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Abstract
The issue of implementing nonlinear model predictive control (NMPC) on mechanical systems evolving on special
orthogonal group (SO(3)) is taken into consideration in the first place. Necessary conditions of optimality are
extracted based on Lie group variational integrators, leading to a two-point boundary value problem (TPBVP) which
is solved using sensitivity derivatives and indirect shooting methods. Fast Newton-like methods referred to as fast
solvers which are commonly used to solve the TPBVP are established based on the repetition of a nonlinear process.
The numerical schemes employed to alleviate the computation burden consist of eliminating some constraint-related
but non-essential terms in the trend of sensitivity derivatives calculation and for solving the TPBVP equations. As
another claim, assuming that a first attempt to resolve the NMPC problem is accessible, the problem subjected to
some changes in its initial conditions (due to some re-planning schemes) can be resolved cost-effectively based
on it. Instead of solving the whole optimization process from the scratch, the optimal control inputs and states
of the system are updated based on the neighboring extremal (NE) method. For this purpose, two approaches are
considered: applying NE method on the first solution that leads to a neighboring optimal solution, or assisting this
latter by updating the NMPC-related optimization using exact TPBVP equations at some predefined intermediate
steps. It is shown through an example that the first method is not accurate enough due to error accumulations. In
contrast, the second method preserves the accuracy while reducing the computation time significantly.

1. Introduction
Nonlinear model predictive control (NMPC) of mechanical systems has been widely studied in the
literature, including cases which evolve on Riemannian manifolds such as SO(3) and SE(3) [1–6].
Although hardware performance in terms of operational speed has reached a relative bounce nowadays,
nonetheless the successive process of optimization required by this particular method is still very time-
consuming. Therefore, alleviating the computation burden while preserving the accuracy of the results
is a preliminary solution to the problem of real-time implementation. Linear matrix inequality (LMI)
method is used to solve the optimizations related to the constrained model predictive control (MPC)
control of a 3D pendulum on SO(3) in ref. [7]. It is shown that using LMI for solving MPC problem
on manifold needs less control efforts than standard MPC. However, the difference is not noticeable in
terms of computation burden and time. In ref. [6], direct shooting method has been used to solve the
optimization problem of implementing NMPC to flight control of a quadrotor on SE(3). Direct methods
are less accurate than indirect shooting methods and they may terminate with non-optimal solutions
[8]. Generally, using fast solvers based on indirect shooting and Newton-like methods can increase the
accuracy and speed of computations for optimal control problems. Another aspect to consider toward
enhancing computational efficiency consists of deriving an appropriate discretized set of equations. One
conventional approach is to apply the variational principle and then to discretize the resulting equations.
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In contrast, another method known as the discretized Hamilton’s principle consists of applying the vari-
ational principle to the discretized Lagrangian of the system. This leads to another set of equations for
which the numerical integrators are termed variational integrators [9]. Lie group variational integrators
(LGVI) which exploit the main aspects of Lie group methods are much more accurate than classical
methods of integration such as Runge–Kutta for the same step size [10], mainly because LGVI are sym-
plectic and momentum-preserving systematically and show good energy behavior [11, 12]. Furthermore,
the discretization of equations and extraction of necessary conditions of optimality based on LGVI can
preserve the geometric structure of the system which is of primary importance in tracking the evolution
of the system configuration [13]. In terms of the optimal control problem on Lie group manifolds, the
first-order discrete conditions for optimality are derived based on discrete equations of motion [14]. An
exact and fast solver is then used in order to solve the corresponding two-point boundary value problem
(TPBVP) based on sensitivity derivatives. This latter determines the sensitivity of the specified terminal
boundary conditions to the change in the (unspecified) initial conditions of the Lagrange multipliers [14].
Forasmuch as the sensitivity derivatives are represented in the context of Lie algebra, singularities and
other ambiguities that may manifest themselves in other contexts such as Euler angles and quaternions
are avoided during the group actions; thus, sensitivity derivatives are able to provide a geometrically
exact and efficient method for solving the TPBVPs [15]. The method expressed above is used in refs.
[14, 16] for the optimal control of rigid bodies evolving on Lie groups SO(3) and SE(3), respectively.
The method developed in ref. [14] is adapted in ref. [17] for discrete-time MPC of mechanical systems
evolving on SO(3), where using efficient fast solver is revealed to reduce the amount of optimization
time in comparison with baseline solvers. However, since direct and indirect shooting methods are still
considered as time-consuming procedures, it is necessary to find methods to reduce the computation
time, especially when it comes to online implementation [8]. It is shown in ref. [18] that one can gain
a considerable reduction in computational time in comparison with the procedure presented in refs.
[14, 17], only by applying some subtle simplifications on the TPBVP equations and employing some
techniques for calculating the sensitivity derivatives. The procedure of substituting non-essential nonlin-
ear equations by simplified linear equations in the trend of solving the optimal control problem is being
considered in the present work for mechanical systems evolving on SO(3). Indeed, the terms which are
considered non-essential for the solver process are nonetheless added to the system of equations during
the last iteration, permitting to omit them in other iterations. These are some of the aspects that will be
discussed in this work in the first place.

In addition, optimal control problems may face changes in their initial conditions or parameters,
due to some reasons. In such cases, it is not necessary to perform the optimal control process from
the scratch if an initial answer to the problem (corresponding to the first set of initial conditions) is
already available. Using neighboring extremal (NE) methods can help to obtain the solution for the
new set of initial conditions based on estimating the corresponding variations to the optimal control
inputs [19, 20]. This method has been considered on Riemannian manifolds such as SO(3) in a limited
number of ref. [21]. Juxtaposing the NE method with NMPC could enhance the efficiency of the control
system significantly. However, this issue has not been widely addressed in related sources, unless only
on Euclidean spaces [22, 23]. In some cases, NE methods lead to a two-layer formulation [24, 25]. In the
present work, for a system evolving on a Lie group SO(3), the combination of NE method and NMPC is
considered to estimate the optimal solution in the presence of some alteration in the initial conditions.

Therefore, two main goals are pursued in this article. First, it is shown that the potential of the present
method to reduce the computation time is much more noticeable compared to what is offered in ref.
[17], which is one of the great achievements of this work that provides a practical way toward real-time
implementations of NMPC on SO(3). In this manner, discrete-time NMPC is applied to the equations
of a rigid body evolving on the Lie group SO(3). Afterward, it is demonstrated that by reducing the
nonlinearity of TPBVP equations and sensitivity derivatives, the NMPC-related calculations are less-
ened considerably compared with previous works. Secondly, NE method is applied to the governing
equations in order to alter their optimal solution in case of change in the initial conditions, without
having to perform the whole control planning procedure from the scratch. This method is highly valued
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whenever some solution is already available, or if some inner delays occur in NMPC systems, or in case
the initial conditions for a time step changed unpredictably. In such cases, the computations required for
obtaining the updated solution based on the basic initial conditions can be performed using NE method
in a much shorter time. The NE method can apply to such systems lonely or in combination with the
NMPC process. It is shown that the NE method is not able to preserve the accuracy of the responses
for long periods. In contrast, updating the NE method with NMPC computed at some predetermined
steps through the main TPBVP equations can increase the efficiency of the method while reducing the
computation time. The methodologies employed for aforementioned objectives are implemented on an
example and the simulation results confirm their validity.

Accordingly, this article is organized as follows: The equations of motion of a rigid body on SO(3) are
presented in Section 2. NMPC formulation and the proposed simplifications of TPBVP and sensitivity
derivative equations are expressed in Section 3. The applications of NMPC with and without applying
the proposed simplifications of Section 3 are compared in terms of accuracy and time via an example in
Section 4. Section 5 is dedicated to introduce the NE method and its reformulation for the NMPC control
of mechanical systems on Lie group SO(3). The results of Section 5 are implemented to an example in
Section 6. Finally, Section 7 is the conclusion part.

2. Equations of a rigid body on SO(3)
The Lagrangian form of continuous equations of motion of a rigid body in the absence of potential, on
Lie group SO(3), is obtained using Hamilton’s principle as follows [26]:

J�̇+�× J�= Bu (1)

Ṙ = RS(�) (2)

By applying the Legendre transformation to the above equations, one can express the equations of
motion in the Hamiltonian form as [27]:

�̇+�×�= Bu (3)

Ṙ = RS(�) (4)

where �= J� which belongs to R3 is the angular momentum of the body. The vector � ∈R3 is the
angular velocity of the body expressed in the body-fixed frame. The matrix J ∈R3×3 is the standard
moment of inertia matrix which is related to the nonstandard moment of inertia matrix, Jd, by Jd =
1

2
tr(J) I3 − J. The vector of control inputs is denoted by u ∈Rm, where B ∈R3×m is its coefficient matrix.

The Lie group SO(3) = {
R ∈R3×3|RRT = I3, det(R) = 1

}
is the special orthogonal group where its Lie

algebra so(3) is the set of all skew-symmetric matrices onR3×3. S(.) : R3 → so(3) is an isomorphism, that
is, a one-to-one invertible map between the vectors of R3 and the matrices of so(3) and it is defined as
follows: for all x, y ∈R3, S(x)y = x × y [28, 29]. In order to extract the discrete format of the rigid body
equations of motion on SO(3), referred to as LGVI, the discrete version of the Hamilton’s principle
is used instead of discretizing the continuous equations of motion [14]. These two methods are not
equivalent generally [30]. The discrete equations of motion extracted using variational approach based
on discrete Hamilton’s principle are systematically symplectic and momentum preserving and show
good energy behavior in long-time integration [15]. The discrete equations of motion in the Lagrangian
form extracted using the aforementioned method are presented below [26]:

1

h

(
Fk+1Jd − JdFk − JdFk+1

T + FT
k Jd

) = hS(Buk) (5)

Rk+1 = RkFk (6)
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where the matrix Fk is an auxiliary orthogonal matrix [14]. Using the discrete format of Legendre
transformation, the discrete-time format of equations of motion, referred to as LGVI, is given by:

hS(�k)= FkJd − JdFT
k (7)

Rk+1 = RkFk (8)

�k+1 = FT
k�k + hBuk (9)

where parameter h is the time step of the problem. Also, since F ∈ SO(3) and the group operation on
SO(3) is matrix multiplication, Eq. (8) ensures that the computed rotation matrix will always remain
on SO(3), that is, the geometric structure is preserved without the need to use any constraints or
reprojections [13].

3. NMPC formulation
NMPC is a finite-horizon, iterative optimal control method. Therefore, the NMPC formulation for a
system evolving on a Lie group is accomplished based on the principles of optimal control problem on
Lie groups. The first step toward reaching that goal is to extract the LGVI [13]. In order to formulate
the NMPC on SO(3), the same method as what is employed in ref. [18] is pursued. The following
general discrete-time cost functional for a finite control horizon based on minimizing error and energy
is considered:

min Jd(u)=�d(RN , S(�N))+
N−1∑
k=0

Ld(Rk, S(�k), S(uk)) (10)

which is subjected to Eqs. (7), (8), and (9), given R0 and�0, and the inequality constraints of the form:

Cd(Rk, S(�k), S(uk)) ≤ 0 (11)

where �d : SO(3) × so(3) →R≥0, Ld : SO(3) × so(3) × so(3) →R+ and Cd : SO(3) × so(3)×
so(3) →R are twice differentiable functions with respect to their arguments. The augmented
cost functional to implicate the constraints is written as follows:

Jd(u)=�d(RN , S(�N))+
N−1∑
k=0

[
Ld(Rk, S(�k) , S(uk))+ �(

λ1
k

)	
, log

(
Fk − Rk

TRk+1

) 


+ � S
(
λ2

k

)
,
(
FT

k�k + hBuk −�k+1

)	 

]
+μTψd(Cd(Rk, S(�k), S(uk)) (12)

where λ1
k , λ

2
k ∈R3 and μ ∈Rl are the Lagrange multipliers and ψd : R→Rl is the penalty function that

incorporates inequality constraints into the cost functional as soft constraints [31]. Thus, Eq. (12) is the
augmented form of Eq. (10) obtained by imposing the LGVI as dynamical constraints and the system
state constraints to the cost functional using Lagrange multipliers. The (	) : R3 → so(3)∗ represents an

isomorphism defined as: x	 = 1

2
S(x) for any x ∈R3, and so(3)∗ indicates the dual space of so(3) [32].

As well, � ., . 
 : so(3) × so(3)∗ →R denotes the natural pairing between the elements of so(3) and
so(3)∗ [28].

3.1. Extracting the necessary conditions for optimality
According to the above relations and the scheme presented in ref. [18], the first variation of the aug-
mented cost functional is computed. The infinitesimal variations of Rk and Fk are defined through δRk =
RkS(ηk) and δFk = FkS(ζk) where ηk, ζk ∈R3. Consequently, the following relations can be obtained [14]:

ηk+1 = FT
k ηk + ζk (13)

ζk = Mkδ�k (14)
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where Mk = hFT
k [tr(FkJd)I3 − FkJd]−1 ∈R3×3. In addition, without loss of generality, the functions Ld,

�d, Cd, and ψd(Cd) are considered to be in the following formats:

Ld = h

2

∥∥∥P
1
2
1 (Rk − I3)

∥∥∥2

F
+ h

2

∥∥∥P
1
2
2 S(�k)

∥∥∥2

F
+ h

2

∥∥∥P
1
2
3 S(uk)

∥∥∥2

F
(15)

�d = 1

2

∥∥∥Q
1
2
1 (RN − I3)

∥∥∥2

F
+ 1

2

∥∥∥Q
1
2
2 S(�N)

∥∥∥2

F
(16)

Cd = 1

2
‖S(uk)‖2

F − α (17)

ψd(Cd)= h max{0, Cd}2 (18)

where P1, P2, P3, Q1, and Q2 are positive definite coefficient matrices. According to [33], the quadratic
format of the above functionals can suffice to undertake the stability of the control system. However,
since the matter of stability analysis for NMPC on Euclidean space and Riemannian manifolds has
already been studied in the literature, it is out of the scope of this paper. The authors propose [33–35]
for more information about the stability conditions. It should be mentioned that the imposed constraints,
Cd, prevent saturation of the actuators. According to the above equations, the necessary conditions for
optimality are extracted as below:

hS(�k)= FkJd − JdFT
k (19)

Rk+1 = RkFk (20)

�k+1 = FT
k�k + hBuk (21)

λ1
N−1 = −S−1

((
RN

TQ1

)
A

)
(22)

λ1
k+1 = Fk+1

T
[
λ1

k + hS−1
((

Rk+1
TP1

)
A

)]
(23)

λ2
N−1 = S−1((Q2S(�N)A) (24)

λ2
k+1 = (

Fk+1 − Mk+1
TS

(
Fk+1

T�k+1

))−1[−Mk+1
Tλ1

k+1 + λ2
k − hS−1

(
(P2S(�k+1))A

)]
(25)

hBTλ2
k = −hS−1((P3S(uk))A)−μS−1

((
DS(uk)ψd(Cd)

)
A

)
(26)

where (C)A represents the antisymmetric part and ‖C‖F represents the Frobenius norm for every matrix
C ∈R3×3.

The above equations express a TPBVP that can be solved using the initial conditions of Rk, �k, λ1
k ,

and λ2
k . Given�0, F0 is computed using Eq. (19). R0 and F0 permit to calculate R1 through Eq. (20). By

means of the initial values λ1
0 and λ2

0, u0 will be computed using Eq. (26). Then λ1
0 and λ2

0 are computed
via Eqs. (23) and (25). This process is repeated until k = N − 2. Since the initial values for the Lagrange
multipliers are not available, an indirect shooting method should be used to estimate them. Accordingly,
similar to ref. [18], the first variation of Eqs. (19) to (26) is derived to extract the sensitivity derivatives:

ηk+1 = FT
k ηk + Mkδ�k (27)

δ�k+1 = [
FT

k + S
(
FT

k�k

)
Mk

]
δ�k + hBδuk (28)

δλ1
N−1 = S−1

((
S(ηN)RN

TQ1

)
A

)
(29)
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δλ1
k+1 = (Fk+1S(Mk+1δ�k+1))T

[
λ1

k + hS−1
((

Rk+1
TP1

)
A

)] + Fk+1
T
[
δλ1

k + hS−1
((
(Rk+1S(ηk+1))

T P1

)
A

)]
(30)

δλ2
N−1 = S−1((Q2S(δ�N)A) (31)

δλ2
k+1 = (

Fk+1 − Mk+1
TS

(
Fk+1

T�k+1

))−1[(−δMk+1
Tλ1

k+1 − Mk+1
Tδλ1

k+1 + δλ2
k − hS−1

(
(P2S(δ�k+1))A

))
− (
δFk+1 − δMk+1

TS
(
Fk+1

T�k+1

) − Mk+1
TδS

(
Fk+1

T�k+1

))
λ2

k+1

]
(32)

BTδλ2
k = −S−1((P3S(δuk)+ 2μCdS(δuk)+ 2μS(uk)S(δuk)S(uk))A) (33)

where

δMk = [
h(FkS(Mkδ�k))

T − Mk(tr(FkS(Mkδ�k) Jd) I3 − FkS(Mkδ�k) Jd)
]
(tr(FkJd) I3 − FkJd)

−1 (34)

These equations can be rewritten in the following form considering Eqs. (26) and (33):⎡
⎢⎢⎢⎢⎣
ηk+1

δ�k+1

δλ1
k+1

δλ2
k+1

⎤
⎥⎥⎥⎥⎦ =Kk

⎡
⎢⎢⎢⎢⎣
ηk

δ�k

δλ1
k

δλ2
k

⎤
⎥⎥⎥⎥⎦ (35)

where Kk is the transition matrix to the next step. Thus,⎡
⎢⎢⎢⎢⎣
ηN

δ�N

δλ1
N

δλ2
N

⎤
⎥⎥⎥⎥⎦ = (

�N−1
k=0 Kk

)
⎡
⎢⎢⎢⎢⎣
η0

δ�0

δλ1
0

δλ2
0

⎤
⎥⎥⎥⎥⎦ =

[
K11 K12

K21 K22

] ⎡
⎢⎢⎢⎢⎣
η0

δ�0

δλ1
0

δλ2
0

⎤
⎥⎥⎥⎥⎦ (36)

Since for each step of the NMPC, the original values of the spacecraft attitude and the angular
momentum are specified, and the amounts of η0 and δ�0 are set to zero. Consequently,[

ηN

δ�N

]
= K12

[
δλ1

0

δλ2
0

]
(37)

The submatrix K12, which is called the sensitivity derivative, determines the sensitivity of the speci-
fied terminal boundary conditions to the changes in the (unspecified) initial conditions of the Lagrange
multipliers [15]. At this stage and in the context of NMPC formulation, based on given initial conditions
R0 and�0 and an initial guess for λ1

0 and λ2
0, the final values for the rigid body attitude matrix and angu-

lar momentum, RN and �N , are forward computed and associated with the final values of the Lagrange
multipliers, λ1

N−1 and λ2
N−1, through Eqs. (22) and (24). On the other hand, these latter are also predicted

through Eqs. (23) and (25) for k = N − 2. Based on these two approaches, the following error function
can be defined:

Er =
[
λ1

N−1 + S−1
((

RN
TQ1

)
A

)
λ2

N−1 − S−1((Q2S(�N)A)

]
(38)

By applying an indirect shooting method (using a similar procedure used in refs. [14, 17]), the guessed
initial values of the Lagrange multipliers are re-estimated as:

[
λ1

0

λ2
0

](l+1)

=
[
λ1

0

λ2
0

](l)

− γ

⎡
⎢⎢⎢⎢⎢⎣

δEr(l)[
δλ1

0

δλ2
0

](l)

⎤
⎥⎥⎥⎥⎥⎦

−1

Er(l) (39)
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where γ is a real number that belongs to the interval (0, 1], l is an index that specifies the number
of iterations executed until ‖Er‖ ≤ ε, and ε is an allowed preset value. Therefore, the optimal control
problem is solved with the inputs (R0)i, (�0)i, and the final guess for (λ1

0)
i and (λ2

0)
i at each NMPC time

step. The index (i) represents the step number with the maximum value imax = T
h

where T is the total
time of executing the defined maneuver. The process will be repeated from the scratch for the next steps
until the entire time allotted for the problem ends.

3.2. Simplification of the sensitivity derivatives and TPBVP equations
In this subsection, a procedure for improving numerical efficiency of the NMPC calculations is presented
as the first main contribution of this paper, which consists of simplifying the expression for the sensitivity
derivatives and TPBVP equations without affecting the accuracy of the whole process. By removing
some nonlinear terms that are non-essential in the iterative shooting step of the algorithm, a reduction
in the computation burden of the optimal control sub-problem related to the NMPC method is obtained
[18]. Eq. (33) in Section 3.1 is an implicit nonlinear equation for the purpose of computing δuk that has
to be dealt with in the process of estimating (λ1

0)
l and (λ2

0)
l. However, Eq. (33) has no direct effect on

the overall trend of solving the necessary conditions for optimality and may only increase the number of
Newton iterations in the indirect shooting method. In order to be more explicit, at each step of solving the
NMPC problem, Eqs. (19)–(26) are solved based on initial guesses for (λ1

0)
l and (λ2

0)
l. Then if ‖Er‖> ε,

Eqs. (27)–(33) are solved to rectify those guessed values based on a Newton-like iterative method, and
this process continues until ‖Er‖ ≤ ε. Therefore, Eqs. (27)–(33) are solved based on constraint-imposed
control inputs. Hence, the constraint-related part of Eq. (33) can be removed from the solution procedure
since the constraints are already applied to the system through Eqs. (19)–(26). Consequently, Eq. (33)
is substituted with the following linear equation:

BTδλ2
k = −S−1((P3S(δuk)A) (40)

In addition, the TPBVP equations may be prone to constraints that are activated only when their asso-
ciated variables exceed some defined limits. In the problem under consideration, constraints on uk only
apply when the limits are exceeded and saturation occurs. Accordingly, assuming that the constraints
are still inactive, Eq. (26) can be considered as the linear form below:

hBTλ2
k = −hS−1((P3S(uk))A) (41)

Then uk computed through Eq. (41) is checked for being within the allowed range of the imposed
constraints. If the restrictions are not met, uk is re-computed using Eq. (26).

These simplifications can reduce the time of computations to a considerable extent while maintaining
the accuracy within acceptable limits compared to complete usage of nonlinear equations. In the next
section, the results of applying simplifications proposed above are compared with the results of the
methodology employed in refs. [14] and [17], where uk and δuk are computed without omitting the
nonlinear terms, for the sake of comparison in terms of time saving, efficiency, and accuracy.

4. An example on SO(3)
As an example of this section, a fully actuated spacecraft evolving on SO(3) with Eqs. (7), (8), and (9)
as the LGVI and numerical values tabulated in Table I is considered.

In the following figures, the results obtained by fully accounting for the nonlinear terms in both the
constrained TPBVP and the sensitivity equations [17] are compared with those extracted by solely solv-
ing the TPBVP using the simplified cast of the sensitivity derivatives, and those obtained by simplifying
both the TPBVP and the sensitivity derivatives, as discussed in Subsection 3.2. Diagrams of the control
inputs u1, u2, u3, and ‖u‖ are plotted in Fig. 1. The results show a relatively good match independent of
the level of simplification employed. In fact, the noteworthy point about these simplifications is that they
reduce the computation time of the problem by a considerable amount without affecting the accuracy of
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Table I. Numerical values employed in the simulation of the spacecraft.

R0 = exp
(
S
(
[0.25, 0.5, 0.5]T

))
�0 = [0, 0, 0]T

P1 = P2 = Q1 = Q2 = 0.01 I3, P1 = I3 J = diag(1, 0.8, 0.8) kg.m2, B = I3

t = 150 s, h = 0.4 s, N = 5 α = 0.0001 N.m, μ= 1e10
λ1

0 = [0, 0, 0]T λ2
0 = [0, 0, 0]T

Figure 1. Diagrams of u1, u2, u3, and ‖u‖, obtained using exact solution, estimated δu, and estimated
u and δu.

the results. In order to show the effect of removing the nonlinear parts from Eqs. (26) and (33) on the
optimal control action, diagrams of integral square error are plotted in Fig. 2. The black line shows the
difference between the elements of exact input which is computed through Eqs. (26) and (33) and the
input computed using the simplified sensitivity derivative (Eq. (40)). The red line represents the differ-
ence between the exact input and the input computed using both the simplified TPBVP (Eq. (41)) and
the simplified sensitivity derivative (Eq. (40)). As described in this figure, using simplified sensitivity
derivatives lead to less error in comparison with using both simplified TPBVP and sensitivity deriva-
tive. However, the amounts of error are in the order of about 10–7 which are definitely negligible. The
body-fixed components of angular momentum are illustrated in Fig. 3. As predictable, there is a good
agreement between the results achieved regardless of the approach that is used.
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Figure 2. Diagrams of ISE(u1), ISE(u2), ISE(u3), and ISE(‖u‖), obtained using exact solution minus
solution extracted using estimated δu, and exact solution minus solution extracted using estimated u
and δu.

It is worthy to notice that the similarity between the second and third components in both Figs 1
and 3 is justified as the second and the third moment of inertia of the spacecraft are equal, J2 = J3, so are
the initial conditions R0 and �0 according to Table I, leading to a symmetry in the optimal maneuver.
Figure 4 represents the rotation matrices of the spacecraft, Rk, on S2. The columns of R0 and RN are indi-
cated by dashed and solid colored lines, respectively. By comparing diagrams of Fig. 4, it is completely
clear that regardless of which methods are chosen, the attitude maneuver of the spacecraft is the same.

As demonstrated, the results corresponding to the control efforts, angular momenta, and spacecraft
attitude obtained by the foregoing methods matched precisely. However, what prioritizes these methods
over each other is the time consumption for performing the computations. Table II provides the amounts
of time needed to perform one step and the total computation time. In addition, the time of performing
each step is plotted against time, for each of the three methods in Fig. 5.

As it is clear by comparing the numerical values of Table II and diagrams of Fig. 5, solving the
exact TPBVP equations is very time-consuming. Using Eq. (40) to estimate δu via a linear equation in
sensitivity derivatives can reduce the average time of performing each step and the total computation
time about 73.4%. By considering both Eqs. (40) and (41) to estimate δu and u, the average time of
performing each step and the total computation time would be reduced by about 84.8%.
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Table II. Numerical values of time to perform each step and total computational time.

Exact solution Estimated δu Estimated u and δu
Max. time for each step 1.5417 s 0.7834 s 0.7852 s
Min. time for each step 0.1228 s 0.1398 s 0.0591 s
Average time for each step 0.7689 s 0.2048 s 0.1166 s
Total computation time 289.287 s 77.091 s 44.006 s

Figure 3. Diagrams of �1, �2, and �3, obtained using exact solution, estimated δu, and estimated u
and δu.

By comparing the results, one can come to the conclusion that both procedures presented in
Subsection 3.2 have the ability of reducing the optimization process time while keeping the accuracy at a
reasonable level. Thus, both methods could be used as a suitable alternative for what is presented in [17]
where iterative computations to extract u and δu are performed based on solving nonlinear equations
which is unnecessary according to the explanations given in Subsection 3.2. Nevertheless, approximat-
ing δu in the calculation of sensitivity derivatives has no direct effect on the general trend of solving the
equations and the compliance with the constraints is also guaranteed. In addition, unlike referring to Eq.
(41) for estimating u, the constraints do not need to be checked at each iteration. Thus, estimating δu is
preferred over estimating both u and δu in the process of solving the NMPC optimization problem and
that will be employed in the following sections.
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Figure 4. Diagrams of the columns of rotation matrices Rk, obtained using exact solution, estimated
δu, and estimated u and δu.

5. Application of NE method in NMPC control of mechanical systems on SO(3)
In this section, it is supposed that the initial conditions of the system and consequently, the initial con-
ditions for each interval may change due to some re-planning. The goal is to find a way to estimate the
responses of the system to the new initial conditions without performing the optimization process from
the scratch. Thus, the trend ahead is to use the NE method in the formulation of NMPC in order to find a
relation between the new initial conditions and the variations induced in the control inputs and states of
the system. The responses of the system are thus extracted based on the NE method, reducing the com-
putation time to a considerable extent in comparison with repeating the NMPC process. Indeed, since
the NMPC method is a repetitive time-consuming procedure, it makes perfect sense to reformulate the
NMPC construction based on NE method to be used for situations where the initial conditions of a once-
solved system are changed. In the following, first, a brief introduction to the NE method on Euclidean
configuration is given and then, the equations of the reformulated NMPC based on NE method on SO(3)
are extracted.

5.1. A brief introduction to NE method on Euclidean Space
NE method is a rapid method for finding the change in the optimal solution according to the changes
in the initial conditions and parameters of the system [19, 21]. Suppose that the discrete equations of
motion of a system are expressed in the following form on Euclidean space:

xk+1 = f (xk, uk) , xk ∈R
n, uk ∈R

m (42)
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Figure 5. Diagram of time to perform each step, obtained using exact solution, estimated δu, and
estimated u and δu.

with the initial conditions and constraints as:

xk=0 = x0 (43)

C(xk, uk) ≤ 0 (44)

The optimal control is obtained through minimizing the following cost functional:

min Ju =�(xN)+
N−1∑
k=0

L(xk, uk) (45)

subjected to Eqs. (42), (43), and (44). The functions f , C,�, and L are twice differentiable. By defining
the function H as:

H(xk, uk)= L(xk, uk)+ λk
T f (xk, uk)+μk

TC(xk, uk) (46)

the augmented cost functional is obtained by adding the constraints to Eq. (45):

min Ju =�(xN)+
N−1∑
k=0

(
H(xk, uk)− λk

Txk+1

)
(47)

where λk and μk are the Lagrange multipliers. As well, xk+1 is the predicted state vector based on the
initial condition x0 and the input vector uk at instant k for k = 0, . . . , N. Now suppose that there is a
small change in the initial conditions of the system. The variation of the initial conditions is defined
by δx0 = x0 − x0, where x0 represents the new set of initial conditions. The NE method is established to
find δuk based on minimizing the second-order variation of the system cost functional, since the first-
order necessary conditions of optimality vanish at nominal solutions. Therefore, the new optimal control
problem is formulated as follows [19, 36]:

min δ2Ju = 1

2
δxN

T�xkxk(xN) δxN + 1

2

N−1∑
k=0

[
δxk

δuk

]T[
Hxkxk (xk, uk) Hxkuk (xk, uk)

Hukxk (xk, uk) Hukuk (xk, uk)

] [
δxk

δuk

]
(48)
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subjected to the variation of the dynamics of the system and the variation of the constraints as given
below:

δxk+1 = fxk(xk, uk) δxk + fuk (xk, uk)δuk (49)

δxk=0 = δx0 (50)

Cxk(xk, uk) δxk + Cuk(xk, uk) δuk = 0 (51)

The NE solution based on variations of the initial conditions is obtained through solving the above
new optimal control problem [19, 36, 37]:

δuk = −[Im 0ℵ]

[
Zukuk (xk, uk) Cuk

T
(xk, uk)

Cuk(xk, uk) 0�

]−1 [
Zukxk(xk, uk)

Cxk(xk, uk)

]
xk (52)

where ℵ and � depend on whether the constraints are active or not. Moreover,

Zukuk(xk, uk)= Hukuk(xk, uk)+ fuk (xk, uk)
TG(xk+1, uk+1)fuk (xk, uk) (53)

Zukxk(xk, uk)= Zxkuk(xk, uk)
T = Hukxk(xk, uk)+ fuk (xk, uk)

TG(xk+1, uk+1)fxk (xk, uk) (54)

Zxkxk(xk, uk)= Hxkxk(xk, uk)+ fxk (xk, uk)
TG(xk+1, uk+1)fxk (xk, uk) (55)

where

G(xk, uk)= Zxkxk(xk, uk)−
[

Zxkuk(xk, uk) Cx(k)
T
(xk, uk)

] [
Zukuk(xk, uk) Cuk

T
(xk, uk)

Cuk(xk, uk) 0�

]−1 [
Zukxk(xk, uk)

Cx(k) (xk, uk)

]

k = 0, . . . , N − 1 (56)

G(xN , uN)=�xkxk(xN , uN) (57)

Consequently, the NE method which is established based on the following equations [38]:

xk = xk + δxk (58)

uk = uk + δuk (59)

provides a method to find the updated optimal control for the new set of initial conditions using the
above-mentioned recursive method.

5.2. Equations extraction for application of NE method into NMPC on SO(3)
The equations presented in Subsection 3.1 should be converted into a suitable form for implementing
the NE method in the NMPC on SO(3). Hence, Eq. (47) is rewritten in the following form:

Jd =�d(RN , S(�N))+
N−1∑
k=0

Hd(Rk, S(�k), S(uk))− �(
λ1

k

)	
, log

(
RT

k Rk+1

) 
 − � S
(
λ2

k

)
, (�k+1)

	 


+μTψd(Cd(Rk, S(�k), S(uk)) (60)

where

Hd(Rk, S(�k), S(uk)) =Ld(Rk, S(�k), S(uk))+ �(
λ1

k

)	
, log(Fk)
 + � S

(
λ2

k

)
, (FT

k�k + hBuk)
	 


(61)
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By denoting υ(k) = [ηk, δ�k]T , the second variation of Jd would be

δ2Jd = 1

2
υ(N)T

�dυυ(N) υ(N)+ 1

2

N−1∑
k=0

[
υ(k)

δuk

]T [
Hdυυ(k) Hdυu(k)

Hduυ(k) Hduu(k)

] [
υ(k)

δuk

]
(62)

constrained to the first variation of the necessary conditions for optimality as follows:

δRk+1 = δ(RkFk) = [
FT

k Mk

]
υ(k) (63)

δ�k+1 = δ
(
FT

k�k + hBuk

) = [
03×3

(
FT

k + S
(
FT

k�k

)
Mk

) ]
υ(k) + hBδuk (64)

Cdυ(k)
T
(k) υ(k) + Cduk

T
(k) δuk = 0 (65)

Similar to what has been explained in Subsection 3.1 and in order to find the relationship between
the changes in the initial conditions and the associated variations in the control inputs, the following
equations for mechanical systems evolving on the manifold SO(3) are extracted:

δuk = −[I3 0ℵ]

[
Zuu(k) Cduk

T
(k)

Cduk
(k) 0�

]−1 [
Zuυ(k)

Cdυ(k)(k)

]
υ(k) (66)

Also,

Zuu(k)= Hduu(k)+
[
δRk+1

δuk

δ�k+1

δuk

]
G(k + 1)

[
δRk+1

δuk

δ�k+1

δuk

]T

(67)

Zuυ(k)= Zυu(k)
T = Hduυ(k)+

[
δRk+1

δuk

δ�k+1

δuk

]
G(k + 1)

[
δRk+1

δηk

δRk+1

δ�k

δ�k+1

δηk

δ�k+1

δ�k

]T

(68)

Zυυ(k)= Hdυυ(k)

+
[
δRk+1

δηk

δRk+1

δ�k

δ�k+1

δηk

δ�k+1

δ�k

]
G(k + 1)

[
δRk+1

δηk

δRk+1

δ�k

δ�k+1

δηk

δ�k+1

δ�k

]T

(69)

where G(k), k = 0, . . . , N, are obtained by substituting υ instead of x(k) in Eqs. (56) and (57).
The elements in Eqs. (60)–(69) are extracted considering Eqs. (15)–(18). Should any changes occur in

the initial conditions of the system, above equations can be used instead of employing the normal trend,
resulting to a considerable reduction in the amount of computations needed for the successive optimiza-
tions related to the NMPC process on SO(3). The remarkable superiority of this method over solving
the optimization problem from the scratch in reducing the computation burden and hence increasing the
speed of calculations is shown in the next section through an example.

6. NMPC and NE control of a spacecraft on SO(3) with changes in the initial conditions
In this section, the extracted relationships of Subsection 5.2 are implemented on the example of
Section 4. It is supposed that the initial conditions of the system are altered. The example is solved using
three methods. First, it is solved by the method provided in Subsection 3.2. Second, the NE method is
used to estimate the necessary adaptation of the control inputs and its effect on the response of the
system, and finally, the combination of these two methods is employed to get the solution. The combi-
nation of the methods is established based on solving the problem with altered initial conditions using
NE method. However, at some predetermined steps the optimization problem is solved from the scratch
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Table III. First and second set of initial conditions.

�0 = [0 0 0]T R0 = exp
(
S

(
[0.25 0.5 0.5]T

))
�0 = [0.0025 0.0025 0.0025]T R0 = exp

(
S

(
[0.3 0.5 0.5]T

))

Figure 6. The basic schematic diagram which shows how the three methods work for solving the NMPC
problem.

in order to compensate for error accumulation. In fact, whenever the control inputs and system vari-
ables deviate inexorably from their actual value, a round of running exact NMPC-related optimization
at intermediate steps takes them back to the expected actual path. Figure 6 shows the logic behind this
proposed method in a simplified schematic form. The diagrams of the control inputs and the evolution
of the system states as well as the diagrams of the time needed to perform each step are plotted and the
results are compared in order to determine the more appropriate method.

6.1. The spacecraft problem: Exact solution of the NMPC versus NE solution
Consider the first and second set of initial conditions of the system given in Table III. The (−) symbol
above the variables indicates the new initial conditions.

The example has been solved for the second set of initial conditions in two ways: the first approach
is according to the method offered in Subsection 3.2, part A, and the second one consists of using the
NE method presented in Subsection 5.2. Figure 7 shows the control inputs obtained by using these two
methods. Based on these diagrams, the control inputs do not match for the initial steps but the differences
vanish as time goes ahead. However, based on what can be seen in Fig. 8, the resulted angular momenta
do not match and the difference even accentuates with time. The same trend can also be seen in the
attitude of the spacecraft, plotted in Fig. 9. In this figure, black, green, and pink lines correspond to
the exact solution of TPBVP, whereas blue, red, and cyan lines indicate the NE solution. As it is clear,
the two methods represent considerable differences, and this happens due to the error accumulated at
each step. Therefore, one can conclude that the NE method accompanied with exact TPBVP solutions
calculated at some intermediate steps may provide better answers.

6.2. The spacecraft problem: Exact solution of the NMPC versus the combination of NE and exact
TPBVP solution

In this subsection, the combination of NE and the exact solution of NMPC-related TPBVP is used in
order to prevent the accumulation of errors during the whole run time of the simulation. The procedure
to follow is explained next: As a first step, the “exact” solution to the new initial conditions is obtained
through the TPBVP equations using the method explained in Subsection 3.2, part A. Then, for a number
of steps which depends on the size of the problem, the NE method is used to find the neighborhood
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Figure 7. Diagrams of u1, u2, u3, and ‖u‖, obtained using exact solution for the NMPC-related TPBVP
and the NE solution.

solution. Next, the exact solution is computed for another step via NMPC-related TPBVP and the whole
process continues until the end. The strategy of our proposed procedure relies on employing the direct
solution of NMPC-related TPBVP to return to the actual path whenever the neighborhood solution is
deemed to deviate too much. By this way, a compromise between accuracy and the amount of compu-
tational operations can be reached. The diagrams for this example seem to confirm this claim. It turns
out from Figs. 10, 11, and 12 that this method is able to regulate the error and to extract the relevant
solution. In this example, the number of steps to reiterate the exact solution is considered equal to 10.
Needless to say, the lower the number, the more accurate the result, but the heavier the calculations.

6.3. Time comparison of the introduced methods
The methods provided in Subsections 6.2 and 6.3 should also be compared in terms of computational
time. The maximum, minimum, and the average values of time consumed to perform one step and the
total computation duration are given in Table IV for the aforementioned approaches, namely i. solving
the exact NMPC-related TPBVP directly according to Subsection 3.2, ii. using the NE method to esti-
mate the control inputs and system states similar to what is offered in Subsection 6.1, and iii. using the
combination of these two methods according to what is presented in Subsection 6.2. The time consumed
for performing each step is plotted against time for each of the three methods in Fig. 13 as well.
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Figure 8. Diagrams of �1, �2, and �3, obtained using exact solution for the NMPC-related TPBVP
and the NE solution.

Figure 9. Diagrams of the columns of the rotation matrices Rk, obtained using exact solution for the
NMPC-related TPBVP, and the NE solution.
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Table IV. Numerical values of time to perform each step and total computational time.

TPBVP solution NE solution TPBVP and NE solution
Max. time for each step 0.7955 s 0.1185 s 0.7422 s
Min. time for each step 0.1417 s 0.0040 s 0.0102 s
Average time for each step 0.2978 s 0.0069 s 0.0431 s
Total computation time 112.079 s 2.653 s 16.267 s

Figure 10. Diagrams of u1, u2, u3, and ‖u‖, obtained using exact solution for the NMPC-related TPBVP,
and the combination of the NE and the exact TPBVP solution.

Considering the numerical values of Table IV, it is completely clear that using the NE method alone
is absolutely superior to the other two methods in terms of computation time reduction. By using this
method, the average time of performing each step and the total computation time would reduce by about
97.6%. However, the results of Subsection 6.1 indicate that using the NE method alone is not sufficient
to estimate the expected responses of the system properly. Consequently, the combination of using the
NE method and solving the NMPC optimal control problem using the exact TPBVP equations at some
predefined intermediate steps, as presented in Subsection 6.2, is the suggested method of this article to
meet the dual objectives. In addition, through achieving an accurately enough estimate of the control
inputs and system states, this method can reduce the average time of performing each step by 85.5% and
the total computation time by 86.1%. So, if some changes occur in the initial conditions of the system,
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Figure 11. Diagrams of �1,�2, and �3, obtained using exact solution for the NMPC-related TPBVP,
and the combination of the NE and the exact TPBVP solution.

the method as presented in Subsection 6.2 can prove efficient in updating the optimal control inputs and
responses of the system without solving the whole optimization process from the scratch.

7. Conclusion
In this article, the NMPC of mechanical systems on SO(3) is considered. LGVI are used to extract the
necessary conditions for optimality. The extracted TPBVP is solved using an indirect shooting method
based on iterative Newton-like schemes. The proposed method in this article offers two computation
tricks based on reducing the nonlinearity of the equations in order to alleviate the computation burden
of solving TPBVP and sensitivity derivatives. These simplifications are explicitly applied to the equa-
tions and their effects on reducing the computation time while keeping the accuracy of the results are
investigated through an example. Since the simplification applied on the sensitivity derivatives reduces
the optimization time significantly while it has no effect on the overall process of the optimization (in
contrast to both TPBVP and sensitivity derivatives simplification), owing to the fact that the constraints
of the equations are ultimately applied in the last round of calculations, it is designated as the preferred
procedure. The obtained numerical values for the integral square error and the percentage of reducing
the computation time express the efficiency of the proposed method in a better way.
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Figure 12. Diagrams of the columns of rotation matrices Rk, obtained using exact solution for the
NMPC-related TPBVP, and the combination of the NE and the exact TPBVP solution.

Figure 13. Diagram of time to perform each step, obtained using i. exact solution for the NMPC-related
TPBVP, ii. the NE solution, and iii. the combination of the NE and the exact TPBVP solution.

In the following, it is supposed that the initial conditions of the system may be prone to some changes.
Instead of solving the issue from the scratch, the NE method is used to estimate the corresponding
variations in the control inputs and system states based on the variations in the initial conditions. The
NE method is employed alone or in intermittent combination with the exact solution of the NMPC-
related optimal control problem at some predefined intermediate steps, in order to remediate from error
accumulation. The results show that although using the NE method alone can reduce the computation
time of the problem extensively, nonetheless it does not provide the required accuracy. On the other
hand, using the combination of NE method together with intermittent exact solutions of TPBVP at some
limited steps can effectively estimate the control inputs and system states related to the NMPC problem
with altered initial conditions while still reducing the computation time to a considerable extent.
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The methods proposed in this article could also be implemented on underactuated systems on SO(3),
and systems evolving on SE(3). Moreover, experiments can be considered for taking implementation
issues into account. All these issues will hopefully be addressed in our future works.
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