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More variations on Nagel and Gergonne analogues
of the Steiner-Lehmus theorem

SADI ABU-SAYMEH and MOWAFFAQ HAJJA

1.  Introduction
The celebrated Steiner-Lehmus theorem states that if the internal

bisectors of two angles of a triangle are equal then the corresponding sides
have equal lengths. That is to say if  is the incentre of  and if  and

 meet the sides  and  at  and , respectively, then
P �ABC BP

CP AC AB B′ C′

BB′ = CC′ ⇒ AB = AC.
An elegant proof of this theorem appeared in [1] and is reproduced in [2].

Several variations of the Steiner-Lehmus theorem have been considered
in the literature. For example, in [2, Theorem 2], we considered the figure in
which the internal angle bisectors of  and  of  meet  and  at
and  and meet the external angle bisectors of  and  at  and ,
respectively.

B C �ABC AC AB B′
C′ C B D E

In what follows, we consider, in Theorems 1, 2, 3 and 4, more variations
on the Steiner-Lehmus theme. In Theorem 1 the cevians from  and
through the Nagel centre of  meet  and  at  and  and the
external angle bisectors of  and  at  and , respectively, as shown in
Figures 1(a) and 1(b). In Theorems 2 and 3, which are illustrated in Figures
2 and 3, the same thing is done for the Gergonne centre. Also, in Theorem 3
we answer a question raised in section 5 of [3]. In Theorem 4 we consider
the case where the external angle bisectors of  and  of  meet the
line drawn from  parallel to  at  and , respectively.

B C
�ABC AC AB B′ C′

C B D E

B C �ABC
A BC E D

We shall denote the side lengths and angles of  by
and  in the standard order. For convenience, we denote the area and
perimeter of  by  and , respectively.

�ABC a, b, c, A, B
C

�ABC [ABC] per (ABC)

2.  Nagel analogue and stronger forms
Let ,  and  be the points where the three excircles of  touch

,  and  and so the cevians ,  and  meet at the Nagel centre
. Let . Then it is clear that

A′ B′ C′ �ABC
BC AC AB AA′ BB′ CC′
N s = 1

2 (a + b + c)
B′C = s − a = C′B,  C′A = s − b = A′C,  A′B = s − c = B′A.

It is also clear that

the external angle bisector of  is parallel to B CC′
⇔ the external angle bisector of  is parallel to C BB′
⇔ s − a = a ⇔ 3a = b + c.

Thus we shall assume that . Letting  and  be the points
where the external angle bisectors of  and  meet the lines  and ,

3a ≠ b + c D E
C B BB′ CC′
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respectively, it is easy to see that

 and  are positioned as shown in Figure 1(a)D E ⇔ b + c < 3a, (1)
 and  are positioned as shown in Figure 1(b)D E ⇔ b + c > 3a. (2)

Theorem 1: In , where , the lines from  and  through the Nagel
centre  meet  and  at  and  and meet the external angle bisectors of
and  at  and , respectively, as shown in Figures 1(a) and 1(b).

�ABC 3a ≠ b + c B C
N AC AB B′ C′ C

B D E
(a) The statement  is equivalent to each of the statementsAB = AC

(i)  ,BB′ = CC′ (ii) ,[BCB′] = [CBC′] (iii) ,per(BCB′) = per(CBC′)
(iv) ,BD = CE (v) [BCD] = [CBE] , (vi) .per(BCD) = per(CBE) (3)

(b) The statement  is equivalent to each of the statementsAB > AC

(i)  ,BB′ > CC′ (ii) ,[BCB′] > [CBC′] (iii) ,per(BCB′) > per(CBC′)
(iv) ,BD > CE (v) [BCD] > [CBE] , (vi) .per(BCD) > per(CBE) (4)

Proof: We refer to Figures 1(a) and 1(b). Clearly, if , then the
equalities in (3) hold by symmetry. So it is enough to show that
implies that all inequalities in (4) hold and the rest of (a) and (b) follow by
contradiction. To see this, notice that an implication such as

AB = AC
AB > AC

AB > AC ⇒  BB′ > CC′ (5)
does indeed yield the converse implication

BB′ > CC′ ⇒  AB > AC. (6)
For if , then  can neither be equal to  (because this would
imply that  by symmetry), nor less than  (because this would
imply that  by (5)). Thus (5) yields (6). Similarly (5) implies that
if , then .

BB′ > CC′ AB AC
BB′ = CC′ AC
BB′ < CC′

BB′ = CC′ AB = AC
 So we assume that  (i.e.  whence ), and we are to

prove that the inequalities in (4) hold. We let
AB > AC c > b C > B

π − B = 2β′,  π − C = 2γ′.
In what follows and in view of (1) and (2), refer to Figure 1(a) for the

case , and to Figure 1(b) for the case .b + c < 3a b + c > 3a
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FIGURE 1(a): The case  of Theorem 1b + c < 3a
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FIGURE 1(b): The case  of Theorem 1b + c > 3a

(b)(i): Since in  and  we have�B′CB �C′BC

B′C = s − a = C′B,  CB = a = BC,  C > B,
it follows by the ‘open mouth theorem’ that  as desired.BB′ > CC′

(b)(ii): Since  and , it follows that . Thenc > b
c

sin C
=

b
sin B

sin C > sin B
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 and , so that
as desired.
[BCB′] = 1

2a(s − a) sin C [CBC′] = 1
2a(s − a) sin B [BCB′] > [CBC′]

(b)(iii): Since  and , and since
by (b)(i) , it follows that  as wanted.

per (BCB′) = s + BB′ per (CBC′) = s + CC′
BB′ > CC′ per (BCB′) > per (CBC′)

(b)(iv): Draw  and  parallel to  (in either case). Note that
 and  (in either case), so that

B′Q C′R BC
BB′ = |BD − B′D| CC′ = |CE − C′E|

BB′
BD

= |1 −
B′D
BD | = |1 −

s − a
a | = |1 −

C′E
CE | =

CC′
CE

.

Since , it follows that  as required.BB′ > CC′ BD > CE

(b)(v): First, note that  and
 (in either case). Then

[BCB′] = |[BCD] − [B′CD]|
|CBC′| = |[CBE] − [C′BE]|

[BCB′]
[BCD] = |1 −

[B′CD]
[BCD] |

= |1 −
B′D
BD |  (since the triangles have the same height)

= |1 −
s − a

a | .
Likewise

[CBC′]
[CBE] = |1 −

[C′BE]
[CBE] | = |1 −

C′E
CE | = |1 −

s − a
a | .

Thus ; but , so  as required.
[BCB′]
[BCD] =

[CBC′]
[CBE] [BCB′] > [CBC′] [BCD] > [CBE]

(b)(vi): Since in the  and , we have (in either case)�CB′Q �BC′R

CB′ = B′Q = BC′ = C′R = s − a,  ∠CB′Q = C > B = ∠BC′R,
it follows by open mouth theorem that . Note also that

 and  (in either case). So
CQ > BR

CQ = |CD − DQ| BR = |BE − ER|
CQ
CD

= |1 −
DQ
CD| = |1 −

s − a
a | = |1 −

ER
BE | =

BR
BE

.

But , so also , and we conclude thatCQ > BR CD > BE

per (BCD) = BC + CD + BD > CB + BD + CE = per (CBE)
as required.

3.  Gergonne analogue and stronger forms
Let ,  and  be the points where the incircle of triangle  touches

,  and , respectively, and so the cevians ,  and  meet at
the Gergonne centre .

A′ B′ C ABC
BC AC AB AA′ BB′ CC′

G
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A Gergonne analogue of the Steiner-Lehmus theorem is given in
Theorem 1 of [3]. In the next theorem we give a new proof and stronger
forms of this theorem and in Theorem 3 we answer a question raised in [3].

Theorem 2: In , the cevians from  and  through the Gergonne
centre  meet  and  at  and , respectively, as shown in Figure 2.

�ABC B C
G AC AB B′ C′

(a) The statement  is equivalent to each of the statementsAB = AC
(i) , (ii) , (iii) .BB′ = CC′ [CBC′] = [BCB′] per (CBC′) = per (BCB′)

(b) The statement  is equivalent to each of the statementsAB > AC
(i) , (ii) , (iii) .BB′ > CC′ [CBC′] > [BCB′] per (CBC′) > per (BCB′)

Proof: Let . Then it is clear thats = 1
2 (a + b + c)

B′A = s − a = C′A,  C′B = s − b = A′B,  A′C = s − c = B′C,
as shown in Figure 2. As in Theorem 1, it is sufficient to prove (b). So let

. Draw  and join , as shown in Figure 2, and letAB > AC CM // B′C′ MB′

∠AB′C′ = α,  ∠C′CB′ = δ,  ∠C′BB′ = μ.
From Figure 2, ,  is cyclic,
and . So . Since , it follows that

 is obtuse, so that , which proves (b)(i).

∠AC′B′ = ∠AMC = α C′B′CM ∠C′MB′ = δ
MB′ = CC′ μ < δ < α < π

2 δ < π
2

∠B′MB BB′ > MB′ = CC′
Note also that (b)(i) can be proved by applying the sine rule to

and  and using the fact that .
�ABB′

�ACC′ μ < δ < π
2

(b)(ii): Since  and , it
follows that

[CBC′] = [CBM] + [CMC′] �CMC′ ≅ �MCB′

[CBC′] = [CBM] + [MCB′] = [BCB′] + [BB′M] > [BCB′]
as required.

(b)(iii):

per (CBC′) = BC + CC′ + C′M + MB

= BC + CB′ + B′M + MB (since  CC′ = B′M and C′M = CB′)

= BC + CB′ + B′B  (by the triangle inequality)

= per (BCB′)
as required.
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FIGURE 2: Theorem 2

Theorem 3: In triangle , the cevians from  and  through the Gergonne
centre  meet  and  at  and , respectively, and meet the external
angle bisectors of  and  at  and , respectively, as shown in Figure 3.

ABC B C
G AC AB B′ C′

C B D E

(a) The statement  is equivalent to each of the statementsAB = AC
(i) , (ii) , (iii) ,BE = CD CE = BD [CBE] = [BCD]
(iv) .per (CBE) = per (BCD)

(b) The statement  is equivalent to each of the statementsAB > AC
(i) , (ii) , (iii) ,BE > CD CE > BD [CBE] > [BCD]
(iv) .per (CBE) > per (BCD)

Proof: As in Theorem 1, it is sufficient to prove (b). So let .AB > AC
(b)(i): Put  and . So . Applying the
exterior angle theorem to , we have ; but

, so , and therefore . Similarly
. Next,  and , by the alternate

segment theorem, so , whence . Then
 and , so that

β′ = 1
2 (π − B) γ′ = 1

2 (π − C) β′ > γ′
�A′BC′ ∠C′A′B + ∠A′C′B = 2β′

BA′ = BC′ ∠C′A′B = ∠A′C′B ∠C′A′B = β′
∠B′A′C = γ′ ∠A′B′C′ = β′ ∠A′C′B′ = γ′

∠A′B′C′ > ∠A′C′B′ A′C′ > A′B′
A′C′ // BE A′B′ // CD

BE
A′C′

=
a

s − c
and

CD
A′B′

=
a

s − b
, whence

BE
CD

=
(s − b) A′C′
(s − c) A′B′

> 1,

and thus , as required.BE > CD

(b)(ii): We have

CE
CC′

=
a

s − c
 and  

BD
BB′

=
a

s − b
,
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FIGURE 3: Theorem 3

Applying the cosine rule to ,  and to , we have�B′BA �C′CA �ABC

(BB′)2 = (s − a)2 + c2 − 2c (s − a) cos A

(CC′)2 = (s − a)2 + b2 − 2b (s − a) cos A

2bc cos A = b2 + c2 − a2.
But ,  and .
Therefore

2(s − a) = b + c − a 2(s − b) = a + c − b 2(s − c) = a + b − c

4c (CC′)2 = c (b + c − a)2 + 4b2c − 2 (b + c − a) (b2 + c2 − a2) ,

4b (BB′)2 = b (b + c − a)2 + 4bc2 − 2 (b + c − a) (b2 + c2 − a2) .
Thus we have

(CE)2

(BD)2
=

b(a + c − b)2(c(b + c − a)2 + 4b2c − 2(b + c − a)(b2 + c2 − a2))
c(a + b − c)2(b(b + c − a)2 + 4bc2 − 2(b + c − a)(b2 + c2 − a2)).

Put , where
(CE)2

(BD)2
=

m
n

m = b(a + c − b)2(c(b + c − a)2 + 4b2c − 2(b + c − a)(b2 + c2 − a2)),

n = c(a + b − c)2(b(b + c − a)2 + 4bc2 − 2(b + c − a)(b2 + c2 − a2)),
and prove that  (i.e.  is positive), set , wherem > n m − n m − n = p + q + r

p = bc(b + c − a)2((a + c − b)2 − (a + b − c)2) = 4abc(c − b)(b + c − a)2 ,
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q = 4bc(b2(a + c − b)2 − c2(a + b − c)2)
= 4bc(c − b)(b + c − a)2(a(b + c) − (c − b)2),

r = 2(b + c − a)(b2 + c2 − a2)(c(a + b − c)2 − b(a + c − b)2)
= 2(c − b)(b + c − a)(b2 + c2 − a2)(a2 − 2a(b + c) + (c − b)2).

Then we have

p + q = −4bc (c − b) (b + c − a) (a2 − 2a (b + c) + (c − b)2) ,
whence

m − n = 2(b + c − a)(c − b)(a2 − 2a(b + c) + (c − b)2)((c − b)2 − a2)
= 2(b + c − a)(c − b)(a2 − (c − b)2)(a(b + c) − a2 + a(b + c) − (c − b)2)
= 32(c − b)(s − a)(s − b)(s − c)(a(s − a) + b(s − b) + c(s − c)),

which is clearly positive and hence  as required.CE > BD
Note that (b)(ii) answers the question raised in [3].

(b)(iii): Since ,  by (b)(i), and ,
it follows that

BC′ = s − b > s − c = CB′ BE > CD β′ > γ′

[BC′E] = 1
2 (BC′) (BE) sin β′ > 1

2 (CB′) (CD) sin γ′ = [CB′D] .
But  by (b)(ii) of Theorem 2. Therefore[CBC′] > [BCB′]

[CBE] = [CBC′] + [BC′E] > [BCB′] + [CB′D] = [BCD]
as required.

Finally, (b)(iv) follows from (b)(i) and (b)(ii) where we have

per (CBE) = CB + BE + CE > BC + CD + BD = per (CBD) .

4.  Another variation of the Steiner-Lehmus theorem
In this section, we consider the case where the external angle bisectors

of  and  meet the line drawn from  parallel to  at  and ,
respectively.

B C A BC E D

But first, a lemma:
Lemma: Given parallel line segments  and , let the line from the
midpoint  perpendicular to  meet  in . Then, for  and  on the
line , we have that  if .

BC EF
N BC EF M P Q

EF per (PBC) > per (QBC) PM > QM
Proof: Join ,  and  to , the reflection of  in , as shown in Figure 4.
Then  is the midpoint of , and by reflection in , we have ,

 and . Now, if  is between  and , then by applying
Euclid I.21 to , we have ; that is,

, whence  as required. On
the other hand, if  is between  and , then let  be the reflection of  in

M P Q R C EF
M BR EF MC = MR

PC = PR QC = QR Q M P
�BPR BP + PR > BQ + QR

BP + PC > BQ + QC per (PBC) > per (QBC)
M P Q Q′ Q
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, so that  is between  and . Thus ; but
 by reflection in , so that once again

 as required.

MN Q′ M P per (PBC) > per (Q′BC)
�Q′BC ≅ �QCB MN
per (PBC) > per (QBC)

E Q MP D F

R

B CN
FIGURE 4: The lemma needed for Theorem

Theorem 4: In , the external angle bisectors of  and  meet the line
drawn from  parallel to  at  and , respectively, and  and
intersect  and  at  and , as shown in Figure 5.

�ABC B C
A BC E D BD CE

AC AB B′ C′
(a) The statement  is equivalent to each of the statementsAB = AC

(i) , (ii) , (iii) ,BD = CE CD = BE per (BCD) = per (CBE)
(iv) , (v) , (vi) .BB′ = CC′ per (CBB′) = per (BCC′) [CBB′] = [BCC′]

(b) The statement  is equivalent to each of the statementsAB > AC
(i) , (ii) , (iii) ,BD > CE CD > BE per (BCD) > per (CBE)
(iv) , (v) , (vi) .BB′ > CC′ per (CBB′) > per (BCC′) [CBB′] > [BCC′]

Proof: As in Theorem 1, it is sufficient to prove (b). So let . Put
, .

AB > AC
β′ = 1

2 (π − B) γ′ = 1
2 (π − C)

(b)(i): Since , it follows that  and . So in
 and , we have ,  and

. So, by the open mouth theorem, we
have that  as required.

ED // BC ∠ADC = γ′ ∠AEB = β′
�BAD �CAE AB = AE = c AD = AC = b
∠BAD = A + C > A + B = ∠EAC

BD > CE

(b)(ii): Applying the sine rule to  and  we have�CAD �BAE
CD

sin C
=

b
sin γ′

and
BE

sin B
=

c
sin β′

 and whence

CD
BE

=
b sin C sin β′
c sin B sin γ′

=
sin β′
sin γ′

> 1.

So  as required.CD > BE
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FIGURE 5: Theorem 5

(b)(iii): This follows, directly, from (b)(i) and (b)(ii).

(b)(iv): We deduce from  thatDE // BC
DB′
BB′

=
b
a

and
EC′
CC′

=
c
a

.

So we have

DB
BB′

=
a + b

a
and

CE
CC′

=
a + c

a
; whence

BB′
CC′

=
(a + c) BD
(a + b) CE

.

But  by (b)(i). Therefore  as required.BD > CE BB′ > CC′

(b)(v): Put  and . Then  and .
Since , it follows that

x = AB′ y = AC′ CB′ = b − x BC′ = c − y
ED // BC

x
b − x

=
b
a

and
y

c − y
=

c
a

x =
b2

a + b
and y =

c2

a + c
. and whence 

Let the line through  parallel to  meet  at , and let the perpendicular
bisector of  meet  at ,  at  and  at . Then

B′ BC AB Q
BC BC N B′Q M AB T

AQ
c

=
x
b

=
b

a + b
and

AC′
c

=
y
c

=
c

a + c
.

But , whence , so that , and  is between

 and . Then , and, adding  to each side, we
have that . So it remains to show that

. But this will follow from the Lemma provided we
show that . This is obvious if  is between  and . If, on the
other hand,  is between  and , then let the reflection  of  in
meet  at . Then  and  is between  and , so ,
whence  again, and we are finished.

b < c
b

a + b
<

c
a + c

AQ < AC′ C′

B Q C′C < C′Q + QC BC′ + BC
per (BCC′) < per (BCQ)

per (BCQ) < per (CBB)
MQ < MB′ Q M B′

M Q B′ TC TB TN
B′Q P MQ = MP P M B′ MP < MB′

MQ < MB′
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(b)(vi): Since , we have , and since  is between
 and , we have , whence the result.

BQ // BC [CBB′] = [CBQ] C′
B Q [CBQ] > [BCC′]

Note that other variations on Steiner-Lehmus theme can be obtained by
taking centres in the above configurations other than Nagel and Gergonne
centres, such as the centroid, the circumcentre, the orthocentre or the
Fermat-Torricelli centre.

Acknowledgement: The authors would like to thank the anonymous referee
for the many valuable suggestions that improved the paper considerably.
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