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Abstract

We study the stability map from the rigid analytic space of semistable points in P3 to convex sets in the
building of Sp; over a local field and construct a pure affinoid covering of the space of stable points.

2000 Mathematics subject classification: primary 14M17; secondary 32P05, 20G25.

0. Introduction

Drinfeld introduced a p-adic symmetric space and used it to study the representations
of GL(2) over a function field. Schneider and Stuhler use the map from the p-adic
symmetric space to the building of GL(n) to study the cohomology of p-adic symmetric
space. It is natural to ask for these results for any semisimple group. First we observe
that the p-adic symmetric space of Drinfeld is the variety of points in the variety of
Borel subgroups which are stable under the action of all maximal tori. The other point
is that the map from the p-adic symmetric space to the building is just the interval
of stability map. Everything make sense for any semisimple group except that in
general the linearization used in the definition of stable points may result in the variety
of stable points becomes smaller than the variety of semi-stable points. When this
happens the interval of stability map will map a point in the p-adic space to a convex
subset of the building. This phenomenon will almost always occur when the Borel
subgroup is replaced by an arbitrary parabolic subgroup P of the semisimple group G.
As aresult it is not known how to prove in general even a result like Proposition 2.4 in
Mumford [10]. Yet p-adic spaces constructed out of the flag varieties G/ P could be
interesting moduli space of periods (see Rapoport [13]). Also Moy [9] showed that the
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displacement function in a Bruhat-Tits building is convex and that convex sets in the
Bruhat-Tits plays an important role in the representation theory of the group over the
local field. It will be interesting if there is a relation between the representations of the
group and the geometry of the variety of semi-stable points via the interval of stability
map. In [5] Hsia Liang-Chung uses rigid geometry to study p-adic dynamic systems
constructed out of a tree. It would be nice to have an analogue for a building. Thus
we believe that it is worthwhile if only as experimental data to study the p-adic spaces
when the variety of stable points is not the same as the variety of semi-stable points.
The case we have chosen is the rank 2 group Sp, being the first case after SL(2) and
P is the maximal parabolic subgroup such that G/P is the projective 3-space. We
point out that the calculations for other parabolics are also ‘embedded’ inside this
case. We study in this paper those properties of the C, building which are related to
the properties of the stable points in P?; in particular we shall use the SL(2) x SL(2)
sub-building of the Sp, building to construct a pure affinoid covering of the p-adic
space associated to G/ P.

Let us describe the p-adic space we are studying. The maximal torus contained
in the parabolic subgroup P acts on the flag variety G/ P and we obtain the variety
of stable points for this action as defined in Mumford [11]. Let Y, denote the rigid
analytic variety (see {1]) which has the same set of closed points as the variety of
stable points above. The p-adic space we study here is Y* := () ecG(F) 8 * Vg In the
case when the stable points and the semistable points are the same these problems
are studied by van der Put and Voskuil [12]. The case of quasi-split rank 1 group
is studied by Voskuil [16]. This work started from a conversation with Voskuil in a
cafe in Newtown. I would like to thank him for his generosity in sharing these ideas.
Finally a raison d’étre for Sp, is a response to Paul Sally’s question: ‘Do we know
everything about Sp,?” (Luminy Conference on Sp, 1998) — I would like to thank
him for his suggestion.

1. Buildings and flag varieties

In this section we give a summary of the general results on the p-adic spaces
constructed out of the variety of stable points in flag varieties.

1.1. Let F be a p-adic field with ring of integers €. Assume that p is odd. In
this section we let G be an absolutely simple Chevalley group scheme over £. Fix a
maximal split torus T defined over F in G and choose a Borel subgroup B over F of G
containing T. This fixes an ordering of the root system ® of (G, T). Let 2 (T) (re-
spectively Z,(T)) be the lattice of characters (respectively one parameter subgroups)
of T. Denote by (-, -) the perfect pairing between 2 (T) and Z,(T). Extend this to
a pairing of Z'(T) ® R and Z,(T) ® R.
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Fix a uniformiser = of F. Normalise the additive valuation v of F by v(7) = 1.
Define themapv: T — Z,(T)QRby (x,v(t)) = —v(x(@)) forall x € Z'(T). We
regard Z,(T)®R as an affine space on which T acts by translation: ¢-z = z+v(z). The
affine roots of (G, T) are the following affine functions on Z,(T)® R : (¢ +n)(z) =
(o, z)+nfora € ®. Denote the affine root system by ®,¢. The affine root system gives
a simplicial decomposition of Z,(T) ® R. The maximal simplices, called alcoves, are
the closures of the connected components of the complement of the walls: 8(z) = 0
for B € ® . The affine space Z,(T)® R endowed with this simplicial decomposition
is called the apartment & attached to the torus T. The stabiliser G, in G(F) of a
simplex ¢ in the apartment & is a parabolic subgroup. All the maximal F-ton of G
are conjugate. For g € G(F), the apartment attached to the torus g7Tg~! is go and
the stabiliser of the simplex g(0') is Gy = §Gog7"

The Bruhat-Tits building & of G is defined to be |J cccr) 8(F)/~ where the
equivalence relation ~ is given by o7 ~ 03 if and only if G,, = G,, [15, 2.1].

1.2. Fix a parabolic subgroup P defined over F of G containing the chosen Borel
subgroup B. Write X for G/P. Let £ be an ample line bundle of X. Choose a G-
linearization of .. This restricts to a T-linearization and we can define the variety of
stable points X*(T, ) and the variety of semi-stable points X** (T, .#) with respect
to this 7T-linearization of .%. In practice this is what we do. For a positive weight A,
there exists a G-module V, with highest weight A. In V, there is a highest weight
vector v, on which the maximal torus T acts with character A. The G-orbit of the
image of v, in the projective space P(V,) is isomorphic to the flag variety X = G/ P,.
The pullback of £(1) along the embedding X C P(V,) gives a line bundle .Z on X
which has the G action induced by the the G action on V;. (See [6, 7].) This gives a G-
linearization of .. It induces a T-linearization of .. Thus we can define the variety
X° (respectively X**) of stable (respectively semi-stable) points for the action of the
torus T with respect to .%. Recall that a point x in X is said to be semi-stable with
respect to (7T, &) if for some positive integer n there exists a T-invariant section f
of £®" such that f (x) # 0 and the set of y € X such that f (y) # O is affine. A
semi-stable point is said to be stable if moreover the set y € X such that f (y) # 0is
closed (see [11, Chapter 1.4]).
In our situation we have a simple criterion for stability. We can decompose

Vi, = @ V'\.X'

XeZ(T)

For x in V;, let us write x, for its component in V; ,. Let u(x) denote the convex
hull in Z2°(T) ® R of the set of x such that x, # 0. Then for any x in X the vertices
of w(x) is a subset of the W-orbit of X and the edges of 1 (x) are parallel to the roots
(see [3]). The point x is semi-stable (respectively stable) if and only if O lies in p(x)
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(respectively in the interior of p¢(x)). It is also known that X* = X** if and only if A is
not contained in a hyperplane through 0 spanned by roots [12, Theorem 1.1].

1.3. Let C denote a fixed completion of an algebraic closure of F. Write ¢ for

the ring of integers of C. Given an algebraic variety over F we can construct a rigid
analytic variety which has the same set of closed points [1, 9.3.4]. We denote the
analytification of X*(T,.Z) ® C and of X*(T, %) ® Cby Y;, and Y;;. We recall
that & denotes the apartment attached to the torus 7. Let

yoi= (1) s(¥y) and Y= () g(¥).

8eG(F) geG(F)

These are the rigid analytic flag varieties we study in this paper. For G = SL(2) with
the natural action on X = P! the space Y* is the Drinfeld upper half space.

We are interested in pure affinoid coverings of our rigid analytic spaces. Let Z be
a rigid analytic space. A pure covering % = {U;} of Z is an admissible covering by
affinoid subspaces U; satisfying the following conditions:

(1) Foreach i, U; intersects a finite number of U;.

(2) If U;N U # O then there exists a Zariski open affine set V; C U such
that U NU; = Rf'(V,—,) where R, : U; — U, is the reduction map [1,7.1]and U;N U
is an affinoid space having reduction R;; : U; N U; — V.

To have a pure covering means that we can see that the reductions of the affinoids
in the covering glue together nicely. There is a 1-1 correspondence between pure
covering of Z and formal schemes over & whose generic fibre is Z and whose closed
fibre is the reduction of Z with respect to the given pure covering (see [8]).

14. The completion of X*(T, ¥) ® Oc (respectively X*(T, £) ® O¢) along
the closed fibre will be denoted by Y, , (respectively Y ;). In particular, this
means Yy, 5(C) = X°(T, £)(O¢), Y}, ,(C) = X*(T, L)(O).

Consider the maps T(C) x Y; , — Y.;,and T(C) x Y, , — Y, both defined by
the action of the torus T on X. We shall construct an affinoid covering of Y* by means
of these maps and a natural affinoid covering of the analytic space T ® F associated
to the torus T. It is here the building of G enters the picture. The map v extends
uniquely to a map from T(C) to &. This defines the action of T(C) on &/. For a
simplex o of the apartment &7, let T, denote the affinoid subspace of T ® F given
by the affinoid algebra [1, 6.1): F{n"x) where x € Z(T),ne€ Z,and x +n >0

on o. For the standard alcove 0y in & this affinoid algebra is F{ay, ... , o, 7ra0"‘),
where ay, ... , a, is the basis of simple roots of (G, T, B) and ay is the highest root.
We see immediately that:

) T, =v'(o).
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(2) The set of {7} for all simplices o of A is an admissible covering of T ® F by
affinoids.

(3) If 0y, 0y are two simplices then T, N T, is empty if oy N o, = B and is equal
to 71;,ns, otherwise.

This leads us to introduce the analyticset Y, , := T, - Y, sand Y =T, - Y,
for o € &/. We shall study the covering by these sets [12, 3.3 and page 84].

1.5. We need the two maps r, I introduced by Voskuil.

The map r is used to compare the analytic sets coming from different apartments
and different simplices. It is the ratio of the maximum absolute values of the torus
invariants. Recall that .# is the ample line bundle on X = G/P. Write ['(X, .£®™)T
for the module of T-invariant sections. Pick an integer d such that the homogeneous T-
invaniants generate @, (X, £%")7T as a O-algebra. Let f4, ..., f,, be generators
of I'(X, £®9)7. For two different apartments &, %, we define a function ot
Y., — R as follows: pick g, g2 € G(F) so as to have = g(H), = gz(sz{.).
Then as in [12, page 86] we put

max, <;<m{|8}fi(x)|}
maXlS,‘gm{Ig;fi(x)l} .

P () =

Here g*f (x) is f (g~'x). The value of To. (%) only depends on the apartments &,
&. The function r has the following properties:

(1) r;iﬂ_gdz(gx) = oo, (X) forg e G(F)andx € Y, .

(D 1oty = Tt ct, it

(3) If &, o are apartments containing asimplex o, andx € Y, o thenry (x)>1
[12, page 86 (c)].

(4) Ifoo C @, 01 C &, &hcontains gy, oy andx € Yz  NYZ thenry ., (x) <
T, (*) (from (2) and (3) above).

Now we can introduce

inf(rs, ,(x): g € G(F)) if x € V3,

rf(x) =
) if x ¢ VY.

1.6. The map I is a G(F)-invariant map from the variety Y** of semi-stable points
to the set of convex subsets of the building & of G and I (x) will be bounded if
and only if x is stable. Recall the map v : T(C) — & which defines the action
of T(C) on &. Let 0 € & be the vertex where the affine roots ¢y, ... , «, take the
value 0. For x € Y2, the interval of T-stability /,(x) is defined as the closure of the
set{t-0 € & :x €Y} ,}, where  runs through points of 7 in the algebraic closure
of F. (See [16, 2.3]) We put I, »(x) = g(l4(g7'x)). For x € Y*, we define the
interval of G-stability I (x) to be the set of all z € & such that for any apartment 27’
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containing z we have z € [, (x) (16, 4.7]. We recall the following properties of I.
Assume that x € Y**.

(D) 1) =U{la(x) 1 rig o (x) = 1 (x)}.

(2) I(x)isconvex,; itis bounded if and only if x € ¥* and I (x) = {¢-0} if and only
if x € t- Y., 5 for all apartments & containing ¢ - 0.

When Y** = Y* the interval of stability .# defines a map from the analytic space Y* to
the building 48 and this is the map used by Drinfeld and Schneider-Stuhler (see [4, 14,
Section 1}).

2. Action of Sp; on P?

Let G be the symplectic group over & defined by the form

0 0 01
0 0 10
/= 0 -1 00
-1 0 00

The group G(F) of F rational points consists of 4 x 4 matrices g with coefficients
in F such that ‘gJg = J, where ‘g denotes the transposed matrix of g. We choose a
maximal torus T, over € so that T,(F) consists of matrices

b 0 0 O

= 0 n O 0
“10 0 ' 0
0 0 0 4!

for 1, € F*. We choose the Borel subgroup B of G to be the upper triangular
matrices in G. This fixes a basis {«, «;} of the root system of (G, Tp) which is of
type C;. In standard notation the root system C, is *e; * e;, £2e;, £2¢,. It has
simple roots a; = e, — €;, a; = 2e,. The highest root is ap = 2a; + oy

The fundamental weights are w, = e, v, = ¢; + ;. Consider positive weights of
the form A = nw; + nyw, with positive integers n;, n,. Let W be the Weyl group
of this root system and W, be the stabilizer of the weight A. Associated to A is the
parabolic subgroup P, = BW, B of G. Let us write P for P,,. Then

a *
P(F) = 0 g x% tae F*,ge SL2, F)
0 0 a'!

Let vy, vy, v3, v be the standard basis of F*. Write [u, v, ... ] for the subspace spannex
by the vectors u, v, .... The group P is the stabilizer of the isotropic line [v,],s0 P i
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the intersection with G of the stabilizer in SL (4) of the flag [v,] C [v1}* = [v, va, v3].
We see that G/ P is isomorphic to the set of isotropic lines in the 4-dimensional affine
space. But every line is isotropic. So G/ P = P?, the projective 3-space.

3. C; buildings

In the Bruhat-Tits building & of the group G = Sp; associated to a maximal
torus T is an apartment & in 4. For each simplex o € & we have defined the
affinoid subspace 7, C T.

For the standard alcove oy defined by o, a, 1 — @, we have

To, = Sp (k{ar, @z, may ")) = Sp (k(nt;', 5, w7%) .

For each maximal F-torus T in G, we can find a subgroup H of G suchthat T liesin H
and H is defined over F and is isomorphic to SL, x SL, over F. Fori = 1, 2, 3, 4, let
us write U;(F) for the subgroup consisting of transformations taking x; to x; if j # i
and x; — x; + u;xs_; with u; € F. For T, the subgroup H is generated by the
groups U;(F) fori =1, 2,3, 4.

Let .# denote the building of the group H (F) = SL,(F) x SL,(F). The inclusions
of groups T(F) C H(F) C G(F) gives rise to inclusions of simplicial complexes
& C S C %B. To make these inclusions simplicial one has to split each SL, x SL,
chamber in two Sp (4) chambers (see picture below). We will always assume that the
simplicial structures of the SL, x SL, buildings are arranged in this way.

In the picture the dotted lines indicate walls occurring only in the Sp (4) building and
solid lines indicate walls in the SL; x SL, building.

We give a description of the stabilizer G,, in G(F) of the standard alcove oy. Let U,
be the root subgroup of G with respect to the maximal torus T corresponding to the
root . Then U,(F) = F and U, (F) = {x € U,(F) = F : v(x) = n}. Itis known
that G, is generated by U,., for those n + a > 0 on oy (see [15, 3.1.1]). It follows
that for g € G(F) with matrix (g;), we have g € G,, if and only if v(g;) > v(m;),
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where

(my) =

[
— e
- — & A
-8 8N

Thus G,, stabilizes the following &-submodules of F*: My = (v, va, v3, v4), M, =
(mvy, T2, U3, Vs), My = (Tvy, v2, 3, VUs) and M{ = (vy, Vg, U3, T 0y).

4. Stable points

For ease of reading we introduce here all the analytic sets we shall use.

4.1. Stable points related to an apartment Write & for the apartment attached
to the torus Ty. We write the coordinates of P3 as x{, x,, x3, x4. The Ty-invariants are
generated by x,x, and x,x5. It follows that

Y:;;):{xel]”:x,x‘t;éo or x2x3#0}
YV,={xeP :x;#0,i=1---4}.

For any simplex o in an apartment &/ of the building & of the group G, we can find
an element g € G(F) such that 0 = g(0p) and & = g(2%). Weput ¥, = gV,
This definition does not depend on the choice of the element g. As in general we

put ¥* = oom & Yop and Y = (,com 8- Yoy
We define the following analytical subspace of Y, :
-1},
The space Y, , is not affinoid. Let Y, ,, be the set of x € Y, , such that
17 < Ixixa/xaxs] < il
Let 0 € & be the vertex where the affine roots «; and a; take the value 0. As G(F)
acts on both the flag variety and the building we canput Y, ,, =1- Y, 4.

Themap T x Y, , — Y, given by (¢,x) > - x is surjective. So the analytic
sets Y, , =T, - Y}, ,cover Y, foro € o%. We have for o = oy

1)

Y;o.d = {xeﬂ”: =1,

X}
—(x)
X4

2 (x)
X3

5 . . s
Yyw=ltx:1eT, xeV,,}

X1
—(x)
X4

=[xelP":|7r|§ <

fl(x)
X3
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Weput Y, ,,:=T,-Y;, 5, Forany o€/ C%, we can find an element ge G(F)

such that 0 = g(0o) and g& = g(2%). We now define: Y, . = g(Y, , ). This
definition does not depend on the choice of the element g.

We put Y,  for the set of x € Y, , such that [g*x;/x;| = 1, [g*xs_;/xs_;| = 1,
Vg € Gop-and i = 1if 1 < |xyxg/xox3], i = 2 if |x1x4/x2x3] < 1. We write Y on
forthe setof x € Y, such that [g*x;/x;| = 1, [g"xs_i/xs_;| = 1,Vg € G,,i =1

ifn<—-landi=2ifn > 0.

4.2, Stable points related to a sub-building Suppose H, is the subgroup of G
containing the torus 7y and is isomorphic to SL, x SL, over F, let %, denote the
building of the group Ho(F) and we put Y3, = (), (s, # Yis- This s the set of x in P
which is stable for each maximal F torus in Hy. If # = g(#) we put Y5, = gV5 .
Ifo e & C F then we take: Y5, = (yep PVion = ﬂ;{?; Y. .. Here

H = gHpg™' and H, is the stabilizer of the simplex o in H (F) and .# is the building
belonging to H. We have

Y}O‘g’n = {x €Y,

0,0,n

lgtxi/xil =1, Vg e Hyy i=1,...,4}.

We define the affinoid subspace Y7,

0,00,

C Y; , , asfollows:

0,00,

Y*

So.00.n "

{x €Yy son i l8x1/x1| = |8 x4/x4] = 1,Vg € Pgo} n<-1;
{x € Y5 5on i 18 %2/32| = 18" x3/x3] = 1, Vg € Pﬂo} n>0.

0

Furthermore, Y3, C Y, is defined as being g(Y7 ,, ) where g € G(F) is such
that g(#) = £ and g(0,) = o. This definition does not depend on the choice of g.

4.3. Remarks We have a SL, X SL,-equivariant map ¥ : ¥}, — P! x P! given
by (x1, x2, X3, X4) > (x5, x4) X (x2, x3). Itisclearthat Y5, := ﬂgeﬂzmxuzm gy, =
¥R x Q). Here 2, C P! is Drinfeld symmetric space. Let @ denote the closure
of the graph of ¥ in P* x P' x P!. Furthermore we take ® 4, := ®N(P? x Q; x Q)).
The group SL,(F) x SL,(F) acts on ® 4. We take on @ C P? x P! the coordinates
(xy, X7, X3, x4) X (21, 24) X (22, 23) With z;x4 = z4x) and 2,x3 = z3x4. A pure affined
covering of §2; x 2, is found by taking the SL,(F) x SL,(F)-images of the following
affinoid subspace [ given as the set of z € P! x P! satisfying the following conditions:
7] < lza/zal < Ll S lza/zl < 1 |a/zs — ol = |z2/zs — ol = 1, Ima/z — ¢ =
|mz3/22 — c| = 1 for all units ¢ in F (see [2, page 172]). The space ® N (P* x F) is
not affinoid, but it can be covered by the following two affinoid spaces:

[F*::[xed)ﬂ(Wx[F): alail 51},
X2X3

F‘::{xe¢ﬂ(P3fo): Tt 31}.
X2X3
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The covering F := {g(F*), g(F~) : g € SL,(F) x SL,(F)} is pure and covers
all of ® 4. Since the components of the reduction of ©; x ; with respect to the
covering are all proper, the reduction of @ 4, /T" of ® 4, by a discrete co-compact
subgroup I' C SL,(F) x SL,(F) is a proper analytical variety. It is in fact algebraic.
One canembed Y, <> ® 4. Soone can view P 4,/ I" as a compactificationof Y5, /T
See Voskuil [16]. Note that using the embedding above one has

EUF) N Yy = (V000U Y 0)-
nel
Here oy is the standard alcove defined by the affine roots «a,, a; and 1 — ay. The
alcove o, is determined by the affine roots —a;, 1 — «; and . Note that o7 U oy
forms an SL; x SL,-chamber in the building of SLy(F) x SLy(F). One has T, =
Sp(F(tt", nt;%, 1)) and Tpuoy i= T, U T, = Sp(F(mt]2, 82, w5 %, 12)).

5. Convex sets in C; buildings

To each semi-stable point we assign a convex subset of the building, namely its
interval of stability. We use the explicit torus invariants to give an explicit description
of the intervals of stability.

§.1.  Let us recall that the interval of stability is defined for x in Y; as I4(x) =
(t7'-0:1-x € Y5 ,}. Forthe SL, x SL; sub-building % introduced in Section 4.2,
we define for x € Y3,  the set /4,(x) to be the union of Ix(x) over those & in %,
such that & > 0. Then I 4, (x) = UgeH,, g - Lg(x).

5.2.  We introduce the centre of the interval of stability. Let 0 € & be the
vertex where the affine roots «; and «; take the value 0. We define a T; equivalent
map v, : Yy, — o by

vd()(x) =0 if x € Y;o,d;
Vg (t-x) =1-0 otherwise.

Note that (£*x,/t*x4)(x) = t[z(xl/x4)(x) = —Qa; + a3)(t) - (x1/x4)(x) and that
(t*x2/*x3)(x) = t{z(xz/x3)(x) = —a,(2)(x2/x3)(x). Let v be the additive valuation
of F normalised such that v(r) = 1, where 7 is a uniformiser. For x € Y, ,, one
has v((x1/x4)(x)) = 0 = (= (2a; + ,))(0) and v((x2/x3)(0)) = 0 = —a,(0). From
this and the description of the action of the torus on the apartment given in [15, 1.1],
one easily gets the following description of v,:

Qo + ) (Vg (x)) = —v((x1/x4) (x));
02 (Vag, () = —v((x2/x3)(x)).
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We like to remark that Y2, , = v (o) foro € .

5.3. We describe the interval of stability in terms of the action of the torus on the
“origin’ 0. We have

Yy o ={xi/xal = 1, xoxs/xixal < 1, [xa/x4| < 1, [xa/xy| < 1}

U {lx2/x3l = 1, Ixaxa/xoxs| < 1, Ixi/x3] < 1, |xa/x3) < 1}

Take x in Y; and let ¢ be the diagonal matrix with entries 1, &, f, L', Since a; =
ei—eyand o, = 2e;, wehavea; () = 4 tz‘1 and () = 2. Note that (¢*x;/t*x,) (x) =
1721 /x4) (x) = —(Qay+a) (1) (x1 /x4) (x) and that (1*x2/ 1*x3) (x) = 1; 2 (x2/x3)(x) =
—az(1) (x2/x3) (x).

Suppose x and tx are in the part of ¥5° . given by

{2 S e W i S W e 51}.
X3 X2X3 X3 X3
Then

(tx)2 hx; 2

= =|—=—(=Inl".

(tx)3 5 X3
From the definition of v: (a, v(t)) = —v(a(z)) we get from |5|*> = 1 that v(z) =
—v(t))e;. The action of T on the apartment & is then t~'v = v+ v(#;)e;. Suppose x;
and x4 are not 0. Then from |f,x;/8 'x3] = |(tx)1/(#x)s] < 1 we get [#] < |x3/x]
and from |t1"x4/t1"x3| = [(tx)4/(tx)3] < 1 we get |x4/x3] < |f|. Recall that

g (x) = {t‘1 -0:mx € 2;0‘0}.

We see that in this case x;, x4 7 0.

Ly (x) = {0+ce1 R ]
X3 X1
and so I4(x) is an interval. If x, # 0 and x; = 0, we see that /4 (x) is a half-
line 0 + ce; with |x,/x3| < |c| and if x; = 0 and x4 = O then I (x) is the full

line 0 4+ ce; with —00 < |¢| < 00.
Similarly suppose x and tx are in the part of ¥’ given by

{ <1,

Then in case (x;, x4 # 0)

X1 X2X3

X2

X3

:l’ <l,

=1

X4 X1X4 X4 X4

X4

X2
I (x) = [0+cez: —' <lel =
X

1

X2
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It is now clear that 74 (x) is the set of g in &% such that:

ozz<q>+v(’iE (x)) <v(e), Qou+a)(g) =—v (’—‘1 (x))
X3 X4

if |e] < 1, and such that

(ay +a2) (@) +v (ﬂ (X))‘ = -v(e), a(g)=-v (ﬂ (x)) ,
X4 X3

if |e| > 1. Here € € F is such that | (xox3/x,x4) (x)] = |€].

6. Some estimates on coordinates

In order that we can use the r maps to study the simplicial decomposition of the
stable points we need some estimates on the absolute values of the coordinates given
by the torus invariants of the stable points under the action of the group. This will be
done in the next few lemmas.

LEMMA 6.1. Suppose x € Y,, . and that g € G,,.
(@) Ifl(xixa/x2x3)(x)| = L, then |(g*x;/x)(x)| < 1 fori=1,...,4
(b) If [(ixa/x2x3)(x)| < 1, then |(g*x2/x2)(x)} < 1, |(g"x3/x3)(x)| < 1 and
|(g*x18"x4/x2x3)(x)| < L.
©) Ifl(g*xi/x)(x)| = 1, fori = 1,...,4, and that |(x1x4/x3x3)(x)| = |€2| with
€€ I?, then
(g x2/ 8" x3)(x)| = (x2/x3)(x)],
[(x1/x) (O] el < 1(g%x1/g"x) ()] < |1 /xa) () €] if le] <1,
1(g*x1/8"x)(x)| = |(x1/xa)(x)],
[(x3/x3)(X) [ 1] < [(8"x2/g*x3) (X)| < [(x2/x3)(x)[[e]  if [e] > L.

PROOF. For g7! € G, write x;(g7'(x)) = ¥_ g;ix; (x). One has

gx_i(x) _ 2 8ix;(x) < max gijx;j(x) '
X xi(x) J xi(x)

It follows from the explicit description of G,, that max; |g;x; (x)/x;(x)| = 1. From
this part (a) follows. The proofs of the rest of this lemma and the next lemma are
similar, we omit them. O

LEMMA 6.2. Letx € Y}, , and let H = SLy(F) x SL(F) be determined by &,
that is the building # of H contains &/. Then forall g € H, we have |g*x; x;(x)| < 1,
forl <i<4
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LEMMA 6.3. Supposex € Y3,  and g € G, satisfies |g*x18%x4/g"x28x3(x)|=1.
Thenx € Y, g0 Furthermore |x;/x4(x)| = 1, if |xox3/xixq(x)| <1 and |x3/x3(x)| =
1), if Jxox3 /x1x4(x)] > 1.

PROOF. Let € € F be such that |€?] = |x1x4/x2x3(x)|. Take y = (x,, €x2, €x3, X4).
Then |x,xs/x2x3(y)] = land y € Yoo, From the explicit description of G,, we see
that for all g € G,, we have max; {|(g;x; /x:)(¥)]} = 1, where g*x; = Zj 8ij X

First we look at the case |¢| < 1. Since x € Y} ., we have [(g"x2/x2)(x)| =
1(g*x3/x3)(x)| = 1. Write g*x; = Y_a;x; and g*xs = )_ byx;. We get

max |a;x; /x1(y)| = max |b;x; /x4(y)| = 1.
This means that the product of

max {|ar€ ™ x, (x)], |azxa(¥)], lasxs ()], lase " x4(x)|}
and
max {[bre ™ x1 (x)|, 1x2(x)|, [bsxs(x)], |bae ™" x4}

is equal to |x,x;(x)].

Now take g € P,, as in the assumption. Then |g*x;g8"x4/x;x3(x)| = 1. Just as
before we obtain max{|a;x;(x)]} max{|b;x|} = |x,x3(x)|- Comparing these two values
of |x,x3(x)| and using je| < 1 we see that

max {|a;€~'x1(x)], lase x4 (x)|} = max {[ax,(x)], lasx3 (x)[}
max {[bre~"x1 (x)], |bse ™ x4(x)]} = max {|Bx2(x)], |b3x3(x)]} .

The description of G,, shows that |a;| = 1 and |b;} = |bs| = |r|. Hence
[x2x3(x)| = max{|x,|, |x3]} max{|mwx,]|, |wx3]}.

Since x € Y5 , we have [(xy/x3)(x)| < 1. Hence |xx3| = |x3||mxs], that is,
|x2/x3| = |r]. Furthermore

1(8*x1/8*x4)(x)| = |(8°x2/g*x3) ()| = |(x3/x2)(x)| = |,

hence x € Y, 4 .- The proofs of other cases are similar. g

REMARK. The lemma and Figure 1 show that one has [(xix4/xx3)(x)| # 1
and [(g*x1£*x4/8*x28*x3)(x)| = 1 for some g € G,, only in the following cases:
(1, €a, €b, c) and (em, ma, b, ec) with |¢| < 1, |a| — |b] = |c| = 1.

LEMMA 6.4. Let o =gy, x € gYs, andh € Gy ). Then|(h*g*x;/g"x)(x)| < L
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fx2/x3) =1
g9
lxa/x3| = |7}
bei/xgl =)l o /xgl =1
FIGURE 1.

PROOF. It is sufficient to proof this for & = &%. We know that G,_, ) is spanned
by U, for those roots a such that a(g) > n holds for all g € I4(x). We only
do the case @« = a,. The others are similar. We take h € U,,,,. We can write
h*(x) = (x), x2, x3 — ax,, x4). It follows from the explicit description of I, (x) that
v(a) = —v(x2/x3(x)) and so |(h*x3/x3)(x)| < 1. a

7. Applications of the r map

In this section we shall prove a number of lemmas explaining how we can use the r
maps to study the partitioning of the stable points by the action of the torus. For
example we shall show that x € Y** if and only if r**(x) > 0.

7.1.  Using the torus invariants x,x4, x,x3 we define for x € Y;; and g € G(F)

max {|{g*(x1x0)(x)], |g* (x2x3) (x)}}
max {](xixa) ()|, [Geax3) )}

r;f%_%(x) =

Recall we also have introduced

inf {r$, ) :ge GF)} if xe Yy,

r.\'S x —
=10 if x ¢y

We also introduce here another function. Take x € Y*. Let g(a%) be an
apartment such that r;';,o‘%(x)_—_r"‘"(x). Suppose |g*(x;xs_;)(x)| = 1g"(xxs-)(x)l,
Jj # i,5 — i. Then we define: Featy(X) = |g*(xixs_i/xjxs_;)(x)|. Forx € Y*, we
define r*(x) = inf{ri (x) : rj; o (x) = r*(x)}.

7.2.  Let a be the root of gTg™' associated with g*x;/g*xs_; and assume
ry(x) < 1. Forx in Y*, let L, be the set of g € & such that a(g) = a(vy(x)) =
—v((g*x;/8*xs_;)(x)). Let o € & be an alcove such that v, (x) € 0. Then we

https://doi.org/10.1017/51446788700009939 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700009939

[15] C, building and projective space 397

define: T(x)y = Ugec, g(L,). By definition T(x), C £ is a sub tree of the
building. Furthermore I,(x) C T(x).. The next lemma shows that 7(x)_ does not
depend on the choice of o7. So we take T(x) 1= T(x) .

LEMMA 7.1. Let x € Y* and of,j = 1,2 be such that rj ,(x) = r*(x)
and ry (x) < . Let v (x) € 0 € &. Then either o, N0y # B or vy (x) €
T(x)m = T(X)zrz

PROOF. Let g; € G(F) be such that g;(dp) = 0;, g; (%) = &. Let & be such
that 01,0, € &. Let f; € G,, be such that f; g; () = .

Since rj;j_%(x) = r*(x) we have r; . (x) = r**(x). For each j let i; be such
that lgj‘(x,-jxs_ij)(x)l = max{lg}‘(x,-xs_,-)(x)l i = 1,2}. Since rj;j%(x) = r¥{x)
and r;,j (x) < I we have Ifj*gf(xijxs_,»j)(x)l = max{lfj*g;(xixs_i)(x)l ti=1,2}

If £ g (xixs—i )(x) = 85 (xi,x5_;,) (x) then one clearly has T'(x) o, = T(x) . If
S8t ixs_)(x) # £ 85 (x,x5-;,)(x) then r,(x) = 1. Now by Lemma 6.3 we have
vy (x) € 0y and v (x) € 05. Hence 0y N o, % @. (]

LEMMA 7.2. There exists an apartment & satisfying ryy .. (x) = r*(x) and
riy(x) =0ifand only if r’(x) = 0.

PROOF. Let g, be such that ry’ , (x) = r*(x) and r; . (x) — 0. Leto € g, &%
be an alcove such that x € Y’ ;. Since rp, ,(x) = r*(x), forall h € G,
we have r;f;I . X) = r?(x). We will construct a sequence h; € G, such that
Thioato(*) = 0. The compactness of G, implies h; — h. Then The, st (X) = 0 and the
lemma follows. O

We know that v, (x) € T(x). Find a line L, C T(x) containing v, 4 (x)
and vy, o (x) such that L; contains half of the interval of stability /, . (x). Next
choose an apartment 2 containing L;. Since L; contains v . (x), one has o =
hig14 for some h; € ¥,. The fact that & contains half of I, (x) implies that
ry(x) < r;‘%(x)/Z. Hence r,{l_gl%(x) — 0, we are done.

LEMMA 7.3. Ifx € Y, , thenfor all &' containing I4(x) one hasrl, (x) < ri,(x).

PROOF. Suppose I4(x) C &/'. Then we have an h € G,_,, such that &’ = h(2).
It is sufficient to prove the lemma in the case & = &%. Furthermore, we only treat
the case x € Y, . with [(x;x4/x2x3)(x)| = 1. The other case is similar. In this case
we have |[(h*x;/x;)(x)] = |(h*x4/x4)(x)| = 1 since h € G,y C G,. Furthermore
we have |(h*x2/x)(x)} < 1, [(h*x3/x3)(x)] < 1. Hence

1o () = [(R*x2h % x3/ W xah*x 1) ()] < |(xax3/x4x1) ()] = rig (x).

This proves the lemma. O
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LEMMA 74. If x € Y, then there exists an h € G(F) such that x € h- Y,
and . . (x) = L.

PROOF. If x € Y, we can take & = id. So let us assume that x ¢ Y.,. Then
either x;x4 = 0 or x2x3 = 0, and not both since x € Y. It is sufficient to treat
only the case x ;x4 # 0 and x,x3 = 0. Take h,(x) = (xy, x3 + axy, x3, x4 — ax3) and
hy(x) = (xy — bxy, X3, x3+ bx4, x4). Then choose a, b € F such that h,, hy(x) € Y .
By taking |a|, |b| sufficiently small we can get that rj; , , . (h2hi(x)) = 1. Therefore
h = (hyh,)~! satisfies the lemma. O

LEMMA 7.5. Ifo C & C S andx € Y}, thenforall ge G, we have ryy, ,,(x)=1.

PROOF. We may assume that 0 = 0y and £ = .# after replacing x by g7'(x). It
is sufficient to treat the case |x;x4/x3x3(x)| < 1. Then

Ty, aty @) = max{[g* (x1x4) /x2x3(x)1, 18" (x2x3) /x2x3(x)}.

Since Y3, . C Y, . it follows from Lemma 6.1 (b) that for all g € G,, we have
Teho.ho¥) = 1. So for all & with oo € & wehaverly , = 1. 0O

LEMMA 7.6. Ifx ¢ Y; thenforall # C B, andforallo € # wehavex ¢ Y5, .

PROOF. Let us assume x ¢ Y, . Then xix4 = x,x3 = 0. It is sufficient to treat the
case where x; = x, = 0.

First we assume that x3x4 # 0. Take a,b € F* and h € G(F) given by
h(y1, y2, y3, ¥4) = (1 + ays, 2 + bys, ¥3, y4). Now h(x) = (axy, bxs, x3,x4) € Y, .
Hence x € Y., . Suppose x € Y5, and that o lies in & C #. By taking
lal, |b) sufﬁc1ent1y small we can make sure that r;%, m,(x) < 1. Now we can find a
0, € h™'af such thatx € Y. Sty Next we can ﬁnd o containing o and ;. Now

2 %) =l #(x) < 1. Since A= f A forsome f € P, this contradicts the fact
thzitx 3

Now suppose that also x3x; = 0. It is enough to treat the case x3 = 0. So

= (0,0,0,1). Now we use h = hoh h where hi(xy, x3, X3,X4) = (x; + bx,
X2 + bxg, x3, x4) and hy(xy, x3, X3, x4) = (x1, X3, X3 + ¢x3, x4) With b, ¢ € F*. Now
hyhyh(x) = (a, b, bc, 1). Again ﬁ(x) € Y,,. Now apply the same proof as above to
finish this case. a

LEMMA 7.7. Ifo C & C S andx € Y}, thenr”(x) > 0.

PROOF. We may assume that 0 = o, and £ = & after replacing x by g~'(x).
By Lemma 7.5 for all & with gy € & we have r}; ,, = 1. Take an apartment h,.
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If ryog.(x) = O then x ¢ hY;;. From Lemma 7.6 it follows that x ¢ Y5 _ .
Therefore this cannot occur. Now we assume that Thioa,(X) ¢ 0. We have x €
h - Yg. Using Lemma 7.4 we find an apartment g(h(2%)) such that x € gh(Y,,)
and r;i%‘h%(x) = 1. Thus r,sz,o_%(x) = r;f,do‘do(x). Since x € gh(Yj,O) there exists
a o) € gh(&h) such that x € Yehat,o.- Take an apartment &/" containing both o,
and o,. By general properties of the r function we have Torr (X)) < r;;; oty %)

Therefore, r;}, . (x) > 1. So we have proved the lemma. a
LEMMA 7.8. We have x € Y* if and only if r**(x) > 0.

PROOF. If x ¢ Y** then there exists an element &z € G(F) such that x ¢ hYy.
Hence r**(x) = 0. Conversely assume x € Y** and that r**(x) = 0. Take a
sequence g; € G(F) such that r;f%,%(x) — 0. Since x € gX** we can use
Lemma 7.4 to find an h; € G(F) such that x € h; Y}, and 1’ . (x) = Tty (X )
So let us replace the sequence g; by the sequence h;. Since x € h;Y,, there exist
0; € h;o such that x € Y, . ,. We can assume that h; @) = Ay and oy = 0.
Find an apartment &7 containing both oy and ;. Then there exist f~, € G, and
fi € G,, such that &, = f; (&) = fTh,»(.rz/o). Using Lemma 6.1 we find that
Totcte®) = TFig oo (X) < Tty o, (x). So we have constructed a'sequence fi € Gy
such that r7 . (x) — 0. Since G, is compact, f; — f. Clearly () = 0.
Hence x ¢ f Y,; and sox ¢ Y*. This gives the required contradiction. O

LEMMA79. Y c U, , V5,

PROOF. Since x € Y* one has r*(x) > 0. We can find g € G(F) such that
Ty ity (¥) = 1 (x). Ifx € Y, 5 thenx € Y, , , forsomeo C J. Sincergy 0 (x) =
r*(x) we must have x € Y;, ,. So let us assume that x ¢ Y, . We can assume that
g = id. There exists an & C S such that x € Y, . Again we can assume &/ = .
We only treat the case x1x4 # 0, xx3 = 0. The other case is similar. Since x € Y**
there cannot be a relation x; + ax; = 0 for some a € F. From this it follows that
x € Y, ,, where h is as in the proof of Lemma 7.4. Since we have r,;, . (x) = 1, the
lemma follows. |

8. Affinoid coverings

In this section we shall give a construction of a pure affinoid covering of ¥, which
yields a reduction consisting of proper components.

THEOREM 8.1. When we take all the SL;(F) X SL,(F) sub-buildings % of the C,
building 3, all simplices 0 € S and all integers n the affinoids Y, cover Y™,
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This follows from Lemma 7.6 and Lemma 7.9.

The analytic space Y, , is not affinoid, but we can cover it by affinoids Y, , .
And {Y,, ,, for n € Z} is a pure affinoid covering of Y, ,. While {Y;, ,, | o €
Ao, n € Z} gives a pure affinoid covering of Y.

PROPOSITION 8.2. The following are pure affinoid coverings:

@ Yo =U,aYion
b) Y, = UaeA.nel Y:I,a.n'
(C) on' = Unel,ael Y.Sf.a,n'

PROOF. We prove part (c). First we remark that Y, | isthe setofx in Y, such
that |g * x;/x;(x)| = 1forall g € H, and i = 1, ... , 4. Furthermore, forx € Y, ,
one has |g *x;/x;(x)] < 1. So Y}, C Y. ,,is an open affinoid subspace of
the form: Y5, ,, = Y5 . — R7'(Vig.0n). Here R denotes the canonical reduction
map of Y, ., and Vi, . is a closed subvariety. To see that the covering is pure
consider the intersection Y3, . N Y5 . . Take an apartment &/ C # containing o
and o’. It follows from part (a) of the proposition that Y, . N Y, .  ispure. Since
Yyon=Yyon—R'Vaonand Yy, . =Yy ., — R (Vg, n), the intersection
Yy .o N Yy, . is also pure. This completes the proof. O

8.1. A construction We give the construction of the affinoids which will be used to
cover the space of stable points. Suppose & is g - @%. For 0y, 0, € & let A(0y, 03)
denote the convex hull of (0, 03). For o € & let Y(&, 0, 0y, 03)" be the set of x
inY, such that v4(x) € o, and that A(0,, 6;) contains I,(x), o1 N I4(x) # O,
0y N I4(x) # B, and that for all h € Gag, 6, We have |R*g*x;/g*x;(x)| = 1.
We will always assume o7y, 0, chosen in such a way Y(&/, o, 01, 03)' is nonempty. If
x € Y(&,0,01,0,) and &' D A(oy, 03) then I (x) = I,(x). Next we introduce an
open subaffinoid Y (&, 0, 0}, 03) of Y(&, 0, 01, 02)" such that for x in this subaffinoid
and for A’ O I (x) we get [ (x) = I(x). To do this we take certain functions f in
the affinoid algebra of Y (&, 0, 01, 02) demand that |f (x)| = 1 to get our subaffinoid.
Suppose that the end points of the interval I,(x) are P, P, with P; € o; and that
the center v (x) of I (x) lies in ¢. Suppose that the wall L of o, corresponds a
certain root and the line L is defined by x;/x; (x}| = |7"| say. Then we know for x
in Y(&, 0,0y, 0,) we have |x;/x; (x)| < |7"|. Now choose |a| = 1 then

(1) Py is in the interior of o if and only if |x;/x; (x)| < |x"|, which in turn implies
Ix, + mhax; /x; (0| = |w"ax; [x; ()] = |27

(2) Py isin oy N L if and only if |x;/x;(x)| = |x~"|, which in tum implies
Ix; + 7t"ax; /x; (x)| < |7"|.

So we can take f as being 7w ™" (x; + 7"ax; /x;). From the construction we now have:
Ifx € Y(&,0,01,07) and [4(x) C & then I4(x) = I4(x). Finally, if & is in
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the SL, x SL, building .# and H is the SL, x SL, acting on % and & = g- & we put
Y(#, 0,0, 0;) tobe the set of x in Y (&, 0, 01, 0;) such that |h*g*x, /g * x;(x)| = 1
forallh € H,.

LEMMA 8.3. Suppose thato € & C % andx € Y( S, 0, 0y, 02).
@) Ifh(Iy(x)) C & for some h € H then I 4(x) = h(I4(x)).
(b) Ifh € G, then 14 (x) = h(14(x)) if and only if k(I 4(x)) C S.
(¢) Ifh € G, then I 0(x) # h(l4(x)) if and only if r},(x) < r; ,(x).

This follows immediately from the definitions.

LEMMA 8.4. (a) Ifr'(x) # Othen x is in one of the Y(.#, o, 01, 03).
(b) r(x) Z0ifand only ifx € Y".

PROOF. (a) It suffices to take & such that 3, (x) = r'(x).
(b) Find an & such that x € Y (&, o, 0y, 03) for some o, 07, 0. Now observe that
there exists an h € P, such that r{_,(x) = O if and only if x ¢ Y”. a

LEMMA 8.5. Suppose x € Y(F,,0,01,0:) NY(H, 1,1, 12). Leto € & C H
and 1 € o C #. Then there exists h € Hy, such that h(I4(x)) = I4,(x)
and I g, (x) = [ 4,(x).

PROOF. Take an apartment A containing o and 7. Now Tr L(x) depends on the
intersection of S, N A and also on the intersection Sen, N A. If Ss.n, 7 Se.m, then
we can change A alittle such that Se.w, N A changes and S, y, N A remains the same.
The change of S, y, N A means that rx(x) changes whereas since Sy 4, N A does not
change r does not change r%(x) also does not change This is absurd and one must
have S; 4, N A= Se.n, NA. Since both 0, T € A it easily follows that one must
have I_;](X)-—IJZ(X). O

THEOREM 8.6. The family of sets Y (&, o, 01, 03) obtained by taking all SL, x SL,
buildings % C B, o, 01, 03 in all apartments & in # gives a pure covering of Y°.
Furthermore the reduction with respect to this covering consists of proper components.

PROOF. Let x € Y*. Then we can find & C % such that rj(x) = r’(x). The
proposition above shows that I, := I,(x) is uniquely determined. Here .# is the
SL, x SL, building containing &/. This is clear, since we have a unique S, for
each x € Y°. From this one easily concludes that the covering is pure. That the
reduction consists of proper components is proved using the same method as in [12,
Theorem 3.6, part 5]. (]
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