
Homogeneity of cohomology classes associated with
Koszul matrix factorizations

Alexander Polishchuk

Compositio Math. 152 (2016), 2071–2112.

doi:10.1112/S0010437X16007557

https://doi.org/10.1112/S0010437X16007557 Published online by Cambridge University Press

http://dx.doi.org/10.1112/S0010437X16007557
https://doi.org/10.1112/S0010437X16007557


Compositio Math. 152 (2016) 2071–2112

doi:10.1112/S0010437X16007557

Homogeneity of cohomology classes associated with
Koszul matrix factorizations

Alexander Polishchuk

Abstract

In this work we prove the so-called dimension property for the cohomological field

theory associated with a homogeneous polynomial W with an isolated singularity, in

the algebraic framework of [A. Polishchuk and A. Vaintrob, Matrix factorizations and

cohomological field theories, J. Reine Angew. Math. 714 (2016), 1–122]. This amounts

to showing that some cohomology classes on the Deligne–Mumford moduli spaces of

stable curves, constructed using Fourier–Mukai-type functors associated with matrix

factorizations, live in prescribed dimension. The proof is based on a homogeneity result

established in [A. Polishchuk and A. Vaintrob, Algebraic construction of Witten’s top

Chern class, in Advances in algebraic geometry motivated by physics (Lowell, MA,

2000) (American Mathematical Society, Providence, RI, 2001), 229–249] for certain

characteristic classes of Koszul matrix factorizations of 0. To reduce to this result, we

use the theory of Fourier–Mukai-type functors involving matrix factorizations and the

natural rational lattices in the relevant Hochschild homology spaces, as well as a version

of Hodge–Riemann bilinear relations for Hochschild homology of matrix factorizations.

Our approach also gives a proof of the dimension property for the cohomological

field theories associated with some quasihomogeneous polynomials with an isolated

singularity.

1. Introduction

1.1 Dimension property in Fan–Jarvis–Ruan–Witten theory

Let W ∈ C[x1, . . . , xn] be a quasihomogeneous polynomial with an isolated singularity at the

origin. Fan, Jarvis and Ruan introduced in [FJR13] an analog of the Gromov–Witten theory

associated with W and with a finite subgroup G ⊂ (C∗)n of diagonal symmetries of W (such

that G contains the exponential grading operator J associated with the weights of the variables

x1, . . . , xn). This theory, often referred to as Fan–Jarvis–Ruan–Witten theory (FJRW theory),

consists of a collection of maps

Λg,r : H⊗r → H∗(Mg,r,C),

where Mg,r is the Deligne–Mumford compactification of the moduli spaces of curves with r

marked points and H = HW,G is a finite-dimensional vector space associated with (W,G) (called

the space state of the theory). The maps Λg,r satisfy some gluing axioms on the boundary
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components of Mg,r, which constitute the notion of a cohomological field theory, introduced by
Kontsevich and Manin [KM94]. In fact, the state space of the FJRW theory has a decomposition

HW,G =
⊕
γ∈G

H(Wγ)G,

where Wγ = W |(An)γ , the restriction of W to the space of γ-invariants, and

H(W (x1, . . . , xn)) := (Ωn
An/(dW ∧ Ωn−1

An )) (1.1)

(the latter definition is applied to all Wγ). Each component of the map Λg,r factors as a
composition

H(Wγ1)G ⊗ · · · ⊗H(Wγr)
G φg(γ1,...,γr)−−−−−−−→ H∗(Sg,G(γ1, . . . , γr),C) → H∗(Mg,r,C),

where Sg,G(γ1, . . . , γr) → Mg,r is some finite covering, corresponding to choices of generalized
spin structure (of type γ1, . . . , γr) on a curve. For details, see [FJR13] and [PV16].

Whereas in the original approach of [FJR13] the maps φg(γ1, . . . , γr) were defined by studying
a certain partial differential equation (Witten’s equation), in [PV16] we constructed these maps
using Hochschild homology and the categories of matrix factorizations. More precisely, we use
natural embeddings

H(W )G ⊂ HH∗(MFG(W )),

where MFG(W ) is the category of G-equivariant matrix factorizations of W , and construct
the maps φg(γ1, . . . , γr) as maps induced on Hochschild homology by some Fourier–Mukai-type
functor

MFG(Wγ1 ⊕ · · · ⊕Wγr) → Db(Sg,G(γ1, . . . , γr)),

where Db(X) denotes the derived category of coherent sheaves on X.
Conjecturally, the algebraic approach of [PV16] produces the same theory as in [FJR13];

however, this is currently known to be true only for simple singularities (see [PV16, § 7]), in
the so-called narrow sectors (see [CLL15]) and for most invertible polynomials and the maximal
groups of symmetries (see [Gué13]). In general, the hope is that the algebraic approach will be
more accessible for calculations (as, for example, the work [Gué13] indicates), so it is important
to establish algebraically all the properties of the FJRW theory.

One of the properties of the maps φg(γ1, . . . , γr) which arises naturally in the analytic
approach of [FJR13] is the dimension property, stating that

im(φg(γ1, . . . , γr)) ⊂ H2Dg(γ1,...,γr)+n1+···+nr(Sg,G(γ1, . . . , γr),C) (1.2)

with ni = dim(AN )γi and

Dg(γ1, . . . , γr) = (g − 1)ĉ+ ιγ1 + · · ·+ ιγr = −
n∑
j=1

χ(C,Lj),

where (C,L1, . . . , Ln) is a smooth curve with a generalized spin structure from the moduli space
Sg,G(γ1, . . . , γr) and the numbers ĉ = ĉW , ιγ1 , . . . , ιγr are determined using the weights of the
variables x1, . . . , xn (see [FJR13, § 3.2]).

This property is not at all clear in the algebraic framework of [PV16]. The goal of this
paper is to prove the dimension property in this framework assuming that W (x1, . . . , xn) is a
homogeneous polynomial, i.e., the degrees of the variables are deg(x1) = · · · = deg(xn) = 1.
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More generally, for a quasihomogeneous polynomial W (x1, . . . , xn), where deg(xi) = di > 0,
we can define a homogeneous polynomial

W̃ (y1, . . . , yn) = W (yd11 , . . . , y
dn
n ) (1.3)

in new variables y1, . . . , yn with deg(yi) = 1. We will prove the dimension property for the

algebraic cohomological field theory associated with (W,G) (for any G) provided W̃ still has an
isolated singularity at 0.

Theorem 1.1.1. Let W (x1, . . . , xn) be a quasihomogeneous polynomial with an isolated
singularity and G a finite group of diagonal symmetries of W , containing the exponential grading
element. Assume that W̃ still has an isolated singularity at 0. Then the maps φg(γ1, . . . , γr)
defined in [PV16] satisfy the dimension property (1.2).

This will be deduced from a more general Theorem 1.2.1 formulated below.

1.2 Purity of dimension for functors associated with Koszul matrix factorizations
Let W (x1, . . . , xn) be a quasihomogeneous polynomial of degree d, where deg(xi) = di > 0, with
an isolated singularity at the origin, and denote by MFGm(W ) the category of Gm-equivariant
matrix factorizations of W (see § 2.5 below). Here Gm acts on An by

λ · (x1, . . . , xn) = (λd1x1, . . . , λ
dnxn). (1.4)

Let also X be a smooth projective variety. We are going to prove a certain purity of dimension
for the maps

H(W ) := HH∗(MFGm(W )) → H∗(X,C)

induced by Fourier–Mukai functors

DMFGm(W ) → Db(X)

of a special kind, where DMFGm(W ) is the derived category of Gm-equivariant matrix
factorizations of W .

Here is the precise setup. Assume that A is a Gm-equivariant vector bundle on X, where Gm

acts trivially on X, equipped with a surjective Gm-morphism of OX -modules

z : A → OnX ,

where Gm acts on OnX with the weights (d1, . . . , dn). Let tot(A) be the total space of this vector
bundle, and let p : tot(A) →X be the natural projection. Note that z corresponds to a morphism

Z : tot(A) → An,

linear on the fibers of p and Gm-equivariant with respect to the action (1.4) on An. Let B
be another Gm-equivariant vector bundle on X and suppose that we have Gm-morphisms of
OX -modules

α :

N⊕
i=1

Si(A) → B∨{d}, β : A → B,

where Sm(·) denotes the mth symmetric power, and {d} denotes the twist by the character
λ 7→ λd of Gm. We can view α and β as Gm-invariant sections of induced bundles on tot(A):

α ∈ H0(tot(A), p∗B∨{d}), β ∈ H0(tot(A), p∗B).
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The main assumption is that these sections satisfy

〈α, β〉 = −Z∗W,

and that the common vanishing locus of α and β coincides with the zero section in tot(A). Then
we have a Gm-equivariant Koszul matrix factorization {α, β} of −Z∗W on tot(A), supported at
the zero section (see § 2.5). We can use this matrix factorization and the diagram

tot(A)

Z

{{

p

##
An X

to define a Fourier–Mukai-type functor

Φ : DMFGm(An,W ) → Db(X) : E 7→ p∗(Z
∗E ⊗ {α, β}) (1.5)

(more precisely, this is the functor ΦP for P = {α, β} defined in § 2.6 below).
This functor has a natural realization on the dg-level, which in particular allows us to consider

the induced map on the Hochschild homology

φ = Φ∗ : H(W ) → HH∗(X).

The Hochschild–Kostant–Rosenberg isomorphism together with the Hodge theory give an
identification HH∗(X) ' H∗(X,C) (see § 2.2).

Theorem 1.2.1. In the above situation, assume in addition that the homogeneous polynomial
W̃ given by (1.3) still has an isolated singularity. Then, for any x ∈ H(W ), one has

Td(A)−1 Td(B)φ(x) ∈ HD(X,C) ⊂ H∗(X,C),

where Td(·) denotes the Todd class, and

D = 2rkB − 2rkA+ n. (1.6)

1.3 Outline of the proof
The proof combines some ideas of noncommutative Hodge theory, the relation between graded
matrix factorizations and derived categories of coherent sheaves on hypersurfaces (Orlov’s
equivalence) and a purity result from [PV01].

We start by rewriting the assertion using the left adjoint map to φ with respect to the
canonical pairings on the Hochschild homology. Recall that for a smooth and proper dg-category
C, the Hochschild homology is equipped with a canonical nondegenerate pairing 〈· , ·〉C, such that
the maps on Hochschild homology induced by an adjoint pair of functors are adjoint with respect
to the canonical pairings (see §§ 2.3 and 2.4 for details). Thus, the left adjoint map to φ is given
by

ψ = Ψ∗ : H∗(X) ' HH∗(X) → H(W ),

where Ψ : Db(X) → DMFGm(W ) is the left adjoint functor to Φ. Thus, we can rewrite the
condition α · φ(H(W )) ⊂ HD(X), where α = Td(A)−1 Td(B), as

ψ(⊥(α−1HD(X))) = 0.
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Under the Hochschild–Kostant–Rosenberg isomorphism HH∗(X) ' H∗(X), the canonical
pairing takes the form

〈· , ·〉Db(X) =

∫
X
κ(a) · b · TdX ,

where a, b ∈ H∗(X) and κ is the linear operator on H∗(X), such that κ(c) = (−1)qc for c ∈ Hp,q

(see § 2.3). This implies that the left orthogonal to α−1HD(X) ⊂ H∗(X) with respect to the
canonical pairing is

⊥(α−1HD(X)) =
⊕

j 6=2 dimX−D
κ(α · Td−1

X )Hj(X),

so we need to check that for each y ∈ Hj(X), where j 6= 2 dimX −D, one has

ψ(κ(α · Td−1
X ) · y) = 0. (1.7)

Next, we recall that the Hochschild homology of the category of matrix factorizations has a
canonical decomposition (see [PV16, Theorem 2.6.1])

H(W ) = HH∗(MFGm(W )) '
⊕
γ∈µd

H(Wγ)µd , (1.8)

where Wγ = W |(An)γ , and H(W ) is given by (1.1). In fact, (1.8) is exactly the decomposition
of HH∗(MFGm(W )) into isotypical components with respect to the natural action of Z/d on it
(see [PV16, Theorem 2.6.1(ii)]). Let Π : H(W ) → H(W ) denote the projector onto the summand
H(W )µd , corresponding to γ = 1. Using the characterization of this summand as Z/d-invariants
in H(W ), we check that φ = φΠ (see Lemma 2.6.3), and hence the image of ψ is contained in
H(W )µd ⊂ H(W ).

Now the idea is that H(W )µd should be thought of as an analog of the primitive middle
cohomology. Recall that if X ⊂ PN is a smooth projective variety of dimension n, then the
primitive part of the middle cohomology Pn(X) ⊂Hn(X) is defined as the kernel of the operator
of multiplication with c1(H), where H is the hyperplane class on X. The classical Hodge–
Riemann relations imply (see Lemma 2.3.1) that for a nonzero class a ∈ PnH(X), one has

(−1)n(n+1)/2〈a, a〉Db(X) > 0,

where a 7→ a is the complex conjugation associated with the real structure on H∗(X).
The key step of the proof is establishing an analog of this property for the canonical pairing

on H(W )µd ⊂ H(W ). One missing piece of structure that we need for this is a real structure
on H(W ). In fact, in general one expects to have a natural rational lattice in the Hochschild
homology of any smooth proper dg-category (see [Kon08, Bla16]). In the case of an admissible
subcategory C of Db(Y ), such a rational lattice can be constructed easily using the realization of
its Hochschild homology as an image of a rational projector on H∗(Y ) (see § 3.1). Furthermore,
the obtained rational lattices are compatible with the maps on Hochschild homology induced by
functors of Fourier–Mukai type.

Using the natural embedding H(W )µd ⊂ H(W̃ )µd , where W̃ is given by (1.3), we reduce the
situation to the homogeneous case (where deg(xi) = 1). For homogeneous W , we apply Orlov’s
result, connecting the category of matrix factorizations DMFGm(W ) with the derived category
of the corresponding projective hypersurface X = (W = 0), to realize DMFGm(W ) as such an
admissible subcategory (see Lemma 3.2.1). Then, using explicit descriptions of the canonical
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pairing 〈· , ·〉W on H(W ) and of the Chern characters of matrix factorizations in [PV12], we
prove the following property of the subspace H(W )µd ⊂ H(W ), which makes it an analog of the
primitive cohomology: H(W )µd is orthogonal to the Chern characters of the matrix factorizations
k(m)st for m ∈ Z. Here k(m)st is the stabilization of the trivial module k with the grading shifted
by m. This is used in proving the analog of the Hodge–Riemann relations for matrix factorizations
(see Proposition 3.2.4), which states that for a nonzero class x ∈ H(W )µd ∩ Hj(W ), one has
〈x, x〉W 6= 0 (and, in fact, 〈x, x〉W is a positive multiple of a certain power of i). Roughly speaking,
this is proved by reducing to the classical Hodge–Riemann relations for cohomology classes on
the projective hypersurface X, using Orlov’s theorem relating the categories DMFGm(W ) and
Db(X). For example, in the case d = n, Orlov’s theorem states an equivalence of these categories,
and we check that H(W )µd corresponds precisely to the primitive cohomology of X under the
corresponding isomorphism between the Hochschild homology (see Remark 3.2.5).

Since the image of ψ is contained in H(W )µd , the above Hodge–Riemann relations show that
the vanishing of (1.7) is equivalent to the vanishing of

〈ψ(y′), ψ(y′)〉W = 0,

where y′ = κ(α · Td−1
X ) · y and y ∈ Hp,q with p + q 6= 2 dimX −D. Using the adjointness of φ

and ψ, we rewrite this as a certain purity property for the composition φψ = (Φ ◦Ψ)∗.
Finally, a computation with the Fourier–Mukai kernels (see §§ 2.6 and 4.1) shows that the

kernel K on X×X defining the functor Φ◦Ψ : Db(X) →Db(X) is given by the push-forward of a
Koszul matrix factorization of zero on some vector bundle over X×X, supported along the zero
section. Applying the results of [PV01] (see Proposition 4.1.1), we obtain that the appropriate
twist of the class ch(K) is pure of certain dimension (see (4.1)). This gives the required purity
property for φψ and so finishes the proof.

We conjecture that a statement similar to Theorem 1.2.1 holds for any quasihomogeneous W
with an isolated singularity. One could try to mimic our proof in the homogeneous case. However,
at present several technical ingredients are lacking. For example, in this case the analog of the
projective hypersurface is a DM-stack, so we need to identify the canonical bilinear form on
the Hochschild homology of a smooth proper DM-stack in terms of the Hochschild–Kostant–
Rosenberg isomorphism. Another problem is matching the effect of Orlov’s equivalence on the
Hochschild homology with the ad hoc isomorphism constructed in [CR11].

The paper is organized as follows. In § 2 we build the background and prove some
technical statements. The most important bits are § 2.6, where we establish an adjunction
result for Fourier–Mukai-type functors involving matrix factorizations, and § 2.7 containing some
calculations with Orlov’s equivalence. Then in § 3 we discuss rational lattices and prove the analog
of the Hodge–Riemann bilinear relations for the Hochschild homology of the category of matrix
factorizations of a homogeneous polynomial with an isolated singularity (or a quasihomogeneous
polynomial as in Theorem 1.2.1; see Proposition 3.2.4). Finally, in § 4 we recall the purity result
from [PV01] and show how Theorem 1.2.1 is deduced from it. We then deduce Theorem 1.1.1
in § 4.3. In the appendix we prove a technical result involving Grothendieck duality and matrix
factorizations, which is needed in § 2.6.

Conventions. We work with schemes and dg-categories over a field k. Starting from § 3, we
assume that k = C. For a smooth projective variety X, we denote by Db(X) the bounded derived
category of coherent sheaves on X, which we equip with one of the standard dg-enhancements.
We denote by Per(X) ⊂ Db(X) the full subcategory of perfect complexes. For an algebraic group
G acting on X, we denote by PerG(X) the category of G-equivariant perfect complexes. For a
morphism of schemes f , we denote by f∗ and f∗ the corresponding derived functors of pull-back
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and push-forward. For an additive category C, we denote by C its Caroubian completion. By
ch(·) and Td(·), we denote the characteristic classes of algebraic vector bundles constructed
using the Atiyah class, as in [Ati57] (their components differ from the corresponding topological
characteristic classes by factors of (−2πi)).

2. Preliminaries

2.1 dg-categories and dg-functors
Let k be a field. For a dg-category C over k, we denote by D(C) the derived category of right
C-modules and by Per(C) ⊂ D(C) the subcategory of perfect modules. We denote by Perdg(C)
the natural dg-enhancement of Per(C) (defined using cofibrant right C-modules; see [Toë07, § 7]).

Throughout this paper we consider only C such that Perdg(C) is saturated (see [TV07, § 2.2]).
For an object K ∈ Per(Cop ⊗D), we have a dg-functor of tensoring with K,

ΦK : Perdg(C) → Perdg(D) : M 7→ M ⊗L
C K.

It is known that in this way we get a bijection between isomorphism classes in Per(Cop ⊗ D)
and morphisms between Perdg(C) and Perdg(D) in the localized category Hqe of dg-categories,
obtained by inverting quasi-equivalences (see [Toë07]). To a usual dg-functor Φ : C → D we
associate a bimodule, i.e., an object in D(Cop ⊗D),

(C,D) 7→ HomD(D,Φ(C)),

which is perfect under our assumptions on C and D. The corresponding tensor functor Perdg(C) →

Perdg(D) is an extension of Φ.
In the remainder of the paper we often switch between K and ΦK and, sometimes, denote

them by the same letter. We denote by ∆C ∈ Per(Cop ⊗ C) the diagonal bimodule corresponding
to the identity functor. We also have the corresponding dg-functor

Trdg
C : Perdg(Cop ⊗ C) → Perdg(k) (2.1)

mapping A∨ ⊗B to HomC(A,B).
For a pair of kernels K1 ∈ Per(Cop

1 ⊗D1), K2 ∈ Per(Cop
2 ⊗D2), we have the induced functor

K12K2 : Perdg(C1 ⊗ C2) → Perdg(D1 ⊗D2),

given by the external tensor product of the kernels K1 and K2. Recall that there is a natural
equivalence

Per(C)op ∼−→ Per(Cop) : M 7→ M∨

(see, e.g., [Shk13, (3.6)]). Using this equivalence, for a kernel F ∈ Per(Cop ⊗D), we can define
F op ∈ Per(C⊗Dop) as the kernel corresponding to the functor

Per(Cop)
∼−→ Per(C)op F−→ Per(D)op ∼−→ Per(Dop).

Definition 2.1.1. Let F ∈ Per(Cop ⊗D), G ∈ Per(Dop ⊗ C). We say that (F,G) is an adjoint
pair, or that F is left adjoint to G, if a morphism

ϕ : ∆C → G ◦ F

is given in D(Cop ⊗ C), such that for any C ∈ Per(C) and D ∈ Per(D) the induced morphism

HomD(F (C), D)
G−→ HomC(GF (C), G(D))

?◦ϕ−−→ HomC(C,G(D)) (2.2)

is a quasi-isomorphism.
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Note that if (F,G) is an adjoint pair, then the map (2.2) can be extended to a similar map
of dg-functors Perdg(Cop ⊗D) → Perdg(k),

TrD ◦ (F op2∆D) → TrC ◦ (IdC2G), (2.3)

induced by a quasi-isomorphism of kernels in Per(C ⊗ Dop). Indeed, the fact that (2.3) is a
quasi-isomorphism of kernels is equivalent to the assertion that it becomes a quasi-isomorphism
of complexes when applied to C∨ ⊗ D ∈ Cop ⊗ D, which corresponds to (2.2) being a quasi-
isomorphism.

Recall that a Z/2-dg-category is a dg-category in which all Hom-complexes are 2-periodic.
Equivalently, we can replace the 2-periodic complexes by the corresponding Z/2-graded
complexes. The theory of Z/2-dg-categories is parallel to the theory of dg-categories (see [Dyc11,
§ 4.1]). With each dg-category C we can associate its Z/2-folding C(2), which is a Z/2-dg-category
such that

Hom0
C(2)(A,B) =

⊕
i∈Z

Hom2i
C (A,B), Hom1

C(2)(A,B) =
⊕
i∈Z

Hom2i+1
C (A,B).

One can think of this operation as the tensor product with the algebra k[u, u−1], where deg(u) =
2. It is easy to see that the Hochschild homology functor commutes with passing to the Z/2-
folding, i.e., the Hochschild homology of C(2) as a Z/2-dg-category is the Z/2-folding of the
complex HH∗(C), and these identifications are compatible with the maps induced by functors.
In particular, taking the Chern character and the canonical pairing on the Hochschild homology
discussed below are also compatible with this operation.

2.2 Chern character in Hochschild homology versus topological Chern character
Recall that for any dg-category C over k and an object E of C one has the Chern character
ch(E) ∈ HH0(C) defined by the functoriality of the Hochschild homology (see, e.g., [Shk13,
PV12]).

In the case when C = Db(X), the dg-version of the bounded derived category of coherent
sheaves on a smooth projective variety X over C, we have the Hochschild–Kostant–Rosenberg
isomorphism

HH∗(D
b(X)) = HH∗(X) '

⊕
p,q

Hq(X,Ωp), (2.4)

so that HHi corresponds to the sum of terms with p − q = i. Hence, by Hodge theory, we can
identify the Hochschild homology HH∗(X) with H∗(X,C).

As was shown in [Cal05], under this identification, the abstract Chern character with values
in HH∗(X) is essentially the same as the topological Chern character with values in H∗(X,C)
(for k = C). Here is a more precise statement.

Proposition 2.2.1. Let k = C. For E ∈ Db(X), let chtop(E) ∈ H∗(X,C) denote the usual
topological Chern character. Then one has

chk(E) = (−2πi)k chtop
k (E).

Proof. Caldararu computes ch(E) in terms of traces of powers of the Atiyah class At(E) ∈
Ext1(E,E ⊗ Ω1) (see the proof of [Cal05, Theorem 4.5]). Thus, the assertion follows from the
comparison with the topological Chern character in [Ati57, § 5].1 2

1 The factor (−2πi)k appears due to the standard normalization of chtop(E), so that it takes values in H∗(X,Z).
Caldararu uses a different normalization, so he does not have this factor.
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In what follows we always use the notation ch(·) for the abstract Chern character defined
using Hochschild functoriality (or in terms of the Atiyah class, in the case of Db(X)). We denote
by Td(·) the Todd class defined by the standard formulas in terms of the components of ch(·)
(we only use it for Db(X)).

2.3 Canonical pairing on the Hochschild homology
Applying the functoriality of the Hochschild homology to the functor (2.1) and using the Künneth
isomorphism for Hochschild homology, we obtain a canonical pairing

〈· , ·〉C : HH∗(C
op)⊗HH∗(C) → k (2.5)

(cf. [Shk13, § 1.2]).
Note that there is a canonical isomorphism HH∗(C

op) ' HH∗(C), so we can think of the
canonical pairing as a pairing on HH∗(C). However, one should be careful that in the case when
the category C is equipped with the duality Cop ' C the induced identification of HH∗(C

op) '
HH∗(C) may be different from the canonical one. For example, this is the case for C = Db(X),
where it is customary to use the duality on sheaves to identify C with Cop. This is related to the
involution a 7→ κ(a) on the Hochschild homology of X arising below (cf. [Pol14, Remark 2.15]).

In the case of C = Db(X) (where X is a smooth projective variety), the canonical pairing on
HH∗(D

b(X)) is given in terms of the HKR-isomorphism (2.4) by the formula

〈a, b〉Db(X) = (κ(a), b)X , (2.6)

where

(a, b)X :=

∫
X
a · b · TdX , (2.7)

κ(c) = (−1)qc for c ∈ Hp,q = Hq(X,Ωp) (2.8)

(see [Ram08, (8)]; note that Ramadoss in [Ram08] works with the Mukai pairing, which coincides
with the canonical pairing (2.5) for C = Db(X), e.g., by [Pol14, Proposition 2.14]). Here

∫
X is

defined as the projection ∫
X

:
⊕
p,q

Hq(X,Ωp) → Hn(X,Ωn
X) ' k,

where n = dimX. In the case k = C, it is related to the topological operation of integration over
the fundamental cycle of X by the formula∫

X
ω =

1

(2πi)n

∫ top

[X]
ω

(see, e.g., [Del82]).
The classical Hodge–Riemann bilinear relations (see, e.g., [Wel80, ch. V]) imply the following

property of the canonical pairing 〈· , ·〉Db(X).

Lemma 2.3.1. Let H ∈ Pic(X) be an ample class, and let PnH(X) ⊂Hn(X) be the corresponding
primitive part of the middle cohomology consisting of the classes a such that a ·c1(H) = 0. Then,
for a nonzero class a ∈ PnH(X), one has

(−1)n(n+1)/2〈a, a〉Db(X) > 0.
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Proof. By (2.6), we have

〈a, a〉Db(X) = (−1)q
∫
X
a · a · TdX =

(−1)q

(2πi)n

∫ top

[X]
a · a · TdX ,

where a ∈ Hp,q, p+ q = n. Since in our case a · a ∈ Hn,n(X), we can delete TdX , and the result
follows from the Hodge–Riemann bilinear relations stating that

(−1)n(n−1)/2ip−q
∫ top

[X]
a·a > 0. 2

2.4 Maps on Hochschild homology induced by Fourier–Mukai functors
We need the fact that adjoint functors induce adjoint operators on Hochschild homology with
respect to the canonical pairings (2.5) (cf. [CW10, Theorem 8] in the case of derived categories
of sheaves).

Lemma 2.4.1. If (F ∈ Per(Cop ⊗D), G ∈ Per(Dop ⊗ C)) is an adjoint pair of kernels, then

〈F∗(x), y〉D = 〈x,G∗(y)〉C,

where x ∈ HH∗(C), y ∈ HH∗(D) and F∗ : HH∗(C) → HH∗(D), G∗ : HH∗(D) → HH∗(C) are
the induced maps on the Hochschild homology.

Proof. The required equality is immediately obtained from (2.3) by passing to the induced maps
on Hochschild homology. We have to use the fact that the map

F op
∗ : HH∗(C

op) → HH∗(D
op)

coincides with F∗ under the natural identifications HH∗(C) 'HH∗(Cop), HH∗(D) 'HH∗(Dop).
The simplest way to check this is to use the definition of the maps F∗ via the Hochschild chain
complexes. 2

We will use the following formula for the maps induced on the Hochschild homology by
Fourier–Mukai-type functors, in terms of the Chern character of the kernel and the pairing (2.7).

Lemma 2.4.2. For the Fourier–Mukai functor F : Db(X) → Db(Y ) associated with a kernel
K ∈ Db(X × Y ), the induced map on the Hochschild homology gets identified via the HKR-
isomorphisms with

F∗ : H∗(X,C) → H∗(Y,C) : a 7→ tr12(a⊗ ch(K)),

where
tr12 : H∗(X)⊗H∗(X)⊗H∗(Y ) → H∗(Y ) : a⊗ b⊗ c 7→ (a, b)Xc.

Proof. This is equivalent to [MS09, Theorem 1.2]. 2

2.5 Matrix factorizations
In this section we recall some basic results about matrix factorizations and also prove several
technical statements that will be needed later in working with Fourier–Mukai transforms
involving matrix factorizations. The key result that allows us to deduce many results for matrix
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factorizations from the classical results about coherent sheaves is the equivalence with the
singularity category of the hypersurface W = 0 (see (2.9) below).

Let X be a Gm-scheme, i.e., a scheme with a Gm-action. Throughout this paper we make
an assumption that our Gm-schemes admit a Gm-equivariant ample line bundle. This implies
that they admit a Gm-invariant open affine cover and have a resolution property, i.e., every
Gm-equivariant coherent sheaf on X admits a surjection from a Gm-equivariant vector bundle
(see [Tho87]).

For a Gm-equivariant quasicoherent sheaf F on X, we denote by F{i} the same sheaf with
the Gm-action twisted by the character λ 7→ λi of Gm.

Let W be a function on X of weight d > 0 with respect to the Gm-action, i.e., W ∈ H0(X,
OX{d})Gm . A Gm-equivariant matrix factorization of W is a Z/2-graded vector bundle
E = E0 ⊕ E1 on X together with maps

δ1 : E1 → E0, δ0 : E0 → E1{d},

such that δ0δ1 = W · id and δ1δ0 = W · id. For a pair of Gm-equivariant matrix factorizations of
W , E and F , we consider the complex of Gm-equivariant sheaves Hom(E,F ) given by

Hom2n(E,F ) = Hom(E0, F0{dn})⊕Hom(E1, F1{dn}),
Hom2n+1(E,F ) = Hom(E0, F1{d(n+ 1)})⊕Hom(E1, F0{dn})

with the differential f 7→ δF ◦ f − (−1)|f |f ◦ δE . Let

RΓ(X, ·) : Com(QcohGm(X)) → Com(k[Gm])

be a multiplicative dg-model of the push-forward to the point, given e.g., by the Cech complex
with respect to a Gm-invariant open affine cover (as in [Shi12, § 2]). We define the dg-category
MFGm(X,W ) of Gm-equivariant matrix factorizations of W by setting

Hom(E,F ) = RΓ(X,Hom(E,F ))Gm .

Passing to the 0th cohomology of the dg-category MFGm(X,W ), we get the derived category of
matrix factorizations DMFGm(X,W ).

Assume that X is smooth. Recall that by our assumption X admits a Gm-equivariant ample
line bundle and hence it has a Gm-resolution property. Assume also that W is not a zero divisor.
Then the functor associating with a matrix factorization E the cokernel of δ1 : E1 → E0 extends
to an equivalence

DMFGm(X,W )
∼−→ DSg,Gm(X0), (2.9)

where X0 ⊂ X is the hypersurface W = 0; DSg,Gm(X0) is the singularity category, defined as
the quotient of the bounded Gm-equivariant derived category by the subcategory PerGm(X0)
of perfect complexes. In this form the equivalence follows from [PV11, Theorem 3.14] but the
construction and the main ideas go back to Orlov [Orl04] (see also [Orl09, § 3], [Orl12] and
[EP15]).

Note that there is a different way to define the derived category of matrix factorizations as
the absolute derived category Dabs(MFGm(X,W )), which is the quotient of the naive homotopy
category by the convolutions of exact sequences of matrix factorizations (see [Orl12, EP15]).
The equivalence of this definition with the one above (in the case of smooth X) follows from the
equivalence

Dabs
Gm(X,W ) ' DSg,Gm(X0)
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(which can be proved as in [Orl12, EP15]). In the case when X is affine (and smooth), the
derived category of matrix factorizations on X coincides with the naive homotopy category (see,
e.g., [Orl09, § 3], [PV11, Proposition 3.19]).

For technical reasons we often work with the Caroubian completion DMFGm(X,W ) of the
derived category of matrix factorizations. It can be realized as a full subcategory in the derived
category of matrix factorizations of quasicoherent sheaves (see [PV11, § 4], [EP15, § 2.3]). In the
case when W is a homogeneous polynomial on An with an isolated singularity, the relation of
DMFGm(An,W ) with the derived category Db(Y ) on the corresponding projective hypersurface
Y (see § 2.7) implies that DMFGm(An,W ) is in fact Caroubian closed.

We have a natural duality equivalence

D : MFGm(X,W )op
→ MFGm(X,−W ),

where D(E)0 = E∨0 , D(E)1 = E∨1 {−d} with the induced differential (see [PV12, (2.13)]). Often, we
will simply write E∨ instead of D(E). Similarly to the Z/2-graded case (see [LP13, Lemma 3.9]),
this duality can be interpreted in terms of the singularity category.

Lemma 2.5.1. Assume that X is smooth and W is not a zero divisor. Under the equivalences of
DMFGm(X,W ) and DMFGm(X,−W ) with Db

Sg,Gm(X0), the duality D corresponds to the duality
F 7→ RHom(F,OX0 [−1]).

Proof. Recall that for a matrix factorization E the corresponding object of the singularity
category is represented by the coherent sheaf F on X0 fitting into the exact sequence

0 → E1 → E0 → i∗F → 0,

where i : X0 → X is the embedding. By duality, we have an exact triangle

E∨0 → E∨1 → RHom(i∗F,OX)[1] → · · · .

By Grothendieck duality,

RHom(i∗F,OX)[1] ' i∗RHom(F, i!OX)[1] ' i∗RHom(F,OX0).

Thus, G = RHom(F,OX0) is a sheaf on X0, and we have an exact sequence

0 → E∨0 → E∨1 → i∗G → 0.

On the other hand, the object of the singularity category associated with D(E) is the coherent
sheaf F ′ on X0 from the exact sequence

0 → E∨1 {−d}→ E∨0 → i∗F
′
→ 0.

Hence, we have an exact sequence on X0

0 → F ′ → i∗E∨1 → G → 0,

which shows that F ′ ' G[−1] in the singularity category. 2

For a pair of potentials W,W ′ on X, both of weight d > 0, we define the tensor product
functor

⊗ : MFGm(X,W )×MFGm(X,W ′) → MFGm(X,W +W ′)
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by setting

(E ⊗ F )0 = E0 ⊗ F0 ⊕ E1 ⊗ F1{d} and (E ⊗ F )0 = E0 ⊗ F1 ⊕ E1 ⊗ F0 (2.10)

with the differential δE ⊗ idF + idE ⊗ δF .

For F ∈ MFGm(X,W ), we can consider the infinite complex of Gm-equivariant sheaves on

X0 = W−1(0),

com(F ) : · · ·→ E0{−d}|X0 → E1|X0 → E0|X0 → E1{d}|X0 → · · ·

with E0|X0 placed in degree 0. Note that if W = 0, then this is a complex on X = X0. The

following relation between the Hom, duality and tensor product is straightforward to check

(cf. [PV16, Lemma 1.1.6]).

Lemma 2.5.2. For E,F ∈ MFGm(X,W ), one has an isomorphism of Gm-equivariant complexes

on X,

Hom(E,F ) ' com(E∨ ⊗ F ).

Hence,

Hom(E,F ) ' RΓ(X, com(E∨ ⊗ F ))Gm . 2

For a Gm-scheme X and for some d > 0, we can consider the category MFGm,d(X, 0) of

matrix factorizations of 0 on X, where 0 is viewed as a function of weight d. In this situation we

define the functor

mf : PerGm(X) → DMFGm,d(X, 0) : mf(C•)0 =
⊕
n

C2n{−nd}, mf(C•)1 =
⊕
n

C2n−1{−nd}

(2.11)

(note that since we have a resolution property for Gm-equivariant sheaves on X, an object of

PerGm(X) can be represented globally by a bounded complex of Gm-equivariant vector bundles;

see [PV11, Lemma 3.5]). If W is a function on X of weight d, then we also get the tensor product

operation

⊗ : PerGm(X)×DMFGm(X,W ) → DMFGm(X,W ), F ⊗ E := mf(F )⊗ E.

Then one has a natural isomorphism of complexes on X0,

com(F ⊗ E) ' F |X0 ⊗ com(E) (2.12)

(see [PV16, Lemma 1.1.5]). This easily implies (assuming W is not a zero divisor) that under

the equivalence (2.9) the operation F⊗? corresponds to the operation F |X0⊗? on the singularity

category DSg,Gm(X0).

Assume now in addition that the action of Gm on X is trivial and X is quasiprojective.

Then we can define several complexes associated with a Gm-equivariant matrix factorization of

0 on X. Note that for any Gm-equivariant matrix factorization E of 0, we can write E0 =
⊕
E0,i,
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E1 =
⊕
E1,i, where Gm acts on E•,i through the character λ 7→ λ−i, i.e., E•,i = (E•{i})Gm . Then

we have the functor
com0 : DMFGm,d(X, 0) → Per(X),

where com0(E) is the complex

· · ·→ E1,0 → E0,0 → E1,d → · · ·

with E0,0 placed in degree 0. Note that E0,i and E1,i are nonzero only for finitely many i, so the
complex com0(E) is bounded. Let us also consider the functor

com : DMFGm,d(X, 0) → Per(X), com(E) =
d−1⊕
i=0

com0(E{i}). (2.13)

Proposition 2.5.3. Let X be a scheme equipped with the trivial Gm-action.

(i) For E ∈ DMFGm,d(X, 0), one has a natural isomorphism of complexes

com0(E) ' com(E)Gm .

(ii) The functor mf is left adjoint to com0.

(iii) The left adjoint to the functor com is F 7→
⊕d−1

i=0 mf(F ){−i}.
(iv) For F ∈ Per(X) and E ∈ DMFGm,d(X, 0), one has a natural isomorphism of complexes

com(F ⊗ E) ' F ⊗ com(E),

where on the left we equip F with the trivial Gm-action.

Proof. (i) This follows immediately from the definitions.
(ii) For a complex C• ∈ Per(X) and a matrix factorization F , let us compute the complex

Hom(mf(C•), F )Gm . We have

Hom2n(mf(C•), F )Gm = Hom

(⊕
i

C2i{−id}, F0{dn}
)Gm

⊕ Hom

(⊕
n

C2i−1{−id}, F1{dn}
)Gm

=
∏
i

Hom(C2i, F0,d(i+n))⊕
∏
i

Hom(C2i−1F1,d(i+n))

=
∏
j

Hom(Cj , com0(F )j+2n).

Similarly,

Hom2n+1(mf(C•), F )Gm =
∏
j

Hom(Cj , com0(F )j+2n+1),

and the differentials match. Passing to RΓ(X, ?), we get the required adjointness.
(iii) This follows easily from (ii).
(iv) This follows from (2.12): first, we check a similar property for com0, and then for com. 2

Remark 2.5.4. When the action of Gm on X is trivial, we have an equivalence

DMFGm,d(X, 0) ' Perµd(X)

associating to E the complex
⊕d−1

i=0 com0(E{i}){−i} (cf. [PV16, Proposition 1.2.2]). The functor
com is the composition of this equivalence with the forgetful functor Perµd(X) → Per(X).
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Let us now return to the general situation of a Gm-scheme X with a function W of weight

d > 0. For a closed Gm-invariant subset T ⊂ X0 = W−1(0), we denote by DMFGm,T (X,W ) ⊂
DMFGm(X,W ) the full subcategory of matrix factorizations E such that for every closed point

x ∈ X0\T the complex com(E)|x is exact. Equivalently, these are matrix factorizations that

become trivial in the category DMFGm(X\T,W ) (see [PV11, Lemma 5.4(iii)]).

Let f : X → Y be a Gm-morphism of smooth Gm-varieties, and let W be a function of weight

d > 0 on Y . The push-forward functor f∗ for matrix factorizations is most naturally defined in

terms of matrix factorizations of quasicoherent sheaves (see [EP15, § 3], [BDFIK16]). If T ⊂ X

is a closed subset, proper over Y , then one has also a natural push-forward functor

f∗ : DMFGm,T (X, f∗W ) → DMFGm(Y,W )

(see [EP15, § 3.4], [PV11, § 6]).

Assume in addition that W and f∗W are not zero divisors. Let f0 : X0 = f−1(W−1(0)) →

Y0 = W−1(0) be the morphism between the hypersurfaces induced by f . Then the functor

f0∗ : Db(X0) → Db(Y0) induces a functor between the singularity categories, which corresponds

to f∗ under the equivalences (2.9) for W and f∗(W ).

The following property is straightforward.

Lemma 2.5.5. For f : X → Y a Gm-equivariant morphism of smooth Gm-varieties, and for F ,

a Gm-equivariant matrix factorization of 0 on X, one has

com(f∗(F )) ' f∗ com(F ).

The analog of the Grothendieck duality for matrix factorizations was established under quite

general assumptions in the work of Efimov and Positselski [EP15, § 3]. Here we will use the

following version for smooth morphisms between smooth varieties.

Proposition 2.5.6. Let f : X → Y be a smooth Gm-equivariant morphism of relative dimension

m between smooth Gm-varieties, and let T ⊂ X be a closed subset, proper over Y . Let W be a

function on Y of weight d > 0 with respect to the Gm-action, which is not a zero divisor. For

E ∈ DMFGm,T (X, f∗W ), we have a natural functorial isomorphism

f∗(E
∨ ⊗Df ) ' (f∗E)∨

in DMFGm(Y,−W ), where

Df := ωf [m].

Proof. Let f0 : X0 → Y0 = W−1(0) be the morphism induced by f , where X0 = f−1(Y0).

Note that under the equivalence (2.9), extended to Caroubian completions, E corresponds to an

object F ∈ DSg(X0) supported at T ∩X0 (see [PV11, Proposition 5.6]). Hence, by Lemma 2.5.1,

it suffices to construct an isomorphism

f0∗(RHom(F,OX0)⊗Df |X0) ' RHom(f0∗F,OY0)

in Db(Y0), provided F ∈ Db(X0) has a support proper over Y0. Since Df |X0 ' Df0 , such an

isomorphism is given by the usual Grothendieck duality. 2
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Corollary 2.5.7. In the situation of Proposition 2.5.6, for E ∈ DMFGm,T (X, f∗W ) and F ∈
DMFGm(Y,W ), one has

Hom(f∗E,F ) ' f∗Hom(E, f+F ), where

f+F = Df ⊗ f∗F.

Hence, we also have a functorial isomorphism

Hom(f∗E,F ) ' Hom(E, f+F ).

Proof. Using Lemma 2.5.2, Proposition 2.5.6 and the projection formula, we get

Hom(f∗E,F ) ' com((f∗E)∨ ⊗ F ) ' com(f∗(E
∨ ⊗Df ⊗ f∗F )).

Using Lemma 2.5.5, we can switch com with f∗, so we obtain

Hom(f∗E,F ) ' f∗ com(E∨ ⊗Df ⊗ f∗F ) ' f∗Hom(E,Df ⊗ f∗F ),

as claimed. The second isomorphism is obtained from the first by applying RΓ. 2

Let us recall an important construction of Koszul matrix factorizations, which can be viewed
as a generalization of the Koszul complex. Assume that we have a Gm-equivariant vector bundle
V on X and invariant global sections

α ∈ H0(X,V {d})Gm , β ∈ H0(X,V ∨)Gm such that 〈α, β〉 = W.

Then we define the Koszul matrix factorization {α, β} of W by

{α, β}0 = OX ⊕ ∧2V {d} ⊕ ∧4V {2d} ⊕ · · · ,
{α, β}1 = V ⊕ ∧3V {d} ⊕ ∧5V {2d} ⊕ · · ·

with the differential given by

δα,β = α∧? + ιβ, (2.14)

where ιβ is the contraction by β. An important fact is that {α, β} is supported on the locus of
common zeros of α and β (see [PV16, Lemma 1.5.1]).

2.6 Some functors given by kernels and an adjunction between them
Suppose that we have a diagram of smooth Gm-varieties

Y
f

��

p

  
Z X

(2.15)

where f is a smooth morphism of constant relative dimension, and Gm acts trivially on X.
Assume further that W is a function on Z of weight d > 0 with respect to the Gm-action. Given
a Gm-equivariant matrix factorization P of −f∗W on Y , with proper support, we can define
functors

Φ̃P : DMFGm(Z,W ) → DMFGm,d(X, 0), ΦP : DMFGm(Z,W ) → Db(X),

Ψ̃P : DMFGm,d(X, 0) → DMFGm(Z,−W ), ΨP : Db(X) → DMFGm(Z,−W )
(2.16)
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as follows:

Φ̃P (E) = p∗(f
∗E ⊗ P ), ΦP = com ◦ Φ̃P ,

Ψ̃P (F ) = f∗(P ⊗ p∗F ), ΨP (F ) =

d−1⊕
i=0

Ψ̃P (mf(F ){−i}).

Here f∗E⊗P (respectively, P ⊗p∗F ) is a Gm-equivariant matrix factorization of 0 (respectively,

−f∗W ) on Y , that has a proper support, and so we can apply the push-forward functor p∗
(respectively, f∗) to it. The functors mf and com are given by (2.11) and (2.13).

Lemma 2.6.1. Let

Y ′

g

~~

q

  
Z X ′

be another diagram with the same properties as (2.15), and let P ′ be a Gm-equivariant matrix

factorization of g∗W on Y ′ with proper support. Then the composition

DMFGm,d(X
′, 0)

Ψ̃P ′−−→ DMFGm(Z,W )
Φ̃P−−→ DMFGm,d(X, 0)

is isomorphic to the Fourier–Mukai-type functor associated with the kernel

K̃ = pX′X,∗(p
∗
1P
′ ⊗ p∗2P ) ∈ DMFGm,d(X

′ ×X, 0),

where we consider the diagram

Y ′ ×Z Y

p1

~~

p2

  
Y ′

q

��

g

  

Y

f

~~

p

��
X ′ Z X

and denote by pX′X : Y ′×Z Y → X ′×X the map induced by q ◦ p1 and p ◦ p2. The composition

ΦP ◦ΨP ′ : Db(X ′) → Db(X)

is isomorphic to the Fourier–Mukai functor associated with a kernel K ∈ Db(X ′ ×X) such that

[K] = d[com(K̃)] in K0(X ′ ×X).
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Proof. The first assertion follows easily from the projection formula and the base-change formula
(cf. [BDFIK16, § 5.2]). It remains to compute the composition

ΦP ◦ΨP ′ : F 7→ com(Φ̃P ◦ Ψ̃P ′)

(d−1⊕
i=0

mf(F ){−i}
)
.

Let pX : X ′ ×X → X, pX′ : X ′ ×X → X ′ be the projections. We have

com(pX,∗(p
∗
X′ mf(F ){−i} ⊗ K̃)) ' pX,∗ com(p∗X′F ⊗ K̃{−i}) ' pX,∗(p∗X′F ⊗ com(K̃{−i})),

where in the last isomorphism we used Proposition 2.5.3(iv). Thus, ΦP ◦ΨP ′ is associated with
the kernel

K =

d−1⊕
i=0

com(K̃{−i}).

It is easy to see that com(K̃{−i}) and com(K̃) are direct sums of almost the same complexes—
some complexes get shifted by even integers; hence, the assertion about the classes in the
Grothendieck group. 2

As before, we denote Df = ωf [dimY − dimZ].

Proposition 2.6.2. In the above situation the left adjoint functor to Φ̃P (respectively, ΦP ) is
Ψ̃Q (respectively, ΨQ), where Q = P∨ ⊗Df ∈ MFGm(Y, f∗W ). Furthermore, the corresponding
dg-functors are adjoint in the sense of Definition 2.1.1.

Proof. For E ∈ MFGm,d(X, 0) and F ∈ MFGm(Z,W ), we have a chain of quasi-isomorphisms

Hom(E, Φ̃P (F )) ' Hom(E, p∗(P ⊗ f∗F ))

' Hom(p∗E,P ⊗ f∗F ) ' Hom(p∗E ⊗ P∨ ⊗Df , f
∗F ⊗Df ).

Note that p∗E ⊗ P∨ ⊗Df has proper support. Hence, using Corollary 2.5.7, we can rewrite this
as

Hom(f∗(p
∗E ⊗ P∨ ⊗Df ), F ) ' Hom(Ψ̃Q(E), F ).

To show the required adjunction at the dg-level, we have to prove that the above isomorphism
is induced by a map Id → Φ̃P ◦ Ψ̃Q given by a map of kernels. By Lemma 2.6.1, the composition

Φ̃P ◦ Ψ̃Q is the functor given by the kernel

pXX,∗(p
∗
1Q⊗ p∗2P ) ∈ MFGm,d(X

′ ×X, 0),

where p1 and p2 are the two projections Y ×Z Y → Y , and

pXX : Y ×Z Y → X ×X

is the map with the components (pp1, pp2). Thus, we need a map of kernels

∆∗OX → pXX,∗(p
∗
1Q⊗ p∗2P ).

The construction of this map and the verification that the corresponding natural transformation
IdMFGm,d(X,0) → Φ̃P ◦ Ψ̃Q induces the same quasi-isomorphism

Hom(Ψ̃Q(E), F )
∼−→ Hom(E, Φ̃P (F ))

as the one obtained above are done in the appendix (see (A. 8) and Proposition A.0.2).
The adjunction of the pair (ΨQ,ΦP ) follows from the adjunction of the pair (Ψ̃Q, Φ̃P ) using

Proposition 2.5.3(iii). 2
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Now assume that in the above situation we have Z = An and W is a quasihomogeneous
polynomial on Z of degree d > 0 with an isolated singularity. Recall that we have a decomposition

HH∗(MFGm(W )) = H(W ) =
⊕
γ∈µd

H(Wγ)µd , (2.17)

where Wγ = W |(An)γ (see [PV16, Theorem 2.6.1]). In fact, this decomposition is exactly the
µd-grading associated with the natural Z/d-action on HH∗(MFGm(W )) induced by the functors
E 7→ E{i} (see [PV16, Theorem 2.6.1(ii)]). Let Π denote the projector of H(W ) onto the
summand H(W )µd , corresponding to γ = 1.

Lemma 2.6.3. Let φP : H(W ) → HH∗(X) = H∗(X,C) be the map induced on Hochschild
homology by the functor ΦP given by (2.16). We have φP = φP ◦Π.

Proof. It is clear from the definition that the functor Φ̃P commutes with tensoring by characters
of Gm. Hence, ΦP (F ) ' ΦP (F{i}). It follows that the map φP is Z/d-invariant, which is
equivalent to the equality in question. 2

2.7 Orlov’s equivalence
Now let W (x1, . . . , xn) be a homogeneous polynomial of degree d > 0 (so deg(xi) = 1) with
an isolated singularity. Let us recall Orlov’s construction in [Orl09, §§ 2.1 and 2.2] relating the
category of Gm-equivariant matrix factorizations of W with the derived category of coherent
sheaves on the smooth projective hypersurface Y ⊂ Pn−1 given by the equation W = 0.

The construction proceeds in several steps. First, consider the graded algebra

A = k[x1, . . . , xn]/(W ).

Note that the algebra A is Gorenstein with the Gorenstein parameter a = n− d, i.e., Ext∗A(k,A)
is concentrated in internal degree a (and in cohomological degree n − 1). We denote by gr − A
the category of finitely generated graded A-modules, and by gr − A>i the full subcategory of
modules M with Mj = 0 for j < i.

We have Serre’s description of coherent sheaves on Y = Proj(A) as the quotient

qgrA = gr−A/tors−A

of gr−A by the subcategory of torsion modules. Thus, we have an equivalence

Db(Y ) ' Db(qgrA).

Note that under this equivalence the sheaf OY (i) corresponds to A(i) ∈ qgrA.
Next, for each i ∈ Z we have a fully faithful functor

Rωi : Db(qgrA) → Db(gr−A>i) ⊂ Db(gr−A),

which is right adjoint to the natural projection πi : Db(gr − A>i) → Db(qgrA). The image of
Rωi is denoted by Di. The natural projection

π : Db(gr−A) → Db(qgrA) ' Db(Y )

induces an equivalence Di ' Db(Y ).
Recall that a full triangulated subcategory T′ of a triangulated category T is called left

(respectively, right) admissible if the inclusion functor T′ → T has a left (respectively, right)
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adjoint functor T → T′. A subcategory is admissible if it is left and right admissible.
A semiorthogonal decomposition

T = 〈A1, . . . ,Ar〉 (2.18)

is given by a collection of full triangulated subcategories (Ai) such that there exists an increasing
filtration 0 = T0 ⊂ T1 ⊂ · · · ⊂ Tr = T by left admissible subcategories such that Ai is the left
orthogonal of Ti−1 in Ti. In particular, HomT(Aj ,Ai) = 0 for j > i and (Ai) generate T as a
triangulated category. Note that if in addition T =Db(X), whereX is a smooth projective variety,
then each Ai is an admissible subcategory in T (see [BK90]). When one of the subcategories Ai

is generated by an exceptional object Ai, then we write simply Ai instead of Ai in the right-hand
side of (2.18).

Let P>i (respectively, S<i) denote the triangulated subcategory of Db(gr− A) generated by
A(e) with e 6 −i (respectively, by k(e) with e > i). Then we have semiorthogonal decompositions

Db(gr−A) = 〈S<i, Db(gr−A>i)〉,
Db(gr−A>i) = 〈P>i,Ti〉,

where Ti is equivalent via the natural projection from Db(gr − A>i) to the graded singularity
category of A, which in turn is equivalent to the homotopy category of graded matrix
factorizations (by [Orl09, Theorem 3.10]). Combining these two decompositions, we get a
semiorthogonal decomposition

Db(gr−A) = 〈S<i,P>i,Ti〉. (2.19)

On the other hand, there is a semiorthogonal decomposition

Db(gr−A) = 〈P>i+a, S<i,Di〉, (2.20)

where a = n− d.
For a = 0, the above decompositions for i = 0 imply that D0 = T0 and hence we get an

equivalence relating matrix factorizations and coherent sheaves on Y :

DMFGm(W ) ' T0 = D0 ' Db(Y ).

More generally, for a > 0 we can use the semiorthogonal decomposition

P>i = 〈P>i+a, A(−i− a+ 1), . . . , A(−i− 1)A(−i)〉

to refine the decomposition (2.19) to

Db(gr−A) = 〈S<i,P>i+a, A(−i− a+ 1), . . . , A(−i− 1), A(−i),Ti〉.

Comparing this with (2.20), we get a semiorthogonal decomposition

Di = 〈A(−i− a+ 1), . . . , A(−i− 1), A(−i),Ti〉. (2.21)

Thus, in this case the category Db(Y ) contains DMFGm(W ) as an admissible subcategory. Let

ρ : Db(Y ) ' D0 → T0 ' DMFGm(W ) (2.22)

be the right adjoint functor to the embedding T0 ⊂ D0.
In the case a 6 0, using the decomposition

S<−a = 〈S<0, k, k(−1), . . . , k(a+ 1)〉,
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we refine the decomposition (2.20) for i = −a to

Db(gr−A) = 〈P>0, S<0, k, k(−1), . . . , k(a+ 1),D−a〉.

Comparing this with (2.19) for i = 0, we get a semiorthogonal decomposition

T0 = 〈k, k(−1), . . . , k(a+ 1),D−a〉. (2.23)

Thus, in this case DMFGm(W ) contains Db(Y ) as a full subcategory. Let

ρ : Db(Y ) ' D−a → T0 ' DMFGm(W ) (2.24)

be the corresponding fully faithful functor.
Caldararu and Tu showed that the above constructions can be performed at the dg-level

(see [CT13, § 5]). In particular, the functors (2.22) and (2.24) lift to the dg-level.
For any graded module M over A, we denote by M st the object of DMFGm(W ) corresponding

to M viewed as an object of the graded singularity category.

Proposition 2.7.1. Let us consider the composition

Φ : Db(Pn−1) → Db(Y )
ρ−→ T0 ' DMFGm(W ),

where the first arrow is the pull-back with respect to the embedding Y ⊂ Pn−1, and ρ is given
by (2.22) for a > 0 and by (2.24) for a 6 0. Then the image of Φ is contained in the triangulated
subcategory of DMFGm(W ), generated by (k(−e)st)e∈Z.

Proof. Assume first that a 6 0. For e < 0, let us consider the truncated module A(−e)>−a, so
that we have an exact sequence

0 → A(−e)>−a → A(−e) → Ne → 0, (2.25)

where Ne ∈ 〈k(−e), k(−e− 1), . . . , k(a+ 1)〉. Then we claim that A(−e)>−a ∈ D−a. Indeed, we
have A(−e)>−a ∈ Db(gr−A>−a), so, by the decomposition (2.20), it is enough to check that

Ext∗gr−A(A(−e)>−a,P>0) = 0.

But this follows from the exact sequence (2.25), since Ext∗gr−A(k(−j),P>0) = 0 for j < −a. Now
the same exact sequence shows that on the one hand,

π(A(−e)>−a) = O(−e),

while, on the other hand, the image of A(−e)>−a in the graded singularity category is the same
as that of Ne[−1]. Hence, we deduce that

Φ(O(−e)) ∈ 〈k(−e)st, k(−e− 1)st, . . . , k(a+ 1)st〉 ⊂ DMFGm(W ).

Since Db(Pn−1) is generated by the sheaves O(−e) with e < 0, the assertion follows in this case.
Now assume that a > 0. Then for e < 0 we consider the truncated module A(−e)>0 that fits

into an exact sequence
0 → A(−e)>0 → A(−e) → Me → 0,

where Me ∈ 〈k(−e), . . . , k(1)〉. Then as above we deduce that A(−e)>0 ∈ D0 and

π(A(−e)>0) = O(−e).
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On the other hand, by the semiorthogonal decomposition (2.21) for i = 0, we have an exact

triangle

ρ(A(−e)>0) → A(−e)>0 → Q → · · ·

with Q ∈ 〈A(−a + 1), . . . , A(−1), A〉. It follows that the image of ρ(A(−e)>0) in the graded

singularity category is the same as that of Me, so we deduce that

Φ(O(−e)) ∈ 〈k(−e)st, . . . , k(1)st〉 ⊂ DMFGm(W ). 2

3. Rational structure on the Hochschild homology

3.1 Rational structure on the Hochschild homology of admissible subcategories in
the derived categories of sheaves

Let X be a smooth projective variety over C. Recall that the Hochschild homology HH∗(X)

can be identified with H∗(X,C) =
⊕

p,qH
p,q(X) (with Hp,q(X) ⊂ HHp−q(X)). We can use this

identification to define a rational lattice in HH∗(X). To get better compatibility with the Chern

characters and Fourier–Mukai-type functors, we insert some standard factors. Namely, let us

consider an automorphism

J : H∗(X,C) → H∗(X,C) : c 7→ (2πi)pc for c ∈ Hp,q(X),

and set2

HH∗(X)Q := J(H∗(X,Q)) ⊂ H∗(X,C) ' HH∗(X).

Proposition 3.1.1. (i) For any E ∈ Db(X), we have ch(E) ∈ HH∗(X)Q.

(ii) For any c, c′ ∈ HH∗(X)Q, one has (c, c′)X ∈ Q, where (· , ·)X is the pairing (2.7).

(iii) For any Fourier–Mukai-type functor Φ : Db(X) → Db(Y ), where Y is smooth projective,

the induced map Φ∗ : HH∗(X) → HH∗(Y ) sends HH∗(X)Q to HH∗(Y )Q.

Proof. (i) This follows immediately from Proposition 2.2.1.

(ii) We have

(c, c′)X =
1

(2πi)n

∫ top

[X]
c · c′ · TdX ,

so the assertion follows from the fact that c · c′ · TdX ∈ J(H∗(X,Q)).

(iii) This follows from (i) and (ii) and from Lemma 2.4.2. 2

We will use the real structure on HH∗(X) = H∗(X,C) associated with the rational lattice

HH∗(X)Q = J(H∗(X,Q)). Let us denote by τ the corresponding complex conjugation map on

H∗(X,C), so that τ(Jx) = Jx (where x 7→ x is the usual complex conjugation on H∗(X,C)). It

is easy to check that

τ(c) = (−1)p(2πi)q−pc for c ∈ Hp,q(X). (3.1)

2 Choosing instead of J the automorphism c 7→ (2πi)qc, c ∈ Hp,q(X), would work as well. The two choices differ
by the grading operator with respect to the Hochschild degree.
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Let T ⊂ Db(X) be an admissible subcategory. We can enhance T to a dg-category using
the dg-enhancement of Db(X) (see [Kuz09, § 4]). By functoriality of the Hochschild homology,
applied to the inclusion functor and to its left adjoint Db(X) → T, the Hochschild homology
HH∗(T) gets identified with a direct summand of HH∗(X).

Proposition 3.1.2. The subgroup HH∗(T) ∩ HH∗(X)Q is a rational lattice in HH∗(T). If
T ↪→ Db(X ′) is a different embedding of T as admissible subcategory, where X ′ is a smooth
projective variety, then

HH∗(T) ∩HH∗(X)Q = HH∗(T) ∩HH∗(X ′)Q,

so that the lattice HH∗(T)Q := HH∗(T)∩HH∗(X)Q depends only on T. If T → T′ is a dg-functor
between two categories like this, then the induced map HH∗(T) → HH∗(T

′) is compatible with
these rational lattices.

Proof. The projector functor Π : Db(X) → T ⊂ Db(X) is given by some kernel (see [Kuz11,
Theorem 7.1]). Hence, by Proposition 3.1.1, the induced projector Π∗ of HH∗(X) with the
image HH∗(T) sends HH∗(X)Q to HH∗(T)∩HH∗(X)Q, which implies that the latter subgroup
is a rational lattice in HH∗(T). Suppose that we have a functor Φ : T → T′, where T′ ⊂ Db(X ′).
Then, by Proposition 3.1.1(iii), the composed map

HH∗(X)
Π∗−→ HH∗(T)

Φ∗−→ HH∗(T
′) → HH∗(X

′)

is compatible with rational lattices and, hence, Φ∗ sends HH∗(T)∩HH∗(X)Q = Π∗(HH∗(X)Q)
to HH∗(T

′)∩HH∗(X ′)Q. In the case Φ = Id, this also proves the independence of the lattice on
the embedding T ↪→ Db(X). 2

3.2 Hodge–Riemann relations for matrix factorizations: homogeneous case
We use the rational lattices considered above to define a rational lattice in the Hochschild
homology of the category MFGm(W ), where W is a homogeneous polynomial with an isolated
singularity.

Lemma 3.2.1. Let W be a homogeneous polynomial with isolated singularity. Then there exists
a smooth projective variety X such that DMFGm(W ) is an admissible subcategory in Db(X), in
a way compatible with the dg-enhancements.

Proof. Let a = n − d be the Gorenstein parameter. If a > 0, then the semiorthogonal
decomposition (2.21) shows that we can take X to be the hypersurface Y ⊂ Pn−1 with the
equation W = 0. In the case a 6 0, we have the semiorthogonal decomposition (2.23) of
DMFGm(W ), with Db(Y ) as one of the pieces, where each of the remaining pieces is generated by
an exceptional object. Hence, the desired X can be constructed using [Orl14, Theorem 4.15]. 2

Combining this lemma with Proposition 3.1.2, we equip the Hochschild homology H(W ) =
HH∗(MFGm(W )) with a (uniquely defined) rational lattice, such that the maps on Hochschild
homology induced by Fourier–Mukai transforms involving MFGm(W ) are compatible with this
lattice. We denote by x 7→ x the complex conjugation associated with the corresponding real
structure on H(W ).

Lemma 3.2.2. The subspace H(W )µd ⊂ H(W ) coming from the decomposition (2.17) is
compatible with the rational lattice in H(W ). The projector Π : H(W ) →H(W )µd is compatible
with the rational lattices.
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Proof. Indeed, the operators of the Z/d-action on H(W ) are induced by the twist functors
E 7→ E{m} and hence they are compatible with the rational lattice in H(W ). It remains to
observe that H(W )µd is the subspace of Z/d-invariants in H(W ), and Π is precisely the standard
projector onto it (see [PV16, Theorem 2.6.1(ii)]). 2

Let us denote by 〈· , ·〉W the canonical pairing (2.5) on H(W ).

Lemma 3.2.3. For any x ∈ H(W )µd ⊂ H(W ) and any m ∈ Z, one has

〈x, ch(k(m)st)〉W = 0.

Proof. This follows from the explicit calculation of the pairing 〈· , ·〉W and of ch(k(m)st) in [PV12].
Note that the Z/2-folding of the dg-category MFGm,d(W ) is naturally isomorphic to the Z/2-dg-
category MFµd(W ) of µd-equivariant matrix factorizations (see [PV16, § 2.1] and [PV12, § 4.4]).
The computations in [PV12] were done in the context of Z/2-dg-categories, but we can use them
due to the compatibility of all the Hochschild homology manipulations with the Z/2-folding
(see remarks at the end of § 2.1). By [PV16, Proposition 4.3.4], we see that ch(kst) has a trivial
component in H(W )µd , i.e., Π(ch(kst)) = 0. It follows that Π(ch(k(m)st)) = 0 for any integer
m (since Π is the projector onto the invariants of the Z/d-action). Now the assertion follows
from the fact that the summand H(W )µd is orthogonal to other summands in the decomposition
(2.17) with respect to 〈· , ·〉W , as the explicit formula of [PV12, Theorem 4.2.1] shows. 2

Proposition 3.2.4. Suppose that we have a class x ∈ H(W )µd ∩ Hj(W ) for some j ∈ Z. If
〈x, x〉W = 0, then x = 0.

Proof. Let a be the Gorenstein parameter. Assume first that a > 0. Then we have a fully faithful
functor λ : DMFGm(W ) → Db(Y ) and the right adjoint functor ρ (see (2.22)), such that ρλ = Id.
By Proposition 2.7.1, the map

ρ∗ : H∗(Y,C) → H(W )

sends classes restricted from Pn−1 to the span of the Chern characters ch(k(m)st), m ∈ Z. But
the latter classes are orthogonal to H(W )µd with respect to 〈· , ·〉W by Lemma 3.2.3. Hence,
by adjointness of λ∗ and ρ∗ (see Lemma 2.4.1), λ∗(H(W )µd) is left orthogonal to the image of
H∗(Pn−1,C) → H∗(Y,C) with respect to the pairing 〈· , ·〉Db(Y ). Since TdY is a class restricted

from Pn−1, using (2.6) we get that ∫
Y
κ(λ∗(H(W )µd)) · c = 0

for any c restricted from Pn−1. Hence, for any x ∈ H(W )µd , λ∗(x) is a primitive class. In
particular, by the Lefschetz hyperplane theorem, λ∗(x) ∈ Hn−2(Y,C). If in addition x ∈Hj(W ),
then λ∗(x) ∈ Hp,q(Y ) for the unique p, q such that p + q = n − 2 and p − q = j. Since λ∗ is
compatible with rational lattices, we have

λ∗(x) = τ(λ∗(x)) = (−1)p(2πi)q−pλ∗(x)

(see (3.1)). Hence,

(−1)p(2πi)q−p〈λ∗(x), λ∗(x)〉Db(Y ) = 〈λ∗(x), λ∗(x)〉Db(Y ) = 〈x, ρ∗λ∗(x)〉W = 〈x, x〉W .

2094

https://doi.org/10.1112/S0010437X16007557 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007557


Homogeneity of cohomology classes

Thus, the vanishing of 〈x, x〉W implies the vanishing of 〈λ∗(x), λ∗(x)〉Db(Y ). Since λ∗(x) is
primitive, by Lemma 2.3.1, this implies that λ∗(x) = 0, and so x = 0.

Now assume that a 6 0. Then we have a fully faithful functor

ρ : Db(Y ) → DMFGm(W )

(see (2.24)), such that the image is the left orthogonal to kst, . . . , k(a + 1)st. Considering the
corresponding decomposition of H(W ) (see [Kuz09, Theorem 7.3]), we deduce that the image of
ρ∗ can be identified with the left orthogonal to ch(kst), . . . , ch(k(a+ 1)st) with respect to 〈· , ·〉W .
Since H(W )µd lies in this left orthogonal, we deduce that any x ∈ H(W )µd ∩ Hj(W ) has the
form x = ρ∗(y) for some y ∈ HHj(Y ). Furthermore, by Proposition 2.7.1 and Lemma 3.2.3, we
have

〈y, c〉Db(Y ) = 〈x, ρ∗(c)〉W = 0

for any c restricted from Pn−1. Thus, we deduce that y is a primitive class. Now we can finish
the proof as before, using Lemma 2.3.1 and the fact that ρ∗ is compatible with the rational
lattices. 2

Remark 3.2.5. It is easy to see that the Chern characters ch(k(m)st), m ∈ Z, span the orthogonal
complement to H(W )µd in H(W ). In the Calabi–Yau case, d = n, Proposition 2.7.1 implies that
the subspace H(W )µd ⊂ H(W ) corresponds to the primitive part of the middle cohomology of
the projective hypersurface Y under the isomorphism

H(W ) ' H∗(Y,C)

induced by Orlov’s equivalence. Note that the images of k(m)st in Db(Y ) under this equivalence
are calculated explicitly in [CIR14, Proposition 4.11].

3.3 Hodge–Riemann relations for matrix factorizations: quasihomogeneous case
Now let W (x1, . . . , xn) be a quasihomogeneous polynomial with an isolated singularity, such that

the corresponding homogeneous polynomial W̃ (y1, . . . , yn) = W (yd11 , . . . , y
dn
n ) still has an isolated

singularity. Let us consider the corresponding finite flat Gm-equivariant morphism between affine
spaces

ϕ : An → An : (y1, . . . , yn) 7→ (yd11 , . . . , y
dn
n ),

such that ϕ∗W = W̃ . We have the corresponding functors

ϕ∗ : MFGm(W ) → MFGm(W̃ ), ϕ∗ : MFGm(W̃ ) → MFGm(W ),

such that ϕ∗ϕ
∗(E) ' ϕ∗O ⊗ E, where ϕ∗O corresponds to a free C[x1, . . . , xn]-module (with

generators of various degrees).

Lemma 3.3.1. The induced maps on the Hochschild homology

ϕ∗ : H(W ) → H(W̃ ), ϕ∗ : H(W̃ ) → H(W )

are compatible with the decompositions (2.17), and the composition

H(W )µd
ϕ∗−→ H(W̃ )µd

ϕ∗−→ H(W )µd

is the multiplication by deg(ϕ) = d1 . . . dn.
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Proof. The first assertion immediately follows from the fact that ϕ∗ and ϕ∗ commute with the
twist functors E 7→ E{m}. Next, since ϕ∗O is free of rank deg(ϕ), we see that ϕ∗ϕ

∗(E) is a
direct sum of deg(ϕ) twists E{m}. It remains to use the fact that these twists act trivially on
the summand H(W )µd . 2

The above lemma shows that the map

ϕ∗ : H(W )µd → H(W̃ )µd

is injective and its image coincides with the image of the map ϕ∗ϕ∗ : H(W̃ )µd →H(W̃ )µd . Recall

that by Lemma 3.2.2, the subspace H(W̃ )µd ⊂ H(W̃ ) is compatible with the rational lattice in

H(W̃ ). Since ϕ∗ϕ∗ is induced by a dg-endofunctor of MFGm(W̃ ), it follows that the subspace

ϕ∗(H(W )µd) = ϕ∗ϕ∗(H(W̃ )µd) ⊂ H(W̃ )µd

inherits a rational lattice, so we get a rational lattice on H(W )µd .

Lemma 3.3.2. For any dg-functors F : DMFGm(W ) → T, G : T → DMFGm(W ), where T is an
admissible subcategory in Db(X) for some smooth and projective X, the induced maps

H(W )µd → H(W )
F∗−→ HH∗(T), HH∗(T)

G∗−→ H(W )
Π−→ H(W )µd

are compatible with rational structures.

Proof. By Lemma 3.3.1, to prove the assertion about F∗ we can replace it by F∗ϕ∗ϕ
∗. Since F∗ϕ∗

is induced by a dg-functor DMFGm(W̃ ) → T, it is compatible with the rational lattices. But the
restriction of ϕ∗ to H(W )µd preserves rational lattices by the definition, so the assertion follows.

To check the assertion about ΠG∗, it is enough to prove it for the composition

ϕ∗ΠG∗ = Πϕ∗G∗ : HH∗(T) → H(W̃ )µd .

But ϕ∗G∗ is induced by a dg-functor T → DMFGm(W̃ ), so it compatible with the rational lattices.

It remains to use the fact that Π : H(W̃ ) → H(W̃ )µd is also compatible with the rational lattices
(see Lemma 3.2.2). 2

Remark 3.3.3. Using the connection between DMFGm(W ) and the derived category of
the corresponding stacky weighted projective hypersurface X from [Orl09] and the recent
paper [BLS16], one can equip the Hochschild homology H(W ) with a rational structure for
any quasihomogeneous polynomial W with an isolated singularity. Namely, the main result
of [BLS16] implies that Db(X) can be realized as an admissible subcategory in Db(Y ) for Y a
smooth and projective variety, so using the same approach as in Lemma 3.2.1 we can realize
DMFGm(W ) as such a subcategory.

As before, we denote by x 7→ x the conjugation associated with the real structure on H(W )µd .

Proposition 3.3.4. Let W be a quasihomogeneous polynomial with an isolated singularity such
that W̃ still has an isolated singularity. Given a class x ∈ H(W )µd ∩Hj(W ) for some j ∈ Z, if
〈x, x〉W = 0, then x = 0.
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Proof. The map ϕ∗ : H(W )µd → H(W̃ )µd is rational, so using adjointness of (ϕ∗, ϕ∗) and
Lemma 2.4.1 we get

〈ϕ∗x, ϕ∗(x)〉
W̃

= 〈ϕ∗x, ϕ∗(x)〉
W̃

= 〈x, ϕ∗ϕ∗(x)〉W = deg(ϕ)〈x, x〉W = 0.

Also, we have ϕ∗x ∈ H(W̃ )µd ∩Hj(W̃ ). Hence, by Proposition 3.2.4, we obtain ϕ∗x = 0, and so
by Lemma 3.3.1, x = 0. 2

Remark 3.3.5. The idea of using the relation between matrix factorizations of W and W̃ to
deduce results about H(W ) was inspired by a similar method in [MPSW11, § 6].

4. Homogeneity

4.1 Calculations with Koszul matrix factorizations
Let A and B be Gm-vector bundles over a scheme S (where Gm acts trivially on S) and
α ∈H0(tot(A), p∗B∨{d}) and β ∈H0(tot(A), p∗B) be Gm-invariant sections, where p : tot(A) →

S is the projection. Assume that α and β are orthogonal and have common zeros only on the
zero section in tot(A). Let

E = {α, β} ∈ MFGm,d(tot(A), 0)

be the corresponding Koszul matrix factorization of 0 on tot(A) (see § 2.5). The following
homogeneity property follows from the results of [PV01] and [Chi06] (it also appears implicitly
in the proof of [PV16, Proposition 5.6.1]).

Proposition 4.1.1. In the above situation, we have

Td(B) Td(A)−1 ch(com(p∗E)) ∈ H2(rkB−rkA)(S).

Proof. Note that

ch(com(p∗E)) = ch(p∗E) := ch(Heven(p∗E))− ch(Hodd(p∗E)),

where on the right we view p∗E as a Z/2-graded complex. It is enough to show that in the Chow
group A∗(S)Q, one has

Td(B) Td(A)−1 ch(p∗E) ∈ ArkB−rkA(S)Q.

By [Chi06, Lemma 5.3.8], one has

Td(A)−1 ch(p∗E) = chtotA
S (E) · [p],

where chtotA
S (E) ∈ A∗(S → tot(A)) is the localized Chern character of the Z/2-graded complex

E in the relative Chow group for the zero section embedding S → tot(A) (see [PV01, § 2.2]), and
[p] ∈ A−rkA(totA → S) is the orientation class of p. Now, by [PV01, Theorem 3.2], the class

Td(B) chtotA
S (E) ∈ A∗(S → totA)

is concentrated in degree rkB. To get the class we need, one has to multiply the above class with
the orientation class [p] that lives in degree −rkA, hence the result. 2
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Now let us consider the setup of § 1.2. Note that the functor Φ : DMFGm(W ) → Db(X) in
(1.5) is of the form Φ = ΦP (see (2.16)) for the diagram

tot(A)

Z

{{

p

##
An X

and P = {α, β}. Note also that in this case DMFGm(W ) = DMFGm(W ) is the usual homotopy
category of matrix factorizations.

We start by computing the left adjoint functor Ψ : Db(X) → DMFGm(W ) to Φ.

Lemma 4.1.2. In the notation of (2.16), one has Ψ = ΨP ′ , where

P ′ = {α′, β′} ⊗ p∗(det−1(A)⊗ ωX)[N ]

with α′ = β ∈ p∗B, β′ = −α ∈ p∗B∨{d} and N = dimX + rkA − n. Thus, the Koszul matrix
factorization {α′, β′} is of the same type as {α, β} but with B being replaced by B∨{d}.

Proof. By Proposition 2.6.2, we have Ψ = ΨP ′ with

P ′ = P∨ ⊗ ωZ [N ].

Recall that the dual matrix factorization P∨ has the even part P∨0 , the odd part P∨1 {−d} and
the differential δP∨ determined by the rule

〈δP∨(ξ), x〉 = (−1)deg(ξ)〈ξ, δP (x)〉.

Thus, disregarding the Gm-action, we can identify P∨ with
∧∗(p∗B) using the isomorphism∧∗

(p∗B)
∼−→
(∧∗

(p∗B∨)

)∨
: b1 ∧ · · · ∧ bp 7→ [w 7→ (ιb1 ◦ · · · ◦ ιbp)(w)0],

where the subscript 0 means taking the component in
∧0. Under this identification, with the

above sign convention, the operator dual to α∧ is −ια, and the operator dual to ιβ is β∧. The
Gm-weights work out so that we have an identification

P∨ ' {α′, β′}.

Taking into account the isomorphism

ωZ ' ωtotA ' ωp ⊗ p∗ωX ' p∗(det−1(A)⊗ ωX),

we get the assertion. 2

Lemma 4.1.3. In the above situation, the composed functor Φ◦Ψ :Db(X) →Db(X) is associated
with a kernel K ∈ Db(X ×X) such that [K] = d · [K ′] in K0(X ×X), where

K ′ = com(p
(2)
∗ {α(2), β(2)})⊗ p∗1(det−1(A)⊗ ωX)[N ]

for a Koszul matrix factorization of zero {α(2), β(2)} on the vector bundle

p(2) : tot(A)×An tot(A) → X ×X,

associated with the sections α(2) = (α, α′) ∈ p∗1B∨{d} ⊕ p∗2B, β(2) = (β, β′) ∈ p∗1B ⊕ p∗2B∨{d}.
Furthermore, α(2) and β(2) have common zeros only on the zero section of the bundle p(2).
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Proof. The computation of the composition follows from Lemma 2.6.1. The fact about the
common zeros of α(2) and β(2) follows from the similar fact about (α, β) and (α′, β′). 2

Note that the bundle tot(A) ×An tot(A) over X × X has rank 2 rkA − n. Thus, by
Proposition 4.1.1, we have

Td(p∗1B
∨) Td(p∗2B) Td(p∗1A)−1 Td(p∗2A)−1 ch(K⊗p∗1(det(A)⊗ω−1

X )) ∈H2(2rkB−2rkA+n)(X×X).

Using the formula

Td(E∨) = Td(E) · ch(det(E))−1,

we can rewrite the above class as

p∗1(ch(ωX)−1 Td(B∨) Td(A∨)−1) · p∗2(Td(B) Td(A)−1) ch(K) ∈ H2D(X ×X), (4.1)

where D is given by (1.6).

4.2 The proof of Theorem 1.2.1
We start by reformulating the statement using the canonical bilinear forms on Hochschild
homology. Let φ = Φ∗ : H(W ) = HH∗(MFGm(W )) → H∗(X) be the map induced by Φ = ΦP

on Hochschild homology. Let us set

α = Td(B) Td(A)−1.

By the nondegeneracy of the Poincaré pairing, and by (2.6), the left orthogonal to H i(X) ⊂
H∗(X) with respect to 〈· , ·〉Db(X) is the subspace

⊥H i(X) =
⊕

j 6=2 dimX−i
κ(TdX)−1 ·Hj(X) ⊂ H∗(X),

where κ is given by (2.8). Since 〈x, α−1 · y〉Db(X) = 〈κ(α−1) · x, y〉Db(X), we deduce that

⊥(α−1 ·H i(X)) =
⊕

j 6=2 dimX−i
κ(α · TdX)−1 ·Hj(X) ⊂ H∗(X) (4.2)

(note that κ(α) and κ(TdX) live in even degrees, so they commute with any cohomology class).
By the nondegeneracy of 〈· , ·〉Db(X), to show that φ(x) ∈ α−1 ·HD(X) for all x ∈ H(W ), it

is enough to prove that

ψ(⊥(α−1 ·HD(X))) = 0,

where ψ is the left adjoint operator to φ. Note that by Lemma 2.4.1, we have ψ = Ψ∗. Thus,
taking into account (4.2), we should check that for each j 6= 2 dimX −D one has

ψ(κ(α · Td−1
X ) ·Hj(X)) = 0.

We are going to use the rational lattices on the relevant Hochschild homology introduced in
§ 3. We denote by x 7→ x (respectively, τ) the corresponding operation of complex conjugation
on H(W ) (respectively, H∗(X,C)).

Let y ∈ Hp,q(X) ⊂ Hj(X), and set y′ = κ(αTd−1
X ) · y. Note that y′, viewed as an element of

Hochschild homology, lives in the single degree p − q. Hence, the same is true about z = ψ(y′).
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Also, since by Lemma 2.6.3, φΠ = φ, it follows that Πψ = ψ, so z ∈H(W )µd . By Proposition 3.3.4,
z = 0 if and only if 〈z, z〉W = 0. Thus, it is enough to prove that

〈ψ(y′), ψ(y′)〉W = 0,

provided j 6= 2d−D.
We will use the following fact about the involution κ. For any vector bundle V on X, one

has
κ(Td(V )) = Td(V ∨) = Td(V ) · ch(det(V ))−1. (4.3)

In particular, the classes κ(Td(V )) and κ(Td(V )−1) = κ(Td(V ))−1 belong to the rational lattice
J(H∗(X,Q)) (see § 3.1).

Thus, the class κ(αTd−1
X ) is in J(H∗(X,Q)). Hence, using (3.1), we get

τ(y′) = κ(αTd−1
X ) · τ(y) = (−1)p(2πi)q−pκ(αTd−1

X ) · y.

Since the operator ψ = Πψ is compatible with the rational lattices (see Lemma 3.3.2), we deduce
that

ψ(y′) = ψ(τ(y′)) = (−1)p(2πi)q−pψ(κ(αTd−1
X ) · y).

Hence, by adjointness of the pair (ψ, φ),

〈ψ(y′), ψ(y′)〉W = (−1)p(2πi)q−p〈κ(αTd−1
X ) · y, φψ(y′)〉Db(X). (4.4)

Recall that φψ = Φ∗Ψ∗ = (Φ ◦Ψ)∗ is induced by the Fourier–Mukai functor with the kernel
K, as in Lemma 4.1.3. Thus, by Lemma 2.4.2, we have

φψ(y′) = tr12(y′ ⊗ ch(K)) =

∫
p2

p∗1(TdX · y′) ch(K),

where ∫
p2

:=

(∫
X
⊗ id

)
: H∗(X ×X) ' H∗(X)⊗H∗(X) → H∗(X).

Taking into account the relation (4.3), we get

φψ(y′) =

∫
p2

p∗1(ch(ωX)−1κ(α) · y) ch(K).

Thus, we can rewrite (4.4) as follows:

(−1)p(2πi)p−q〈ψ(y′), ψ(y′)〉W = 〈κ(αTd−1
X ) · y, φψ(y′)〉Db(X)

=

∫
X
α · κ(y) · φψ(y′)

= (−1)p
∫
X
y ·
(
α ·
∫
p2

p∗1(ch(ωX)−1κ(α)y) · ch(K)

)
= (−1)p

∫
X×X

p∗2(y) · p∗1(y) · (p∗1(ch(ωX)−1κ(α)) · p∗2α · ch(K)).

Note that the condition (4.1) simply means that

p∗1(ch(ωX)−1κ(α)) · p∗2α · ch(K) ∈ H2D(X ×X).

On the other hand, p∗2(y)·p∗1(y) ∈H2j(X×X). Thus, the above integral vanishes unless 2j+2D =
4 dimX. In other words, it is zero unless j = 2 dimX −D. 2
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4.3 Proof of Theorem 1.1.1
Let W be a quasihomogeneous polynomial of degree d as in Theorem 1.1.1, and let G be a finite
group of diagonal symmetries of W , containing the exponential grading operator J . Recall that
for γ1, . . . , γr ∈ G, the maps

φg(γ1, . . . , γr) : H(Wγ1)G ⊗ · · · ⊗H(Wγr)
G

→ H∗(S,C),

where S = Sg,µd(γ1, . . . , γr) is the moduli of Γ-spin structures associated with G, giving the
algebraic FJRW cohomological field theory, are obtained in the following way (see [PV16, § 5.1]).
First, we consider the potential W = Wγ1 ⊕ · · · ⊕Wγr , and the map

φ : HH∗(MFGm(W )) → H∗(S,C)

defined as in § 1.2, using a certain Gm-equivariant Koszul matrix factorization {α, β} of −Z∗W
on the total space of a vector bundle p : tot(A) → S, equipped with a map Z : tot(A) → An.
The definition of the Koszul matrix factorization {α, β} is rather involved (see [PV16, § 4]) and
will not be repeated here: for our purposes we only need to know that it is supported on the
zero section in tot(A). One difference from the framework of § 1.2 is that S is not a variety, but
a DM-stack. However, there is still a natural map

HH∗(S) → H∗(S,C) (4.5)

(see [PV16, (5.6)]), which we use to define φ with values in H∗(S,C). Now the map φg is obtained
by restricting Td(A)−1 Td(B)φ to the subspace

H(Wγ1)µd ⊗ · · · ⊗H(Wγr)
µd ⊂ H(W )µd .

(here we use the fact that Td(A) Td(B)−1 = Td(Rπ∗(
⊕n

j=1Lj)), where (L•) comes from a
universal generalized spin structure on S).

Actually, in [PV16], we consider a bigger group Γ and a Γ-equivariant matrix factorization
P = (p, Z)∗{α, β} of −W on An ×X to produce a map of C[G∗]-modules

HH∗(MFΓ(W )) → H∗(S,C)⊗ C[G∗],

where G∗ is the dual group to G. To get φg(γ1, . . . , γr), we specialize this map using the evaluation
at 1 homomorphism C[G∗] → C, compose the resulting map with a natural embedding

H(Wγ1)G ⊗ · · · ⊗H(Wγr)
G

→ HH∗(MFΓ(W ))⊗C[G∗] C

and twist by Td(Rπ∗(
⊕n

j=1Lj))
−1. It is easy to check that one gets the same map by passing to

Gm-equivariant matrix factorizations and then applying the above procedure.
The map (4.5) is defined using a finite flat surjective morphism π : X → S, where X is a

smooth projective variety (the existence of such maps is a general fact about smooth proper
DM-stacks over C with projective coarse moduli spaces—see [Kre09, Theorem 4.4], [KV04,
Theorem 2.1]). In fact, (4.5) factors through the pull-back map

π∗ : HH∗(S) → HH∗(X) ' H∗(X,C)

followed by the degree-preserving map H∗(X,C) → H∗(S,C). Thus, it is enough to prove the
required purity of dimension over X. Taking into account the equality

Dg(γ1, . . . , γr) = −rkRπ∗

( n⊕
j=1

Lj

)
= rkB − rkA,
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we see that Theorem 1.2.1 would imply the dimension property (1.2) provided we check that the
polynomial Wγ1 ⊕ · · · ⊕Wγr satisfies the assumptions of that theorem, i.e., each homogeneous

polynomial W̃γi still has an isolated singularity at 0. But this follows easily from Lemma 4.3.1
below. 2

Lemma 4.3.1. Let W (x1, . . . , xn) be a quasihomogeneous polynomial with an isolated
singularity, where deg(xi) = di > 0. Let I ⊂ [1, n] be the set of i such that di > 1. Then

W̃ (y1, . . . , yn) = W (yd11 , . . . , y
dn
n ) still has an isolated singularity if and only for every subset

J ⊂ I the restriction W |AnJ has an isolated singularity, where AnJ ⊂ An is the linear subspace
given by xj = 0 for all j ∈ J .

Proof. We have ∂yiW̃ (y) = diy
di−1
i ∂xiW (ϕ(y)), where ϕ(y1, . . . , yn) = (yd11 , . . . , y

dn
n ). Thus, for

i 6∈ I we have ∂yiW̃ (y) = 0 if and only if ∂xiW (ϕ(y)) = 0. On the other hand, for i ∈ I we have

∂yiW̃ (y) = 0 if and only if either yi = 0 or ∂xiW (ϕ(y)) = 0. This easily implies that y is a critical

point of W̃ if and only if ϕ(x) is a critical point of W |AnJ for some subset J ⊂ I. 2
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Appendix. A compatibility involving the Grothendieck duality

Let f : Y → Z be a separated morphism of finite type between Noetherian schemes. We denote
by f+ : D+(qcoh(Y )) → D+(qcoh(Z)) the extraordinary inverse image functor (see [Har66],
where it is denoted by f !). Then, for any F ∈ Db(Y ) such that the support of F is proper over
Z, we have a canonical morphism

cf,F : F → f+f∗F. (A.1)

Indeed, this can be reduced to a similar map in the case when f is proper: let F = i∗F
′, where

i : Y ′ → Y is a closed subscheme, proper over Z, and F ′ ∈ Db(Y ′). Then we have f∗F ' f ′∗F
′,

where f ′ = f ◦ i. Since f ′ is proper, we have a canonical map

cf ′,F ′ : F ′ → (f ′)+f ′∗F
′ ' i+f+f∗F.

By adjunction of i∗ and i+, we get the required map

F = i∗F
′
→ f+f∗F.

Furthermore, for such F and for any G ∈ Db(Z), the natural map

Hom(f∗F,G) → Hom(f+f∗F, f
+G) → Hom(F, f+G), (A.2)

where the second arrow is induced by cF , is an isomorphism (again this easily reduces to the
case when f is proper).
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The fact that cf,F does not depend on a choice of the subscheme Y ′ follows from the
compatibility of the maps cf,F with compositions (for proper maps). Namely, for a morphism
g : Z → T we have a commutative triangle

F
cf,F //

!!

c
gf,F

f+f∗F

f+cg,f∗F

��
f+g+g∗f∗F

(A.3)

The above picture extends to matrix factorizations. Namely, let us assume that we have the
following situation.
(?): Y and Z are smooth Gm-varieties admitting Gm-equivariant ample line bundles; f : Y → Z
is a smooth Gm-equivariant morphism; W is a function on Z of weight d > 0 with respect to the
Gm-action, which is not a zero divisor.
Then the canonical morphism (A.1) can be constructed for F ∈ MFGm(Y, f∗W ), with proper
support over Z, using Corollary 2.5.7, and the compatibility (A.3) still holds provided g is also
smooth Gm-equivariant and W = g∗W ′.

Next, let us consider the fibered product Y ×ZY with its two projections p1, p2 : Y ×ZY → Y ,
and let δ : Y → Y ×Z Y be the diagonal embedding. Let us also set

π = f ◦ p1 = f ◦ p2 : Y ×Z Y → Z.

Then, for any F ∈ Db(Y ), we have a canonical morphism

αF : δ∗F → p+
2 F (A.4)

on Y ×Z Y , which corresponds by adjunction to the identity map

F → δ+p+
2 F ' F.

Equivalently, it corresponds by adjunction to the identity map

F ' p2∗δ∗F → F

(note that δ∗F is supported on the diagonal, which is proper over Y ). Exchanging the roles of
the factors in Y ×Z Y , we get canonical morphisms

α′F : δ∗F → p+
1 F.

As before, we can define similar morphisms for F ∈ MFGm(Y, f∗W ) assuming the
situation (?).

We will need the following properties of the maps α and α′. We set Df = f+OZ ' ωf [dimY −
dimZ].

Lemma A.0.1. (i) In the above situation, assuming that F ∈ Db(Y ) has the support that is
proper over Z, we have a commutative triangle

F ' p1∗δ∗F
p1∗(αF ) //

''

c
f,F

p1∗(p
+
2 F )

θ

��
f+f∗F
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where θ is the base-change map, which corresponds via the isomorphism (A.2) for p1 to the map

p+
2 F

p+2 cf,F−−−−→ p+
2 f

+f∗F ' p+
1 f

+f∗F

(note that the map from the support of p+
2 F to Y , induced by p1, is proper). The similar assertion

holds for F ∈ MFGm(Y, f∗W ), with proper support over Z, assuming the situation (?).

(ii) For F,G ∈Db(Y ) or, assuming the situation (?), for F ∈ PerGm(Y ), G ∈MFGm(Y, f∗W ),

the diagram

δ∗(F )⊗ p∗2G
αF⊗id//

∼
��

p+
2 F ⊗ p∗2G

∼
��

δ∗(F ⊗G)
αF⊗G // p+

2 (F ⊗G)

is commutative. The same property holds for the maps α′.

(iii) Under the natural identification p+
1 Df ' p+

2 Df ' p∗1Df ⊗ p∗2Df , one has

αDf = α′Df ∈ Hom(δ∗Df , p
∗
1Df ⊗ p∗2Df ).

Proof. (i) Applying the compatibility (A.3) to the maps f , p1 and the object δ∗F , we get that

cπ,δ∗F = cfp1,δ∗F is equal to the composition

δ∗F → p+
1 p1∗δ∗F = p+

1 F
p+1 cf,F−−−−→ p+

1 f
+f∗F.

In other words, the map cf,F corresponds to cπ,δ∗F under the adjunction isomorphism (A.2).

Thus, we have to show that cπ,δ∗F = cfp2,δ∗F is equal to the composition

δ∗F
αF−−→ p+

2 F
p+2 cf,F−−−−→ p+

2 f
+f∗F ' p+

1 f
+f∗F.

But this immediately follows from the compatibility (A.3) applied to the maps f , p2 and the

object δ∗F .

(ii) First, let us consider the case of sheaves. By reversing the direction of the isomorphism

of the left vertical arrow and using the adjointness of (δ∗, δ
+), we reformulate the required

commutativity as showing that the following composition is the identity map:

F ⊗G → δ+δ∗(F ⊗G)
∼−→ δ+(δ∗(F )⊗p∗2G)

αF−−→ δ+(p+
2 F ⊗p

∗
2G)

∼−→ δ+p+
2 (F ⊗G) ' F ⊗G, (A.5)

where the first arrow is the adjunction map. Now we use the following standard compatibility of

the canonical morphisms tf,A,B : f+(A)⊗ f∗(B) → f+(A⊗B) with the projection formula: for

a proper map f , the square

f+f∗(A⊗ f∗B)
∼ // f+(f∗A⊗B)

A⊗ f∗B
cf,A⊗ id

//

cf,A⊗f∗B

OO

f+f∗A⊗ f∗B

tf,f∗A,B

OO
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with the top horizontal arrow induced by the projection formula, is commutative. Applying this
to f = δ, A = F and g = p∗2G, we deduce the commutativity of the left-hand square in the
diagram

δ+δ∗(F ⊗G)
∼ // δ+(δ∗F ⊗ p∗2G) // δ+(p+

2 F ⊗ p∗2G)

F ⊗G //

OO

δ+δ∗F ⊗ δ∗p∗2G //

OO

δ+p+
2 F ⊗ δ∗p∗2G

OO

Note that the second square is commutative by the functoriality of the map δ+A ⊗ δ∗B →

δ+(A⊗B) in A. It follows that the composition of the first three arrows in (A.5) is equal to the
map

F ⊗G ' δ+p+
2 F ⊗ δ

∗p∗2G → δ+(p+
2 F ⊗ p

∗
2G). (A.6)

Next, for composable arrows f and g, we have a commutative diagram

(fg)+(A)⊗ (fg)∗(B)
tfg,A,B //

∼
��

(fg)+(A⊗B)

∼
��

g+f+(A)⊗ g∗f∗(B) // g+(f+(A)⊗ f∗(B)) // g+f+(A⊗B)

Applying this for f = p2, g = δ, A = F and B = G, we deduce that the composition of (A.6)
with the last arrow in (A.5),

δ+(p+
2 F ⊗ p

∗
2G)

∼−→ δ+p+
2 (F ⊗G) ' F ⊗G,

is the identity map of F ⊗G.
The case of matrix factorization reduces to the case of (Gm-equivariant) sheaves using

the equivalences with the (Gm-equivariant) singularity categories. Namely, let Z0 ⊂ Z be the
hypersurface of zeros of W , Y0 = f−1(Z0). Note that the hypersurface of zeros of π∗W is

π−1(Z0) = Y0 ×Z0 Y0.

Now G corresponds to an object of DSg,Gm(Y0), while the commutative diagram lives in the
category of matrix factorizations of π∗W , which is equivalent to the category DSg,Gm(Y0×Z0 Y0).
Now we observe that the functors p∗2 and p+

2 from matrix factorizations of f∗W to those of π∗W
correspond to the similar functors

p∗2, p
+
2 : DSg,Gm(Y0, f

∗W ) → DSg,Gm(Y0 ×Z0 Y0).

The operation of tensoring a matrix factorization with an object P of the perfect derived category
corresponds for the category of singularity to the operation of tensoring with the restriction of
P to the zero locus of the potential (we apply this for f∗W and for π∗W ). Finally, we use the
fact that

δ∗F |π1 (Z0) ' δ∗(F |Y0),

where δ : Y0 → Y0 ×Z0 Y0 is the diagonal, that follows from the base-change formula.
(iii) Using the definition, this reduces to checking the equality of the maps

OY
∼−→ δ+p+

1 f
+OZ

and
OY

∼−→ δ+p+
2 f

+OZ
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under the identification π+OZ ' p+
1 f

+OZ ' p+
2 f

+OZ . This reduces to the commutativity of the

diagram with standard isomorphisms

(fgh)+ ∼ //

∼
��

h+(fg)+

∼
��

(gh)+f+ ∼ // h+g+f+

applied to the triples of morphisms (f, p1, δ) and (f, p2, δ). 2

Next, we assume that our map f fits into a diagram

Y
f

��

p

  
Z X

and that we are given P ∈ Db(Y ), with proper support. Let us set Q = P∨ ⊗Df . Note that we
have a natural isomorphism p+

2 OY ' p∗1Df . Hence, we obtain a natural map on Y ×Z Y ,

ϕ̃ : δ∗OY → δ∗(P
∨ ⊗ P ) ' δ∗OY ⊗ p∗1P∨ ⊗ p∗2P

αO⊗id−−−−→ p∗1Df ⊗ p∗1P∨ ⊗ p∗2P
' p∗1(Df ⊗ P∨)⊗ p∗2P = p∗1Q⊗ p∗2P, (A.7)

where δ : Y → Y ×ZY is the relative diagonal and αO is the map (A.4). Let pXX : Y ×ZY →X×X
be the map with the components (pp1, pp2). Applying pXX,∗ to the above map and using the

natural map OX → p∗OY , we get a canonical morphism

ϕ : ∆∗OX → ∆∗p∗OY ' pXX,∗δ∗OY → pXX,∗(p
∗
1Q⊗ p∗2P ), (A.8)

where ∆ = ∆X : X → X ×X is the diagonal map.

We also consider an analogous construction for matrix factorizations in the situation (?),

where P is an object of MFGm(Y,−f∗W ) with proper support. We then view Q as an object

of MFGm(Y, f∗W ), and the analog of the map (A.7) can be constructed in MFGm,d(Y ×Z Y, 0).

Assuming in addition that X is smooth (so we can regard ∆∗OX as a perfect complex on X×X),

we get an analog of the map ϕ in MFGm,d(X×X, 0). Recall that in this situation we have functors

Φ̃P : MFGm(Z,W ) → MFGm,d(X, 0), Ψ̃Q : MFGm,d(X, 0) → MFGm(Z,W )

(see § 2.6). In the case of sheaves, we also denote by Φ̃P and Ψ̃Q the similar Fourier–Mukai

functors between Db(Z) and Db(X).

The main result of this appendix is the following compatibility (needed for the proof of

Proposition 2.6.2).

Proposition A.0.2. In the two situations described above (with sheaves and with matrix

factorizations), the map

Hom(Ψ̃Q(E), F ) → Hom(E, Φ̃P (F ))

obtained via (2.2) from the natural transformation Id → Φ̃P ◦ Ψ̃Q, induced by (A.8), is equal to
the composition
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Hom(f∗(p
∗E ⊗Q), F )

∼−→ Hom(p∗E ⊗Q, f∗F ⊗Df )

' Hom(p∗E, f∗F ⊗ P )
∼−→ Hom(E, p∗(f

∗F ⊗ P )). (A9)

Proof. By definition, we have to prove that the composition (A9) is equal to the map

Hom(Ψ̃Q(E), F )
Φ̃P−−→ Hom(Φ̃P Ψ̃Q(E), Φ̃P (F )) → Hom(E, Φ̃P (F )),

where the second arrow is induced by (A.8). Unraveling this leads to the following composition

Hom(f∗(p
∗E ⊗Q), F )

(1)
−→ Hom(p2∗p

∗
1(p∗E ⊗Q), f∗F )

(2)
−→ Hom(p∗E ⊗ p2∗(p

∗
1Q⊗ p∗2P ), f∗F ⊗ P )

(3)
−→ Hom(E, p∗(f

∗F ⊗ P ))

with the intermediate maps given by

(1) : Hom(f∗(p
∗E ⊗Q), F )

f∗−→ Hom(f∗f∗(p
∗E ⊗Q), f∗F )

∼−→ Hom(p2∗p
∗
1(p∗E ⊗Q), f∗F ),

where the second arrow is induced by the base-change isomorphism f∗f∗
∼−→ p2∗p

∗
1;

(2) : Hom(p2∗p
∗
1(p∗E ⊗Q), f∗F )

⊗P−−→ Hom(p2∗p
∗
1(p∗E ⊗Q)⊗ P, f∗F ⊗ P )

' Hom(p2∗(p
∗
1p
∗E ⊗ p∗1Q⊗ p∗2P ), f∗F ⊗ P );

and

(3) : Hom(p2∗(p
∗
1p
∗E ⊗ p∗1Q⊗ p∗2P ), f∗F ⊗ P )

p∗−→ Hom(pX2∗pXX,∗(p
∗
1p
∗E ⊗ p∗1Q⊗ p∗2P ), p∗(f

∗F ⊗ P ))

' Hom(pX2∗(p
X,∗
1 E ⊗ pXX,∗(p∗1Q⊗ p∗2P )), p∗(f

∗F ⊗ P ))
ϕ−→ Hom(pX2∗(p

X,∗
1 E ⊗∆∗OX), p∗(f

∗F ⊗ P )) ' Hom(E, p∗(f
∗F ⊗ P )),

where pXi : X×X → X, for i = 1, 2, are the projections. Here we used the natural identifications

p∗p2∗ ' pX2∗pXX,∗, p∗1p∗ ' p∗XXp
X,∗
1 and the projection formula for pXX .

Let us set for brevity R := p∗1Q⊗ p∗2P and F̃ := f∗F ⊗ P . We claim that the map

(3′) : Hom(p2∗(p
∗
1p
∗E ⊗R), F̃ ) → Hom(p∗E, F̃ ),

that corresponds to (3) under the identification Hom(E, p∗(f
∗F ⊗P )) ' Hom(p∗E, f∗F ⊗P ), is

given simply by the composition

Hom(p2∗(p
∗
1p
∗E⊗R), F̃ )

ϕ̃−→ Hom(p2∗(p
∗
1p
∗E⊗δ∗OY ), F̃ ) ' Hom(p2∗δ∗(p

∗E), F̃ ) ' Hom(p∗E, F̃ ),

where the first arrow is induced by (A.7). Indeed, first, using the definition of ϕ, we can rewrite
(3) as the composition

Hom(p2∗(p
∗
1p
∗E ⊗R), F̃ )

p∗−→ Hom(pX2∗pXX,∗(p
∗
1p
∗E ⊗R), p∗F̃ )

ϕ̃−→ Hom(pX2∗pXX,∗(p
∗
1p
∗E ⊗ δ∗OY ), p∗F̃ )

' Hom(pX2∗(p
X,∗
1 E ⊗ pXX,∗δ∗OY ), p∗F̃ )

→ Hom(pX2∗(p
X,∗
1 E ⊗∆∗OX), p∗F̃ ) ' Hom(E, p∗F̃ ).
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Now we observe that there is a commutative diagram

Hom(p2∗(p
∗
1p
∗E ⊗R), F̃ )

p∗ //

ϕ̃

��

Hom(pX2∗pXX,∗(p
∗
1p
∗E ⊗R), p∗F̃ )

ϕ̃
��

Hom(p2∗(p
∗
1p
∗E ⊗ δ∗OY ), F̃ )

p∗ //

∼
��

Hom(pX2∗pXX,∗(p
∗
1p
∗E ⊗ δ∗OY ), p∗F̃ )

∼
��

Hom(p2∗δ∗p
∗E, F̃ )

p∗ //

∼
��

Hom(pX2∗pXX,∗δ∗p
∗E, p∗F̃ )

∼
��

Hom(p∗E, F̃ )
p∗ // Hom(p∗p

∗E, p∗F̃ )

Hence, our claim about the map (3′) follows from the commutativity of the diagram

E
∼ //

��

pX2∗(p
X,∗
1 E ⊗∆∗OX) // pX2∗(p

X,∗
1 E ⊗ pXX,∗δ∗OY )

∼
��

p∗p
∗E

∼ // pX2∗pXX,∗δ∗p
∗E

∼ // pX2∗pXX,∗(p
∗
1p
∗E ⊗ δ∗OY )

which is easy to check.

Our description of (3′) implies that we have a commutative diagram

Hom(p2∗(p
∗
1(p∗E ⊗Q)), f∗F )

(3′) ◦ (2) //

∼β
��

Hom(p∗E, f∗F ⊗ P )

∼
��

Hom(p2∗p
+
1 (p∗E ⊗Q), f+F )

γ // Hom(p∗E ⊗ P∨ ⊗Df , f
+F )

(A.10)

Here β is the composition of the natural isomorphisms

β : Hom(p2∗p
∗
1(p∗E ⊗Q), f∗F )

∼−→ Hom(p2∗p
∗
1(p∗E ⊗Q)⊗Df , f

∗F ⊗Df )
∼−→ Hom(p2∗p

+
1 (p∗E ⊗Q), f+F ),

where in the second isomorphism we use the identification p+
1 OY ' p∗2Df , and γ is the composition

γ : Hom(p2∗p
+
1 (p∗E ⊗Q), f+F ) → Hom(p2∗(p

+
1 (p∗E ⊗Q)⊗ p∗2P ⊗ p∗2P∨), f+F )

→ Hom(p∗E ⊗ P∨ ⊗Df , f
+F ),

where the first arrow is induced by the evaluation map evP : P ⊗ P∨ → OY , while the second
arrow is induced by the map

p∗E ⊗ P∨ ⊗Df ' p2∗(p
∗
1p
∗E ⊗ δ∗(P∨ ⊗Df ))

p2∗(id⊗ε)−−−−−−→ p2∗(p
∗
1p
∗E ⊗ p+

1 Q⊗ p
∗
2P ⊗ p∗2P∨)

' p2∗(p
+
1 (p∗E ⊗Q)⊗ p∗2P ⊗ p∗2P∨), (A.11)

where ε is the composition

ε : δ∗(P
∨ ⊗Df ) ' δ∗OY ⊗ p∗2P∨ ⊗ p∗2Df

ϕ̃⊗id−−−→ p∗1Q⊗ p∗2P ⊗ p∗2P∨ ⊗ p∗2Df ' p+
1 Q⊗ p

∗
2P ⊗ p∗2P∨.
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Next, let us consider the composed map

(1′) : Hom(f∗(p
∗E ⊗Q), F )

(1)
−→ Hom(p2∗p

∗
1(p∗E ⊗Q), f∗F )

β−→ Hom(p2∗p
+
1 (p∗E ⊗Q), f+F ).

Applying Lemma A.0.1(i) to the object p∗E ⊗Q, we get that the composition

p∗E ⊗Q ' p2∗δ∗(p
∗E ⊗Q)

p2∗(αp∗E⊗Q)
−−−−−−−−→ p2∗p

+
1 (p∗E ⊗Q) → f+f∗(p

∗E ⊗Q)

is just the map (A.1). This implies the commutativity of the following triangle:

Hom(f∗(p
∗E ⊗Q), F )

(1′) //

))

∼

Hom(p2∗p
+
1 (p∗E ⊗Q), f+F )

γ′

��
Hom(p∗E ⊗Q, f+F )

(A.12)

where the diagonal is the adjunction isomorphism and γ′ is induced by the map

p∗E ⊗Q ' p2∗δ∗(p
∗E ⊗Q)

p2∗(α′p∗E⊗Q)
−−−−−−−−→ p2∗p

+
1 (p∗E ⊗Q).

Comparing the diagrams (A.10) and (A.12) with the definition of the map (A9), we see that
our assertion would follow from the equality γ′ = γ, which in turn would be implied by the
commutativity of the diagram

p∗E ⊗ P∨ ⊗Df
//

=

��

p2∗(p
+
1 (p∗E ⊗Q)⊗ p∗2P ⊗ p∗2P∨)

evp∗2P

��
p∗E ⊗Q

p2∗(α′p∗E⊗Q)
// p2∗p

+
1 (p∗E ⊗Q)

where the top horizontal arrow is (A.11). Note that this diagram is obtained by applying the
functor p2∗ to the diagram

p∗1p
∗E ⊗ δ∗(P∨ ⊗Df )

id⊗ε //

∼
��

p+
1 (p∗E ⊗Q)⊗ p∗2P ⊗ p∗2P∨

evp∗2P

��
δ∗(p

∗E ⊗Q)
α′
p∗E⊗Q // p+

1 (p∗E ⊗Q)

Unraveling the definition of ε and using Lemma A.0.1(ii), we see that the latter diagram is
obtained by tensoring with p∗1p

∗E from the diagram

δ∗Df ⊗ p∗2P∨ //

∼
��

p+
2 Df ⊗ p∗1P∨ ⊗ p∗2P ⊗ p∗2P∨

evp∗2P

��
δ∗Df ⊗ p∗1P∨

α′
Df
⊗id

// p+
1 Df ⊗ p∗1P∨ ' p

+
2 Df ⊗ p∗1P∨

(A.13)

where the top arrow is the composition

δ∗Df ⊗ p∗2P∨ → δ∗Df ⊗ p∗2P∨ ⊗ p∗2P ⊗ p∗1P∨
αDf
⊗id

−−−−−→ p+
2 Df ⊗ p∗2P∨ ⊗ p∗2P ⊗ p∗1P∨.
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Thus, it remains to prove the commutativity of (A.13). Using the commutative diagram

δ∗Df ⊗ p∗2P∨ ⊗ p∗2P ⊗ p∗1P∨
αDf
⊗id
//

evp∗2P

��

p+
2 Df ⊗ p∗2P∨ ⊗ p∗2P ⊗ p∗1P∨

evp∗2P

��
δ∗Df ⊗ p∗1P∨

αDf
⊗id

// p+
2 Df ⊗ p∗1P∨

we can rewrite the composition of the top arrow with the right vertical arrow in (A.13) as the
map

δ∗Df ⊗ p∗2P∨ → δ∗Df ⊗ p∗2P∨ ⊗ p∗2P ⊗ p∗1P∨
evp∗2P−−−→ δ∗Df ⊗ p∗1P∨

αDf
⊗id

−−−−−→ p+
2 Df ⊗ p∗1P∨.

Here the composition of the first two arrows coincides with the left-hand vertical arrow in (A.13),
so we get the commutativity of the diagram like (A.13) but with αDf instead of α′Df in the bottom

arrow. It remains to recall that αDf = α′Df by Lemma A.0.1(iii). 2
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Gué13 J. Guéré, A Landau–Ginzburg mirror theorem without concavity, Preprint (2013),
arXiv:1307.5070.

Har66 R. Hartshorne, Residues and duality, Lecture Notes in Mathematics, vol. 20 (Springer, Berlin,
1966).

Kon08 M. Kontsevich, XI Solomon Lefschetz Memorial Lecture series: Hodge structures in non-
commutative geometry (notes by Ernesto Lupercio), in Non-commutative geometry in
mathematics and physics (American Mathematical Society, Providence, RI, 2008), 1–21.

KM94 M. Kontsevich and Yu. I. Manin, Gromov–Witten classes, quantum cohomology, and
enumerative geometry, Comm. Math. Phys. 164 (1994), 525–562.

Kre09 A. Kresch, On the geometry of Deligne–Mumford stacks, in Algebraic geometry (Seattle 2005),
part 1 (American Mathematical Society, Providence, RI, 2009), 259–271.

KV04 A. Kresch and A. Vistoli, On coverings of Deligne–Mumford stacks and surjectivity of the
Brauer map, Bull. Lond. Math. Soc. 36 (2004), 188–192.

Kuz09 A. Kuznetsov, Hochschild homology and semiorthogonal decompositions, Preprint (2009),
arXiv:0904.4330.

Kuz11 A. Kuznetsov, Base change for semiorthogonal decompositions, Compos. Math. 147 (2011),
852–876.

LP13 K. Lin and D. Pomerleano, Global matrix factorizations, Math. Res. Lett. 20 (2013), 91–106.
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