for all x 6 5£{T). We
regard SC* (T) <8>IR as an affine space on which Tacts by translation: /-z = z+v(t). The
affine roots of (G, 7") are the following affine functions on SC+iJ) ® R : (a + n)(z) =
(a, z)+nfora e 4>. Denote the affine root sy stem by Oaff- The affine root system gives
a simplicial decomposition of 5£+{T) ® K. The maximal simplices, called alcoves, are
the closures of the connected components of the complement of the walls: /3(z) = 0
for/3 € 4>aff- The affine space 3C* (7) ®IR endowed with this simplicial decomposition
is called the apartment si attached to the torus T. The stabiliser Ga in G(F) of a
simplex <r in the apartment &/ is a parabolic subgroup. All the maximal F-tori of G
are conjugate. For g e G(F), the apartment attached to the torus gTg~l is g$4 and
the stabiliser of the simplex g(a) is Gg(a) = gGag~l.

The Bruhat-Tits building 38 of G is defined to be UgeG(F) ^ ( • c ^ ) /~ where the
equivalence relation ~ is given by ax ~ CT2 if and only if GCT| = GO2 [15, 2.1].

1.2. Fix a parabolic subgroup P defined over F of G containing the chosen Borel
subgroup B. Write X for G /P . Let J f be an ample line bundle of X. Choose a G-
linearization of S£. This restricts to a ^-linearization and we can define the variety of
stable points Xs(T, jSf) and the variety of semi-stable points XSS(T, .£?) with respect
to this 7-linearization of S£. In practice this is what we do. For a positive weight k,
there exists a G-module Vk with highest weight X. In Vk there is a highest weight
vector Vx on which the maximal torus T acts with character X. The G-orbit of the
image of vk in the projective space P( VI) is isomorphic to the flag variety X = G/Pk.
The pullback of <?(1) along the embedding X c P(V1) gives a line bundle i f o n X
which has the G action induced by the the G action on Vk. (See [6,7].) This gives a G-
linearization of j£?. It induces a 7-linearization of .if. Thus we can define the variety
Xs (respectively Xss) of stable (respectively semi-stable) points for the action of the
torus T with respect to -Sf. Recall that a point x in X is said to be semi-stable with
respect to (7\ j£?) if for some positive integer n there exists a 7-invariant section /
of if8"1 such that f (x) ^ 0 and the set of y e X such that / (y) ^ 0 is affine. A
semi-stable point is said to be stable if moreover the set y e X such tha t / (y) ^ 0 is
closed (see [11, Chapter 1.4]).

In our situation we have a simple criterion for stability. We can decompose

VI = © Vk.x.

For x in VI, let us write xx for its component in V^x. Let /z(x) denote the convex
hull in 3E(T) <g> IR of the set of x such that xx ^ 0. Then for any x in X the vertices
of n(x) is a subset of the W-orbit of X and the edges of (i(x) are parallel to the roots
(see [3]). The point x is semi-stable (respectively stable) if and only if 0 lies in /z(x)

https://doi.org/10.1017/S1446788700009939 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009939


386 K. F. Lai [4]

(respectively in the interior of fi(x)). It is also known that Xs = X5S if and only if X is
not contained in a hyperplane through 0 spanned by roots [12, Theorem 1.1].

1.3. Let C denote a fixed completion of an algebraic closure of F. Write GQ for
the ring of integers of C. Given an algebraic variety over F we can construct a rigid
analytic variety which has the same set of closed points [1, 9.3.4]. We denote the
analytification of X5(T, i f ) ® C and of X"(T, i f ) ® C by Y^ and Y%. We recall
that &/ denotes the apartment attached to the torus 7. Let

== n *(j2>and r:= n sw-
«eG(F) g€C(F)

These are the rigid analytic flag varieties we study in this paper. For G = SL(2) with
the natural action on X = IP' the space Ys is the Drinfeld upper half space.

We are interested in pure affinoid coverings of our rigid analytic spaces. Let Z be
a rigid analytic space. A pure covering % = {Ut] of Z is an admissible covering by
affinoid subspaces (/, satisfying the following conditions:

(1) For each i, £/, intersects a finite number of Uj.
(2) If £/, fl Uj / 0 then there exists a Zariski open affine set Vtj c Uj such

that Ui n Uj = R~l{ Vy) where /?, : Ut -» Z7, is the reduction map [1,7.1] and Ut n U,
is an affinoid space having reduction Ry : Ut C\ Uj -*• Vy •

To have a pure covering means that we can see that the reductions of the affinoids
in the covering glue together nicely. There is a 1-1 correspondence between pure
covering of Z and formal schemes over 6 whose generic fibre is Z and whose closed
fibre is the reduction of Z with respect to the given pure covering (see [8]).

1.4. The completion of Xs(T, 5?) <g> (?c (respectively X"{T, i f ) <g> 0C) along

the closed fibre will be denoted by Y^ e (respectively Y%_ff). In particular, this

means J£ , , (C) = X ' (7 \ J8?)(tfc), Y5.ff(Q = *SS(T, &)(0C)-
Consider the maps T(Q x Ys^ e -> Y%, and 7(C) x Y^e -+ Y^ both defined by

the action of the torus T on X. We shall construct an affinoid covering of Ys by means
of these maps and a natural affinoid covering of the analytic space T <g> F associated
to the torus T. It is here the building of G enters the picture. The map v extends
uniquely to a map from T(C) to jrf'. This defines the action of T(C) on &/. For a
simplex a of the apartment srf, let Ta denote the affinoid subspace of T ® F given
by the affinoid algebra [1, 6.1]: F(nnx) where x e &{T), n 6 2, and x + « > 0
on a. For the standard alcove a0 in &/ this affinoid algebra is F(au . . . , an, Jra^"1),
where au ... , <*„ is the basis of simple roots of <t>(G, 7, fl) and a0 is the highest root.
We see immediately that:

(1) Ta = v-\a).
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(2) The set of {Tg} for all simplices a of A is an admissible covering of T <g> F by
affinoids.
(3) If CT], o2 are two simplices then Tai D Ta2 is empty if crx n cr2 = 0 and is equal

to TCT|0<T2 otherwise.

This leads us to introduce the analytic set Y^a := Ta • Y^ e and Y£a := 7CT • J ^ ^
for a e &/. We shall study the covering by these sets [12, 3.3 and page 84].

1.5. We need the two maps r, I introduced by Voskuil.
The map r is used to compare the analytic sets coming from different apartments

and different simplices. It is the ratio of the maximum absolute values of the torus
invariants. Recall that i f is the ample line bundle on X = G/P. Write F(X, S£®m)T

for the module of T-invariant sections. Pick an integer d such that the homogeneous T-
invariants generate ®n>or(X, J£®dn)T as a ^"-algebra. L e t / ! , . . . ,fm be generators
of V(X, &%d)r. For two different apartments srfx, srf2, we define a function r £ ^ :
Y%2 -*• K as follows: pick gu g2 e G(F) so as to have &/i =
Then as in [12, page 86] we put

„ , x ._ max1<,<m{|,g*/,(*)|}
r { X )

Hereg*/(;c) isf(g~lx). The value of r^ ^(x) only depends on the apartments £/u

srf2. The function r has the following properties:

(1) fa^gx) = r^2(x) for g e G(F) andjc e Y£.

(3) If srfx, .5*2 are apartments containing a simplex ox and x 6 Y^ a> then r^ ^ (x) > 1
[12, page 86 (c)].
(4) If CT0 C s/0, o\ C M, ^2 contains CT0, a, andx e K̂ o ffo D K^ CT| then r^^x) <

r2l.«(x) (from (2) and (3) a b o v e ) -
Now we can introduce

\ g e G(F)} if x e J^,

if x ^ y^.

1.6. The map / is a G(F)-invariant map from the variety Yss of semi-stable points
to the set of convex subsets of the building SS of G and I(x) will be bounded if
and only if x is stable. Recall the map v : T(€) ->• s/ which defines the action
of 7"(C) on sf. Let 0 6 £?o be the vertex where the affine roots at, . . . , an take the
value 0. For x e Y£, the interval of T-stability I^(x) is defined as the closure of the
set {t • 0 e si : x e t • Y^ 0), where t runs through points of T in the algebraic closure
of F. (See [16, 2.3]) We put Ige/(x) = g{IAg'xx)). For x e Yss, we define the
interval of G-stability / (x) to be the set of all z 6 88 such that for any apartment s/'
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containing z we have z € l^ix) [16, 4.7]. We recall the following properties of / .
Assume that x e Yss.

(2) / (x) is convex; it is bounded if and only if* e Ys and I(x) = (t • 0} if and only
if x € t • Y^, o for all apartments &/' containing t • 0.

When Yss = Ys the interval of stability y defines a map from the analytic space Ys to
the building SB and this is the map used by Drinfeld and Schneider-Stuhler (see [4,14,
Section 1]).

2. Action of Sp2 on P3

Let G be the symplectic group

/
j —

over a

/ 0
0
0

V-i

defined

0
0

- 1
0

0
1
0
0

by the form

1\
0
0

o)
The group G(F) of F rational points consists of 4 x 4 matrices g with coefficients
in F such that 'gJg = J, where 'g denotes the transposed matrix of g. We choose a
maximal torus To over G so that T0(F) consists of matrices

r, 0 0 0\
0 t2 0 0
0 0 qx 0

0 0 0 /,- .

for ?!, t2 6 F*. We choose the Borel subgroup B of G to be the upper triangular
matrices in G. This fixes a basis [ct\, a2) of the root system of (G, To) which is of
type C2. In standard notation the root system C2 is ±e\ ± e2, ±2ei, ±2e2. It has
simple roots a t = ei — e2, a2 = 2e2. The highest root is a0 = 2<*i + a2.

The fundamental weights are a>i = ci, o>2 = e\ + e2. Consider positive weights of
the form k = n\C0\ + n2cu2 with positive integers nu tt2. Let W be the Weyl group
of this root system and Wk be the stabilizer of the weight k. Associated to A. is the
parabolic subgroup Pk = B WkB of G. Let us write P for /\ ,- Then

P(F) = :a e F*, g e SL(2, F)

Letui, v2, v3, v4 be the standard basis of F 4 . Write[M, v, . . . ] for the subspace spannet
by the vectors u, v, .... The group P is the stabilizer of the isotropic line [vi], so P i
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the intersection with G of the stabilizer in SL (4) of the flag [vt] c [ui]"1 = [v\, v2, v3].
We see that G/P is isomorphic to the set of isotropic lines in the 4-dimensional affine
space. But every line is isotropic. So G/P = P3, the projective 3-space.

3. C2 buildings

In the Bruhat-Tits building SS of the group G = Sp2 associated to a maximal
torus T is an apartment &/ in 38. For each simplex a e &/ we have defined the
affinoid subspace Ta c T.

For the standard alcove a0 defined by ct\, a2, 1 — ar0, we have

Tao = Sp (*(«,, a2, net'1)) = Sp {k(txq\ t\, nt;2)) .

For each maximal F-torus T in G, we can find a subgroup H of G such that T lies in H
and H is defined over F and is isomorphic to SL2 x SL2 over F. For / = 1, 2, 3, 4, let
us write Ut(F) for the subgroup consisting of transformations taking.*, toxj ifj ^ i
and Xj -> J:, + «,JC5_, with M, e F. For To, the subgroup // is generated by the
groups Ui(F) for i = 1, 2, 3,4.

Let . / denote the building of the group H{F) = SL2(F)x SL2{F). The inclusions
of groups T(F) c H(F) C G(F) gives rise to inclusions of simplicial complexes
J / C / C ^ - To make these inclusions simplicial one has to split each SL2 x SL2

chamber in two Sp(4) chambers (see picture below). We will always assume that the
simplicial structures of the SL2 x SL2 buildings are arranged in this way.

In the picture the dotted lines indicate walls occurring only in the Sp (4) building and
solid lines indicate walls in the SL2 x SL2 building.

We give a description of the stabilizer Gao in G(F) of the standard alcove a0. Let Ua

be the root subgroup of G with respect to the maximal torus To corresponding to the
root a. Then Ua(F) = F and Un+a(F) = {x e Ua(F) = F : v(x) > n). It is known
that Gao is generated by Un+a for those n + a > 0 on a0 (see [15, 3.1.1]). It follows
that for g e G(F) with matrix (gy), we have g e Gff0 if and only if v(gy) >
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Thus Gao stabilizes the following <?-submodules of F4: Mo = (v\, v2, v3, v*), Mx =
n2, u3, v4), M2 = (nvu v2, vit v4) and MX = (vu v2, v3, n'xvA).

4. Stable points

For ease of reading we introduce here all the analytic sets we shall use.

4.1. Stable points related to an apartment Write sf0 for the apartment attached
to the torus To. We write the coordinates of P3 as X\,x2, JC3, x4. The T0-invariants are
generated by x\x4 and x2x3. It follows that

YsJo = {x e P3 : xtx4 / 0 or x2x3 ^ 0}

Y^ = {x e P3 : x, ^ 0, i = 1 • • • 4} .

For any simplex a in an apartment s/ of the building SS of the group G, we can find
an element g e G(F) such that a = g(a0) and s/ = g(s/0). We put Y^ = gY^.
This definition does not depend on the choice of the element g. As in general we

n u f YSS — Pi P • V" and Ys — Pi p • Ys

We define the following analytical subspace of Y^ :

:= {x e -(x) = 1, = 1 .

The space
e

is not affinoid. Let
o ff „

be the set of x e
e

such that

Let 0 6 s/0 be the vertex where the affine roots ct\ and a2 take the value 0. As G(F)
acts on both the flag variety and the building we can put Y^ ,.o = t • Y^a c.

The map T x Y^ e —> Y^, given by (t, x) H-> t • x is surjective. So the analytic
sets Y^_a :=Ta- Y^ff cover K^ for a e ^ 0 - We have for a = a0

= U 6
x2
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We put Y^o<Tn := Ta-Y^offn. For any oesrf<Z@, we can find an element geG(F)
such that CT = g((To) and g*z'= g(tf0). We now define: Y^an := g(Y^oaon). This
definition does not depend on the choice of the element g.

We put Y*^ao for the set of A: € Ys^ao such that \g*Xl/Xl\ = 1, Ig'jcj-.-As-.-l = 1,
Vg e Gao, and i = 1 if 1 < \Xlx4/x2x3\, i = 2 if \xixA/x2xi\ < 1. We write Y^oan

for the set of* e Ys^an such that \g*xi/xi\ = 1, \g*x5_i/x5_i\ = 1, Vg e Ga, z = 1
if AZ < - 1 and / = 2 if n > 0.

4.2. Stable points related to a sub-building Suppose //0 is the subgroup of G
containing the torus To and is isomorphic to SL2 x SL2 over F, let Ĵ o denote the
building of the group H0(F) and we put Kj,o = DhemF) h YU>- ^ ^ i s t h e s e t ofx i n p 3

which is stable for each maximal F torus in Ho. If J = giJ^o) we put Ysj = gYj .
lfaes/CJ? then we take: Y^an := f]heUe hY^an Here

/ / = gHog~x and //„ is the stabilizer of the simplex a in / / ( F ) and J is the building
belonging to H. We have

yk«n = {* e C n : | * % A , - | = 1, Vg e / / „ , « = 1 , . . . . 4 } .

g n c ^jr0 „„ „ as follows:We define the affinoid subspace

Y*
= 1, Vg 6 />„„} n < - 1 ;

= 1, Vg e />„,} n > 0.

Furthermore, Y*^ an C ^ f f n is defined as being g(Y"g Hg) where g e G(F) is such
that g(o^o) = •& and g(<y0) = o. This definition does not depend on the choice of g.

4.3. Remarks We have a SL2 x 5L2-equivariant map i/r : Y^o —> P1 x IP1 given

by(jc,,jc2,*3,jc4) i-> (JCI,JC4)X(JC2.X3)- It is clear that Y^ := rise5L2(F)x5z.2(F) S^j* =
^"'(£2] x ̂ ! ) . Here Qt c P1 is Drinfeld symmetric space. Let <!> denote the closure
of the graph of f in P3 x P1 x P". Furthermore we take 4>jf0 := * n (P3 x ! 2 , x £2,).
The group SL2(F) x SL2(F) acts on <J>j,0. We take on <t> c P3 x P1 the coordinates
(x\,x2, Xj, ̂ 4) x (z\, Z4) x (z2, Z3) with Z1X4 — z*x\ and 22^3 = Z1X4. A pure affined
covering of £2] x £2! is found by taking the SL2(F) x 5L2(/r)-images of the following
affinoid subspace F given as the set of z 6 P1 x P1 satisfying the following conditions:

\n\ < |Z,/Z4| < 1, k | < \Z2/Z3\ < 1, IZ1/Z4 - C| = |Z2/Z3 - C| = 1, I7TZ4/Z, - C\ =
kz3/z2 - c| = 1 for all units c in F (see [2, page 172]). The space 4> D (P3 x F) is
not affinoid, but it can be covered by the following two affinoid spaces:

F" := x e $ n (P3 x F):

XiX4

X2X3

XiX4

X2X3

< 1

> 1
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The covering F := {g(T+), g(¥~) : g € SL2{F) x SL2(F)} is pure and covers
all of <t>jf0. Since the components of the reduction of £2, x Qi with respect to the
covering are all proper, the reduction of <$>jr0/ T of Oj»0 by a discrete co-compact
subgroup F c SL2(F) x SL2{F) is a proper analytical variety. It is in fact algebraic.
One can embed Ys

Jr> °-> <I>jr0. So one can view 0>s0/ T as a compactification of YsjJ Y.
See Voskuil [16]. Note that using the embedding above one has

Here a0 is the standard alcove defined by the affine roots a,, a2 and 1 — a0. The
alcove ai is determined by the affine roots — ot\, 1 — a2 and a0. Note that O\ U aQ

forms an SL2 x SL2-chamber in the building of SL2(F) x SL2(F). One has Taj =
Sp{F(t2t;\nt;\ t2)) and T((T,U(J2) := TOl U T,2 = Sp(F(nt;2, t2, nt'2, r2

2)).

5. Convex sets in C2 buildings

To each semi-stable point we assign a convex subset of the building, namely its
interval of stability. We use the explicit torus invariants to give an explicit description
of the intervals of stability.

5.1. Let us recall that the interval of stability is defined for x in YsJa as I^ix) =
[t~' • 0 : t x e Y% e}. For the SL2 x SL2 sub-building ^0 introduced in Section 4.2,
we define for x € Ys

Jaa the set Iso(x) to be the union of l^ix) over those si in J^
such that si 3 a. Then /.,„(*) = \Jg€Hn g • /*-(*).

5.2. We introduce the centre of the interval of stability. Let 0 6 s/0 be the
vertex where the affine roots a\ and a2 take the value 0. We define a 7o equivalent
map tv0 : Y5^ -*• si0 by

J
\ v&0(t • x) = t • 0 otherwise.

Note that (r*jci/f*jt4)(jc) = t;2(x{/xA)(x) = - ( 2 a , + a2)(t) • (xi/x4){x) and that
(^Xj/^x^ix) = t22(x2/x})(x) = —a2(t){x2/xi)(x). Let v be the additive valuation
of F normalised such that v(n) = 1, where n is a uniformiser. For x € Y^off, one
has v((Xl/x4)(x)) = 0 = ( - (2a , + «2))(0) and U((JC2/XJ)(0)) = 0 = - a 2 ( 0 ) . From
this and the description of the action of the torus on the apartment given in [15, 1.1],
one easily gets the following description of v^0:

J(2a, +
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We like to remark that Yj^ a = vjo(cr) for a e M>.

5.3. We describe the interval of stability in terms of the action of the torus on the
'origin' 0. We have

Y^o & === {|-*i/-f4|
 = 1. \x2x3/x\x4\ < 1, |AC2/JC4| < 1, 1^3/̂ 4! — 1}

U {\x2/x3\ = 1, \xix4/x2x3\ < 1, IJCIASI < 1, \x4/x3\ < 1}.

Take x in Y£o and let t be the diagonal matrix with entries t\, t2, r2
-1, rf1. Since ct\ =

e\— e2anda2 = 2e2, wehaveor^/) = t ^ anda2(f) = t\. Note that {t*xx/t*x4){x) =
, - 2

= r2

Suppose x and fjc are in the part of YQ*^ given by

Then

= 1,

1 =

x2x3

(tx)2

< 1,
X3

< 1, < 1

(txh . - 1
h x3

= U2P

From the definition of v: (a, v(t)) = —v(a(t)) we get from |r2|
2 = 1 that v(?) —

—v(t\)e\. The action of Ton the apartment srf is then t~xv = v + v(t\)e\. Suppose^!
and x4 are not 0. Then from |fiJCi/f2~'-*3l = \(tx)i/(tx)3\ < 1 we get |ri| < |x3Ail
and from \t[lx4/t^

lx3\ = | ( ^ ) 4 / ( t t ) 3 | < 1 we get |x4/^3| < \t}\. Recall that

We see that in this case x\, x4 ^0.

U(x) = (o + ce, :
x3

x3

and so I*/0(x) is an interval. If x4 ^ 0 and J:, = 0, we see that
line 0 -I- ce\ with IX4/JC3I < \c\ and if ^i = 0 and x4 = 0 then
line 0 + cei with —00 < |c| < 00.

Similarly suppose x and rx are in the part of Y^o given by

x4
- 1 ,

X2X3

XiX4

< 1, * 2

J:4

< 1,
x*
— < 1

Then in case (jti, x4 ^ 0)

is a half-
is the full
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is the set of q in £?0 such that:

< v (6), (2a, + a2) (g) = -v ( —
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It is now clear that Ia

if |e| < 1, and such that

( \

— (*)) < - w ( € ) , a2(q) = -v[ —
if |e| > 1. Here e e F is such that |(x2*3/.XiJc4)(x)| = |e|.

6. Some estimates on coordinates

In order that we can use the r maps to study the simplicial decomposition of the
stable points we need some estimates on the absolute values of the coordinates given
by the torus invariants of the stable points under the action of the group. This will be
done in the next few lemmas.

LEMMA 6.1. Suppose x e Y^n aa and that g e Gao.

(a) //|(x,Je4/*2*3)0OI = 1. then |(£*x,7*.-)(*)l < I far i = 1,.
(b) // |(jr,X4/jC2X3)(Jc)| < 1. then \{g*x2/x2){x)\ < 1, | (g%

.. , 4.
< 1 and

(c) Jf\(g*x,/x,)(.x)\ > 1, for i = 1 , . . . , 4, and that |(X,JC4/*IX3)0OI = |e2l with
e e F, then

< \(g*Xi/g*x4)(x)\ < |(xi/x4)(x)| k 'I ' / kl < 1.

l(*3/*3)(*)l k~'l < \(g*x2/g*x3)(x)\ < |(X2/JC3)(*)I kl «/ kl > 1.

PROOF. Forg-' e Gff0, write x,(g-l(x)) = T.8uXj(x). One has

gijXjix)
< max

i

It follows from the explicit description of G<,0 that maxy \gijxj(x)/xi(x)\ = 1. From
this part (a) follows. The proofs of the rest of this lemma and the next lemma are
similar, we omit them. •

LEMMA 6.2. Let x e Y^ a and let H = SL2(F) x SL2(F) be determined by s/,
that is the building J*" of H contains si'. Thenforall g e Hawe have |g*x, x,(x)| < 1,
for 1 < / < 4.
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LEMMA 6.3. Supposex e Y^ a and g e Gao satisfies \g*xig*x4/g*x2g*x3(x)\=l.
Thenx e Ys^Q<ra. Furthermore \x\/x4(x)\ = 1, 1/1*2*3/* 1*4 OOI<1 and \x2/x-i{x)\ =
|jr|, i/|*2*3/*,*4(*)| > 1.

PROOF. Let e e F be such that |e2| = |*i*4/*2*30OI- Take y = (xu ex2, £*3, * 4 ) .
Then |*i*4/*2*3(;y)| = 1 and y e Y^o a . From the explicit description of Gao we see
that for all g e Gao we have max; {|(g0-Xj /xd(y)\) = 1, where g*xt = J^j 8u.xJ •

First we look at the case \e\ < 1. Since x € Y^oao, we have |(g*Jc2/x2)(jc)| =
\(g*x3/x3)(x)\ = 1. W r i t e r , = £ « ; * , and ^*x4 = EbjxJ. We get

max |a;*;/.xi(y)| = max \bjXj/x4(y)\ = 1.

This means that the product of

{ l a2*2(*)l. \a3x3(x)\, \a4€~lx4(

and

max [\b^-x
Xl{x)l \hx2(x)\, \b3x3{x)\, \bA€~xx4\]

is equal to ^2^3(-^)I-
Now take g e Paa as in the assumption. Then \g*x\g*x4/x2x-s{x)\ = 1. Just as

before we obtain max{|a,x,(^)|}rnax{|fe,oc|} = ta^OOl- Comparing these two values
of 1*2*3 001 and using |e| < 1 we see that

I = max{|a2x20OI. \a3x3{x)\)

\, \byx3{x)\).
The description of Gao shows that |a,| = 1 and \b2\ = \b$\ = \n\. Hence

= max{|*2|, |*3|}max{|7r*2|, |7r*3|}.

Since * e Yj a we have |(*2/*3)(*)| < 1- Hence 1*2*3! = |*3||TT*3|, that is,
\x2/x3\ = \n\. Furthermore

\{g*XX/g*XA){x)\ = \(g*X2/g*X3){X)\ = |(*3/*2)(*)l = \7t\,

hence * e Ys
gJa aa. The proofs of other cases are similar. •

REMARK. The lemma and Figure 1 show that one has |(*i*4/*2*3)(*)l i=- 1
and \(g*x\g*x4lg*x2g*x-i)(x}\ = 1 for some g e Gao only in the following cases:
(1, €a, eb, c) and (en, na, b, ec) with \e\ < 1, \a\ - \b\ = \c\ = 1.

LEMMA 6.4. Lets^=g£i/0, * egY^, andh e G,^w. Then \(h*g*xi/g*xi)(x)\ < 1.
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\Xl/Xi\ = 1

= | 7 T |

PROOF. It is sufficient to proof this for &/ = £?0. We know that Gt^ (jc) is spanned
by Un+a for those roots a such that a(q) > n holds for all q 6 /«%(*). We only
do the case a = a2. The others are similar. We take h e Un+a2. We can write
h*(x) = (xi, x2,x3 — ax2,xA). It follows from the explicit description of I^a{x) that
v{a) > -v(x2/Xi(x)) and so |(fc*jc3/x3)(jc)| < 1. D

7. Applications of the r map

In this section we shall prove a number of lemmas explaining how we can use the r
maps to study the partitioning of the stable points by the action of the torus. For
example we shall show that x € Yss if and only if r"(x) > 0.

7.1. Using the torus invariants JCIJC4, *2*3 we define for x e Y^a and g e G(F)

_ max {\g*(xix4)(x)\, \g*(x2x3)(x)\]

Recall we also have introduced

(0

i f

if

We also introduce here another function. Take x e Y". Let g(^o) be an
apartment such that rs

g
s^Mi(x)=rss(x). Suppose \g*(xjx5_j)(x)\ > |g*(jc,x5_,)(x)|,

j ^ 1, 5 - /. Then we define: ^ ( x ) = \g*(xixi^/xJxi^)(x)\. For x e ysv, we
define r°(x) = inf{^(;c) : r^M)(x) = r"(x)}.

7.2. Let a be the root of gTg~x associated with g*Xj/g*xS-j and assume
rs

A(x) < 1. For x in K", let Lv be the set of q e s/ such that
-v((g*xj/g*x5-j)(x)). Let a e ja^ be an alcove such that e a. Then we
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define: T{x)^ := U*ec 8(LX)- By definition T{x)^ c 88 is a sub tree of the
building. Furthermore l*(x) c T{x)^. The next lemma shows that T{x)^ does not
depend on the choice of s/. So we take T(x) := T(x)&.

LEMMA 7.1. Let x e Yss and tfj = 1,2 be such that r%.^o(x) = rss(x)
and r^ix) < 1. Let v^(x) e Oj € stf. Then either ax D a2 ^ 0 or v^(x) e

PROOF. Let gj e G(F) be such that gj (o0) = crj, gj (j2/0) = jrf. Let £/ be such
that aua2 6 srf. Let / , e Gaj be such that fj gj (j<Z0) = srf.

Since r£ ^(x) = rss(x) we have r£ ^(x) = rss(x). For each j let ij be such
that igjbtjXs-ijHxH = maAlg*(XiX5-iHx)\ • i = 1,2}. Since fy^x) = rss(x)
and r^ (x) < 1 we have \f;g](xtjx5_(j)(x)\ = maK{\f;gJ(xix5.i)(x)\ : i = 1, 2}.

5-,,)^) =f2*g*2(xhx5_h)(x) then one clearly has 7(x)^ = 7(x)^2. If
(X) ^f2g2(xhx5_h)(x) then r^(x) = 1. Now by Lemma 6.3 we have

e CTi and tv(;c) e a2. Hence ^ D cr2 5̂  0- D

LEMMA 7.2. 77iere exute a« apartment srf satisfying r% ^(x) = rss(x) and
rs

Jl/(x)=0 if and only ifrs(x) = 0.

PROOF. Let gt be such that rs
g^oMo(x) = rss(x) and r^ix) -> 0. Let a e

be an alcove such that x e ^,V0,a • Since r ^ ^ O O = r"(x), for all h e Ga

we have r"gi^o ^(x) = rss(x). We will construct a sequence /i, e Ga such that
^ , ^ ( J t ) -> 0- The compactness of Ga implies ht -*• h. Then rs

hgiafo(x) = 0 and the
lemma follows. •

We know that vg^0(x) e T(x). Find a line L, c T(x) containing vgiB/0(x)
and Vg^ix) such that L, contains half of the interval of stability Ig.^B{x). Next
choose an apartment ^ containing L,. Since L, contains vgl£/0(x), one has ^J =
hjgi&o for some /i, 6 %. The fact that £^ contains half of Ig.^0(x) implies that
r^Xx) < rs

g^Q{x)/2. Hence rs
h.giafa(x) -*• 0, we are done.

LEMMA 7.3. Ifx e Y^ a then for all srf' containing 1^(x) one has r^Xx) < r^(x).

PROOF. Suppose I^ix) c sf'. Then we have an h e Gle,(x) such that n? = h(srf).
It is sufficient to prove the lemma in the case si = £/0. Furthermore, we only treat
the case* e Y*alaa with \(xix4/x2x3)(x)\ > 1. The other case is similar. In this case
we have |(/I*JCI/JCI)(JC)| = |(/I*JC4/JC4)(JC)| = 1 since h e G/^(x) C Ga. Furthermore
we have \(h*x2/x2){x)\ < 1, \(h*x3/x3)(x)\ < 1. Hence

r^Xx) = \(h*x2h*x3/h*xih*x1)(x)\ < ^

This proves the lemma. D
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LEMMA 7.4. If x e Y£o, then there exists an h e G(F) such that x e h • Y^o

PROOF. If x e Y^o we can take h = id. So let us assume that x £ Y^. Then
either x^x* = 0 or x2x3 = 0, and not both since x e Y£o. It is sufficient to treat
only the case X{X4 ^ 0 and x2x3 = 0. Take h{(x) = (xu x2 + axux3, JC4 - ax3) and
h2(x) = (x\—bx2,x2,x-} + bx4,X4). Then choose a, b € F such that h2, h\(x) e Y^.
By taking \a\, \b\ sufficiently small we can get that r*^ h2hiJltit(Ji2h\(x)) = 1. Therefore
h = (h2h])~l satisfies the lemma. •

LEMMA 7.5. IfaCJ&C J? andx e Yja then for all geGa we have r ^ ^ ( x ) = l .

PROOF. We may assume that a = a0 and J — J ^ after replacing x b y g " ' ( x ) . It
is sufficient to treat the case \x\Xxlx2xi{x)\ < 1. Then

r«*i..i*i>(*) = max{|g*U,j:4)A2JC3(Jc)l. \g*(x2x3)/x2x3(x)\}.

Since Y^ ag c Y^o ao it follows from Lemma 6.1 (b) that for all g 6 Gao we have
rs

g
s
Ao Ao(x) = 1. So for all srf with a0 e s/ we have r ^ ^ = 1. D

LEMMA 7.6. lfx i Y£o then for all J C SB, and for alia e J we have x $ Y*j a.

PROOF. Let us assume x £ Y^. Then JC]X4 = x2x3 = 0. It is sufficient to treat the
case where X\ = x2 = 0.

First we assume that X3JC4 ^ 0. Take a, b € F* and /i e G(F) given by
h(.yi,y2,yi,y*) = (y\ +ayi,y2 + by3,y3,y4). Now h(x) = (ax4, bx3,JC3)X4) € 7^,.
Hence JC 6 i^1-.^- Suppose x e Yy a and that a lies in si c J^- By taking
|a|, |fc| sufficiently small we can make sure that r^.,^ w(x) < 1. Now we can find a
<7i e h~lsi/0 such that A; e J^-i^ „ • Next we can find srf containing a and O\. Now
r~ {x) < r^!,^ ^ (x ) < 1. Since A = / A for s o m e / e Pa this contradicts the fact
thatx e K>ff.

Now suppose that also x3x4 = 0. It is enough to treat the case x3 = 0. So
x = (0 ,0 ,0, 1). Now we use h = h2h\h where /ii(xi,;c2.*3>*4) = (*i + bx$,
x2 + bxA, x3, Xi) and h2(xx, x2, x3, x4) = (x\,x2, JC3 + cx2, JC4) with b, c e F*. Now
h2h\h(x) = (a, fc, fee, 1). Again /i(;c) e J ^ . Now apply the same proof as above to
finish this case. •

LEMMA 7.7. Ifo C sf C J andx e y>_ff r/zen r"(jc) > 0.

PROOF. We may assume that a = a0 and Jf = ^ after replacing JC by £"'(*)•
By Lemma 7.5 for all s/ with a0 e ^ / we have r^ ^ = 1. Take an apartment hjz/0.
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If C ^ W = ° t h e n x * hY*>- F r o m Lemma 7.6 it follows that x i Y^.
Therefore this cannot occur. Now we assume that r"AoA (x) £ 0. We have x e
h • Y£o. Using Lemma 7.4 we find an apartment g(.h(s/0)) such that x e gh(Y^o)
and ^ U W * ) = L T h u s *£*..-&(*) = rJU.-6(*)- S i n c e * e £*(>*) there exists
a a, € gh(sf0) such that * € ^ ^ a , , - Take an apartment ^/" containing both a0

and cr,. By general properties of the r function we have r%,, ^0{x) < rs
g
s
h£S/i> ^(x).

Therefore, r"^ ^(x) > 1. So we have proved the lemma. D

LEMMA 7.8. We have x e Yss if and only ifrss(x) > 0.

PROOF. If x <£ Yss then there exists an element h e G(F) such that x <£ hY£o.
Hence r"(x) = 0. Conversely assume x e Y" and that rss(x) = 0. Take a
sequence g, e G(F) such that rs

g
s
je/a^o{x) -> 0. Since x e gX" we can use

Lemma 7.4 to find an h, e G(F) such that x e h,Y^ and ltf^^ix) = rs
g^o{x).

So let us replace the sequence g, by the sequence ht. Since x e A/K .̂ there exist
a, 6 A;^o such that x e i ^ ^ ^ . We can assume that hx&/a = Ao and ox = CT0.
Find an apartment si{ containing both a0 and CT,. Then there exist / , e G^ and
/ , e Gff0 such that ^ = fi(M>) = fihi(M>)- Using Lemma 6.1 we find that
r5,^o^) = r/U,^o(;t) - C o ^ o ^ ) ' S o w e h a v e constructed a sequence/, e Gff0

such that rs
f
s
iMoafa(x) -> 0. Since G^ is compact,/, ->• / . Clearly rf^^x) = 0.

Hence x £ f Y^o and so x £ Yss. This gives the required contradiction. •

LEMMA 7.9. Y» c U^.CT >̂,CT-

PROOF. Since * e K" one has rss(x) > 0. We can find g e G(F) such that

^ o . ^ W = >•"(*)• If jc e y«Vothenjc e ^ . a forsomeo- c ^ . Since r^^x) =
r"(x) we must have x 6 Y*j,oa. So let us assume that x g Y*lo. We can assume that
g = id. There exists an J / c / o such that x e Y^. Again we can assume srf = £/0.
We only treat the case x\x4 ^ 0, x2x3 = 0. The other case is similar. Since x e Yss

there cannot be a relation x\ + ax4 = 0 for some a e F. From this it follows that
x 6 Ys

hJa where /i is as in the proof of Lemma 7.4. Since we have r^ ^0(x) = 1, the
lemma follows. •

8. Affinoid coverings

In this section we shall give a construction of a pure affinoid covering of Ys which
yields a reduction consisting of proper components.

THEOREM 8.1. When we take all the SL2{F) x SL2(F) sub-buildings J of the C2

building 38, all simplices a e ^ and all integers n the affinoids Y*j nn cover Yss.
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This follows from Lemma 7.6 and Lemma 7.9.
The analytic space Y^,g e is not affinoid, but we can cover it by affinoids Y^ e n.

And [Y^,oen for n 6 Z} is a pure affinoid covering of Y^o0. While {Ys^an \ a e
A0,n 6 Z} gives a pure affinoid covering of Y^.

PROPOSITION 8.2. The following are pure affinoid coverings:

PROOF. We prove part (c). First we remark that Kj,o a n is the set of x in F^o a n such
that |g * JC,/JC,(JC)| = l f o r a l l g 6 Ha and i = 1 , . . . ,4 . Furthermore, for JC 6 Y^an

one has |g * Xi/Xj(x)\ < 1. So K^r0(rn C ^ 0 „„ is an open affinoid subspace of
the form: Y^oan = Yj^an — R~x{Vrf0,ajl). Here R denotes the canonical reduction
map of Yj a „ and V^^^ is a closed subvariety. To see that the covering is pure
consider the intersection Kj, an n Y^ a, m. Take an apartment J J / C / containing CT
and a'. It follows from part (a) of the proposition that Y^ an n Y^ a, m is pure . Since
yya.n = Y*,o,n ~ R-X(V*,a,n) and Y^ a, m = Y^„, m - RLHV«.a-;mi the intersection
YSj, a n fl Yj a, m is also pure. This completes the proof. •

8.1. A construction We give the construction of the affinoids which will be used to
cover the space of stable points. Suppose srf is g • £?0. For o{, a2 e srf let A(cri, cr2)
denote the convex hull of (o\, a2). For a e sf let Y(srf', a, O\, a2)' be the set of x
in Y*^a such that v^ix) e a, and that A(auo-2) contains I^{x), o\ n /^(JC) ^ 0,
<r2 H /ac(x) ^ 0, and that for all h e GA((T,,ff2) we have \h*g*Xi/g*Xi(x)\ = 1.
We will always assume cr,, <T2 chosen in such a way y ( ^ , a, au a2)' is nonempty. If
x 6 KOaf, CT, CTI , cr2)'and £*" D ACcr!, CT2) t h e n / ^ ( x ) = / ^ (x ) . Next we introduce an
open subaffinoid K(^/, cr, o^, a2) of K(^/, a, CTi, 02)' such that for x in this subaffinoid
and for A' D /«C(J:) we get / ^ ( x ) = / ^ ( x ) . To do this we take certain functions/ in
the affinoid algebra of Y(srf, a, O\, a2)' demand that \f (JC) | = 1 to get our subaffinoid.
Suppose that the end points of the interval I^(x) are Pu P2 with Pt e CT, and that
the center v^(x) of l^/ix) lies in a. Suppose that the wall L of ax corresponds a
certain root and the line L is defined by \xt/Xj (x)\ = |7rn| say. Then we know for JC
in Y(srf, a, au a2)' we have \xt/Xj(x)\ < \nn\. Now choose \a\ = 1 then

(1) Pi is in the interior of O\ if and only if \XJ/XJ {x)\ < \7tn\, which in turn implies

\x, + jtnaxj/xj{x)\ = \n"axj/xj(x)\ = \nn\;
(2) P\ is in CTj fl L if and only if \xt/xj{x)\ = \7i~"\, which in turn implies
\xl+n"ax]lxj{x)\ < \n"\.

So we can take / as being n~" (JC, + 7r"ajc; /XJ ). From the construction we now have:
If JC 6 Y(£/, a, cr,, 02) and I^(x) c &?' then I^(x) = l^(x). Finally, if si is in
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the SL2 x SL2 building J and H is the SL2 x SL2 acting on J and si = g • si0 we put
Y(S, a, O\, o2) to be the set of x in Y(si, a, au a2) such that \h*g*xt/g * Xj(x)\ = 1
for all h e Ha.

LEMMA 8.3. Suppose that a e i c / and x e Y(J', a, ax, a2).

(a) Ifh{Irf(x)) C si' for some h e H then l^{x) = h{I^{x)).
(b) //A e Gff then Ih*{x) = h(I^(x)) if and only ifh(I^(x)) c ^ .
(c) //"/i e GCT r/ie« h^{x) ^ h(I^{x)) if and only ifrs

ar{x) < rs
hsif{x).

This follows immediately from the definitions.

LEMMA 8.4. (a) Ifrs(x) ^ 0 then x is in one of the Y(J?, a, au a2).
(b) rs{x) yL 0 if and only ifx e Ys.

PROOF, (a) It suffices to take si such that rs^(x) = rs{x).
(b) Find an si such that x e Y(s/, a, ax, a2) for some a, ax, o2. Now observe that

there exists an h e Pa such that rs
hsf{x) = 0 if and only ifx ^ Ys. D

LEMMA 8.5. Suppose x e Y{J?X, a, au o2) C\Y(J2, r, ru r2). Let a e s/\ C J\
and x 6 s/2 C J^- Then there exists h € H\a such that h{I^{x)) = IAZ{X)

f^x) = h2(x).

PROOF. Take an apartment A containing a and r . Now r~(x) depends on the
intersection of SxH, n A and also on the intersection SxH2 n A. If SSIH, 7̂  SX,H2 then
we can change A a little such that SXtH, n A changes and 5^,//, n >\ remains the same.
The change of SxHl H A means that r~(x) changes whereas since SX]h2 fl A does not
change r~ does not change r~(x) also does not change. This is absurd and one must
have SXIH2 n A = 5,,^, H A. Since both a, x e A it easily follows that one must
have/.,,(*) = /.*(x)'. D

THEOREM 8.6. The family of sets Y{J, a, ax,a2) obtained by taking all SL2xSL2

buildings ^ C 33, o~, ax% o2 in all apartments si in ^ gives a pure covering of Ys.
Furthermore the reduction with respect to this covering consists of proper components.

PROOF. Let x e Ys. Then we can find s/ c SS such that r\(x) — rs(x). The
proposition above shows that Ix := Ij(x) is uniquely determined. Here J^ is the
SL2 x SL2 building containing si. This is clear, since we have a unique Sx for
each x e Ys. From this one easily concludes that the covering is pure. That the
reduction consists of proper components is proved using the same method as in [12,
Theorem 3.6, part 5]. •
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