
TRACES OF A CLASS OF (0, 1)-MATRICES 

DALE M. MESNER 

1. Introduction, If A = {atJ) is a matrix whose elements are 0's and 
l's, more briefly a (0, l)-matrix, the trace of A, defined as the sum of the 
diagonal elements au and denoted by Tr A, is the number of l's on the main 
diagonal. Matrices which can be obtained from A by permutation of its rows 
or of its columns, or both, may be expressed as PA, AQ, or PAQ, respectively, 
where P and Q are permutation matrices. 

DEFINITION. If Tr PAQ = t for some permutation matrices P and Q, we 
say that trace t is possible for A. 

This paper discusses the set of trace values that are possible for a given 
(0, l)-matrix A, i.e. the set of distinct traces of the class of matrices {PAQ}, 
where P and Q are arbitrary permutation matrices of appropriate orders. The 
largest and smallest possible trace values will be denoted by tm&x(A) and 
tmin(A), or more briefly by tmSLX and tmin. The main problem, solved in Section 
2, is to determine possible intermediate values for Tr A, though /max and /mln 

themselves are evaluated for some special matrices. Theorem 3 summarizes 
the principal results. We conclude with some discussion in Section 3. 

Terminology and notation. J and Z will denote matrices all of whose elements 
are l's and 0's respectively. The complement of a (0, 1)-matrix A is the matrix 
J — A. The direct sum of the square or rectangular matrices Ai, A2, denoted 
by A i + A 2, is the matrix 

Vz A2_\J 

where the Z's are of appropriate orders. Ax + • • • + Ak is similarly defined. 
P(Ai + . . . -j- Ak)Q will be called a rearranged direct sum of Ai, . . . , Ak. If 
A is an m X n matrix, m < n, the matrix obtained by permuting rows and 
carrying out the same permutation on the first m columns will be called a 
simultaneous row and column permutation of A and may be expressed as 
PA (PT + I) J where PT is the transpose of P and / is the identity matrix of 
order n — m, which does not occur if m = n. The term rank of a matrix A may 
be defined (2, 4) as the order of the greatest minor of A with a non-zero term 
in the expansion of its determinant. This integer is also equal to the minimal 
number of rows and columns which collectively contain all the non-zero 
elements of A (1). 
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2. Poss ib le trace va lues . Let A be an m X n matr ix of 0's and l ' s . Since 
the same trace values are possible for A T as for A, we assume without loss of 
generality t ha t m < n. Simultaneous row and column permutat ion leaves the 
set of diagonal elements, and hence the trace, invariant and will be used to 
simplify matrices whenever convenient. We shall use the facts t h a t T r ( 7 —• A) 
= m — T r A and t h a t trace t is possible for A if and only if t race m — t is 
possible for J — A. I t is also useful to note t ha t 

(i) tmax(A) is identical with the term rank of A ; 

(ii) tmin(A) = m - tmax(J - A). 
In general, not all trace values between /raax and tmin are possible. In the case 

of a permutat ion matr ix the trace may be interpreted as the number of objects 
left fixed by the permutat ion. Since a permutat ion of m objects cannot leave 
m — 1 of them fixed without fixing the remaining one as well, t race m — 1 is 
not possible for a permutat ion matr ix of order my and in part icular not for the 
identi ty matr ix of order m. In the next lemma a similar result is proved for a 
direct sum of matrices of l ' s , of which the identi ty matr ix is a special case. 
Such direct sums play an exceptional role in this s tudy. 

LEMMA 1. Let B be a t X t matrix which is a direct sum of square matrices of 
Vs. Then trace t — 1 is not possible for B. 

Proof. Assume t h a t some row and column permutat ion of B is a matr ix 
A = (dij) with trace t — 1. We may suppose t h a t an = 0 and t h a t the other 
diagonal elements of A are l ' s . Since each row of B contains l ' s , row 1 of A 
contains l ' s in exactly k columns for some integer k > 1. These l ' s must be 
the elements of one row of a square matr ix of l ' s in the direct sum; hence 
there must be exactly k — 1 other rows of A which contain l ' s in these columns. 
But , by assumption, the diagonal elements contained in these columns are 
l ' s ; hence there must be a t least k other rows which contain l ' s in these 
columns. This is a contradiction, proving the lemma. 

LEMMA 2. Let B be a t X t matrix of 0's and Vs with trace t, and let trace 
t — 1 be impossible for B. Then some simultaneous row and column permutation 
of B is a direct sum of square matrices of Vs. 

Proof. Neither B nor any matrix obtainable from B by simultaneous row 
and column permutat ion can contain a principal minor of either of the forms 

, , 1 0 _ 1 1 0 
( a ) i i ' {b) i i r 

0 1 1 

for if it did, a cyclic permutat ion of the rows involved would reduce the trace 
by uni ty. T h e absence of (a) means tha t B is symmetric . The absence of (b) 
has the following interpretat ion for 1 < i, j and k < t. If bi} = 1 and bjk = 1, 
then bik = 1. Regarding ubtj = 1" as a binary relation between i and j , the 
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two previous statements mean that the relation is symmetric and transitive. 
Since bu = 1, it is also reflexive. It is therefore an equivalence relation, divid­
ing the set of indices 1 , 2 , . . . , / into equivalence classes, with btj = 1 for i and 
j in the same class and btj = 0 otherwise. This implies the conclusion of the 
lemma. 

COROLLARY. If B is a square matrix of 0's and Vs with trace 0, and trace 1 
is impossible for B, then some simultaneous row and column permutation of B 
is the complement of a direct sum of square matrices of Vs. 

In Lemma 2 and Corollary we note in particular that matrix B is symmetric. 

THEOREM 1. Let A be an m X n matrix of O's and Vs, m < n, such that 
neither A nor its complement is a rearranged direct sum of matrices of Vs. Then 
for any integer t satisfying tmin < t < £max, trace t is possible for A. 

Proof. Trace tmln is possible by definition. The proof will be by induction on 
/, using the induction hypothesis that if tmin < Tr A = t < timix, then trace 
t + 1 is possible. The induction hypothesis will be proved by adopting the 
assumption 

(*\ jf°r S O m e *> *min < t < t ax , 

\ T r A = t, but trace t + 1 is impossible for A, 

analyzing the structure of A, and eventually reaching the conclusion t = /max. 
If Tr A = t, then after simultaneous row and column permutation A has 

the form 

(1) A = B C D 
E F G. 

where B is an (m — t) X (m — t) matrix with trace zero and F is a t X t 
matrix with trace t. D and G have n — m columns and do not occur if m = n. 

Under assumption (*), D must be a matrix of 0's, for a 1 in D could replace 
a diagonal 0 of B under an exchange of the columns containing them, increasing 
the trace by unity. Under assumption (*), the corollary of Lemma 2 shows 
that B may be assumed to be the complement of a direct sum of square matrices 
of Ts. Two cases will be treated separately, according to the number of sum-
mands in the direct sum. 

Case I. B is a matrix of 0's. In this case, assuming (*), a procedure will be 
described for selecting t rows and columns which collectively contain all the 
Ts of A. This will show that A has term rank at most t, which is sufficient to 
show that t = tmax. 

The row and column indices will be partitioned into disjoint sets 3 0 , @i, . . . , 
© r. Afj will denote the submatrix with row indices in ©* and column indices 
in ©y. A oo is defined as the submatrix BD, determining @0 as {1, . . . , m — t, 
m + 1, . . . , n\ and leaving / indices in the remaining sets. @i, ©2, • • . are 
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determined successively by rules to be stated in the next paragraph and illus­
t ra ted by an example which follows. The motivation for the rules is t ha t the 
ith selected set of rows (columns) disposes of as many as possible of the l ' s in 
a previously unselected (typically the (i — 2)nd) set of columns (rows). T h e 
rows with indices in @i, . . . , @2;+i, . . • and the columns with indices in 
©2, • • • , @2z, • . • will be the t rows and columns selected. The only elements 
of A not in selected rows or columns are those in the submatrices 

(2) and A2i,2j+i, hj > 0, 

which will be shown to be matrices of 0's. 
We choose ©i so t ha t each row of Aï0 contains (one or more) l ' s , and each 

A i0, i > 2, is a matr ix of 0's. In particular, the lat ter holds for the submatrices 
A2ij0. We choose ©21+2, i > 0, so t ha t each column of A2i>2i±2 contains l ' s 
and each A2i,*, k > 2i + 3, is a matrix of 0's. In particular, the lat ter holds 
for each A2i>2j+i with 2/ + 1 > 2i + 3. We choose ©2.7+3, j > 0, so t h a t each 
row of A2j+2i2j+i contains l ' s and each Akt2j+i, k > 2/ + 4, is a matr ix of 0's. 
In particular, the lat ter holds for each A2i>2j+1 with 2/ + 1 < 2i — 3. Thus , 
by construction of the sets ©^, submatrices (2) are matrices of 0's with the 
exception of submatrices of the form 

(3) A H,2i±l, 

which have not yet been discussed. 
We continue this procedure until we arrive a t an empty set ©M. We then 

take r = JJL + 1 and choose © r as the set of all remaining indices. If it is non­
empty , @r determines a submatr ix with indices r a n d r — 2 in some order which 
may violate the provisions of the preceding paragraph. 

The situation after the choice of sets ©0 , . . . , © r is illustrated by the follow­
ing schematic diagram and numerical example with r = G. We assume simul­
taneous row and column permutat ion so t ha t each ©^ contains consecutive 
indices, with the exception of column indices >m in ©0 . 

(4) A = 

A 00 A 01 A 02 z2 A 00 

A10 ^410 

A 21 ^ 2 3 A2A z4 

Z i 
AZ1 

Z3 

. 
Zi Z i 

AZ1 

Z3 
^ 4 3 

z5 

. ^ 4 6 

•©1 

©3 

©2 ©4 ©6 

https://doi.org/10.4153/CJM-1964-008-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1964-008-8


86 DALE M. MESNER 

0 0 0 1 0 0 0 0 0 0 
0 0 

0 
0 

0 1 (1) 0 0 0 0 0 

(1) 

0 
0 
0 

1 
0 1 

1 

0 

0 
0 
0 

1 
0 1 0 o i 1 0 0 

0 0 
0 

0 

T 
1 0 (w)\ 0 0 0 

0 
0 
0 

0 

T 
1 

1 0 
0 0 (1) 1 0 
0 0 0 0 0 | 1 0 

0 0 0 0 0 J 1 0 

©1 

©2 ©4 ©6 

Set © i (resp. ©2, ©3, ©4) is chosen so t h a t there are l ' s in each row of A10 
(resp. column of AQ2, row of /I31, column of A 2 4) , b u t no l ' s in Z t (resp. Z2 , Z3 , 
Z 4 ) . T h e absence of l ' s in Z 5 determines ©5 as the empty set. A .46 may violate 
the condition on l ' s in each column. Labels in the margins indicate the selected 
sets of rows and columns. Elements omit ted from the numerical example are 
arbi t rary , as are submatr ices omit ted from the schematic diagram (except 
t h a t the diagonal elements of F are l ' s ) . The numerical example contains an 
illustration of an a rgument which follows; if we take h2p,27+i = ^23 = w, the 
elements in parentheses are suitable choices for the set (G) and the a rgument 
shows t h a t w = 0. 

Assumption (*) will be used to show t h a t submatr ices (3) are matrices ol 
0's. Let A2P,2Q+I be any submatr ix with 2q -\- I = 2p dz I, and let an arbi t rary 

*>2p and column index u 2.7+1 c element of this submatr ix have row index a2p 

©2(7+1- (Since ©,—1 is empty , submatr ices with index r — 1 do not occur and we 
may assume tha t 2p and 2q + 1 are < r — 2. As a result, the exceptional sub-
matr ix with indices r and r — 2 will not enter into the proof.) Addit ional in­
dices u-i G ©i will next be determined for dist inct i < 2p, 2q + 1, and the 
matr ix element aUiUj will be denoted by }iir 

For a = p — 1, . . . , 0, successively determine n2(T so t h a t 7^,2* 1-2 = 1; this 
is possible because eacli column of A 21,21+2 contains l ' s . For T — q — 1, . . . , 0, 
successively determine U2T±I so t h a t ZÊ2T+3,2T+I = 1; this is possible because 
each row of A 2^3,2j+i contains l ' s . We also need to specify hn); this we do by 
choosing a column index VQ G ©0 so t h a t aUlH = 1 (possible because each row 
of A 10 contains l ' s ) , then redefining h10 = aUlH — 1 and /z0o = aWoPo = 0. If 
u^ ẑo an interchange of columns uQ and VQ, which in Case I will not al ter 
T r A, is then used to place /?0o on the main diagonal. 

Let II be the principal minor of order p + q + 2 with diagonal elements 

(5) h2(Tt2ff, &2T+I,2T+I, h2p,2p, h2(i+it2(,+ i> o- = 0, . . . , p — 1, r = 0, . . . , q — 1. 

17 has trace p + q + 1, since /z0o = 0, while the other elements (5) are on the 
main diagonal of F and are hence l ' s . The p + q + 2 elements 
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(6) Aio, /*2(7,2<r+2, /^2T+3,2T+1, h2pt2q+h 0" = 0, . . . , p — 1 ,7 = 0, . . . , g — 1, 

fall in distinct rows and columns of i J and may be placed on its main diagonal 
by a permutat ion of its columns. Each of elements (6) except h2p,2q+i was 
chosen equal to 1; we may therefore conclude t ha t h2p,2q+i = 0, for otherwise 
t race p + q + 2 is possible for II, which violates assumption (*). But h2Pt2q+i = 

au2pU2q+i i s a n a rb i t rary element of A2Pt2q+1] thus each A2îj2i±1 is a matr ix of 
0's. This completes the proof t ha t under assumption (*) and in Case I the t 
selected rows and columns of A contain all its l ' s . I t follows t ha t A has term 
rank a t most t and tha t t — tmsLX. In Case I, if T r A = t for tmin < t < tm&x, 
the negation of assumption (*) must hold, namely t ha t trace t + 1 is possible. 
Bu t this is the induction hypothesis we need and the conclusion of the theorem 
holds in Case I. 

Case I I . B as defined in (1) is the complement of a direct sum of a t least two 
square matrices of l ' s . I t has been shown tha t D is a matr ix of 0's; thus any 
column of D can be exchanged with a column of B wi thout altering T r A, In 
Case II this permutat ion will destroy the symmetry of B and the corollary of 
Lemma 2 implies tha t trace 1 is possible for B. Then trace t + 1 is possible for 
A and assumption (*) is violated. Therefore in Case II no columns of D can 
exist, and A is a square matrix. 

We have now proved tha t the theorem holds for a non-square matr ix by the 
proof under Case I. Moreover, we have not yet applied the restriction on 
direct sum form of A, and we remark for later reference t h a t if A is not square 
the theorem holds without this hypothesis. 

Under this hypothesis we may assume tha t F has a t least one row and column, 
since otherwise 

A LE F] 

reduces to B and its complement has the forbidden direct sum form. In Case I I , 
t race 2 is possible for B and trace ^ — 1 is accordingly not possible for F under 
assumption (*). Lemma 2 then shows tha t F can be assumed to be a direct 
sum of square matrices of l ' s . In particular, F must be symmetric . 

Under assumption (*) an element of C and the symmetrically placed element 
of E cannot both be l ' s , for if they were, an exchange of the columns containing 
them would increase the trace by unity. 

In Case II we may parti t ion A as follows: 

J 2 B2 

Ci 

C2 

Ei E2 F 

where Bi and B2 are square matrices and J \ and J2 are matrices of l ' s . Let 
C\ and c2 be elements of C\ and C2 which are in the same column bu t are other-

(7) A 
B_ 
.E 

C 
~F. 
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wise arbitrary, and let e± and e2 be the symmetrically located elements of Ei 
and E2. Then the principal minor 

0 1 a 
1 0 c2 

ei e2 1 

has trace 1; under assumption (*), trace 2 must be impossible for this minor, 
implying C\ + e2 ^ 1 and c2 + ex ^ 1. These inequalities in elements equal to 
0 or 1 imply C\ = e2 and c2 = e\. Therefore each element of any column of 
d or C2 is equal to every element of the symmetrically located row of E2 or Ei 
respectively. 

If the complement of B is a direct sum of three or more matrices of l 's, 
partition (7) can be carried out in more than one way, and the conclusion is 
that all elements in the entire column of C and row of E have the same value, 
necessarily 0 because of the restriction against symmetrically located Ts. Then 
A has a principal minor of the form 

0 1 1 0 
1 0 1 0 
1 1 0 0* 
0 0 0 1 

But this is a matrix of trace 1 for which trace 2 is possible, leading to a violation 
of assumption (*). Therefore in Case II, B is the complement of a direct sum of 
exactly two matrices of l's. In the partition (7) J5X and B2 are matrices of 0's, 
say of order fix and j32 respectively. 

In any column of C and the symmetrically located row of E, the fii elements 
in C\ and the f32 elements in E2 have a common value x, while the /32 elements in 
C2 and the /3i elements in Ei have a common value y. The case x = y = 1 is 
impossible because of the restriction against symmetrically located l's in C 
and E, but the other combinations of values of x and y correspond to three 
possible forms for columns of C and rows of E. After simultaneous row and 
column permutation, A has the form 

Bx Ji Jz Zx z2 
J* Bt z. Jj_ z4 
z6 Js Fn F\2 Fu 
Je z, Fn F22 F23 
Z7 Zs F 31 •^32 ^ 3 3 

where J 's and Z's represent matrices of l's and of 0's. Fn (say of order ti), 
F22 (say of order t2), and F33 are principal minors of F with l's on the main 
diagonal, and F is still symmetric. Now consider a column permutation which 
exchanges any column of Bi or B2 with any column of Zi or Z3 respectively, or 
a row permutation which exchanges any row of B1 or B2 with any row of Z5 

or Z6 respectively. Since these changes do not modify diagonal elements of A 
or the form of B, they leave A in the form of Case II, from which it follows that 

(8) A = 
B 

_E 
C 
F_ 
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Jl J3 

Jt Fu 

Ji Jt 
Je Fi, 

they must not destroy the symmetry of F. This shows that Fn and F22 are 
matrices of l's and that Ftj1 i ^ j , are matrices of 0's. .F33 may be assumed to 
be a direct sum of square matrices of l's. 

Submatrices 

(9) [ 
of order (fr + h) X (/32 + *i) and 

(10) [ 

of order (f32 + t2) X (#1 + t2) are matrices of l's, and A is a rearranged direct 
sum of these matrices and of matrices of l's occurring in F33; this violates a 
hypothesis of the theorem and shows that Case II is impossible under assump­
tion (*). Thus assumption (*) has led to a contradiction. We conclude in Case 
II as in Case I that the induction hypothesis holds, and the proof of Theorem I 
is complete. 

We turn now to the cases in which A is a rearranged direct sum of matrices of 
l's, or the complement of such a matrix. Since the possible trace values for the 
complement J — A are easily deduced from those for a matrix A, we may con­
fine ourselves to the first of the two cases. Portions of the proof of Theorem I 
are applicable and will be used in Lemma 4 and the subsequent paragraph. 
The special case in which A is a rearranged direct sum of exactly two matrices 
of l's is exceptional in that J — A then has the same form, and will not be 
covered fully until Lemma 5. 

LEMMA 4. If A is an m X m matrix ofO's and Vs and statements 1-4 are true, 
then statements 5 and 6 are true. 

1. Assumption (*): Tr A = t but trace t + 1 is impossible. 
2. A has the form of Case II. 
3. I — A is not a direct sum of matrices of Vs. 
4. A is a rearranged direct sum of matrices of Vs. 
5. If t = m — 2, each direct summand of A is square. 
6. / / 1 < m — 3, A has exactly two direct summands. 

Proof. In the proof of Case II, statements 1-3 were shown to imply statement 
4. It will next be shown that they imply statements 5 and 6 as well. A fortiori, 
statements 1-4 will imply statements 5 and 6. If t = m — 2, then f3i = f32 = 1 
and submatrices (9) and (10) are square. The direct summands in ^33 are also 
square and statement 5 is proved. If t < m — 3 and ^33 has at least one row 
and column, then A may be assumed to have a principal minor of the form 

0 1 1 0 
1 0 0 0 
1 0 0 0 ' 
0 0 0 1 
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which has trace 1 and for which trace 2 is possible, leading to a violation of 
(*). Therefore if t < m — 3, submatrix F33 does not occur and A reduces to a 
rearranged direct sum of submatrices (9) and (10), proving statement 6. 

For A a rearranged direct sum of matrices of l's, we next determine those 
values of t for which assumption (*) is true, since the induction proof of Theorem 
1 is valid for trace values between tmin and the smallest such t. The conclusion 
of that theorem holds if and only if there is no such t < £max; from the dis­
cussion following Case I, it holds if A is not square and in Case I if A is square. 
Thus we may restrict attention to a square matrix A which has the form of 
Case II. At this point we have adopted all of statements 1-4 of Lemma 4 as 
hypotheses and can conclude that A satisfies statements 5 and 6. Assumption 
(*) for A is true with t < m — 3 only in the special case of a rearranged direct 
sum of exactly two matrices of l's. If A is a rearranged direct sum of three or 
more matrices of l's, then t = m — 2 is the only trace value < tmax such that 
(*) is true for A, and then only if all direct summands are square. In this case 
t = m — 1 is the only trace value between /min and /max which is impossible for 
A ; that it actually is impossible follows from Lemma 1. If A is a rearranged 
direct sum of three or more matrices of l's which are not all square, then (*) 
is not true for A for any t < tmSiX and the conclusion of Theorem 1 holds. 
These results for A of this form, along with the corresponding statements for 
the complement, will be included in Theorem 3 after the remaining special 
case is disposed of in Lemma 5. 

THEOREM 2. If A = Jx + J 2 + . . . , where Ji is an mi X nt matrix of l 's, and 
Ylt w* = m < Yli ni — n, then 

(11) W ( 4 ) = X min(rai,w,)f 
i 

(12) tmin(A) = maxfo, — n + max (WJ + nt)j . 

F roof. tmax(A) is equal to the term rank of A, and (11) is merely an expression 
for the minimal number of rows and columns which contain all the l's of A. 

m — ^minC )̂ is equal to the term rank of the complement of A, or to the 
minimal number of rows and columns which contain all the O's of A. Let a set 
of s rows and columns contain all the O's of A. Then tmin(A) = m — min (s). 
If the set consists of all rows of A, then s = m. If at least one row is missing 
from the set, say a row of Ju then 5 can be reduced by omitting all mt rows of 
Ji} but all columns not in Jt must be included and s = m — mf + n — nt. 
s cannot be further reduced by omitting rows of more than one Jt1 for then all 
columns of A must be included and 5 > n > m. Therefore 

min(s) = min(m,min(ra - m ^ + w - nt)\ , 

leading to the expression in (12) for ^mm(^4). 

COROLLARY. /max(^4) = rn if and only if mt < nit i = 1, 2, . . . . If m — n, 

https://doi.org/10.4153/CJM-1964-008-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1964-008-8


TRACES OF (0, 1)-MATRICES 91 

then tm.àX(A) = m if and only ifmt = nit i = 1, 2, . . . . tmla(A) = 0 if and only 

if 
max(Wj + nt) < n. 

i 

LEMMA 5. If a square matrix A is a direct sum of two matrices of Vs, then trace 
t is possible for A if and only if 

tmm < t < /max and t = /max (mod 2). 

Proof. The r X s matrix of l's will be denoted by Jrxs- Let A = Jmixm + 
Jm-ixm, where m\ + m2 — n± + n2 = m. Also choose notation, and transpose 
A if necessary, so that 

(13) mi + Wi > W2 + 7*2, ?»i < »i . 

It follows from Theorem 2 that tmSiX = mi + n2 and /min = wx — n2. Then trace 
zero is possible for A if and only if 

(14) mi = n2. 

Note that (14) is equivalent to Wi = m2 and, by symmetry, is independent of 
inequalities (13). 

Consider a row and column permutation of A which places on the main 
diagonal exactly t± elements of Jmixm a n d exactly t2 elements of Jm.1xn2' Such 
a permutation is possible if and only if when the t\ + t2 rows and t\ + h columns 
of A containing these elements are deleted, the remaining submatrix is one for 
which trace zero is possible. But this submatrix is 

^(TOi-*i)X(ni-*i) + J(M2- t2)X(n2~ «2) y 

and from (14) the condition for trace zero is 

(15) mi — ti = n2 — t2. 

That is, trace t is possible for A if and only if there are integers tht2 satisfying 
(15) and 

0 < ti < min(mi, n\) = mh 

0 < t2 < min(m2, n2) = n2, 

h + t2 = L 

These conditions reduce to t = mi — n2 + 2^2, 0 < t2 < n2, holding for pre­
cisely the values of t stated in the lemma. 

The following theorem is a collection of results that have been proved in 
Theorem 1, Lemmas 4 and 5, and the accompanying discussion. 

THEOREM 3. Let A be an m X n matrix ofQ's and l's, m < n, with maximum 
trace tmiiX and minimum trace tmin. Then 

(1) if A is a rearranged direct sum of three or more square matrices of Ys, 
trace m — 1 is impossible; tmin < m — 1 < £max = m\ 
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(2) if the complement of A is a rearranged direct sum of three or more square 

matrices of l ' s , trace 1 is impossible-, 

" =z ^min \ 1 <C 'max» 

(3) if A is square and is a rearranged direct sum of two matrices of 1 's , trace 
t is impossible if /max — t = 1 (mod 2) ; 

0 < /max - *min = 0 ( m o d 2) ; 

(4) in every other case, if tmin < t < /max, trace t is possible. 

3. D i s c u s s i o n . If trace t is possible for A, then it is possible under row 
permutat ion alone or column permuta t ion alone. T o see this in the case m < n, 
let PAQ have trace t and mult iply on the left and right by PT and by P + I, 
a simultaneous row and column permuta t ion which preserves the t race. B u t 
PTPAQ(P + I) = AR, where R = Q(P + I) is a permuta t ion matr ix . If 
m = n, then also T r ^ 4 = t. 

Theorems 1 and 3 lead to convenient sufficient conditions for a rb i t ra ry t race, 
0 < t < mj to be possible for an m X n (0, 1)-matrix, m < n. For instance, it is 
sufficient for each of A and J — A to have rank m and be different from the 
m X m ident i ty matrix. 

As a slight generalization of the idea of a direct sum of matrices, we may 
consider a 0 X k sum m and with no rows or a k X 0 summand with no columns 
as contr ibut ing k columns or rows respectively, of 0's to the direct sum matr ix . 
We remark t h a t Theorem 2 with a slightly modified proof is still valid if such 
su m m and s are admit ted . 

A necessary and sufficient condition for t race t to be possible for the matr ix 
of Lemma 5 was shown to be the existence of a part i t ion t = tx + t2 such t h a t 
tt rows and tt columns can be deleted from the ith direct summand , i = 1, 2, 
to leave a matr ix for which t race zero is possible. Although we did not need it, 
there is a na tura l generalization of this condition to the direct sum of any 
number of matrices of l ' s . 

Since the trace of a (0, 1)-matrix can be regarded as an enumerat ion of the 
l ' s on a part icular diagonal, our results have an application to any rectangular 
a r ray of objects some of which are distinguished by a specified a t t r ibu te . Given 
the location in the a r ray of the specified objects, our theorems indicate how 
many of them can be placed on a part icular diagonal by permuta t ion of rows 
and columns of the ar ray . 

Ryser (5) determines the set of dist inct t race values of the class of all (0, 1)-
matrices having a specified ordered set of row totals and set of column tota ls . 
We have made the same determinat ion for the classes {PA}, {AQ}, {PAQ} 
of matrices which can be obtained from a given matr ix A by row or column 
permutat ion or both . In the special case of an m X n matrix, m < n, with 
equal column totals , {AQ} is a subclass of Ryser 's class (similarly {PA} if 
m > n with equal row totals) and the present results are a little stronger. \\\ 
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general Ryser 's class neither includes nor is included by the present ones and 
the results are independent. 

Row and column permutat ion preserve some algebraic properties of a 
matrix. If X is a solution of the matr ix equation XTX = C for a given matr ix 
C, then any row permutat ion gives a matr ix Y = PX which is also a solution, 
and Theorem 3 shows in many instances t ha t if a solution exists in (0, 1)-
matrices, it exists with arbi t rary trace. An impor tant example is a v, k, X 
matrix, defined as a (0, 1)-matrix N of order v satisfying the equation 

(16) NNT = NTN = \J+ (k- \)I. 

Necessary conditions are known for the set of integers v, k, X, and solutions are 
known for infinitely many sets, bu t necessary and sufficient conditions for the 
existence of a solution are not yet known. The matrices / , / , Z, and J — I 
are trivial solutions; for other solutions it is easy to show tha t N and J — N 
are non-singular. I t follows t h a t if a solution exists, it exists with a rb i t ra ry 
trace 0 < t < v. 

The trace of a square matrix is equal to the sum of its characteristic roots, 
while the determinant is equal to their product, except possibly for sign; both 
trace and determinant occur as coefficients in the characteristic equation of the 
matrix. Row and column permutat ion may modify the characteristic roots, bu t 
in such a way tha t their product is invariant up to sign. For a (0, l ) -matr ix , 
Theorem 3 casts some light on the nature of the modification of the roots by 
indicating possible values of their sum. In the case of a v, k, X matrix the roots 
are known (3) to be k, Pi y/(k — X), i = 1, . . . , v — 1, where each pt is of 
absolute value unity. Row and column permutat ion results in a matr ix which 
still satisfies (16) and whose characteristic roots still have the special form jus t 
mentioned. I t is na tura l to ask whether this regularity is reflected in restrictions 
on the trace of a v, k, X matr ix; in fact, it was this question in a conversation 
between A. J . Goldman and the author which led to this investigation. The 
negative answer seems somewhat surprising. 
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