DOI:10.1017/cjn.2024.339

This is a manuscript accepted for publication in *Canadian Journal of Neurological Sciences*. This version may be subject to change during the production process.

- 1 TITLE
- 2 Anti-Myelin Oligodendrocyte Glycoprotein Antibodies and Acute Haemorrhagic
- 3 Encephalomyelitis
- 4 AUTHOR INFORMATION
- 5 Say Ying Tan
- 6 MBBS
- 7 Neurology Department, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
- 8 <u>sayying0307@hotmail.com</u>
- 9 Presaad Pillai
- 10 MBBS, MRCP
- 11 Neurology Department, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
- 12 presaad87@gmail.com
- 13 Jack Son Wee
- 14 MBBS, MRCP
- 15 Neurology Department, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
- 16 <u>weejackson@gmail.com</u>
- 17 Prabha Jaya Krishna
- 18 MD
- 19 Radiology Department, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
- 20 prabha.jkrishna@gmail.com
- 21 Yuen Kang Chia
- 22 MD, MRCP
- 23 Neurology Department, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
- 24 <u>cyk1118@gmail.com</u>
- 25 ORCID: 0000-0001-9395-3107
- 26 Joshua Chin Ern Ooi
- 27 MB BCh BAO, MSc
- 28 Neurology Department, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
- 29 joshuaooichinern@gmail.com
- 30 ORCID: 0000-0002-6235-3712
- 31 CORRESPONDENCE: Joshua Chin Ern Ooi, joshuaooichinern@gmail.com,
- +60164228810, Department of Neurology, Queen Elizabeth Hospital, 13A Jalan Penampang,
- 33 88000, Kota Kinabalu, Sabah, Malaysia

34 WORD COUNT FOR TEXT BODY

35 The text body contains 1349 words (after incorporation of suggestions by reviewers).

36 TEXT BODY

37 To the Editor,

The relationship between Acute haemorrhagic encephalomyelitis (AHEM) also known as 38 39 Acute Haemorrhagic Leukoencephalitis (AHLE) and Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is garnering increasing attention.(1,2) AHEM, is a 40 severe, rapidly progressive demyelinating disease affecting the white matter within the 41 central nervous system (CNS) and is often considered a severe variant of acute disseminated 42 43 encephalomyelitis (ADEM).(3) Unlike typical ADEM, AHEM predominantly affects adults and confers significantly poorer outcomes.(3) Its precise aetiology remains unclear but is 44 45 presumed to be of autoimmune origin.(3)

46 Recent studies have detected anti-myelin oligodendrocyte glycoprotein auto-antibodies

47 (MOG-Abs) in the serum of AHEM patients, sparking discussions about a potential link

48 between MOGAD and AHEM.(1,2) MOGAD constitutes a syndrome of acquired CNS

49 autoimmune demyelinating disorders purportedly driven by MOG-Abs, distinct from multiple

50 sclerosis and aquaporin-4(AqP4)-seropositive neuromyelitis optica spectrum disorder

51 (NMOSD).(4) Clinical manifestations of MOGAD are heterogeneous but are classically

52 associated with ADEM (in children), optic neuritis, or transverse myelitis.(4) Patients may

also experience brainstem, cerebellar or cortical encephalitis symptoms.(4) More recently,

adult-onset AHEM has been suggested as an emerging MOGAD phenotype.(1,2)

55 Here we report a case of adult-onset AHEM in a patient with serum MOG-Ab positivity. Our

56 findings add to the developing discussion between AHEM and MOGAD while also delving

57 into the pathogenic relevance of MOG-Abs and the diagnostic complexities of MOGAD.

A previously healthy thirty-five-year-old man presented to a rural hospital with sudden-onset
paraplegia, sensory loss up to T10, and urinary retention following an upper respiratory tract
infection (URTI) one week prior. Within three days of admission, he developed bulbar

- 61 symptoms, respiratory distress, and encephalopathy, necessitating intubation and ventilation.
- 62 Three days post-onset, cerebrospinal fluid (CSF) analysis revealed pleocytosis [270 WBC/µL
- 63 (lymphocytes: 11%, neutrophils: 89%)] and elevated protein levels (2.5g/L). Investigations
- 64 into infective causes including bacterial cultures, screening for tuberculosis, cryptococcus,

65 syphilis, PCR analysis for Japanese Encephalitis, Herpes Simplex viruses 1&2,

66 Enteroviruses, Human Herpes virus 6, Varicella-zoster virus, and Human Parechovirus were

67 negative. CSF oligoclonal bands and IgG index were not tested due to a temporary

68 suspension of testing services by our national laboratory. His C-reactive protein level was

69 initially mildly raised (33.9 mg/L) while his ANA, p-ANCA, and c-ANCA tests were

negative. Other routine blood tests were unremarkable. He was empirically commenced on

71 intravenous ceftriaxone and acyclovir.

72 Due to the lack of MRI services at the rural hospital where he was initially treated, our patient

required transfer to our centre for further evaluation and care. However, logistical challenges

and unstable haemodynamics resulting from nosocomial sepsis caused significant delays inhis transfer.

76 Brain and whole spine MRIs, ultimately performed thirty days from symptom onset revealed T2W/FLAIR hyperintensities in the midbrain, pons, bilateral internal capsules, cerebellar 77 peduncles, globus pallidi, and thalami. Additionally, a centrally located, longitudinally 78 79 extensive transverse myelitis (LETM) was observed, involving the cervical and thoracic cord and conus medullaris. Grey matter involvement was also noted, creating the characteristic "H 80 sign". [Figure 1 – Panel 1 (a-e), Panel 2 (a-c)] These lesions were not diffusion-restricted and 81 non-enhancing. Multiple T1W hyperintensities suggestive of haemorrhages with concurrent 82 SWI blooming artifacts indicative of microhaemorrhages were observed over the corpus 83 callosum, both globus pallidi, thalami, pons, midbrain, left cerebellum, bilateral cerebellar 84 peduncles and spinal cord. [Figure 1 - Panel 1 (f-l), Panel 2 (d,e)] Collectively, these clinico-85 radiological features characterise AHEM. 86

87 Serum MOG-IgG-Ab testing using a fixed-cell-based assay (fixed-CBA) (EUROIMMUN)

performed thirty days post-onset yielded a low-positive result (cut-off 1:10), while serum

89 anti-AqP4-IgG auto-antibodies were not detected. Despite concurrent treatment with

90 intravenous methylprednisolone (1 g/day; 5 days) and plasma exchange (5 cycles over 10

91 days), the patient showed no improvement. A repeated lumbar puncture forty days post-onset

92 demonstrated persistent pleocytosis and hyperproteinorachia albeit to a milder degree, but

93 CSF testing for MOG-IgG-Ab was negative. Regrettably, his condition deteriorated, and he

succumbed thirteen days after being transferred to our centre (forty-three days from symptom

95 onset) due to an overwhelming nosocomial sepsis, prior to initiation of further

96 immunotherapies. A post-mortem brain biopsy was declined by his kin due to cultural97 considerations.

Two cases of adult-onset AHEM with positive MOG-Abs have been reported to date.(1,2)
They are summarised in Table 1.

As per the 2023 consensus diagnostic criteria, our patient's clinical, laboratory, and 100 101 radiological features are consistent with the diagnosis of MOGAD.(4) He experienced a core clinical demyelinating event, having presented with ADEM (in this case AHEM) and 102 103 myelitis, while testing positive for serum MOG-IgG-Ab through a fixed-CBA at a low-titre. Additionally, he exhibited supporting features including LETM, conus involvement, the 'H 104 105 sign', and the presence of multiple supra- and infratentorial lesions while also testing negative for anti-AqP4-IgG auto-antibodies. Interestingly, the low-titre MOG-Abs seropositivity raises 106 107 several questions and affords us the unique position to discuss the potential pathogenicity of MOG-Abs in AHEM. 108

109 The timing of testing for MOG-Abs is crucial in MOGAD, as antibody titres significantly

decline over time.(5) A study found that only 55% of patients tested within 30 days of

symptoms had positive MOG-Abs result, with half of them becoming negative, and 28%

becoming low positive 6–12 months later.(5) This temporal dynamic could explain the low-

titre MOG-Ab positivity observed in our patient, as there was a significant delay in testing.

114 Given the inherent complexity in diagnosing AHEM, it is plausible that some patients who

115 would otherwise be MOG-Abs seropositive might fall outside the diagnostic window when

tested, contributing to the relative rarity of reported MOG-Ab seropositivity in AHEM cases.

117 The possibility of a false positive MOG-Ab result warrants careful consideration, especially

given our patient's low-titre. While he met the consensus criteria for MOGAD and possessed

119 classical features (LETM, conus involvement, and "H-sign"), his URTI and the moderately

120 symmetrical brain MRI findings raise concerns for alternative diagnoses, such as viral,

121 parainfectious, or autoimmune encephalitides. Although we addressed key differential

diagnoses, resource limitations hindered a more thorough investigation of all possible causes.

123 In a similar vein, we emphasise that caution is essential when interpreting the potential

124 pathogenicity of MOG-Abs in patients with neurological symptoms. Furthermore, MOG-Abs

- are also found in conditions like seropositive NMOSD,(6) glioblastoma,(7) and anti-NMDA-
- receptor antibody encephalitis,(8) where they are not deemed primary pathogenic drivers.
- 127 This observation raises the question of whether the presence of MOG-Abs in AHEM may

merely represent an epiphenomenon, potentially complicating the understanding of their rolein the disease process.

Histopathological disparities between MOGAD and AHEM further complicate their 130 association. MOGAD is characterised by a primary immune attack on myelin, manifesting 131 with perivenous and confluent demyelinating lesions.(9) Conversely, AHEM reveals a 132 broader spectrum of pathology, including prominent haemorrhages, oedema, axonal injury, 133 fibrinoid vessel necrosis, and complement deposition.(1,3) Early and extensive astrocyte 134 injury is also reported, suggesting that demyelination in AHEM could be secondary to 135 astrocyte damage, akin to observations in NMOSD.(1,3) This contrast prompts consideration 136 of whether MOG-Abs actively participate in the primary pathogenic process of AHEM or or 137 are instead secondary to extensive neuronal destruction. These differences may also explain 138 why patients with MOGAD generally respond to immunosuppression, while AHEM does 139 140 not.

However, treatment resistance does not entirely rule out MOGAD. Some patients with 141 MOGAD respond poorly to steroids and plasma exchange but demonstrate dramatic 142 improvement with third-line anti-IL-6R therapy.(10) Similarly, AHEM might represent a 143 form of MOGAD that necessitates rapid escalation to third-line therapies. In the absence of a 144 convincing alternative diagnosis, we proceeded with a MOGAD-directed treatment course. 145 Unfortunately, our ability to initiate Tocilizumab was hindered by the patient's rapid decline 146 and recurrent sepsis. Diagnostic delays, compounded by healthcare disparities in the rural 147 setting, significantly reduced the window for intervention, and earlier diagnosis along with 148 treatment escalation could have potentially changed the outcome. 149

150 Our unique case prompts more nuanced explorations of MOGAD's potential contribution to the pathogenesis of AHEM, highlighting that current data is still insufficient to establish a 151 152 definitive aetiological link. The temporal dynamics of MOG-Abs titres, histopathological disparities, and variable treatment outcomes further underscores the necessity for cautious 153 154 interpretation of MOG-Abs seropositivity in AHEM. Moving forward, prospective studies are needed to better understand the potential aetiological association between MOGAD and 155 156 AHEM. Retrospective cohorts face challenges due to the dynamic decline of MOG-Abs titres over time. Increased clinician awareness and timely testing are crucial for early diagnosis and 157

159 FIGURES AND TABLES

160

161 Figure 1: Brain and Spine MRI Performed 30 Days from Symptom Onset

n.b.: Panel 1: MR brain- (a-e): axial/T2-FLAIR brain images revealing (non-enhancing)
hyperintensities in (a-b): bilateral internal capsules, (c): midbrain, (d): pons, (e): middle cerebellar
peduncles. Note also the presence of ventriculomegaly along with symmetrical areas of perilesional
hypointensities surrounding the bilateral (b): internal capsules and (c): medial lemniscus signifying
extensive destructive processes. (f-j): axial/SWI brain images revealing multiple blooming artifacts
suggestive of microhaemorrhages. (k-l): axial/T1W brain images revealing hyperintensities with
concurrent blooming artifacts on SWI, signifying haemorrhages.

- **Panel 2: MR spine-** (a-c): sagittal/T2-FLAIR spine images (and their corresponding axial views in
- 170 red boxes) revealing a longitudinally extensive transverse myelitis involving the cervical (a), thoracic
- 171 (b), and lower thoracic (c) spinal cord along with "H-sign" on the corresponding axial views. (d-e):
- 172 sagittal/T1W spine images revealing hyperintensities suggestive of haemorrhages along with their
- 173 corresponding axial views.

174 Table 1: Summary of Two Recent Cases of Adult-Onset Acute Haemorrhagic Encephalomyelitis with Anti-MOG Auto-Antibody

175 **Positivity**

Arti	Age/	Clinical Presentation	MRI findings	CSF	MOGAD	Brain	Treatment	Outcom
cle	Sex			analysis	diagnosis	biopsy		es
Skar	50s	SARS-CoV-2 vaccination	Index scan (POD2):	1^{st} LP:	Serum MOG	Not	1 g/day MTP	Progressi
sta		3 weeks prior	- Brain: Bilateral	- Pleocyto	IgG auto-	performe	(5 days)	ve
et al.		\downarrow	optic nerve	sis (77	antibodies	d	\downarrow	deteriora
Apri		Subacute visual	enhancing	cells/µL	positive		2 g/day MTP	tion then
1		impairment	T2/FLAIR)	[1:320 (cut-off		and PLEX	death
2023		\downarrow	hyperintensities.	- Elevated	1:10)]		\downarrow	
1		Fever and ataxia	Small, non-	protein	* Cell-based		Cyclophosph	
		\downarrow	enhancing	level	assay		amide (1	
		PAD10: Rapid	T2/FLAIR	(750			dose)	
		neurological deterioration,	hyperintensities in	mg/L)	Serum anti-		\downarrow	
		intubated + ventilated,	subcortical,	- OCB:	AQP4-IgG		Palliative	
		intensive care	periventricular,	not	auto-antibodies		care	
		↓	and pontine	detected	negative			
		PAD32: Further	regions.	and				
		deterioration, persistent	- Spine:	2^{nu} LP:				
		loss of brainstem reflexes	Unremarkable.	- Pleocyto				
		↓ ↓	and (= a = 4 a)	sis (887				
		Death	2^{nd} scan (POD12):	cells/µL				
			- Brain: New, size-)				
			progressive					
			lesions with					
			haemorrhagic and					
			necrotic areas with					
			an expansive					
			effect in the					
			brainstem.					

Ban	54-	Myalgia 3 weeks prior,	Index scan:	LF).	Serum MOG	Necrosis,	1 g/day MTP	Improve
g et	year-	Nausea, headache, and	- Brain: Multifocal,	Multifocal, - C		IgG auto-	diffuse	(5 days)	d rapidly
al.	old	dizziness 2 weeks prior,	eks prior, ill-defined,		count:	antibodies	neutroph	\downarrow	post-
May	Fema	Drowsiness 1 day prior	r T2/FLAIR		6	positive	ilic,	Mycophenola	MTP
2023	le	\downarrow	hyperintensities in	in cells/µI		* Live-cell	microgli	te mofetil	therapy.
2		Dysarthria, fever, left leg	the right basal	-	Elevated	fluorescence-	al and	(long-term)	
		weakness, conjugate gaze	ganglia, left		protein	activated cell-	macroph		Remaine
		palsy, tongue deviation to	temporal lobe, and		level	sorting assay	age		d stable
		the left, and left central	left posterior pons.		(62		infiltrate		without
		type facial palsy	Hemorrhage on	mg/dL)		Serum anti-	s with		recurrenc
		↓	SWI in the right	-	OCB:	AQP4-IgG	activated		e during
		PAD1: Decreased verbal	basal ganglia.		not	auto-antibodies	endotheli		the 16-
		output, worsening left	Patchy		detected	negative	al cells,		month
		hemiparesis	enhancement over				and		follow-
		↓	the right basal				extravasa		up
		PAD2: Stuporous	ganglia on				ted		period.
		↓ ↓	contrast-enhanced				erythroc		
		Post-MTP therapy: Rapid	T1W images.				ytes		
		improvement in					compatib		
		consciousness and other					le		
		clinical symptoms					with		
							AHLE		

176

177

- n.b.: SARS-CoV-2: Severe-Acute-Respiratory-Syndrome-Related Coronavirus-2; PAD: Post-onset day; POD: Post-onset day; MRI: Magnetic
- 179 Resonance Imaging; T2/FLAIR: T2-weighted-Fluid-Attenuated Inversion Recovery; SWI: Susceptibility Weighted Imaging; T1W: T2-weighted
- imaging; LP: Lumbar puncture; OCB: Oligoclonal bands; MOG: Myelin Oligodendrocyte Glycoprotein; AqP4: Aquaporin 4; AHLE: Acute
- 181 haemorrhagic leukoencephalitis; MTP: Methylprednisolone; PLEX: Plasma exchange.

182 **REFERENCES**

183	1.	Skarsta L, Nicoletti T, Frick K, Kana V, De Vere-Tyndall A, Weller M, et al.
184		Acute haemorrhagic leucoencephalitis as clinical manifestation of MOG
185		antibody-associated disease. Vol. 94, Journal of Neurology, Neurosurgery and
186		Psychiatry. BMJ Publishing Group; 2023. p. 583–5.
187	2.	Bang SJ, Kim S, Seok HY. Acute hemorrhagic leukoencephalitis as a new
188		phenotype of myelin oligodendrocyte glycoprotein antibody-associated disease.
189		Vol. 44, Neurological Sciences. 2023.
190	3.	Grzonka P, Scholz MC, De Marchis GM, Tisljar K, Rüegg S, Marsch S, et al.
191		Acute Hemorrhagic Leukoencephalitis: A Case and Systematic Review of the
192		Literature. Vol. 11, Frontiers in Neurology. Frontiers Media S.A.; 2020.
193	4.	Banwell B, Bennett JL, Marignier R, Kim HJ, Brilot F, Flanagan EP, et al.
194		Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease:
195		International MOGAD Panel proposed criteria. Vol. 22, The Lancet Neurology.
196		2023.
197	5.	Forcadela M, Rocchi C, San Martin D, Gibbons EL, Wells D, Woodhall MR, et
198		al. Timing of MOG-IgG Testing Is Key to 2023 MOGAD Diagnostic Criteria.
199		Neurology(R) neuroimmunology & neuroinflammation. 2024 Jan 1;11(1).
200	6.	Gou B, Yang P, Feng J, Li Y, Huang G, Shi J, et al. The case report of AQP4
201		and MOG IgG double positive NMOSD treated with subcutaneous
202		Ofatumumab. J Neuroimmunol. 2023;376.
203	7.	Amin M, Mays MA, Polston D, Flanagan EP, Prayson R, Kunchok A. Myelin
204		oligodendrocyte glycoprotein (MOG) antibodies in a patient with glioblastoma:
205		Red flags for false positivity. J Neuroimmunol. 2021;361.
206	8.	Ding J, Li X, Tian Z. Clinical Features of Coexisting Anti-NMDAR and MOG
207		Antibody-Associated Encephalitis: A Systematic Review and Meta-Analysis.
208		Vol. 12, Frontiers in Neurology. Frontiers Media S.A.; 2021.
209	9.	Takai Y, Misu T, Fujihara K, Aoki M. Pathology of myelin oligodendrocyte
210		glycoprotein antibody-associated disease: a comparison with multiple sclerosis

211		and aquaporin 4 antibody-positive neuromyelitis optica spectrum disorders. Vol.
212		14, Frontiers in Neurology. Frontiers Media SA; 2023.
213	10.	McLendon LA, Gambrah-Lyles C, Viaene A, Fainberg NA, Landzberg EI,
214		Tucker AM, et al. Dramatic Response to Anti-IL-6 Receptor Therapy in
215		Children With Life-Threatening Myelin Oligodendrocyte Glycoprotein-
216		Associated Disease. Neurology(R) neuroimmunology & neuroinflammation.
217		2023 Nov 1;10(6).
218		

219 CONFLICT OF INTEREST STATEMENT AND DECLARATION

220 All authors have no competing interests to declare.

221 ACKNOWLEDGEMENTS

222 This research was not funded by any agencies in the public or private sectors.

223 ETHICS STATEMENT

- 224 The patient's next of kin provided informed consent for the use of de-identified data for
- 225 publication purposes

226 STATEMENT OF AUTHORSHIP

- 227 SYT is the main author of this manuscript. PP, JSW, PJK, YKC, and JCEO contributed
- equally to the management of the patient and drafting / editing of the manuscript.