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Abstract. Resistive instabilities have often been indicated as the 
possible cause of rapid release of energy in astrophysical situations. 
A correct assessment of the validity of this idea requires a detailed 
analysis of the theory of resistive instabilities in the regimes of 
astrophysical interest. In particular, effects as the presence of 
asymmetries due to current gradients, the influence of geometry and of 
shear flows must be explicitly evaluated. We have started a program of 
investigation on this subject, whose preliminary results are reported 
here. 

Magnetic fields are one of the commonest components of the astro­
nomical universe. Their presence constitutes, among other things, a 
potential source of energy that could be utilized in a number of situa­
tions. In many instances they are the only conceivable energy source. 
However, the exploitation of this reserve is generally made difficult 
by the fact that astrophysical plasmas are, as a rule, almost ideal 
electrical conductors. The Alfven theorem then prevents topological 
changes in the field structure and makes inaccessible to the system 
many states with low magnetic energy. The presence of a small, but 
finite, electrical resistivity relaxes this constraint and allows the 
transformation of magnetic energy into different forms, like heat or 
bulk particle motion. 

The above considerations explain the interest in resistive insta­
bilities, namely those that either disappear in the infinite conducti­
vity limit, or strongly modify instabilities that may exist also in 
ideal conditions. Most of our knowledge of this class of instabilities 
derives from studies of laboratory plasmas and often results valid for 
fusion devices have been directly applied to astrophysical systems in 
spite of the vast difference in regimes, boundary conditions and geo­
metrical constraints encountered in the two cases. Another problem 
that has often prevented a successful application of the theory of re­
sistive instabilities in the astrophysical context is that of the 
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timescale of magnetic energy release. In the case of the solar flares, 
for instances, the resistive timescales are substantially larger than 
those on which the phenomenon is observed to develop. 

Considering the interest of the problem, the number of still un­
answered questions and the fact that from our experience it is hard to 
predict the behaviour of a given system by simply transferring the re­
sults of a completely different one, we have felt the necessity of a 
detailed analysis of resistive instabilities in regimes of direct 
astrophysical interest. The first results of such a study are briefly 
reported here and will form the subject of subsequent papers. All 
these results refer to the linear stage of the instability. 

The linear development of resistive instabilities in plane geometry 
has been extensively studied since the pioneering FKR paper (Furth, 
Killeen and Rosenbluth, 1963) both analytically and numerically. 
Analytic investigations generally rely on boundary layer techniques 
and often require further approximations, as for instance the so-called 
"constant-ip". Numerical investigations have until recently been 
limited to relatively low S values, where S is the magnetic Reynolds 
number. An extensive numerical study has been published recently 
(Steinolfson and Van Hoven, 1983) where the range of S has been in­
creased up to astrophysically relevant values. We have included in our 
numerical code the effects of gradients of the current density at the 
singular points that produce asymmetries in the F-profile (F = fc.g). 
The reason for this inclusion derives from the fact that asymmetries 
are always present in geometries more realistic than the planar one, so 
that the entity of these effects can be only assessed in the plane case. 
The field profile was the familiar B = B Q (tgh x e^+ sech x e z ) , with 
k = ky e v + k z e z. The equations were Fourier time-analyzed, unlike in 
Steinolfson and Van Hoven, 1983. Our analysis generally confirms all 
classical results on symmetric configurations along with the only ana­
lytical results for the asymmetric case (Bertin, 1982) valid in the 
framework of a generalized constant-ijj approach. Our growth rates are 
lower than those of Steinolfson and Van Hoven, 1983 at small and large 
values of the normalized wavenumber, a, for large S (> 10^°). The 
presence of asymmetries modifies the dispersion curve (20-50%) especially 
at low a Ts but has little influence on the form of the eigenfunctions. 

We have also examined the resistive behaviour of a system with 
cylindrical symmetry under modes possessing an m = 1 azimuthal symmetry. 
The equilibrium field represents a current channel surrounded by a 
potential field. This type of field had already been studied by 
Chiuderi and Einaudi, 1981 (hereafter referred to as CE) that showed 
that configurations exist that are absolutely (i.e. for all k Ts) stable 
to ideal perturbations. It is, however, also possible to find ideally 
unstable configurations for low k-values. A first study of the linear 
tearing-mode in these systems had also been given in CE, by using the 
same technique employed by Furth et al. (1973). The use of the 
constant-^ approximation, implicit in CE, must be considered with cau­
tion in these configurations even at relatively large a's (unlike in 
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the planar case) because of the possible existence of an ideal unstable 
region for 0 < a £ a c. In fact, when this happens we may have sizable 
a fs corresponding to a marginal behaviour. For a > a c the resistive 
modes appear to be of the reconnecting (tearing) type, whereas for 
a < a c a different mode develops, quite similar to the m = 1, n = 1 in­
ternal resistive kink found in tokamaks and studied by Coppi et al. 
(1976). 

The computational method used is essentially a numerical boundary 
layer with the internal solution computed exactly. A shooting technique 
is used to find the eigenvalues: this method appears to be fast and 
accurate enough up to S = 10^, but is not reliable at higher S-values 
due to the extreme thinness of the resistive layer. There are several 
distinct aspects of the problem that must be considered. One is the 
spatial structure of the mode that is strongly influenced by the value 
of a , particularly for a close to a c . Crossing a c from the ideally 
stable side, we find that the perturbation corresponds to an essentially 
rigid radial displacement of the internal part of the plasma inside the 
current channel towards the singular surface. This type of perturbation 
is possible also in an ideal plasma (internal kink) but saturates at 
low amplitude due to the build-up of a magnetic counter-pressure. The 
presence of a finite conductivity allows the continuation of the pro­
cess. In this situation the perturbed magnetic field (i|0 changes sign, 
but the displacement does not, unlike the usual reconnecting mode. 
This different behaviour may prove to be important in the subsequent 
non-linear stage. 

A second aspect refers to the maximum growth rate attainable by 
these processes. Since the constant-^ reconnecting and internal re­
sistive kink modes scale differently with S, the concept of fast and 
slow reconnecting modes has been sometimes introduced in the literature. 
We would like to point out that, on the basis of different scaling pro­
perties only, it is not possible to assess the relative speed of the 
two processes. For a given S an unstable configuration attains a maxi­
mum growth rate for a well-defined value of a : this may correspond 
either to an internal resistive structure or to a const tearing 
mode. To decide which is the configuration that evolves faster we must 
simply compare the maximum growth rates. From our preliminary results, 
that incidentally confirm the known S-scalings of the tearing and in­
ternal resistive modes, we find that at a given S different configura­
tions corresponding to different spatial structures of the mode evolve 
on essentially the same timescale. This is due to the fact that the 
only meaningful comparison must involve the maximum growth rates that 
do not occur at the same value of a for different configurations and S. 
From our computations it turns out that at S = 10^ the shortest time-
scale is * 105 s . regardless of the topology of the operatine mode. 
Since all timescales increase with S this result implies that resistive 
instabilities based on classical resistivity in a static configuration 
are not a viable mechanism for solar flares that occur in plasmas with 
S * 1 0 1 2 . 
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The presence of shear flows in the unperturbed state can modify 
considerably the growth rates of the resistive modes (Hoffmann, 1975, 
Pollard and Taylor, 1979, Dobrowolny et al. 1983). The presence of a 
fluid velocity considerably complicates the numerical problem since all 
the growing modes are generally overstable. We have produced a numeri­
cal code, based on finite different methods, that computes the (com­
plex) eigenvalues by finding the zeros of the determinant of the co­
efficients of the homogeneous linear system to which the original dif­
ferential system has been reduced. The eigenvalues, besides of k, de­
pend on 3 and on the ratio of the spatial scales for the velocity field 
and the magnetic field. Initial tests of the code have reproduced 
known results in selected limiting cases. 
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