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On generation of the coefficient field
of a primitive Hilbert modular form
by a single Fourier coefficient

Narasimha Kumar and Satyabrat Sahoo

Abstract. Let f be a primitive Hilbert modular form over F of weight k with coefficient field E f ,
generated by the Fourier coefficients C(p, f ) for p ∈ Spec(OF). Under certain assumptions on the
image of the residual Galois representations attached to f, we calculate the Dirichlet density of
{p ∈ Spec(OF)∣E f = Q(C(p, f ))}. For k = 2, we show that those assumptions are satisfied when
[E f ∶ Q] = [F ∶ Q] is an odd prime. We also study analogous results for F f , the fixed field of E f by
the set of all inner twists of f. Then, we provide some examples of f to support our results. Finally, we
compute the density of {p ∈ Spec(OF)∣C(p, f ) ∈ K} for fields K with F f ⊆ K ⊆ E f .

1 Introduction

The study of the Fourier coefficients of modular forms is an active area of research
in number theory. It is well known that, for any primitive form f over Q, the Fourier
coefficients of f generate a number field E f . In [KSW08], Koo, Stein, and Wiese proved
that the set of primes p for which the pth Fourier coefficient of f generates E f has
density 1, if f does not have any nontrivial inner twists. To the best of the authors’
knowledge, the analogous question is still open for Hilbert modular forms, which is
the objective of our study in this article.

For a primitive form f over a totally real number field F, let E f denote the number
field generated by the Fourier coefficients C(p, f )(p ∈ P) of f, where P = Spec(OF),
the set of all prime ideals of OF (cf. [Shi78]). We first state a result, for primitive forms
f over F of weight 2, the set of p ∈ P with Q(C(p, f )) = E f has Dirichlet density 1, if
[F ∶ Q] = [E f ∶ Q] is an odd prime (cf. Theorem 3.1). We then state and prove a general
result for primitive forms f of weight k (cf. Theorem 3.6), under some assumptions on
the image of the residual Galois representations ρ̄ f ,λ attached to f and λ ∈ Spec(OE f )
(cf. equation (2.2)). We then show that these assumptions on the image of ρ̄ f ,λ are
satisfied for primitive forms f over F of weight 2, if [F ∶ Q] = [E f ∶ Q] is an odd prime
(cf. Theorem 3.1). The proof of Theorem 3.1 depends on the works of Dimitrov (cf.
[Dim05]), Dimitrov and Dieulefait (cf. [DD06]). We continue a similar study for F f ,
the fixed field of E f by the set of all inner twists of f, and show that the set of p ∈ P
with Q(C∗(p, f )) = F f has density 1 (cf. Section 2.1 for the definition of C∗(p, f )).
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This article builds on the ideas of Koo et al. in [KSW08] for primitive forms overQ.
One of the vital ingredients in the proof of [KSW08, Theorem 1.1] is a theorem of Ribet
(cf. [Rib85, Theorem 3.1]), where he explicitly described the image of l-adic residual
Galois representation ρ̄ f , l attached to primitive form f and a prime l. This result played
a crucial role in obtaining certain sharp bounds for the images of ρ̄ f , l , which was
helpful in their proof. Unfortunately, in our context, an analog of Ribet’s result does
not seem to exist in the literature. In order to get a similar sharp bound for the images
of ρ̄ f ,λ , we have to work with some assumptions (cf. equation (3.1)). This explains the
reason for our assumptions in Theorems 3.1 and 3.6. Using L-functions and modular
forms database (LMFDB), we produce examples of primitive forms f of parallel weight
2 in support of Theorem 3.1 (cf. Examples 4–6).

We also calculate the density of p ∈ P for which C(p, f ) ∈ K, where K ⊆ E f is a
subfield. This density depends on whether F f ⊆ K or not. If F f /⊆ K, then it is zero (cf.
Lemma 4.1); otherwise, it is nonzero and completely determined by the inner twists
of f associated with K (cf. Proposition 4.3).

1.1 Structure of the article

The article is organized as follows. In Section 2, we collate all the preliminaries that are
required to prove our main theorems (cf. Theorems 3.1 and 3.6). We also introduce
the notion of inner twists and study their properties quite elaborately. In Section 3,
we state and prove Theorem 3.1 and its generalization (cf. Theorem 3.6) for primitive
forms f over F of parallel weight 2 and weight k, respectively. We also prove analogous
results for F f and study their consequences. In Section 4, we calculate the Dirichlet
density of p ∈ P with C(p, f ) ∈ K for any field K with K ⊆ E f .

2 Preliminaries

Let F be a totally real number field of degree n. Let OF , n, and D denote the ring of
integers, an ideal, and the absolute different of F, respectively.

2.1 Notations

Throughout this article, we fix to use the following notations.
• Let P denote the set of all primes in Z, P = Spec(OF).
• Let k = (k1 , k2 , . . . , kn) ∈ Zn such that k i ≥ 2 and k1 ≡ k2 ≡ ⋯ ≡ kn(mod 2). Let

k0 ∶= max{k1 , k2 , . . . , kn}, n0 = k0 − 2.
• For any number field K, denote GK ∶= Gal(K̄/K). Let L be a subfield of K. For a

prime ideal q in K lying above p = q ∩ L in L, let e(q/p) and f(q/p) denote the
ramification degree and inertia degree of q over p, respectively.
For any Hecke character Ψ of F with conductor dividing n and infinity-type 2 − k0,

let Sk(n, Ψ) denote the space of all Hilbert modular newforms over F of weight k, level
n, and character Ψ. A primitive form is a normalized Hecke eigenform in the space
of newforms. The ideal character corresponding to Ψ of F is denoted by Ψ∗ .

For a primitive form f ∈ Sk(n, Ψ), let C(b, f ) denote the Fourier coefficient of
f corresponding to an integral ideal b of OF and C∗(b, f ) ∶= C(b, f )2

Ψ∗(b) for all ideal b

https://doi.org/10.4153/S0008439522000558 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000558


On generation of the coefficient field by a Fourier coefficient 589

with (b, n) = 1. Write E f = Q(C(b, f )), F f = Q(C∗(b, f )), where b runs over all the
integral ideals of OF with (b, n) = 1. Let P f ∶= Spec(OE f ), the set of all prime ideals
of OE f . For any two subfields F1 , F2 such that Q ⊆ F2 ⊆ F1 ⊆ E f , we let

fλ ,F1 ,F2 ∶= f(λ ∩ F1/λ ∩ F2)

for λ ∈ P f . The following proposition describes some properties of E f .

Proposition 2.1 [Shi78] Let f ∈ Sk(n, Ψ) be a primitive form of weight k, level n, and
character Ψ with coefficient field E f . Then:
(1) E f is a finite Galois extension of Q.
(2) Ψ∗(m) ∈ E f , for all ideals m ⊆ OF .
(3) E f is either a totally real or a complex multiplication (CM) field.
(4) E f = Q({C(p, f )}p∈S), where S ⊆ P with Sc is finite.
(5) C(p, f ) = Ψ∗(p)−1C(p, f ) for all p ∈ P with (p, n) = 1.

2.2 Galois representations attached to f

Let f ∈ Sk(n, Ψ) be a primitive form of weight k, level n, and character Ψ with
coefficient field E f . For λ ∈ P f , by the works of Ohta, Carayol, Blasius-Rogawski, and
Taylor (cf. [Tay89] for more details), there exists a continuous Galois representation

ρ f ,λ ∶ GF → GL2(E f ,λ),

which is absolutely irreducible, totally odd, and unramified outside nq, where q ∈ P
is the rational prime lying below λ. Here, E f ,λ denote the completion of E f at λ. For
all primes p of OF with (p, nq) = 1, we have

tr(ρ f ,λ(Frobp)) = C(p, f ) and det(ρ f ,λ(Frobp)) = Ψ∗(p)N(p)k0−1(2.1)

(cf. [Car86]). By taking a Galois stable lattice, we define

ρ̄ f ,λ ∶= ρ f ,λ(mod λ) ∶ GF → GL2(Fλ)(2.2)

whose semi-simplification is independent of the choice of a lattice. We conclude this
section by recalling the Chebotarev density theorem (cf. [Ser81]).

Theorem 2.2 Let C be a conjugacy class of G ∶= ρ̄ f ,λ(GF). The natural density of
{p ∈ P ∶ [ρ̄ f ,λ(Frobp)]G = C} is ∣C∣

∣G∣ .

2.3 Inner twists and its properties

We now define inner twists associated with a primitive form and describe some of its
properties. This notion is quite useful in Section 4.

Let f ∈ Sk(n, Ψ) be a primitive form defined over F. For any Hecke character Φ
of F, let fΦ denote the twist of f by Φ (cf. [SW93, Section 5]). The Fourier coefficients
of f and fΦ are related as follows.
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Proposition 2.3 [SW93, Proposition 5.1] Let f , fΦ be as above. If n0 and m0 are
the conductors of Ψ and Φ, respectively, then fΦ ∈ Sk(lcm(n,m0n0 ,m2

0), ΨΦ2) and
C(m, fΦ) = Φ∗(m)C(m, f ) for all ideals m of OF .

Definition 2.4 We say a primitive form f is said to be of CM type, if there exists a
nontrivial Hecke character Φ of F such that C(p, f ) = Φ∗(p)C(p, f ) for almost all
prime ideals p of OF . We say that f is non-CM if f is not of CM type.

We are now ready to define inner twists.

Definition 2.5 (Inner twists) Let f ∈ Sk(n, Ψ) be a non-CM primitive form over F.
For any Hecke character Φ of F, we say that the twist fΦ of f is inner if there exists a
field automorphism γ ∶ E f → E f such that γ(C(p, f )) = C(p, fΦ) for almost all prime
ideals p of OF .

Remark 2.6 For any primitive form f, the identity map id ∶ E f → E f induces an
inner twist of f and we refer to it as the trivial inner twist of f.

Let � ≤ Aut(E f ) denote the subgroup of γ associated with all the inner twists of f.
Let F f ∶= E�

f , the fixed field of E f by �. By Galois theory, E f is a finite Galois extension
of F f . Some properties of F f are given below.

Lemma 2.7 The field F f is totally real and C∗(p, f ) ∈ Q(C(p, f )).

Proof By Proposition 2.1, we have C∗(p, f ) = C(p, f )C(p, f ). This shows that F f

is totally real. By Proposition 2.1, if E f is totally real, then C∗(p, f ) = C(p, f )2 ∈
Q(C(p, f )). If E f is a CM field, then Q(C(p, f )) is preserved under complex
conjugation. Hence, C∗(p, f ) = C(p, f )C(p, f ) ∈ Q(C(p, f )). ∎

We now examine the existence of trivial, nontrivial inner twists for any primitive
form f.

Lemma 2.8 If f ∈ Sk(n, Ψ) is a non-CM primitive form over F with a nontrivial
Hecke character Ψ, then f has a nontrivial inner twist.

Proof Let σ ∶ E f → E f be an automorphism defined by σ(x) = x, for all x ∈ E f .
By Proposition 2.1, we have σ(C(p, f )) = Ψ∗(p)−1C(p, f ) for all p with (p, n) = 1.
By Proposition 2.3, f has a nontrivial inner twist given by (Ψ∗)−1. ∎

We now give some examples of primitive forms with a nontrivial inner twist.

Example 1 Consider a non-CM primitive form f labeled as 2.2.8.1-41.1-a
in [LMFDB], defined over F = Q(

√
2) of weight (2, 2), level [41, 41, 2

√
2 − 7], and

with trivial character. The coefficient field E f = Q(
√

2) and F f = Q.

Example 2 Consider a non-CM primitive form f labeled as 2.2.12.1-13.1-a
in [LMFDB], defined over F = Q(

√
3) of weight (2, 2), level [13, 13,

√
3 + 4], and

with trivial character. The coefficient field E f = Q(
√

2) and F f = Q.
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Example 3 Consider a non-CM primitive form f labeled as 2.2.24.1-9.1-a in
[LMFDB], defined over F = Q(

√
6) of weight (2, 2), level [9, 3, 3], and with trivial

character. The coefficient field E f = Q(
√

6) and F f = Q.

In Examples 1–3, the coefficient field E f ≠ F f . Hence, these primitive forms f have
a nontrivial inner twist.

Lemma 2.9 Suppose f ∈ Sk(n, Ψ) is a non-CM primitive form over F with [E f ∶ Q]
is an odd prime. If E f is totally real, then f does not have any nontrivial inner twists. If
Ψ = Ψ0 is a trivial character, then E f is totally real.

Proof Let p ∈ P be a prime with (p, n) = 1. Since E f is totally real, C(p, f )2 ∈ F f .
Since [E f ∶ Q] is prime, the field F f is eitherQ or E f . If F f = Q, then [Q(C(p, f )) ∶ Q]
is either 1 or 2. This contradicts to that [E f ∶ Q] is an odd prime. Therefore, F f = E f .
Hence, f does not have any nontrivial inner twists. ∎

3 Statement and proof of the main theorem

In this section, we shall state and prove the main theorem of this article.

Theorem 3.1 (Main Theorem) Let f ∈ Sk(n, Ψ) be a primitive form defined over F of
parallel weight 2, level n, and character Ψ, which is not a theta series. Let E f denote the
coefficient field of f. Suppose [F ∶ Q] = [E f ∶ Q] is an odd prime. Then,

δD ({p ∈ P ∶ Q(C(p, f )) = E f }) = 1,

where δD(S) denotes the Dirichlet density of S ⊆ P.

3.1 Images of the residual Galois representations

We now determine the images of the residual Galois representations attached to
primitive forms of parallel weight 2. The work of Dimitrov in [Dim05] is quite
influential in this section.

Let f ∈ Sk(n, Ψ) be a primitive form defined over F of weight k = (k1 , k2 , . . . , kn),
level n, and character Ψ. Recall that k0 = max{k1 , . . . , kn} and ωq is the mod q
cyclotomic character. Then, Ψ̄ωq

k0−2 is a character on GF . Let F̂ be the compositum
of the Galois closure of F in Q̄ and the subfield of Q̄ given by (F̄)Ker(Ψ̄ωq

k0−2). Then,
F̂ is a Galois extension of F and GF̂ ⊴ GF . A combination of Propositions 3.8 and 3.9
in [Dim05] would imply the following proposition.

Proposition 3.2 Let f be a primitive form which is not a theta series. For almost all
q ∈ P, there exists a power q̂ of q such that either

ρ̄ f ,λ(GF̂) ≃ {g ∈ GL2(Fq̂) ∶ det(g) ∈ (F×q )k0−1}
or

ρ̄ f ,λ(GF̂) ≃ {g ∈ F×q̂2 GL2(Fq̂) ∶ det(g) ∈ (F×q )k0−1}
holds.
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3.2 Key proposition in the proof of Theorem 3.1

We will now determine the image of ρ̄ f ,λ for primitive forms f in Theorem 3.1. More
precisely, we have

Proposition 3.3 Let f ∈ Sk(n, Ψ) be as in Theorem 3.1. For any λ ∈ Spec(OE f ) lying
above q, we have

ρ̄ f ,λ(GF) ≃ {γ ∈ GL2(Fqd ) ∶ det(γ) ∈ F×q},

for infinitely many q ∈ P with d = f(λ/q).

Before we start the proof of Proposition 3.3, we recall some necessary results.

Proposition 3.4 [Mar77] Let K/Q be a cyclic Galois extension of degree n. For
1 ≤ r ∣ n, let Sr ∶= {q ∈ P ∶ e(λ∣q) = 1 & f(λ/q) = r for some prime ideal λ∣q}. Then,
δD (Sr) = φ(r)

n .

Corollary 3.5 Let f be as in Theorem 3.1. Then, there exists infinitely many primes
q ∈ P which are inert in both F and E f .

For q ∈ P, let λ be a prime ideal of OE f lying above q.

Proof of Proposition 3.3 We adopt the technique in [DD06, Theorem 3.1] to
prove this proposition. In our case, k0 = 2, Ψ = Ψtriv, and hence GF̂ = GF . By
Proposition 3.2, for all primes q ≫ 1, there exists a power q̂ of q, and we have either
ρ̄ f ,λ(GF) ≃ {g ∈ GL2(Fq̂) ∶ det(g) ∈ F×q}, or ρ̄ f ,λ(GF) ≃ {g ∈ F×q̂2 GL2(Fq̂) ∶ det(g) ∈
F×q}. We now show that the latter case will not occur.

Suppose that ρ̄ f ,λ(GF) ≃ {γ ∈ F×q̂2 GL2(Fq̂) ∶ det(γ) ∈ F×q} for some prime power
q̂ of q with q ≫ 1. By the argument in the proof of [Dim05, Proposition 3.9], we get
that Fq ⊆ Fq̂2 ⊆ Fλ . However, this cannot happen because d is odd and 2∣[Fλ ∶ Fq].
Therefore,

ρ̄ f ,λ(GF) ≃ {g ∈ GL2(Fq̂) ∶ det(g) ∈ F×q}

for q ∈ P with q ≫ 1. Now, choose a prime q ∈ P which is inert in both F and E f . Let
υ ∈ P be the unique prime in F that lying above q, and let Iυ be the inertia group
at υ. By [Dim05, Corollary 2.13] or by the discussion before [DD06, Proposition 1],
the possible tame characters for ρ̄ f ,λ ∣Iυ are of level d or 2d, since d = f(υ∣q). Hence,
we have Fqd ⊆ Fq̂ ⊆ Fλ . By Corollary 3.5, there exists infinitely many such primes.
Since f(λ∣q) = d, the tame characters of level 2d cannot occur in ρ̄ f ,λ ∣Iυ , and therefore
Fqd = Fq̂ = Fλ . Therefore, we have

ρ̄ f ,λ(GF) ≃ {g ∈ GL2(Fqd ) ∶ det(g) ∈ F×q}

for infinitely many q ∈ P with f(λ/q) = f(υ/q) = d. We are done with the proof. ∎

https://doi.org/10.4153/S0008439522000558 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000558


On generation of the coefficient field by a Fourier coefficient 593

3.3 A result for primitive forms of weight k

In this section, we prove Theorem 3.1 for primitive forms of weight k. If k is of parallel
weight 2 and [F ∶ Q] = [E f ∶ Q] is an odd prime, then we show that the assumptions
in Theorem 3.6 are satisfied. Hence, Theorem 3.1 is a consequence of Theorem 3.6.

Theorem 3.6 Let f ∈ Sk(n, Ψ) be a primitive form defined over F of weight k, level n,
and character Ψ. For any subfield Q ⊆ L ⊊ E f , assume that

ρ̄ f ,λ(GF̂) ⊇ {γ ∈ GL2(Fqf ) ∶ det(γ) ∈ (F×q )k0−1} with f = f(λ∣q),(3.1)

for infinitely many λ ∈ P f with fλ ,E f ,L > 1, where q ∈ P lying below λ. Then,

δD ({p ∈ P ∶ C(p, f ) ∈ L}) = 0

for all proper subfields L of E f .

The following proposition (cf. [KSW08, Proposition 2.1(c)]) is helpful in the proof
of Theorem 3.6.

Proposition 3.7 Let R ⊆ R̃ be two subgroups of F×qr for some q ∈ P and r ∈ N.
Let G ⊆ {g ∈ GL2(Fqr) ∶ det(g) ∈ R̃} ≤ GL2(Fqr). Let P(x) = x2 − ax + b ∈ Fqr [x].
Then, ∑C ∣C∣ ≤ 2∣R̃/R∣(q2 + q), where the sum carries over all the conjugacy classes C
of G with characteristic polynomial equals to P(x).

Proof of Theorem 3.6 LetOE f ,OL denote the ring of integers of E f , L, respectively.
Let T be the set of all λ ∈ Spec(OE f ) such that equation (3.1) holds. By assumption, T
is an infinite set. For any Q ∈ T , let QL , q be the prime ideals of OL ,Z lying below Q,
respectively. Let Fqr = OL/QL , Fqrm = OE f /Q for some r ≥ 1, m ≥ 2.

Let R ∶= (F×q )k0−1, W ≤ F×qrm denote the image of Ψ∗ mod Q and R̃ ∶= ⟨R, W⟩,
the subgroup of F×qrm generated by R and W. Then, ∣R∣ ≤ q − 1, ∣W ∣ ≤ ∣(OE/n)×∣,
and hence ∣R̃∣ ≤ ∣R∣∣W ∣. Let G ∶= ρ̄ f ,Q(GF) be the image of residual Q-adic Galois
representation ρ̄ f ,Q . By equations (2.1) and (2.2), G ≤ {g ∈ GL2(Fqrm) ∶ det(g) ∈ R̃}
is a subgroup.

Let MQ ∶= ⊔C{p ∈ P ∶ [ρ̄ f ,Q(Frobp)]G = C}, where C carries over all the con-
jugacy classes of G with characteristic polynomial x2 − ax + b ∈ Fqrm [x] such that
a ∈ Fqr and b ∈ R̃. There are at most qr ∣R∣∣W ∣ such polynomials. By equation (2.1),
we have a ≡ C(p, f )(mod Q). Since a ∈ Fqr , we get C(p, f )(mod Q) ∈ Fqr . Hence,

MQ ⊇ {p ∈ P ∶ C(p, f )(mod Q) ∈ Fqr}.(3.2)

By Theorem 2.2, we have δD(MQ) = ∑C
∣C∣
∣G∣ . Now, by Proposition 3.7, we get

δD(MQ) ≤
qr ∣R∣∣W ∣ × 2∣R̃/R∣(q2 + q)

∣G∣ = 2∣R∣∣W ∣2qr(q2 + q)
∣G∣ .(3.3)

Since GF ⊇ GF̂ , by equation (3.1), we get a lower bound to ∣G∣ as

∣G∣ ≥ ∣R∣ × ∣SL2(Fqrm)∣.(3.4)
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Combine equations (3.4) and (3.3) to get

δD(MQ) ≤
2∣W ∣2∣R∣qr(q2 + q)
∣R∣ × ∣SL2(Fqrm)∣ = 2∣W ∣2qr+3

q3rm(q − 1) .

Since m ≥ 2, r ≥ 1, we get δD(MQ) ≤ O ( 1
q2 ). Since T is an infinite set, q is unbounded.

The inclusion of the sets in equation (3.2) implies {p ∈ P ∶ C(p, f ) ∈ L} ⊆ ⋂Q∈T MQ .
Therefore, we have

δD ({p ∈ P ∶ C(p, f ) ∈ L}) = 0.

This completes the proof of Theorem 3.6. ∎

The above theorem holds even if the inclusion in equation (3.1) holds up to
conjugation.

Corollary 3.8 Let f be as in Theorem 3.6, which satisfies equation (3.1) for any subfield
Q ⊆ L ⊊ E f . Then, δD ({p ∈ P ∶ Q(C(p, f )) = E f }) = 1.

Proof Let p ∈ P be a prime ideal with Q(C(p, f )) ⊊ E f . Then, C(p, f ) ∈ L for
some proper subfield L of E f . Since [E f ∶ Q] is a finite separable extension, there
are only finitely many subfields between Q and E f . By Theorem 3.6, we have
δD ({p ∈ P ∶ Q(C(p, f )) ⊊ E f }) = 0. This completes the proof of the corollary. ∎

We have some remarks to make.
• By the definition of a CM primitive form f, the density of p ∈ P for which C(p, f ) = 0

is at least 1
2 .

• For a non-CM primitive form f, the density of primes p for which C(p, f ) = 0 is 0.
This is a special case of the famous Sato–Tate equidistribution theorem of Barnet-
Lamb, Gee, and Geraghty [BGG11, Corollary 7.17] (cf. [DK20, Theorem 4.4] for
more details).

The assumption (3.1) of Theorem 3.6 implies E f ≠ Q and the set of p ∈ P with
Q(C(p, f )) = E f has density 1 (cf. Corollary 3.8) implies that the form f has to be
non-CM.

3.4 The proof of Theorem 3.1 with supporting examples

In this section, we give a proof of Theorem 3.1 and provide some examples of f in
support of it.

Proof of Theorem 3.1 Since [E f ∶ Q] is an odd prime, the only proper subfield L of
E f is Q. By Proposition 3.3, f satisfies the assumption (3.1) of Theorem 3.6. Hence, by
Corollary 3.8, the proof of Theorem 3.1 follows. ∎

We now give some examples of primitive forms f in support of Theorem 3.1.

Example 4 Consider a non-CM primitive form f defined over F = Q(ζ7)+ with
generator ω having minimal polynomial x3 − x2 − 2x + 1, with weight (2, 2, 2), level
[167, 167, ω2 + ω − 8], and with trivial character. This Hilbert modular form f is
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labeled as 3.3.49.1-167.1-a in [LMFDB]. The coefficient field E f of f is Q(α),
where α is a root of the irreducible polynomial x3 − x2 − 4x − 1 ∈ Q[x].

Example 5 Consider a non-CM primitive form f defined over F = Q(ζ9)+ with
generator ω having minimal polynomial x3 − 3x − 1, with weight (2, 2, 2), level
[71, 71, ω2 + ω − 7], and with trivial character. This Hilbert modular form f is labeled
as 3.3.81.1-71.1-a in [LMFDB]. The coefficient field E f of f is Q(β), where β
is a root of the irreducible polynomial x3 − x2 − 4x + 3 ∈ Q[x].

Example 6 Consider a non-CM primitive form f defined over F = Q(ζ7)+ with
generator ω having minimal polynomial x3 − x2 − 2x + 1, with weight (2, 2, 2), level
[239, 239, 6ω2 − 5ω − 7], and with trivial character. This Hilbert modular form f is
labeled as 3.3.49.1-239.1-a in [LMFDB]. The coefficient field E f of f is Q(θ),
where θ is a root of the irreducible polynomial x3 − 12x − 8 ∈ Q[x].

The primitive forms f in Examples 4–6 are of parallel weight 2 with [F ∶ Q] =
[E f ∶ Q] = 3, and hence they satisfy the hypothesis of Theorem 3.1. Moreover, E f is
totally real, so by Lemma 2.9, these primitive forms f do not have any nontrivial inner
twists.

3.5 Computation of some Dirichlet density for Ff

In this section, we shall state and prove a variant of Theorem 3.6 and Corollary 3.8 for
F f . In fact, we compute the Dirichlet density of the set {p ∈ P ∶ Q (C∗(p, f )) = F f }.

Theorem 3.9 Let f ∈ Sk(n, Ψ) be a primitive form defined over F of weight k, level n,
and character Ψ. For any subfield Q ⊆ L ⊊ F f , assume that

ρ̄ f ,λ(GF̂) ⊇ {γ ∈ GL2(Fqf ) ∶ det(γ) ∈ (F×q )k0−1} with f = fλ ,F f ,Q ,(3.5)

for infinitely many λ ∈ P f with fλ ,F f ,L > 1, where q ∈ P lying below λ. Then,

δD ({p ∈ P ∶ C∗(p, f ) ∈ L}) = 0.

The above theorem holds even if the inclusion in equation (3.5) holds up to
conjugation.

Proof In this proof, we follow the notations as in Theorem 3.6. Let OF f be the
ring of integers of F f . For any Q ∈ T , let QF be the prime ideal of OF f lying below Q.
Let OL/QL = Fqr ,OF f /QF = Fqrm , and OE f /Q = Fqrms for some r ≥ 1, m ≥ 2, and
s ≥ 1. Then, G ⊆ {g ∈ GL2(Fqrms) ∶ det(g) ∈ R̃}. Now, arguing as in the proof of
Theorem 3.6, we get δD(MQ) ≤ 4∣W ∣3 qr+3

q3rm(q−1) . Since m ≥ 2, r ≥ 1, we get δD(MQ) ≤
O ( 1

q2 ). Therefore, we have

δD ({p ∈ P ∶ C∗(p, f ) ∈ L}) = 0.

This completes the proof of Theorem 3.9. ∎
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Corollary 3.10 Let f be as in Theorem 3.9, which satisfies equation (3.5) for any
subfield Q ⊆ L ⊊ F f . Then,

δD ({p ∈ P ∶ Q(C∗(p, f )) = F f }) = 1.

Proof Suppose p ∈ P is a prime such that L = Q(C∗(p, f )) ⊊ F f is a proper subfield
of F f . Since [F f ∶ Q] is a finite separable extension, there are only finitely many
subfields between Q and F f , and by Theorem 3.9, we get

δD ({p ∈ P ∶ Q(C∗(p, f )) ⊊ F f }) = 0.

This completes the proof of the corollary. ∎

Corollary 3.11 Let f and ρ̄ f ,λ be as in Theorem 3.9. Then, we have

δD ({p ∈ P ∶ F f ⊆ Q(C(p, f ))}) = 1.

Proof Suppose p ∈ P with Q(C∗(p, f )) = F f . From Lemma 2.7, we have F f =
Q(C∗(p, f )) ⊆ Q(C(p, f )). Corollary 3.10 implies the result. ∎

In Examples 4–6, we have that E f and F are of degree 3 over Q and E f = F f .
Since there are no proper subfields of F f , by Proposition 3.3, we conclude that these
examples satisfy the hypothesis (3.5) of Theorem 3.9.

4 Computation of the Dirichlet density for subfields of E f

In Section 3, we computed the Dirichlet density of p ∈ P such that C(p, f ), C∗(p, f )
generate E f , F f , respectively. In this section, for any subfield K of E f , we compute the
Dirichlet density of the set {p ∈ P ∶ Q(C(p, f )) = K}. It is quite surprising that this
density depends on whether F f ⊆ K or not.

We now calculate the density of p ∈ P such that C(p, f ) ∈ K when F f ⊈ K. The
following lemma is an analog of [KSW08, Corollary 1.3(a)].

Lemma 4.1 Let f be as in Theorem 3.9. Let K ⊆ E f be a subfield such that F f ⊈ K.
Then, δD ({p ∈ P ∶ C(p, f ) ∈ K}) = δD ({p ∈ P ∶ Q(C(p, f )) = K}) = 0.

Proof Since F f ⊈ K, we get {p ∈ P ∶ C(p, f ) ∈ K} ⊆ {p ∈ P ∶ F f ⊈ Q(C(p, f ))}.
The proof now follows from Corollary 3.11. ∎

Let �′ = {γ1 , . . . , γr} be a subgroup of the inner twists � associated with f. Let
Ψγ1 , . . . , Ψγr be the corresponding Hecke characters, and their ideal Hecke characters
Ψ∗γ1

, . . . , Ψ∗γr
can be thought of as characters on GF . For each i ∈ {1, 2, . . . , r}, define

Hγ i ∶= Ker(Ψ∗γ i
) and set H�

′ ∶= ⋂r
i=1 Hγ i ≤ GF . Let KH�′ denote the fixed field of H�

′

.
In particular, F ⊆ KH�′ ⊆ F̄.

Lemma 4.2 Let �′ , H�
′

, and KH�′ be as above. Then,

{p ∈ P ∶ p splits completely in KH�′} = {p ∈ P ∶ Ψ∗γ (p) = 1, ∀γ ∈ �′}.
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Proof Let m = [KH�′ ∶ F].
{p ∈ P ∶ p splits completely in KH�′}
= {p ∈ P ∶ p = p1p2 . . . pm for prime ideals p j in KH�′ with 1 ≤ j ≤ m}
= {p ∈ P ∶ Ψ∗γ i

(p j) = 1 ∀i ∈ {1, 2, . . . , r}, ∀ j ∈ {1, 2, . . . , m}}
= {p ∈ P ∶ Ψ∗γ i

(p) = 1 ∀i ∈ {1, 2, . . . , r}}.

This completes the proof of the lemma. ∎

We are now in a position to compute the density of the set {p ∈ P ∶ C(p, f ) ∈ K} if
F f ⊆ K. The following proposition generalizes [KSW08, Corollary 1.3(b)] to primitive
forms.

Proposition 4.3 Let f ∈ Sk(n, Ψ) be a non-CM primitive form defined over F. For
any subfield K with F f ⊆ K ⊆ E f , there exists a subgroup �′ of � such that K = E�

′

f and
δD ({p ∈ P ∶ C(p, f ) ∈ K}) = 1

[KH�′ ∶F]
.

Proof Since E f /F f is Galois, there exists �′ ⊆ � such that K = E�
′

f . Hence,

{p ∈ P ∶ C(p, f ) ∈ K} = {p ∈ P ∶ γ(C(p, f )) = C(p, f ) for all γ ∈ �′}
= {p ∈ P ∶ Ψ∗γ (p)C(p, f ) = C(p, f ) for all γ ∈ �′}.

Since δD ({p ∈ P ∶ C(p, f ) = 0}) = 0 (cf. [DK20, Theorem 4.4(1)]) and by Chebotarev
density theorem, we have

δD ({p ∈ P ∶ Ψ∗γ (p)C(p, f ) = C(p, f ) for all γ ∈ �′})
= δD ({p ∈ P ∶ Ψ∗γ (p) = 1 for all γ ∈ �′})

=
Lemma (4.2)

δD ({p ∈ P ∶ p splits completely in KH�′}) =
1

[KH�′ ∶ F] .

This completes the proof of the proposition. ∎

The following corollary is an application of Proposition 4.3 and an analog of
[KSW08, Corollary 1.4].

Corollary 4.4 Let f, K be as in Proposition 4.3 and K = E�
′

f for �′ ≤ �. Then,

δD ({p ∈ P ∶ Q(C(p, f )) = K})
= δD ({p ∈ P ∶ Ψ∗γ (p) = 1, ∀γ ∈ �′ and Ψ∗ω(p) ≠ 1, ∀ω ∈ � − �′}) .

These results illustrate that the Dirichlet density of p ∈ P such thatQ(C(p, f )) = K,
with F f ⊆ K ⊆ E f , is determined by the inner twists of f associated with K.
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