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Abstract

Motivated by a problem arising in the mining industry, we present a first study of the
energy required to reduce a unit mass fragment by consecutively using several devices.
Two devices are considered, which we represent as different stochastic fragmentation
processes. Following the self-similar energy model introduced in Bertoin and Martínez
(2005), we compute the average energy required to attain a size η0 with this two-device
procedure. We then asymptotically compare, as η0 goes to 0 or 1, its energy requirement
with that of individual fragmentation processes. In particular, we show that, for a certain
range of parameters of the fragmentation processes and of their energy cost functions,
the consecutive use of two devices can be asymptotically more efficient than using each
of them separately, or vice versa.
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1. Introduction

The present work is motivated by the mining industry, where mechanical devices are used
to break rocks in order to liberate the metal contained in them. This fragmentation procedure
is carried out in a series of steps (the first of them being blasting, followed then by crushers,
grinders, or mills) until fragments attain a sufficiently small size for mining purposes. One of
the problems that faces the mining industry is to minimize the total amount of energy consumed
in this process. To be more precise, at each intermediate step, material is broken by a repetitive
mechanism until particles can go across a classifying grid and onto the next step. The output
sizes are known not to be optimal in terms of the global energy cost. Moreover, since crushers
or mills are large machines and seldom replaced, the output sizes are in practice one of the few
parameters on which a decision can be made.

In an idealized setting, the problem might be posed as follows. Suppose that a unit-sized
fragment is reduced to fragments of size less than a fixed threshold η0 ∈ (0, 1] by passing
the fragment through two different consecutive fragmentation mechanisms (for instance, the
first being crushers and the second being mills). In this ‘two-step’ fragmentation procedure,

Received 23 November 2009; revision received 19 March 2010.
∗ Postal address: Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, Universidad de
Chile, UMI 2807 CNRS, Casilla 170-3, Correo 3, Santiago, Chile.
∗∗ Email address: fontbona@dim.uchile.cl
∗∗∗ Postal address: Institut de Recherche Mathématique de Rennes (IRMAR), Université Rennes 1, UMR 6625 CNRS,
Campus de Beaulieu, 35042 Rennes Cedex, France. Email address: nathalie.krell@univ-rennes1.fr
∗∗∗∗ Email address: smartine@dim.uchile.cl

543

https://doi.org/10.1239/jap/1276784908 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1276784908


544 J. FONTBONA ET AL.

each mass fragment evolves in the first fragmentation mechanism until it becomes smaller than
η ∈ (η0, 1], at which point it immediately enters the second mechanism. Then, the fragment
continues to evolve until the first instant it becomes smaller than η0, when it finally exits the
system. The central question is:

(A) What is the optimal choice for the intermediate threshold η?

To formulate this problem, we will model each fragmentation mechanism by a continuous-
time random fragmentation process, in which particles break independently of each other
(branching property) and in a self-similar way. (For a recent account and developments in the
mathematical theory of fragmentation processes, we refer the reader to [5]. The self-similarity
hypothesis agrees with observations made in the mining industry; see, e.g. [10, p. 255]. In
particular, it is reasonable to assume that the energy required to break a block of size s into a
set of smaller blocks of size (s1, s2, . . .) is of the form sβϕ(s1/s, s2/s, . . .), where ϕ is a cost
function and β > 0 is a fixed parameter. For example, in the so-called potential case, we have
ϕ(s1, s2, . . .) = ∑∞

n=1 s
β
n − 1, which corresponds to the law of Charles, Walker, and Bond [10].

Within this mathematical framework, the asymptotic behavior of the energy required by a
single fragmentation process to reduce all fragments to sizes less than η was studied in [6]. It was
shown that the mean energy behaves as 1/ηα−β when η → 0, where α denotes the Malthusian
exponent of the fragmentation process and α > β in physically reasonable cases. Therefore,
the performances of two individual fragmentation processes are asymptotically comparable by
means of the quantities α − β and α̂ − β̂, where α̂ > β̂ are the parameters associated with a
second fragmentation process.

We will formulate problem (A) in mathematical terms, adopting the same mean energy point
of view as in [6]. First, we will explicitly compute the objective function, which we express in
terms of the Lévy and renewal measures associated with the ‘tagged fragment’ of each of the
two fragmentation processes (see [4]). Then, our goal will be to study a preliminary question
related to (A), which is weaker but still relevant to the mining industry:

(B) Is the above described ‘two-step’ procedure efficient in terms of the mean energy, com-
pared to the ‘one-step’ procedures where only the first or second fragmentation mecha-
nism reduces a unit-size fragment to fragments not larger than η0?

We will address this question in asymptotic regimes, namely for η and η0 going together
either to 0 or to 1. In both cases, we will give explicit estimates in terms of η for the efficiency
gain or loss of using the two-step procedure.

As we will see, if α, β, α̂, and β̂ are different, for any values of η/η0 ∈ (0, 1), the relations
between these four parameters determine the relative efficiency between the first, the second,
and the two-step fragmentation procedures if η is sufficiently small. In particular, when α > α̂

and β > β̂, the answer to (B) is affirmative for sufficiently small η, so that the solution to
problem (A) is in general nontrivial.

We will carry out a similar analysis for large (that is, close to unit-size) thresholds. In order
to quantify the comparative efficiency of the two-step procedure, we will make an additional
hypothesis of regular variation at ∞ of the Lévy exponents of the tagged fragment processes.
This will be transparently interpreted in terms of the infinitesimal average energy required
by each of the fragmentation processes to break arbitrarily close to unit-size fragments. We
will show that, at least for small values of log η0/logη and variation indices in (0, 1

2 ] for both
fragmentation processes, the relative infinitesimal efficiency of the two fragmentation processes
determines the comparative efficiency of the three alternative fragmentation procedures if η is
sufficiently close to 1.
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Energy efficiency of consecutive fragmentation processes 545

We point out that the relevant parameters involved in our analysis could in principle be
statistically estimated. A first concrete step in this direction has been made by Hoffmann
and Krell [8], who asymptotically estimated the Lévy measure of the tagged fragment from the
observations of the sizes of fragments at the instant they become smaller than η → 0. Although
this is in general not enough to recover the characteristics of the fragmentation process, it
provides all the relevant parameters we need which are not observable by other means.

The remainder of this paper is organized as follows. In Section 2 we recall the construction
of homogeneous fragmentation processes in terms of Poisson point processes, we describe
our model of the two-step fragmentation procedure and compute its average energy using
first passage laws for subordinators. In Section 3 we recall some results on renewal theory
for subordinators and use them to study the small threshold asymptotics of our problem in
Theorems 1 and 2, where the two-step procedure is respectively compared with the first and
second fragmentation processes. The comparative efficiency of the three alternatives according
to the values of α, β, α̂, and β̂ is summarized in Corollary 1. In Section 4 we introduce the
idea of relative ‘infinitesimal efficiency’ of two fragmentation procedures. We relate it to a
regular variation assumption at ∞ for the Lévy exponent of the tagged fragment, and use it
to analyze the comparative efficiency of the two-step fragmentation procedure for close to
unit-size fragments, using Dynkin–Lamperti asymptotics for subordinators at first passage.

2. The model

2.1. The fragmentation process

We will model the fragmentation mechanisms as a homogeneous fragmentation process,
as introduced in [4]. This is a homogeneous Markov process X = (X(t, x) : t ≥ 0) taking
values in

S↓ :=
{
s = (s1, s2, . . .) : s1 ≥ s2 ≥ · · · ≥ 0,

∞∑
i=1

si ≤ 1

}
,

where the parameter x = (x1, x2, . . .) ∈ S↓ stands for the initial condition (i.e. X(0, x) = x

almost surely), and which satisfies the two fundamental properties of branching and homo-
geneity. More precisely, different fragments of X(t, x) split up independently of one another
(branching) and, denoting by X(t) = X(t, x) the process started from x = (1, 0, . . .), it holds
that rX(t) has the same law as X(t, (r, 0, . . .)) for any r ∈ [0, 1] (homogeneity).

We observe that homogeneous fragmentation processes are self-similar fragmentation pro-
cesses with zero index of self-similarity (see [5, Chapter 2]). Since self-similar fragmentation
processes with different indices are related by a family of random time changes (depending on
the fragments), there is no loss of generality in working here in the homogeneous case as the
quantities we study are only size dependent (see also [6]).

We assume that no creation of mass occurs. It is known that in this case, the process X is
entirely characterized by an erosion coefficient c ≥ 0 and a dislocation measure ν, which is a
measure on S↓ satisfying the conditions

ν({1, 0, 0, . . .}) = 0 and
∫

S↓
(1 − s1)ν(ds) < ∞. (1)

Moreover, we suppose that we are in the dissipative case,
∑∞

i=1 si ≤ 1 almost surely, and we
assume absence of erosion, i.e. c = 0.

Let us recall the construction of a homogeneous fragmentation process in this setting, in
terms of the atoms of a Poisson point process (see [1]). Let ν be a dislocation measure fulfilling
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conditions (1). Let K = ((�(t), k(t)) : t ≥ 0) be a Poisson point process with values in
S↓ × N, and with intensity measure ν ⊗ �, where � is the counting measure on N. As in [1],
we can construct a unique S↓-valued process X = (X(t, x) : t ≥ 0) started from x with paths
that jump only at those times t ≥ 0 at which a point (�(t) = (�1, �2, . . .), k(t)) occurs.
More precisely, X(t, x) is obtained by replacing the k(t)th term X(t−, x) with a decreasing
rearrangement of the sequence X1(t−, x), . . . , Xk−1(t−, x),Xk(t−, x)�1,Xk(t−, x)�2, . . . ,

Xk+1(t−, x), . . . .

Define

p := inf

{
p ∈ R :

∫
S↓

∞∑
j=2

s
p
j ν(ds) < ∞

}
,

and, for every q ∈ (p, ∞), consider

κ(q) :=
∫

S↓

(
1 −

∞∑
j=1

s
q
j

)
ν(ds).

In the sequel, we assume that the Malthusian hypothesis holds, that is, there exists an α ≥ p,
called the Malthusian exponent, such that κ(α) = 0.

A key tool in fragmentation theory is the tagged fragment process χ = (χ(t) : t ≥ 0)

associated with X. We recall that it satisfies

χ(t) = XJ(t)(t),

where J (t) is a random integer such that, conditioned on X(t), P(J (t) = i | X(t)) = Xi(t)

for all i ≥ 1, and P(J (t) = 0 | X(t)) = 1 − ∑∞
i=1 Xi(t). Moreover, as shown by Bertoin [4,

Theorem 3], the process
ξt = −logχ(t)

is a subordinator whose Laplace exponent φ is given by

φ(q) := κ(q + 1)

for q > p − 1. For a precise definition, we refer the reader to [4] or Chapter 2 of [5]. We note
that the hypothesis of absence of erosion, c = 0, implies that φ has no drift coefficient.

Since φ(α − 1) = 0, the process e(1−α)ξ(t) is a nonnegative martingale, and we can then
define a probability measure P̃ on the path space by

dP̃|Ft = e(1−α)ξ(t) dP|Ft , (2)

where (Ft : t ≥ 0) denotes the natural filtration of ξ . It is well known that, under this ‘tilted’
law, ξ is a subordinator with Laplace exponent

φ̃(q) = φ(q + α − 1). (3)

Since limq→∞ φ(q)/q = c (see [5, Proposition 2, Chapter I]), the previous relation and the
assumption of nonerosion imply that φ̃ has no drift coefficient.

We will respectively denote by � and U the Lévy measure and the renewal measure of ξt

under P̃ (see, e.g. [2, pp. 3, 74]). We recall that, for a Borel subset A of [0, ∞),

U(A) =
∫ ∞

0
P̃(ξ(t) ∈ A) dt.
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As usual, and when there is no possible confusion, we will denote by U(x) := U([0, x]), x ≥ 0,
the distribution function associated to U .

For η ∈ (0, 1], we denote by

Tη := inf

{
t ≥ 0 : ξt > log

(
1

η

)}

the first time that the size of the tagged fragment is less than η.

2.2. The fragmentation energy

Following [6], we will assume that the energy needed to split a fragment of size x ∈ [0, 1]
into smaller fragments of sizes x1 ≥ x2 ≥ · · · is given by

xβϕ

(
x1

x
,
x2

x
, . . .

)
,

where β > 0 is a fixed constant and ϕ : S → R is a measurable ‘cost function’ such that
ϕ((1, 0, . . .)) = 0.

We are interested in the total energy E(x)(η) used to reduce an initial fragment of size x to
fragments that reach, for the first time, sizes of less than η; that is

E(x)(η) =
∑
t≥0

1{Xk(t)(t−,x)≥η} X
β

k(t)(t−, x)ϕ(�(t)).

We will simply write
E(η) := E(1,0,...)(η).

The following consequence of the homogeneity property will be useful.

Lemma 1. Let x = (x1, x2, . . .) ∈ S↓ and η ∈ [0, 1]. We have

E(x)(η)
law=

∑
i

1{xi≥η} x
β
i Ei

(
η

xi

)
,

where, for each i ≥ 1, Ei (·) is the energy of a fragmentation process X(i) issued from (1, 0, . . . )

with the same characteristics as X, and the copies (X(i) : i ≥ 1) are independent.

Proof. Let ((�i(t), ki(t)) : t ≥ 0), i ≥ 1, be independent and identically distributed
Poisson point processes with intensity measure ν ⊗ �. Denote by X̄(xi ), i ≥ 1, the sequence
of independent homogeneous fragmentation processes constructed from the latter processes,
respectively starting from (xi, 0, . . .). From the branching property of X we have the identity

E(x)(η)
law=

∑
i

∑
t≥0

1{xi≥η} 1{X̄(xi )

ki (t)
(t−)≥η}(X̄

(xi )
ki (t)

)β (t−)ϕ(�i(t)).

Denoting now by ((�(i)(t), k(i)(t)) : t ≥ 0), i ≥ 1, the family of independent and identically
distributed Poisson point processes associated with the process X(i), we get, by homogeneity,

E(x)(η)
law=

∑
i

∑
t≥0

1{xi≥η} 1{xiX
(i)

k(i)(t)
(t−)≥η} x

β
i (X

(i)

k(i)(t)
)β (t−)ϕ(�(i)(t)),

and the statement follows.
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2.3. The energy of a two-step fragmentation procedure

To formulate our problem, we introduce a second Poisson point process K̂ = ((�̂(t), k̂(t)),

t ≥ 0) with values in S↓×N, and with intensity measure ν̂⊗�, where ν̂ is a dislocation measure
satisfying the same assumptions as ν. We can then simultaneously define a family of fragmen-
tation processes X̂ = (X̂(t, x) : t ≥ 0) indexed by the initial condition x = (x1, x2, . . .). We
denote by α̂ the Malthusian exponent of ν̂. The energy used in the second fragmentation process
is assumed to take the same form as for the first, in terms of (possibly different) parameters β̂

and ϕ̂.
We assume that K and K̂ are independent, so the families of fragmentation processes X and

X̂ are independent, respectively called the first and second fragmentation processes.
In the sequel we assume that the first fragmentation process X is issued from the unitary

fragment (1, 0, . . .). Let 1 ≥ η ≥ η0 > 0. We let each mass fragment evolve in the first
fragmentation process until the instant it first becomes smaller than η. Then it immediately
enters the second fragmentation process X̂, and then evolves until it first becomes smaller
than η0.

For each η ∈ (0, 1], let xη ∈ S↓ be the mass partition given by the ‘output’ of X when each
of the fragments reaches for the first time a size less than η. More precisely, each fragment is
‘frozen’at that time, while other (larger than η) fragments continue their independent evolutions.
We write

xη = (x
η
1 , x

η
2 , . . .) (4)

for the decreasing rearrangement of the (random) frozen sizes of fragments when exiting the
first fragmentation process. By the homogeneity and branching properties, if E(η, η0) denotes
the total energy spent in reducing the unit-size fragment by these procedures, we have the
identity

E(η, η0)
law= E(η) + Ê(xη)(η0), (5)

where Ê(x)(·) is the energy of a copy of the second fragmentation process X̂ starting from x,
independent of the first fragmentation process.

Remark 1. Note that E(1, η0) is the energy required to dislocate only the unit mass fragment
with the first fragmentation process, and to then immediately use the second fragmentation
process to break the resulting blocks, as long as their sizes are greater or equal to η0 (the other
fragments immediately exit the system). We will denote by E(1+, η0) = Ê(η0) the total energy
required when only the second fragmentation process is used from the beginning.

For the quantity E(η0, η0) = E(η0), no confusion arises: it corresponds to the case when
the first fragmentation process is used during the whole procedure.

Our goal now is to compute the expectation of E(η, η0).
The notation ξ̂ , T̂η, �̂, Û , and so on, will be used for the analogous objects associated with

the fragmentation process X̂.
So far, the notation P has been used to denote the law of ξ . In the sequel, we keep the

same notation P to denote the product law of independent copies of the processes ξ and ξ̂ in
the product path space. Extending the definition in (2) accordingly, we will also denote by P̃
the product measure, the first marginal of which is given by dP̃|Ft = e(1−α)ξ(t) dP|Ft and the
second one given by dP̃|F̂t

= e(1−α̂)ξ̂ (t) dP|F̂t
. Here (Ft : t ≥ 0) and (F̂t : t ≥ 0) are the natural

filtrations of ξ and ξ̂ , respectively.
We will assume throughout that the following integrability condition holds:

ϕ ∈ L1(ν) and ϕ̂ ∈ L1(ν̂). (6)
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In this case we define

C =
∫

S

ϕ(s)ν(ds) and Ĉ =
∫

S

ϕ̂(s)ν̂(ds).

Let us introduce the functions


(x) = C

∫ x

0
e(α−β)yU(dy), 
̂(x) = Ĉ

∫ x

0
e(α̂−β̂)yÛ (dy), x ≥ 0.

To simplify the notation, we will set, for all a > 0, �(a) := log(1/a).
We now have the elements necessary to compute the expected energy requirement in the

two-step fragmentation procedure.

Lemma 2. Assume that the integrability condition (6) is satisfied. Let η0 ∈ (0, 1). Then, we
have, for η0 < η < 1,

E(E(η, η0)) = C

∫ �(η)

0
e(α−β)yU(dy)

+ Ĉ

∫ �(η)

0

∫ �(η0)−y

�(η)−y

e(α−β̂)(z+y)

[∫ �(η0)−(z+y)

0
e(α̂−β̂)xÛ (dx)

]
�(dz)U(dy)

= 
(�(η)) + Ẽ(1{ξTη<�(η0)} e(α−β̂)ξTη 
̂(�(η0) − ξTη ))

and

E(E(η0, η0)) = E(E(η0)) = 
(�(η0)), E(E(1+, η0)) = E(Ê(η0)) = 
̂(�(η0)). (7)

When the renewal measure U(dx) has no atom at 0, we have

E(E(1+, η0)) = E(E(1, η0)).

Proof. The proof is an extension of the arguments given in [6] corresponding to the case
‘η = 1+’ or η = η0 and which we repeat here for convenience. By the compensation formula
for the Poisson point process (�(u), k(u)) associated with the first fragmentation process X,
we obtain, for η0 ∈ (0, 1],

E(E(η0)) = E

(∫ ∞

0
1{χ(t)>η0}(χ(t))β−1 dt

) ∫
S

ϕ(s)ν(ds)

= C E

(∫ ∞

0
1{ξt<�(η0)} e(1−β)ξt dt

)
.

Thus,

E(E(η0)) = CẼ

(∫ ∞

0
1{ξt<�(η0)} e(α−β)ξt dt

)
= C

∫ �(η0)

0
e(α−β)yU(dy) = 
(�(η0)).

Similarly,

E(Ê(η0)) = Ĉ

∫ �(η0)

0
e(α̂−β̂)yÛ (dy) = 
̂(�(η0)).

The above identity also implies that E(E(1, η0)) = Ĉ
∫ �(η0)

0+ e(α̂−β̂)yÛ (dy) = E(Ê(η0)) when
U has no atom at 0.
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The statement is thus proved for the cases ‘η = 1+’ and η = η0. For the general case, we
use Lemma 1 to obtain

E(Ê(xη)(η0)) = E

(∑
i

1{xη,i>η0} x
β̂
η,iÊi

(
η0

xη,i

))

= E

(∑
i

1{xη,i>η0} x
β̂
η,i E

(
Êi

(
η0

xη,i

) ∣∣∣∣ xη,i

))

= E

(
1{χ(Tη)>η0}(χ(Tη))

β̂−1Ê

(
Ê

(
η0

y

))∣∣∣∣
y=χ(Tη)

)
,

where Ê(·) is the energy of a copy of the second fragmentation process, starting from the unit
mass, and which is independent of the first fragmentation process, and the Êi (·) are independent
copies of Ê(·). Then, since χ(t) = e−ξt , we have

E(Ê(xη)(η0)) = Ẽ(1{ξTη<�(η0)} e(α−β̂)ξTη Ẽ(Ê(η0ez))|z=ξTη
)

= Ẽ(1{ξTη<�(η0)} e(α−β̂)ξTη 
̂(�(η0) − ξTη )).

According to Lemma 1.10 of [3], the distribution of ξTη under P̃ is given by

P̃(ξTη ∈ dz) =
∫ �(η)

0
1{�(η)<z} �(dz − y)U(dy).

Therefore,

E(Ê(xη)(η0)) =
∫ �(η)

0

[∫ �(η0)−y

�(η)−y

e(α−β̂)(z+y)
̂(�(η) − (z + y))�(dz)

]
U(dy).

By bringing the pieces together and using identity (5), we obtain the result.

By analogy with (4), we introduce the notation

x̂η = (x̂
η
1 , x̂

η
2 , . . .)

for the decreasing rearrangement of the frozen sizes of fragments smaller than η that exit the
second fragmentation process started from the unit mass. The following decompositions of the
total energy will be useful in the sequel.

Remark 2. For 1 ≥ η ≥ η0 > 0, we have

Ê(η0) = Ê(η) + Ê(x̂η)(η0),

whence
E(η, η0) − E(1+, η0) = E(η) − Ê(η) + Ê(xη)(η0) − Ê(x̂η)(η0).

From this relation and by similar computations as in Lemma 2, we can write

E(E(η, η0) − E(1+, η0)) = 
(�(η)) − 
̂(�(η))

+ Ẽ(1{ξTη<�(η0)} e(α−β̂)ξTη 
̂(�(η0) − ξTη ))

− Ẽ(1{ξ̂
T̂η

<�(η0)} e
(α̂−β̂)ξ̂

T̂η 
̂(�(η0) − ξ̂
T̂η

)). (8)
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Observe that when U has no atom at 0, we can replace E(1+, η0) by E(1, η0) on the left-hand
side of the formula.

Similarly, we have

E(E(η, η0) − E(η0, η0))

= E(Ê(xη)(η0) − E(xη)(η0))

= Ẽ(1{ξTη<�(η0)} e(α−β̂)ξTη 
̂(�(η0) − ξTη ) − 1{ξTη<�(η0)} e(α−β)ξTη 
(�(η0) − ξTη )). (9)

3. Small thresholds

In this section we consider the total energy E(E(η, η0)) when η0 and η go to 0 jointly in a
suitable way. Our goal is to compare it with the mean energy required for reducing the unit
fragment to fragments smaller than η0 using only the first or second fragmentation process. We
will assume that the quantities

m(α) :=
∫

S↓

∞∑
i=1

sα
n log

(
1

sα
n

)
ν(ds) and m̂(α̂) :=

∫
S↓

∞∑
i=1

sα̂
n log

(
1

sα̂
n

)
ν̂(ds)

are finite. Moreover, we impose the conditions

β < α and β̂ < α̂.

These assumptions are physically reasonable, since the energies 
(∞) and 
̂(∞) required to
ensure that all the fragments vanish in the first and, respectively, second fragmentation processes
are otherwise finite (see Remark 1 of [6]).

The following asymptotic result on the mean energy of a single fragmentation process is
simply adapted from Lemma 4 of [6]; see also Theorem 1 therein.

Lemma 3. Under the previous assumptions, we have

lim
η→0

ηα−β E(E(η)) = C

(α − β)m(α)
and lim

η→0
ηα̂−β̂ E(Ê(η)) = Ĉ

(α̂ − β̂)m̂(α̂)
.

The proof of Lemma 3 is based on the renewal theorem for subordinators (see [7]). From
the latter theorem we also have, as η → 0+,

P̃(ξTη − �(η) ∈ du) → M(du) := 1

m(α)

∫
R+

�(y + du) dy (10)

and

P̃(ξ̂
T̂η

− �(η) ∈ du) → M̂(du) := 1

m̂(α̂)

∫
R+

�̂(y + du) dy, (11)

in the weak sense. Let us define, for λ > 0 a fixed parameter, the finite and strictly positive
constants

Fλ :=
∫ λ

0
e(α−β̂)u
̂(λ − u)M(du),

Dλ :=
∫ λ

0
e(α−β)u
(λ − u)M(du),

D̂λ :=
∫ λ

0
e(α̂−β̂)u
̂(λ − u)M̂(du).
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We fix in the sequel the parameter λ > 0. With these elements, we are in position to explicitly
study the (comparative) behavior of the total energy for small thresholds η and η0, when these
are bound by the relation η0 = ηe−λ.

Theorem 1. (Two-step procedure versus first fragmentation only.) Assume that the renewal
measure U(dx) has no atom at 0. For any λ > 0, the following assertions hold.

(a) If β̂ > β then, for all ε ∈ (0, Dλ), there exists an ηε ∈ (0, 1) such that, for all η ≤ ηε,

E(E(η, ηe−λ)) − E(E(ηe−λ)) ≤ (ε − Dλ)η
β−α < 0.

(b) If β̂ < β then, for all R > 0, there exists an ηR ∈ (0, 1) such that, for all η ≤ ηR ,

E(E(η, ηe−λ)) − E(E(ηe−λ)) ≥ Rηβ−α > 0.

(c) If β̂ = β then, for all ε ∈ (0, 1), there exists an ηε ∈ (0, 1) such that, for all η ≤ ηε,

(−ε + Fλ − Dλ)η
β−α ≤ E(E(η, ηe−λ)) − E(E(ηe−λ)) ≤ (ε + Fλ − Dλ)η

β−α.

In all parts, we can replace ηβ−α by (α − β)m(α) E(E(η))/C.

Proof. From (9) in Remark 2 we obtain

ηα−β(E(E(η, ηe−λ)) − E(E(ηe−λ, ηe−λ)))

= Ẽ(e(α−β̂)(ξTη−�(η))
̂(λ − (ξTη − �(η))) 1{ξTη−�(η)<λ})ηβ̂−β

− Ẽ(e(α−β)(ξTη−�(η))
(λ − (ξTη − �(η))) 1{ξTη−�(η)<λ}).
By the weak convergence result (10) for P̃(ξTη − �(η) ∈ dy), the first and second expectations
on the right-hand side of the above equation respectively converge to Fλ and Dλ (we use the
fact that the limiting law is absolutely continuous). Then, we use the first identity in (7) to
obtain the assertions of parts (a), (b), and (c), according to the relations between β and β̂. The
last assertion follows from Lemma 3.

Theorem 2. (Two-step procedure versus second fragmentation only.) Assume that U(dx) and
Û (dx) have no atom at 0. For any λ > 0, the following assertions hold.

(a) If α̂ < α, or if α̂ − β̂ < α − β, then, for all R > 0, there exists an ηR ∈ (0, 1) such that,
for all η ≤ ηR ,

E(E(η, ηe−λ)) − E(Ê(ηe−λ)) ≥ Rηβ̂−α̂ > 0.

(b) If α̂ > α and α̂ − β̂ > α − β, then, for all ε ∈ (0, D̂λ + Ĉ/(α̂ − β̂)m̂(α̂)), there exists
an ηε ∈ (0, 1) such that, for all η ≤ ηε,

E(E(η, ηe−λ)) − E(Ê(ηe−λ)) ≤
(

ε − D̂λ − Ĉ

(α̂ − β̂)m̂(α̂)

)
ηβ̂−α̂ < 0.

(c) If α̂ = α and β ≥ β̂, then, for all ε ∈ (0, 1), there exists an ηε such that, for all η ≤ ηε,(
−ε + Fλ − D̂λ − C̃

(α̂ − β̂)m̂(α̂)

)
ηβ̂−α̂ ≤ E(E(η, ηe−λ)) − E(Ê(ηe−λ))

≤
(

ε + Fλ − D̂λ − C̃

(α̂ − β̂)m̂(α̂)

)
ηβ̂−α̂,

where C̃ = Ĉ if β > β̂ and C̃ = Ĉ − C if β = β̂.

In all parts, we can replace ηβ̂−α̂ by (α̂ − β̂)m̂(α̂) E(Ê(η))/Ĉ.
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Proof. From (8) in Remark 2 we obtain

ηα̂−β̂ (E(E(η, ηe−λ)) − E(E(1, ηe−λ)))

= Ẽ(e(α−β̂)(ξTη−�(η))
̂(λ − (ξTη − �(η))) 1{ξTη−�(η)<λ})ηα̂−α

− Ẽ(e
(α̂−β̂)(ξ̂

T̂η
−�(η))


̂(λ − (ξ̂
T̂η

− �(η))) 1{ξ̂
T̂η

−�(η)<λ})

+ ηα̂−β̂
(�(η)) − ηα̂−β̂ 
̂(�(η)).

By the weak convergence result (11) for P̃(ξ̂
T̂η

− �(η) ∈ dy), and using Lemma 3 and the
identities in (7), the above expression is seen to converge as η → 0 to

lim
η→0

ηα̂−αFλ − D̂λ + ηα̂−β̂−(α−β) C

(α − β)m(α)
− Ĉ

(α̂ − β̂)m̂(α̂)

(this limit exists in R ∪ {+∞}). Hence, we obtain each of the three parts using the relations
in (7) again. The last assertion follows from Lemma 3.

We next summarize the main results of this section in an asymptotic comparative scheme.
The notation Fr1,2 refers to the situation where both devices are effectively used in the two-step
fragmentation procedure (i.e. η0/η ∈ (0, 1)), whereas the notation Fr1 and Fr2 respectively
refer to the situations where the first or second fragmentation process is used.

In the statement of the next result we use the following convention. We will say that
the procedure Fr1,2 is better than Fr1 if, for each λ > 0, E(E(η, ηe−λ)) < E(E(ηe−λ))

as soon as η is sufficiently small. Analogously, Fr2 is better than Fr1 if, for each λ > 0,
E(Ê(ηe−λ)) < E(E(ηe−λ)) as soon as η is sufficiently small. The other comparisons are
understood in a similar way.

Corollary 1. Assume that U(dx) and Û (dx) have no atom at 0. Then,

α̂ > α, β̂ < β (thus α − β < α̂ − β̂) : Fr1 is better than Fr1,2, which is better than Fr2,

α̂ < α, β̂ > β (thus α − β > α̂ − β̂) : Fr2 is better than Fr1,2, which is better than Fr1,

α̂ < α, β̂ < β, and α − β < α̂ − β̂ : Fr1 is better than Fr2, which is better than Fr1,2,

α̂ < α, β̂ < β, and α − β > α̂ − β̂ : Fr2 is better than Fr1, which is better than Fr1,2,

α̂ > α, β̂ > β, and α − β < α̂ − β̂ : Fr1,2 is better than Fr1, which is better than Fr2,

α̂ > α, β̂ > β, and α − β > α̂ − β̂ : Fr2, is better than Fr1,2, which is better than Fr1.

Remark 3. By parts (c) of Theorems 1 and 2, if α̂ = α or if β̂ = β, the comparative efficiencies
of Fr1, Fr2, and Fr1,2 for small enough η are in general determined by those parameters and by
the value of λ > 0.

4. Close to unit size thresholds

We now investigate the behavior of E(E(η, η0)) for large values of η and η0. Again, we will
compare the mean energy of the two-step fragmentation procedure for the case in which only
the second or first fragmentation process is used.
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We will assume in this analysis that the subordinators ξ and ξ̂ satisfy, under P̃, a condition

of regular variation at ∞. Namely, respectively denoting by φ̃ and ˜̂
φ their Laplace exponents

(see (3)), we assume that

(RV) there exists ρ, ρ̂ ∈ (0, 1) such that, for all λ ≥ 0,

lim
q→∞

φ̃(λq)

φ̃(q)
= λρ, lim

q→∞

˜̂
φ(λq)

˜̂
φ(q)

= λρ̂.

This assumption can be equivalently (and transparently) stated in terms of the infinitesimal
behavior near η = 1 of the ‘mean energy functions’ η 
→ E(E(η)) and η 
→ E(Ê(η)) of each
of the fragmentation processes. See Remark 5, below.

Recall that a function G : R+ → R+ is said to vary slowly at 0 if limx→0+ G(λx)/G(x) = 1
for all λ ∈ [0, ∞). A well-known fact that will be used in the sequel is that such convergence
is uniform in λ ∈ [0, λ0] for all λ0 ∈ (0, ∞).

By L and L̂ we will denote the nonnegative slowly varying functions at 0 defined by the
relations

L

(
1

x

)
= 1

�(1 + ρ)

xρ

φ̃(x)
, L̂

(
1

x

)
= 1

�(1 + ρ̂)

xρ̂

˜̂
φ(x)

.

(Note that these definitions of the slowly varying functions L and L̂ correspond to the usual ones
given in Section 0.7 of [2] or Theorem 5.13 of [9], but divided by the appropriate constants).

Remark 4. Using the aforementioned uniform convergence result for L and L̂, from rela-
tion (3), it is easy to check that

lim
q→∞

φ(q)

φ̃(q)
= lim

q→∞
φ̂(q)

˜̂
φ(q)

= 1.

Consequently, assumption (RV) implies that the same condition holds on φ and φ̂, and vice
versa. For a discussion of assumption (RV), see [9, p. 132].

We define

Q
φ,φ̂

:= lim
q→∞

φ̂(q)

φ(q)
= lim

q→∞

˜̂
φ(q)

φ̃(q)
= lim

x→0+
L(x)xρ

L̂(x)xρ̂

�(1 + ρ)

�(1 + ρ̂)

if the limit in [0, ∞] exists. More generally, we write

Q+
φ,φ̂

:= lim sup
q→∞

φ̂(q)

φ(q)
= lim sup

x→0+

L(x)xρ

L̂(x)xρ̂

�(1 + ρ)

�(1 + ρ̂)

and

Q−
φ,φ̂

:= lim inf
q→∞

φ̂(q)

φ(q)
= lim inf

x→0+
L(x)xρ

L̂(x)xρ̂

�(1 + ρ)

�(1 + ρ̂)
.

Recall the notation


(x) = C

∫ x

0
e(α−β)yU(dy), 
̂(x) = Ĉ

∫ x

0
e(α̂−β̂)yÛ (dy).
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Lemma 4. We have

CQ−
φ,φ̂

�(1 + ρ̂)

�(1 + ρ)
− Ĉ ≤ lim inf

η→1−

(�(η)) − 
̂(�(η))

L̂(�(η))�(η)ρ̂

≤ lim sup
η→1−


(�(η)) − 
̂(�(η))

L̂(�(η))�(η)ρ̂

≤ CQ+
φ,φ̂

�(1 + ρ̂)

�(1 + ρ)
− Ĉ.

In particular,

lim
η→1−


(�(η)) − 
̂(�(η))

L̂(�(η))�(η)ρ̂

=

⎧⎪⎨
⎪⎩

∞ if ρ̂ > ρ,

−Ĉ if ρ̂ < ρ,

CQ
φ,φ̂

− Ĉ if ρ̂ = ρ and there exists Q
φ,φ̂

= limx→0+ L(x)/L̂(x) ∈ [0, ∞].

Proof. From the relation
∫ ∞

0 e−qxU(dx) = 1/φ̃(q) (see [5, Section III.1]) and by the Taube-

rian theorem (see [2, Section 0.7] or [9, Theorem 5.13]), our assumptions on φ̃ and ˜̂
φ are

respectively equivalent to

lim
x→0+

U(x)

xρL(x)
= 1, lim

x→0+
Û (x)

xρ̂L̂(x)
= 1.

On the other hand, we have


(x) − 
̂(x) ≤ Ce|α−β|xU(x) − Ĉe−|α̂−β̂|xÛ(x)

= L̂(x)xρ̂Ĉ

(
C

Ĉ
e|α−β|x U(x)

xρL(x)

L(x)

L̂(x)
xρ−ρ̂ − e−|α̂−β̂|x Û(x)

xρ̂L̂(x)

)

and, similarly,


(x) − 
̂(x) ≥ Ce−|α−β|xU(x) − Ĉe|α̂−β̂|xÛ(x)

= L̂(x)xρ̂Ĉ

(
C

Ĉ
e−|α−β|x U(x)

xρL(x)

L(x)

L̂(x)
xρ−ρ̂ − e|α̂−β̂|x Û(x)

xρ̂L̂(x)

)
.

The first statement follows from these bounds. To complete the proof, note that, since L(x)/

L̂(x) is slowly varying at 0, we have

lim
x→0+

L(x)

L̂(x)
xρ−ρ̂ =

⎧⎪⎨
⎪⎩

∞ if ρ̂ > ρ,

0 if ρ̂ < ρ,

Q
φ,φ̂

if ρ̂ = ρ and there exists limx→0+ L(x)/L̂(x) ∈ [0, ∞],

also using the fact that limx→0+ G(x) = 0 for any regularly varying (at 0) function G(x) with
positive index.
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Note that assumption (RV) implies that U has no atom at 0 (see, e.g. the first lines of the
previous proof).

Remark 5. The estimates used in the proof of Lemma 4 show that


(x) ∼ CU(x) and 
̂(x) ∼ ĈÛ (x) when x → 0+,

so that 
(x) ∼ CxρL(x) and 
̂(x) ∼ Ĉxρ̂L̂(x) as well. Consequently, from the equalities
in (7), assumption (RV) is equivalent to

(RV) x 
→ E(E(e−x)) and x 
→ E(Ê(e−x)) are regularly varying at 0+ with indices ρ, ρ̂ ∈
(0, 1), respectively.

This alternative formulation has the advantage of providing a way to infer the regularity
indices from separate observations of both fragmentation processes, if we were able to measure
the energies required to obtain fragments of different close to unit sizes. More precisely,

log E(E(ηλ)) − log E(E(η))

log λ

should be close to ρ for η sufficiently close to 1. Alternatively, ρ could in principle also be
deduced from the estimation method of φ developed in [8].

In the same vein, we remark that the existence of the limit Q
φ,φ̂

is equivalent to

there exists Q := lim
η→1−

E(E(η))

E(Ê(η))
= lim

η→1−
C

Ĉ
Q

φ,φ̂

�(1 + ρ̂)

�(1 + ρ)
. (12)

In general, Lemma 4 indeed shows that

Ĉ(Q− − 1) ≤ lim inf
η→1−


(�(η)) − 
̂(�(η))

L̂(�(η))�(η)ρ̂
≤ lim sup

η→1−


(�(η)) − 
̂(�(η))

L̂(�(η))�(η)ρ̂
≤ Ĉ(Q+ − 1),

where

Q+ := lim sup
η→1−

E(E(η))

E(Ê(η))
= C

Ĉ
Q+

φ,φ̂

�(1 + ρ̂)

�(1 + ρ)
(13)

and

Q− := lim inf
η→1−

E(E(η))

E(Ê(η))
= C

Ĉ
Q−

φ,φ̂

�(1 + ρ̂)

�(1 + ρ)
. (14)

We now recall that, under our assumptions on the Laplace exponents φ̃ and ˜̂
φ, by the Dynkin–

Lamperti theorem (see, for instance, Theorem 5.16 of [9]), it weakly holds that, as η → 1−,

P̃

(
ξTη − �(η)

�(η)
∈ dy

)
→ µ(dy) := sin(ρπ)

π

dy

(1 + y)yρ

and

P̃

( ξ̂
T̂η

− �(η)

�(η)
∈ dy

)
→ µ̂(dy) := sin(ρ̂π)

π

dy

(1 + y)yρ̂
.

This suggests the way in which η and η0 should go to 1 in order to observe a coherent close
to unit size asymptotic behavior. In the sequel, γ > 1 is a fixed parameter, and we assume that

η0 = η0(η) = ηγ .

We have the following result.
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Lemma 5. We have

lim
η→1−

Ẽ(1{ξTη<�(η0)} e(α−β̂)ξTη 
̂(�(η0) − ξTη )) − Ẽ(1{ξ̂
T̂η

<�(η0)} e
(α̂−β̂)ξ̂

T̂η 
̂(�(η0) − ξ̂
T̂η

))

(�(η))ρ̂L̂(�(η))

= Ĉ

[∫ γ−1

0
(γ − 1 − y)ρ̂µ(dy) −

∫ γ−1

0
(γ − 1 − y)ρ̂µ̂(dy)

]
. (15)

Moreover, in the case 1
2 ≥ ρ > ρ̂, the limit is a nonnegative and increasing function of γ for

γ ∈ [1, 2], which goes to 0 when γ → 1+.

Proof. Denote by ∂(η) the numerator on the left-hand side of (15), and denote respectively
by µη and µ̂η the laws of

ξTη − �(η)

�(η)
and

ξ̂Tη − �(η)

�(η)
.

We then easily see that

∂(η) ≤ eγ �(η)|α−β̂|
∫ γ−1

0

̂(�(η)(γ − 1 − y))µη(dy)

− e−γ �(η)|α̂−β̂|
∫ γ−1

0

̂(�(η)(γ − 1 − y))µ̂η(dy)

and

∂(η) ≥ e−γ �(η)|α−β̂|
∫ γ−1

0

̂(�(η)(γ − 1 − y))µη(dy)

− eγ �(η)|α̂−β̂|
∫ γ−1

0

̂(�(η)(γ − 1 − y))µ̂η(dy).

On the other hand, by Remark 5 we have

θ(x) := 
̂(x)

ĈL̂(x)xρ̂
→ 1 (16)

when x ↘ 0, and, thus, θ(x) is slowly varying at 0. Now fix ε ∈ (0, 1), and recall that, for a
slowly varying at 0 function G(x), the convergence G(λx)/G(x) → 1 is uniform in λ ∈ [0, λ0]
for all λ0 ∈ (0, 1). Therefore, since


̂(�(η)y) = θ(�(η)y)

θ(�(η))

L̂(�(η)y)

L̂(�(η))

̂(�(η))yρ̂,

and L̂ varies slowly at 0, we deduce that, if η ∈ (0, 1) is sufficiently close to 1 then, for all
y ∈ [0, γ − 1],

(1 − ε)
̂(�(η))yρ̂ ≤ 
̂(�(η)y) ≤ (1 + ε)
̂(�(η))yρ̂ .

Moreover, from (16), it follows that, if η is sufficiently close to 1 then, for all y ∈ [0, γ − 1],

Ĉ(1 − ε)2yρ̂ ≤ 
̂(�(η)y)

(�(η))ρ̂L̂(�(η))
≤ Ĉ(1 + ε)2yρ̂ .
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It follows that

lim sup
η→1−

∂(η)

(�(η))ρ̂L̂(�(η))
≤ (1 + ε)2ĈAγ − (1 − ε)2ĈÂγ

and

lim inf
η→1−

∂(η)

(�(η))ρ̂L̂(�(η))
≥ (1 − ε)2ĈAγ − (1 + ε)2ĈÂγ ,

where

Aγ = sin(πρ)

π

∫ γ−1

0
(γ − 1 − u)ρ̂

du

(1 + u)uρ
,

Âγ = sin(πρ̂)

π

∫ γ−1

0
(γ − 1 − u)ρ̂

du

(1 + u)uρ̂
.

The first statement follows by letting ε → 0+. The asserted properties of Ĉ(Aγ − Âγ ) are a
consequence of the inequalities u−ρ > u−ρ̂ for u ∈ (0, 1) and sin(πρ) > sin(πρ̂) > 0 when
1
2 > ρ > ρ̂, and the dominated convergence.

Next we introduce helpful concepts in order to state our results on the energy for large
thresholds. We use the definitions of Q, Q+, and Q− in (12), (13), and (14).

Definition 1. We say that the fragmentation process X is infinitesimally efficient (inf. eff.)
compared to X̂ if (RV) holds and

Q+ = lim sup
η→1−

E(E(η))

E(Ê(η))
< 1.

Conversely, we say that the fragmentation process X̂ is inf. eff. compared to X if (RV) holds
and

Q− = lim inf
η→1−

E(E(η))

E(Ê(η))
> 1.

With our previous notation, this can be written as follows. The fragmentation process X is
infinitesimally efficient compared to X̂ if (RV) holds and

Q+
φ,φ̂

<
Ĉ

C

�(1 + ρ)

�(1 + ρ̂)
.

Conversely, the fragmentation process X̂ is infinitesimally efficient compared to X if (RV)
holds and

Q−
φ,φ̂

>
Ĉ

C

�(1 + ρ)

�(1 + ρ̂)
.

For instance, X is infinitesimally efficient compared to X̂ if ρ > ρ̂ or if ρ = ρ̂ and Q
φ,φ̂

exists in [0, Ĉ�(1 + ρ)/C�(1 + ρ̂)). Similarly, X̂ is infinitesimally efficient compared to X̂,
e.g. if ρ < ρ̂ or if ρ = ρ̂ and Q

φ,φ̂
exists in (Ĉ�(1 + ρ)/C�(1 + ρ̂), ∞].

The following result is satisfied.
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Theorem 3. (Two-step procedure versus second fragmentation only.) For each γ ∈ (1, ∞),
the following assertions hold.

(a) If X̂ is infinitesimally efficient compared to X and Q− = Q = ∞ (in particular, if
ρ̂ > ρ), then, for all R > 0, there exists an ηR ∈ (0, 1) such that, for all η ∈ (ηR, 1],

E(E(η, ηγ )) − E(Ê(ηγ )) > R

[ ˜̂
φ

(
1

�(η)

)]−1

> 0.

(b) If X̂ is infinitesimally efficient compared to X and Q− ∈ (1, ∞) (and, thus, ρ = ρ̂),
then, for all ε ∈ (0, Q− − 1), there exists an ηε ∈ (0, 1) such that, for all η ∈ (ηε, 1],

E(E(η, ηγ )) − E(Ê(ηγ )) > (Q− − 1 − ε)Ĉ

[
�(1 + ρ̂)

˜̂
φ

(
1

�(η)

)]−1

> 0.

(c) If X is infinitesimally efficient compared to X̂ and Q+ ∈ (0, 1) (and, thus, ρ = ρ̂), then,
for all ε ∈ (0, 1 − Q+), there exists an ηε ∈ (0, 1) such that, for all η ∈ (ηε, 1],

E(E(η, ηγ )) − E(Ê(ηγ )) < (Q+ − 1 + ε)Ĉ

[
�(1 + ρ̂)

˜̂
φ

(
1

�(η)

)]−1

< 0.

(d) If X is infinitesimally efficient compared to X̂ and Q+ = Q = 0 (in particular, if ρ̂ < ρ),
then, for all ε ∈ (0, 1), there exists an ηε ∈ (0, 1) such that, for all η ∈ (ηε, 1],

(Aγ − Âγ − 1 − ε)Ĉ

[
�(1 + ρ̂)

˜̂
φ

(
1

�(η)

)]−1

< E(E(η, ηγ )) − E(Ê(ηγ ))

< (Aγ − Âγ − 1 + ε)Ĉ

[
�(1 + ρ̂)

˜̂
φ

(
1

�(η)

)]−1

.

(The quantities Aγ and Âγ were defined in Lemma 5).
Moreover, if 1

2 ≥ ρ > ρ̂, there exists a γ0 ∈ (1, 2] such that, for all γ ∈ (1, γ0], we have
1 − Aγ + Âγ > 0 and, for all ε ∈ (0, 1 − Aγ + Âγ ) and η ∈ (ηε, 1],

E(E(η, ηγ )) − E(Ê(ηγ )) < (Aγ − Âγ − 1 + ε)Ĉ

[
�(1 + ρ̂)

˜̂
φ

(
1

�(η)

)]−1

< 0.

In all four cases, similar statements hold with Ĉ[�(1 + ρ̂)
˜̂
φ(1/�(η))]−1 replaced by

E(Ê(η)).

Proof. Using (8) in Remark 2, we have, thanks to Lemmas 4 and 5,

Q− − 1 + Aγ − Âγ ≤ lim inf
η→1−

E(E(η, ηγ )) − E(E(1, ηγ ))

Ĉ(�(η))ρ̂L̂(�(η))

≤ lim sup
η→1−

E(E(η, ηγ )) − E(E(1, ηγ ))

Ĉ(�(η))ρ̂L̂(�(η))

≤ Q+ − 1 + Aγ − Âγ .
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We then note that L̂(�(η))(�(η))ρ̂ = [�(1 + ρ̂)
˜̂
φ(1/�(η))]−1, and that the quantities Aγ and

Âγ are equal when ρ = ρ̂. From this and the fact that Ê(ηγ ) = E(1, ηγ ) (cf. (7)), we readily
deduce parts (a), (b), and (c) according to the values of Q− and Q+. For part (d), we use the
previous arguments together with the last statement of Lemma 5.

The last assertion follows from the asymptotic equivalence (16).

Theorem 3 provides conditions on large thresholds η and η0 under which the use of the
second fragmentation process can be determined to be efficient or not. We next briefly address
the efficiency of using or not using the first fragmentation process. The arguments of the
following theorem are similar to those of the previous lemmas, so we just sketch its proof. We
use the following notation: for all γ ∈ (1, ∞),

Bγ := sin(πρ)

π

∫ γ−1

0
(γ − 1 − u)ρ

du

(1 + u)uρ
.

Theorem 4. (Two-step procedure versus first fragmentation only.) For all γ ∈ (1, ∞), the
following assertions hold.

(a) If X̂ is infinitesimally efficient compared to X then, for all ε ∈ (0, 1 − 1/Q−), there
exists an ηε ∈ (0, 1) such that, for all η ∈ (ηε, 1],

E(E(η, ηγ )) − E(E(ηγ )) <

(
1

Q− − 1 + ε

)
Bγ C

[
�(1 + ρ)φ̃

(
1

�(η)

)]−1

< 0.

(b) If X is infinitesimally efficient compared to X̂ and Q+ ∈ (0, 1) (and, thus, ρ = ρ̂), then,
for all ε ∈ (0, 1/Q+ − 1), there exists an ηε ∈ (0, 1) such that, for all η ∈ (ηε, 1],

E(E(η, ηγ )) − E(E(ηγ )) >

(
1

Q+ − 1 − ε

)
Bγ C

[
�(1 + ρ)φ̃

(
1

�(η)

)]−1

> 0.

(c) If X is infinitesimally efficient compared to X̂ and Q+ = Q = 0 (in particular, if ρ̂ < ρ),
then, for all R > 0, there exists an ηR ∈ (0, 1) such that, for all η ∈ (ηR, 1],

E(E(η, ηγ )) − E(E(ηγ )) > RC

[
φ̃

(
1

�(η)

)]−1

> 0.

In all cases, we can replace C[�(1 + ρ)φ̃(1/�(η))]−1 by E(E(η)).

Proof. Fix γ > 1 and ε ∈ (0, 1). As in Lemma 5, we obtain, for all y ∈ [0, γ − 1],

C(1 − ε)2yρ ≤ 
(�(η)y)

(�(η))ρL(�(η))
≤ C(1 + ε)2yρ

and

Ĉ(1 − ε)2 (�(η))ρ̂L̂(�(η))

(�(η))ρL(�(η))
yρ̂ ≤ 
̂(�(η)y)

(�(η))ρL(�(η))
≤ Ĉ(1 + ε)2 (�(η))ρ̂L̂(�(η))

(�(η))ρL(�(η))
yρ̂

if η is close enough to 1. Now set ∂̄(η) := E(E(η, ηγ ) − E(ηγ , ηγ )). From the previous
bounds, and from the explicit expression for ∂̄(η) given in Remark 2, we deduce that

C

(
Aγ

Q+ − Bγ

)
≤ lim inf

η→1−
∂̄(η)

(�(η))ρL(�(η))
≤ lim sup

η→1−

∂̄(η)

(�(η))ρL(�(η))
≤ C

(
Aγ

Q− − Bγ

)
.
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Part (a) follows from this relation, using the facts that Aγ = Bγ if ρ = ρ̂ and Q− = ∞ if
ρ̂ > ρ. The remaining parts are similar.

Remark 6. If ρ = ρ̂ and Q ∈ (0, ∞) exists, we obtain, for η close enough to 1,

E(Ê(ηγ )) + (Q − 1 − ε) E(Ê(η)) < E(E(η, ηγ )) < E(Ê(ηγ )) + (Q − 1 + ε) E(Ê(η)),

E(E(ηγ )) + (Q−1 − 1 − ε)Bγ E(E(η)) < E(E(η, ηγ ))

< E(E(ηγ )) + (Q−1 − 1 + ε)Bγ E(E(η)).

In particular, for Q = 1, we deduce that E(E(η, ηγ )) ∼ E(Ê(ηγ )) ∼ E(E(ηγ )) when η → 1−,
as one could expect.
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