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We study the topological structure of the space X of isomorphism classes of metric
measure spaces equipped with the box or concentration topologies. We consider the
scale-change action of the multiplicative group R+ of positive real numbers on X ,
which has a one-point metric measure space, say ∗, as only one fixed-point. We prove
that the R+-action on X∗ := X \ {∗} admits the structure of non-trivial and locally
trivial principal R+-bundle over the quotient space. Our bundle R+ → X∗ → X∗/R+

is a curious example of a non-trivial principal fibre bundle with contractible fibre. A
similar statement is obtained for the pyramidal compactification of X , where we
completely determine the structure of the fixed-point set of the R+-action on the
compactification.
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1. Introduction

It is a challenging problem to study the structure of the space X of isomorphism
classes of metric measure spaces, where we assume a metric measure space to be a
complete separable metric space with a Borel probability measure. Denote by R+

the multiplicative group of positive real numbers. We have the natural group action

© The Author(s), 2024. Published by Cambridge University Press on behalf of
The Royal Society of Edinburgh

1

https://doi.org/10.1017/prm.2024.111 Published online by Cambridge University Press

mailto:kazukawa@math.kyushu-u.ac.jp
mailto:nakajima.hiroki.nz@ehime-u.ac.jp
mailto:shioya@math.tohoku.ac.jp
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/prm.2024.111&domain=pdf
https://doi.org/10.1017/prm.2024.111


2 D. Kazukawa, H. Nakajima and T. Shioya

of R+ on X defined as

R+ ×X 3 (t,X) 7−→ tX ∈ X ,

where tX is the space X with the t-scaled metric of X. Note that the isomorphism
class of a one-point metric measure space, denoted as ∗, is the only fixed-point of
this action. Let X∗ := X \{∗} and let Σ denote the quotient space X∗/R+ equipped
with the quotient topology.

As for the structure of the space X , Sturm [19] obtained the remarkable result
that the subspace Xpq of X with finite Lpq -size and equipped with the Lp,q-
distortion metric is a non-negatively curved Alexandrov space isometric to a
Euclidean cone for p=2 and q ∈ [ 1,+∞ ). He also determined geodesics in Xpq for
p, q ∈ [ 1,+∞ ) and proved that any orbit of the R+-action is a geodesic ray, which
implies that Xpq is homeomorphic to the cone over Σpq for any p, q ∈ [ 1,+∞ ),
where Σpq is the subspace of Σ corresponding to Xpq.

Also, Ivanov and Tuzhilin [8] pointed out that the Gromov–Hausdorff space is
homeomorphic to the cone over the quotient space by the R+-action.

In this article, we study the topological structure of X with the box and observ-
able metrics and also of the pyramidal compactification of X . Those metrics and
the pyramidal compactification are fundamental concepts in the study of metric
measure spaces, originally introduced by Gromov [6] (see also [18]). The box met-
ric is closely related to the L0,q-distortion metric (see [19]) and coincides with the
Gromov–Prokhorov metric (see [5, 12]). The observable metric is defined by the
idea of the concentration of measure phenomenon established by Lévy and Milman
[13, 15] (see also [14]) and is useful to study convergence of spaces with dimensions
divergent to infinity. The topologies induced from the box and observable met-
rics are called the box and concentration topologies, respectively. In our previous
article [11], we have proved that the box metric is geodesic and that X is locally
path-connected and contractible with respect to the box and concentration topolo-
gies, which are the same properties as those of Xpq with the Lp,q-distortion metric
studied by Sturm [19]. However, the box and observable metrics are much different
from the Lp,q-distortion metric. One of the essential differences is that any orbit
of the R+-action is never a geodesic ray for the box and observable metrics. Also,
there are intricately branching geodesics with respect to the box metric, and the
Alexandrov curvature is not bounded neither from below nor from above (see [11,
remark 6.7]). The question that arises here is:

• Is X with the box and/or concentration topologies homeomorphic to the
cone over Σ?

Surprisingly the answer is negative.

Theorem 1.1 For neither of the box nor concentration topologies, X∗ = X \ {∗}
is not homeomorphic to R+ × Σ, and X is not homeomorphic to the cone over Σ.

One of our main theorems is stated as follows.

Theorem 1.2 For the box and concentration topologies, the action of R+ on X∗
admits the structure of a non-trivial and locally trivial principal R+-bundle over Σ.
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Principal bundle structure of X 3

In general, a locally trivial principal bundle with contractible fibre over a para-
compact Hausdorff base space is trivial (see [3, corollary 2.8] and [7, 8.1 theorem
of Chapter 4] for example), which is not necessarily true if the base space is not
paracompact. It is remarkable that our principal bundle R+ → X∗ → Σ presents
such a counterexample.

The action of R+ on X naturally extends to the pyramidal compactification of
X , say Π (see § 2.3 for the definition of Π). Denote by Fix(Π) the set of fixed-points
of the action of R+ on Π, and put Π∗ := Π \ Fix(Π). We also have the following.

Theorem 1.3 The action of R+ on Π∗ admits the structure of a non-trivial and
locally trivial principal R+-bundle over the quotient space Π∗/R+.

We investigate the structure of Fix(Π) and have the following theorem. Denote
by A the set of all monotone non-increasing sequences of non-negative real numbers
with total sum not greater than 1.

Theorem 1.4 The fixed-point set Fix(Π) is homeomorphic to A with the l2-weak
topology.

As for the topology of X∗ and Π∗, we have the following.

Proposition 1.5

(i) X∗ is contractible with respect to the box and concentration topologies.
(ii) Π∗ is contractible.

Since the fibres of our bundles in theorems 1.2 and 1.3 are contractible, we have
the following.

Corollary 1.6.

(i) For the box and concentration topologies, all homotopy groups of Σ vanish.
(ii) All homotopy groups of Π∗/R+ vanish.

Let us mention the ideas of our proofs.
A key point of the proof of theorem 1.1 is to prove that Σ is not a Urysohn

space (lemma 3.2). If Σ × R+ were to be homeomorphic to X∗, then Σ would be
metrizable, which is contrary to the non-Urysohn property of Σ. It is quite delicate
that Σ is a Hausdorff space (proposition 3.10).

For theorems 1.2 and 1.3, the local triviality of the bundles is a core of the proof.
For theorem 1.2 with the box topology, we construct an R+-invariant open cov-

ering {X∆}∆∈( 0,1 ) of X and continuous 1-homogeneous functions r∆ : X∆ → R+

for ∆ ∈ ( 0, 1 ). We define X∆ to be the set of mm-spaces such that any atom has
measure less than ∆ and define r∆(X), X ∈ X∆, as the integral of the partial
diameter diam(X; s) with respect to the parameter s ∈ [ 0, (∆ + 1)/2 ]. The reason
why we take the integral is for the sake of the continuity of r∆. Using r∆, we obtain
a local trivialization X∆ ' X∆/R+ × R+.

Theorem 1.2 for the concentration topology is derived from theorem 1.3 just by
restricting the base space Π∗/R+ to X∗/R+.
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For the proof of theorem 1.3, we construct an R+-invariant open covering of
Π∗ and continuous 1-homogeneous functions on each open set in the covering. This
time, for an (N+1)-tuple κ = (κ0, . . . , κN ) of positive real numbers with

∑N
i=0 κi <

1, we define Πκ to be the set of all P ∈ Π such that Sep(P;κ0, . . . , κN ) < +∞ and
Sep(P;κ0+δ, . . . , κN+δ) > 0 for some δ > 0, and we define rκ(P), P ∈ Πκ, to be the
integral of Sep(P;κ0+s, . . . , κN+s) with respect to s ∈ [ 0, 1 ] (see definition 2.17 for
the definition of Sep(· · · )). These induce a local trivialization Πκ ' Πκ/R+ × R+.
However, it is not easy to prove that the union of all Πκ coincides with Π∗. For the
proof, we need to investigate the structure of pyramids in Fix(Π) as follows. For
A = {ai}∞i=1 ∈ A, we define

PA :=

{
X ∈ X

∣∣∣∣∣There exists a sequence {xi}∞i=1 ⊂ X such that
∞∑
i=1

aiδxi ≤ µX

}
.

Theorem 1.7 For a given P ∈ Π, the following (i)–(iv) are equivalent to each
other.

(i) P ∈ Fix(Π).
(ii) tP = P for some t ∈ R+ with t 6= 1.

(iii) For any κ0, . . . , κN > 0 with
∑N
i=0 κi < 1, the separation distance

Sep(P;κ0, . . . , κN ) is either 0 or +∞.
(iv) There exists A ∈ A such that P = PA.

In theorem 1.7, the implication ‘(iii) ⇒ (iv)’ is highly non-trivial, and we need
a delicate discussion to prove it. Theorem 1.7 with a little discussion implies that
the union of Πκ coincides with Π∗.

Theorem 1.4 is derived from theorem 1.7 and the following.

Theorem 1.8 The map A 3 A 7−→ PA ∈ Π is a topological embedding.

Theorem 1.8 is also proved by Esaki–Kazukawa–Mitsuishi [4] independently. Our
proof is simpler than [4]. It is proved in [4] that the weak topology on A coincides
with the l∞-topology.

The organization of this article is as follows. After the preliminaries section, we
study in § 3 the scale-change action of R+ on X∗. We prove that Σ is not Urysohn,
which leads to theorem 1.1. We also prove theorems 1.2 and 1.3 with the help of
theorem 1.7. In § 4, we determine the structure of pyramids in Fix(Π) and prove
theorems 1.7 and 1.8 to obtain theorem 1.4. In § 5, we prove proposition 1.5. In §
6, we present several questions.

2. Preliminaries

In this section, we describe the definitions and some properties of metric measure
space, the box distance, the observable distance, the pyramid, and the weak topol-
ogy. We use most of these notions along [18]. As for more details, we refer to [18]
and [6, Chapter 3 1

2+
].
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Principal bundle structure of X 5

2.1. Metric measure spaces

Let (X, dX) be a complete separable metric space and µX a Borel probability mea-
sure on X. We call the triple (X, dX , µX) a metric measure space, or an mm-space
for short. We sometimes say that X is an mm-space, in which case the metric and
the measure of X are, respectively, indicated by dX and µX.

Definition 2.1 (mm-Isomorphism). Two mm-spaces X and Y are said to be mm-
isomorphic to each other if there exists an isometry f : suppµX → suppµY such
that f∗µX = µY , where f∗µX is the push-forward measure of µX by f. Such an
isometry f is called an mm-isomorphism. Denote by X the set of mm-isomorphism
classes of mm-spaces.

Note that an mm-space X is mm-isomorphic to (suppµX , dX , µX). We assume
that an mm-space X satisfies

X = suppµX ,

unless otherwise stated.

Definition 2.2 (Lipschitz order). Let X and Y be two mm-spaces. We say that
X (Lipschitz) dominates Y and write Y ≺ X if there exists a 1-Lipschitz map
f : X → Y satisfying f∗µX = µY . We call the relation ≺ on X the Lipschitz order.

The Lipschitz order ≺ is a partial order relation on X .

2.2. Box distance and observable distance

For a subset A of a metric space (X, dX) and for a real number r > 0, we set

Ur(A) := {x ∈ X | dX(x,A) < r},

where dX(x,A) := infa∈A dX(x, a).

Definition 2.3 (Prokhorov distance). The Prokhorov distance dP(µ, ν) between
two Borel probability measures µ and ν on a metric space X is defined to be the
infimum of ε> 0 satisfying

µ(Uε(A)) ≥ ν(A)− ε

for any Borel subset A ⊂ X.

The Prokhorov metric dP is a metrization of the weak convergence of Borel
probability measures on X provided that X is a separable metric space.

Definition 2.4 (Ky Fan metric). Let (X,µ) be a measure space and (Y, dY ) a
metric space. For two µ-measurable maps f, g : X → Y , we define dµKF(f, g) to be
the infimum of ε ≥ 0 satisfying

µ({x ∈ X | dY (f(x), g(x)) > ε}) ≤ ε.

The function dµKF is a metric on the set of µ-measurable maps from X to Y by
identifying two maps if they are equal to each other µ-almost everywhere. We call
dµKF the Ky Fan metric.
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Definition 2.5 (Parameter). Let I := [0, 1) and let X be an mm-space. A map
ϕ : I → X is called a parameter of X if ϕ is a Borel measurable map such that

ϕ∗L1 = µX ,

where L1 is the one-dimensional Lebesgue measure on I.

Note that any mm-space has a parameter (see [18, lemma 4.2]).

Definition 2.6 (Box distance). We define the box distance �(X,Y ) between two
mm-spaces X and Y to be the infimum of ε ≥ 0 satisfying that there exist parameters
ϕ : I → X, ψ : I → Y , and a Borel subset I0 ⊂ I with L1(I0) ≥ 1− ε such that

|dX(ϕ(s), ϕ(t))− dY (ψ(s), ψ(t))| ≤ ε

for any s, t ∈ I0.

Theorem 2.7 ([18, theorem 4.10]). The box distance function � is a complete
separable metric on X .

Various distances equivalent to the box distance are defined and
studied, for example, the Gromov–Prokhorov distance introduced by
Greven–Pfaffelhuber–Winter [5].

Theorem 2.8 ([12, theorem 3.1], [18, remark 4.16]). For any two mm-spaces X
and Y, we have

�(X,Y ) = dGP((X, 2dX , µX), (Y, 2dY , µY )),

where dGP(X,Y ) is the Gromov–Prokhorov metric defined to be the infimum of
dP(µX , µY ) for all metrics on the disjoint union of X and Y that are extensions of
dX and dY. In particular,

dGP(X,Y ) ≤ �(X,Y ) ≤ 2dGP(X,Y ).

The topology induced from the box distance has historically various names, for
example, the weak-Gromov topology. However, we call it the box topology in this
article.

The total variation distance is useful for estimating the box distance.

Definition 2.9 (Total variation distance). The total variation distance dTV(µ, ν)
of two Borel probability measures µ and ν on a topological space X is defined by

dTV(µ, ν) := sup
A

|µ(A)− ν(A)|,

where A runs over all Borel subsets of X.

If µ and ν are both absolutely continuous with respect to a Borel measure ω on
X, then

dTV(µ, ν) =
1

2

∫
X

∣∣∣∣dµdω − dν

dω

∣∣∣∣ dω,
where dµ

dω is the Radon–Nikodym derivative of µ with respect to ω.
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Proposition 2.10 ([18, proposition 4.12]). For any two Borel probability measures
µ and ν on a complete separable metric space X, we have

�((X,µ), (X, ν)) ≤ 2dP(µ, ν) ≤ 2dTV(µ, ν).

Given an mm-space X and a parameter ϕ : I → X of X, we set

ϕ∗Lip1(X) := {f ◦ ϕ | f : X → R is 1-Lipschitz},

which consists of Borel measurable functions on I.

Definition 2.11 (Observable distance). We define the observable distance
dconc(X,Y ) between two mm-spaces X and Y by

dconc(X,Y ) := inf
ϕ,ψ

dH(ϕ
∗Lip1(X), ψ∗Lip1(Y )),

where ϕ : I → X and ψ : I → Y run over all parameters of X and Y, respectively,

and dH is the Hausdorff distance with respect to the metric dL
1

KF.

Theorem 2.12 ([18, proposition 5.5 and theorem 5.13]). The observable distance
function dconc is a metric on X . Moreover, for any two mm-spaces X and Y,

dconc(X,Y ) ≤ �(X,Y ).

We call the topology on X induced from dconc the concentration topology. We
say that a sequence {Xn}∞n=1 of mm-spaces concentrates to an mm-space X if
Xn dconc-converges to X as n→ ∞.

2.3. Pyramid

Definition 2.13 (Pyramid). A subset P ⊂ X is called a pyramid if it satisfies
the following (i) – (iii).

(i) If X ∈ P and Y ≺ X, then Y ∈ P.
(ii) For any Y, Y ′ ∈ P, there exists X ∈ P such that Y ≺ X and Y ′ ≺ X.
(iii) P is non-empty and �-closed.

We denote the set of all pyramids by Π. Note that Gromov’s definition of a
pyramid is only by (i) and (ii). The condition (iii) is added in [18].

For an mm-space X, we define

PX := {Y ∈ X |Y ≺ X} ,

which is a pyramid. We call PX the pyramid associated with X.

We observe that Y ≺ X if and only if PY ⊂ PX . Note that X itself is a pyramid.
We define the weak convergence of pyramids as follows. This is exactly the

Kuratowski–Painlevé convergence as closed subsets of (X ,�) (see [11, §8]).
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Definition 2.14 (Weak convergence). Let P and Pn, n = 1, 2, . . ., be pyramids.
We say that Pn converges weakly to P as n → ∞ if the following (i) and (ii) are
both satisfied.

(i) For any mm-space X ∈ P, we have

lim
n→∞

�(X,Pn) = 0.

(ii) For any mm-space X ∈ X \ P, we have

lim inf
n→∞

�(X,Pn) > 0.

Theorem 2.15 ([18, Section 6]). There exists a metric ρ on Π such that the
following (i)–(iv) hold.

(i) ρ is compatible with weak convergence.
(ii) Π is ρ-compact.
(iii) The map X 3 X 7→ PX ∈ Π is a 1-Lipschitz topological embedding map

with respect to dconc and ρ.
(iv) The image of X is ρ-dense in Π.

In particular, (Π, ρ) is a compactification of (X , dconc). We call (Π, ρ) the pyra-
midal compactification of (X , dconc). We often identify X with PX , and we say that
a sequence of mm-spaces converges weakly to a pyramid if the associated pyramid
converges weakly.

Definition 2.16 (Approximation of a pyramid). A sequence {Ym}∞m=1 of mm-
spaces is called an approximation of a pyramid P provided that it satisfies

Y1 ≺ Y2 ≺ · · · ≺ Ym ≺ · · · and
∞⋃
m=1

PYm

�

= P.

In particular, {Ym}∞m=1 converges weakly to P as m→ ∞ and Ym ∈ P for all m.

It is known that any pyramid P admits an approximation (see [18, lemma 7.14]).

2.4. Separation distance

The separation distance is one of the most fundamental invariants of an mm-space
and a pyramid.

Definition 2.17 (Separation distance). Let X be an mm-space. For any real
numbers κ0, κ1, . . . , κN > 0 with N ≥ 1, we define the separation distance

Sep(X;κ0, κ1, . . . , κN )

of X as the supremum of mini6=j dX(Ai, Aj) over all sequences of N+ 1 Borel subsets
A0, A1, . . . , AN ⊂ X satisfying µX(Ai) ≥ κi for all i = 0, 1, . . . , N . If κi > 1
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for some i, then we define Sep(X;κ0, κ1, . . . , κN ) := 0. Moreover, we define the
separation distance of a pyramid P by

Sep(P;κ0, κ1, . . . , κN ) := lim
δ→0+

sup
X∈P

Sep(X;κ0 − δ, κ1 − δ, . . . , κN − δ) (≤ +∞).

The separation distance for mm-spaces is an invariant under mm-isomorphism.
Note that

Sep(PX ;κ0, κ1, . . . , κN ) = Sep(X;κ0, κ1, . . . , κN )

for any κ0, κ1, . . . , κN > 0 and that Sep(P;κ0, κ1, . . . , κN ) is monotone non-
increasing and left-continuous in κi for each i = 0, 1, . . . , N , and that

Sep(P;κ0, κ1, . . . , κN ) ≤ Sep(P ′;κ0, κ1, . . . , κN ) if P ⊂ P ′.

Theorem 2.18 ([16, theorem 1.1], Limit formula for separation distance). Let P
and Pn, n = 1, 2, . . ., be pyramids. If Pn converges weakly to P as n→ ∞, then

Sep(P;κ0, κ1, . . . , κN ) = lim
ε→0+

lim inf
n→∞

Sep(Pn;κ0 − ε, κ1 − ε, . . . , κN − ε)

= lim
ε→0+

lim sup
n→∞

Sep(Pn;κ0 − ε, κ1 − ε, . . . , κN − ε)

for any κ0, κ1, . . . , κN > 0.

3. Scale-change action

In this section, we prove theorems 1.1–1.3.
Let R+ := (0,+∞) be the multiplicative group of positive real numbers. We

consider the scale-change action on X ;

R+ ×X 3 (t,X) 7→ tX := (X, tdX , µX) ∈ X .

The one-point space ∗ is the only fixed-point of this action and the set X∗ := X \{∗}
is invariant. The R+-action on X∗ is free. Let Σ := X∗/R+ be the quotient space of
X∗ and π : X∗ → Σ the quotient map. We denote the orbit π(X) by [X].

Simultaneously, we consider the scale-change action on Π;

R+ ×Π 3 (t,P) 7→ tP := {tX |X ∈ P} ∈ Π,

which is a natural extension of the action on X . Denote by Fix(Π) the set of
fixed-points of this action, and put Π∗ := Π \ Fix(Π). Then, R+ acts on Π∗ freely.

For the proof of theorem 1.1, we need a lemma.

Lemma 3.1. Let Yε be the mm-space defined by Yε := ({0, 1}, | · |, (1− ε)δ0 + εδ1)
for 0 < ε < 1. Then, for any closed subset V of Σ with non-empty interior with
respect to the box topology, there exists a δ(V ) > 0 such that [Yε] belongs to V for
any ε with 0 < ε ≤ δ(V ).

Proof. Let V be a closed subset V ⊂ Σ with non-empty interior. Since any mm-
space can be approximated by an mm-space with finite diameter, there is an mm-
space X with finite diameter such that [X] is an interior point of V. Suppose that
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[Yε] does not belong to V. Then, since Yε is an element in the open set π−1(Σ\V ),
there is a large number rε > 0 such that the mm-space Zε defined by

Zε := X t {z}, dZε |X×X := dX , dZε(z,X) := rε, µZε := (1− ε)µX + εδz

satisfies r−1ε Zε ∈ π−1(Σ\V ). Indeed, �(Yε, r
−1
ε Zε) is sufficiently small sinceX ⊂ Zε

is close to a one-point by scaling down Zε with r−1ε dZε(z,X) = 1. On the other
hand, Zε �-converges to X as ε → 0+, which implies [Zε] ∈ V for ε> 0 small
enough. This is a contradiction. Thus, [Yε] belongs to V for every sufficiently small
ε> 0. This completes the proof. �

Lemma 3.1 implies the following.

Lemma 3.2. For the quotient of the box topology on Σ, any two distinct points in Σ

cannot be separated by any closed neighbourhoods. In particular, Σ is not a Urysohn
space.

Proof. We take two distinct points [X], [X ′] ∈ Σ and take any closed neighbour-
hoods V, V

′
of [X], [X ′], respectively. Lemma 3.1 proves that [Yε] belongs to both

V and V
′
for 0 < ε ≤ min{δ(V ), δ(V ′)}. This completes the proof. �

Remark 3.3. As is proved in proposition 3.10, Σ is Hausdorff. In lemmas 3.1 and
3.2, to consider closed neighbourhoods is essential.

Corollary 3.4. For the quotient of the concentration topology, Σ is not Urysohn.
Moreover, Π∗/R+ is not Urysohn.

Proof. Since the quotient of the concentration topology is coarser than that of the
box topology on Σ, lemma 3.2 implies the first statement of the corollary. Since
Σ is contained in Π∗/R+ as a subspace, we obtain the second. This completes the
proof. �

Proof of theorem 1.1. Suppose that X∗ is homeomorphic to Σ× R+. Since X∗ is a
metric space, Σ ' Σ× {1} is metrizable, which contradicts lemma 3.2 for the box
topology and corollary 3.4 for the concentration topology. In the same way, X is
not homeomorphic to the cone over Σ. This completes the proof. �

In the same way as above, we see the following.

Theorem 3.5 Π∗ is not homeomorphic to (Π∗/R+)× R+.

The rest of this section is devoted to prove theorems 1.2 and 1.3.
We first assume that X is equipped with the box topology and prove theorem

1.2 for the box topology.

Proposition 3.6. π : X∗ → Σ is a principal R+-bundle.

Proof. We verify that if sequences {Xn}∞n=1 ⊂ X∗ and {tn}∞n=1 ⊂ R+ satisfy that Xn

and tnXn �-converge to X ∈ X∗ and tX, respectively, as n→ ∞, then tn converges
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to t. Since X ∈ X∗, there exist real numbers κ0, . . . , κN > 0 with
∑N
i=0 κi < 1 such

that

0 < Sep(X;κ0, . . . , κN ) < +∞.

Suppose that tn 6→ t. There exist a real number δ > 0 and a subsequence {tnk}
∞
k=1

such that either tnk > t+ δ for any k or tnk < t− δ for any k. By applying theorem
2.18, if tnk > t+ δ, then we have

t Sep(X;κ0, . . . , κN ) = Sep(tX;κ0, . . . , κN )

= lim
ε→0+

lim sup
k→∞

Sep(tnkXnk
;κ0 − ε, . . . , κN − ε)

≥ (t+ δ) lim
ε→0+

lim sup
k→∞

Sep(Xnk
;κ0 − ε, . . . , κN − ε)

= (t+ δ) Sep(X;κ0, . . . , κN ),

which implies the contradiction t ≥ t + δ. Similarly, if tnk < t − δ, then the
contradiction t ≤ t− δ holds. Thus, we obtain tn → t. The proof is completed. �

Let us prove the local triviality of the principal fibre bundle π : X∗ → Σ. Let ∆
be a real number with 0 < ∆ < 1 and put

X∆ := {X ∈ X |µX({x}) < ∆ for all x ∈ X} .

We remark that supx∈X µX({x}) < ∆ if and only if diam(X;∆) > 0, where
diam(X;α) is the partial diameter, which is a fundamental invariant of an
mm-space, given by

diam(X;α) := inf {diamA |Ais a Borel subset with µX(A) ≥ α} .

We see that X∆ is open. We have X∆ ⊂ X∆′ for ∆ ≤ ∆′, and

X∗ =
⋃

0<∆<1

X∆.

Since X ∈ X∆ implies tX ∈ X∆ for any t > 0, the set X∆ is invariant with respect
to the R+-action. Put Σ∆ := X∆/R+. Then, for the local triviality, it is sufficient
to prove that X∆ is homeomorphic to Σ∆ × R+ for every ∆ ∈ (0, 1).

We define a map r∆ : X∆ → R+ by

r∆(X) :=

∫ ∆+1
2

0

diam(X; s) ds, X ∈ X∆.

Note that, for any X ∈ X∆,

r∆(X) ≥ 1−∆

2
diam(X;∆) > 0

and that r∆(tX) = t r∆(X) for any t > 0 since diam(tX; s) = tdiam(X; s) for any
s > 0.
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Lemma 3.7. ([18, lemma 5.43]). If a sequence {Xn}∞n=1 of mm-spaces �-converges
to an mm-space X, then we have

diam(X; s) ≤ lim inf
n→∞

diam(Xn; s) ≤ lim sup
n→∞

diam(Xn; s) ≤ lim
δ→0+

diam(X; s+ δ)

for any s> 0.

Lemma 3.8. The map r∆ is continuous on X∆.

Proof. Take any sequence {Xn}∞n=1 ⊂ X∆ �-converging to an mm-space X ∈ X∆.
Let

fn(s) := diam(Xn; s) and f(s) := diam(X; s)

for s ∈ [0, ∆+1
2 ]. Since f is non-decreasing on [0, ∆+1

2 ], the discontinuous points of
f are at most countable. Thus, lemma 3.7 implies fn converges almost everywhere
to f and

lim sup
n→∞

sup
s∈[0,∆+1

2 ]

fn(s) ≤ diam(X;
∆ + 3

4
) < +∞.

Therefore, by the dominated convergence theorem,

lim
n→∞

r∆(Xn) = lim
n→∞

∫ ∆+1
2

0

fn(s) ds =

∫ ∆+1
2

0

f(s) ds = r∆(X).

The proof is completed. �

Proof of theorem 1.2 for the box topology. The continuous 1-homogeneous map
r∆ : X∆ → R+ induces the homeomorphism Φ: X∆ → Σ∆ × R+ defined by

Φ(X) := ([X], r∆(X)) for X ∈ X∆.

Indeed, the inverse map Φ−1 is given by

Φ−1([X], t) = r∆(X)−1tX.

In other words, the map r∆ produces the continuous section

Σ∆ 3 [X] 7→ r∆(X)−1X ∈ X∆,

so that X∆ → Σ∆ is trivial. This implies the local triviality of our principal fibre
bundle R+ → X∗ → Σ.

Theorem 1.1 proves that the fibre bundle R+ → X∗ → Σ is globally non-trivial.
This completes the proof of theorem 1.2 for the box topology. �

The following corollary is a by-product of theorem 1.2.

Corollary 3.9. There is no continuous 1-homogeneous map r : X∗ → R+ with
respect to the box topology on X∗.

The following proposition is compared with lemma 3.2.
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Proposition 3.10. Σ is a Hausdorff space.

Proof. For any distinct two points [X], [X ′] ∈ Σ, there exists 0 < ∆ < 1 such that
[X], [X ′] ∈ Σ∆. Since X∆ and Σ∆×R+ are homeomorphic, Σ∆ is metrizable. Thus,
the two points [X], [X ′] can be separated by neighbourhoods in Σ since Σ∆ is open
in Σ. The proof is completed. �

Before proving theorem 1.2 for the concentration topology, we study the scale-
change action on Π and prove theorem 1.3 with the help of theorem 1.7, where
the proof of theorem 1.7 is deferred to the next section. The concentration case of
theorem 1.2 is obtained as a corollary of theorem 1.3.

Proposition 3.11. The quotient map π : Π∗ → Π∗/R+ is a principal R+-bundle.

Proof. Assume that {Pn}∞n=1 ⊂ Π∗ and {tn}∞n=1 ⊂ R+ satisfy that Pn and tnPn
converge weakly to P ∈ Π∗ and tP, respectively, as n → ∞. Since P ∈ Π∗, there
exist real numbers κ0, . . . , κN > 0 with

∑N
i=0 κi < 1 such that

0 < Sep(P;κ0, . . . , κN ) < +∞

by theorem 1.7. By the same argument as in the proof of proposition 3.6, we have
tn → t as n→ ∞. The proof is completed. �

Proof of theorem 1.3 under assuming theorem 1.7. For any tuple κ =
(κ0, κ1, . . . , κN ) of positive real numbers with

∑N
i=0 κi < 1, we define

Πκ :=

{
P ∈ Π

∣∣∣∣∣ Sep(P;κ0, . . . , κN ) < +∞and

Sep(P;κ0 + δ, . . . , κN + δ) > 0for some δ > 0

}
.

It is obvious that Πκ is invariant under R+-action. We prove that Πκ is open.
Indeed, for any sequence {Pn}∞n=1 of pyramids convergent weakly to a pyramid P,
if Sep(Pn;κ0, . . . , κN ) = +∞, then

Sep(P;κ0, . . . , κN ) ≥ lim sup
n→∞

Sep(Pn;κ0, . . . , κN ) = +∞

by theorem 2.18, and if Sep(Pn;κ0 + δ, . . . , κN + δ) = 0 for any δ > 0, then

Sep(P;κ0 + δ, . . . , κN + δ) ≤ lim inf
n→∞

Sep(Pn;κ0 +
δ

2
, . . . , κN +

δ

2
) = 0

for any δ > 0 by theorem 2.18. These imply that Πκ is open.
We define a map rκ : Πκ → R+ by

rκ(P) :=

∫ 1

0

Sep(P;κ0 + s, . . . , κN + s) ds, P ∈ Πκ.

Then, the map rκ is continuous and 1-homogeneous on Πκ, so that Πκ → Πκ/R+

is trivial.
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14 D. Kazukawa, H. Nakajima and T. Shioya

The rest is to prove

Π∗ =
⋃
κ

Πκ.

By theorem 1.7, the inclusion
⋃
κΠκ ⊂ Π∗ is obvious. To prove the reverse inclusion

Π∗ ⊂
⋃
κΠκ, we take any P ∈ Π∗. By theorem 1.7, there exist real numbers

κ0, κ1, . . . , κN > 0 with
∑N
i=0 κi < 1 such that

0 < Sep(P;κ0, . . . , κN ) < +∞.

By the left-continuity of Sep(P; s0, . . . , sN ) in si, there is ε> 0 such that

Sep(P;κ0 − ε, . . . , κN − ε) < +∞,

which implies P ∈ Π(κ0−ε,...,κN−ε) and then Π∗ ⊂
⋃
κΠκ. Thus, we obtain the

local triviality of π : Π∗ → Π∗/R+. The proof is completed. �

Proof of theorem 1.2 for the concentration topology. Assume that X is equipped
with the concentration topology and consider the R+-action. Then, π : X∗ →
X∗/R+ is the restriction of bundle π : Π∗ → Π∗/R+. Thus, it is also a principal
R+-bundle and locally trivial (see [7]). This bundle is globally non-trivial because
of theorem 1.1. We finish the proof. �

Corollary 3.12.

(i) There is no continuous 1-homogeneous map r : Π∗ → R+.
(ii) There is no continuous 1-homogeneous map r : X∗ → R+ with respect to the

concentration topology on X∗.

We also obtain the following proposition.

Proposition 3.13. Let XNA be the space of all non-atomic mm-spaces. Then,
π : XNA → XNA/R+ is a trivial bundle with respect to the box and concentration
topologies.

Proof. For the box topology, since XNA is an R+-invariant subspace of X∆ for any
∆, we see that π : XNA → XNA/R+ is the restriction of trivial bundle π : X∆ → Σ∆.
Similarly, for the concentration topology, XNA is a subspace of Πκ for any κ. This
implies the triviality. �

4. Scale-invariant pyramids

In this section, we prove theorems 1.7 and 1.8. We recall that A is the set of all
monotone non-increasing sequences of non-negative real numbers with total sum
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not greater than 1. We equip A with the weak topology as a closed convex subset
of the space l2. In particular, A is compact. For every A = {ai}∞i=1 ∈ A, we set

PA :=

{
X ∈ X

∣∣∣∣∣There exists a sequence {xi}∞n=1 ⊂ Xsuch that
∞∑
i=1

aiδxi ≤ µX

}
.

We remark that PA is a pyramid a priori, where the �-closedness of PA follows
from the argument in the proof of claim 4.2 below.

4.1. Characterization of Fix(Π)

In order to prove theorem 1.7, we need a lemma.

Lemma 4.1. Let a1, . . . , ak, k < +∞, and ε be positive numbers with
∑k
i=1 ai < 1

and mini=1,...,k ai ≥ ε > 0. If an mm-space X admits distinct k points {xi}ki=1 with

µX({x})

≥ ai if x = xi,

< ε if x 6= xi,
and

k∑
i=1

(µX({xi})− ai) < ε,

then there exist positive numbers κ0, . . . , κN > 0 such that κi ≤ ε for every i,

0 < 1−
k∑
i=1

ai −
N∑
i=0

κi ≤ ε, and Sep(X; a1, . . . , ak, κ0, . . . , κN ) > 0.

Proof. Take any mm-space X having distinct k points {xi}ki=1 with

µX({x})

≥ ai if x = xi,

< ε if x 6= xi.

Let {ξi}∞i=1 be a countable dense subset of X and let di := dX(ξi, · ). Put

X0 := X \
k⋃
i=1

Uε′(xi)

for some sufficiently small ε′ > 0 with µX(X \X0)−
∑k
i=1 µX({xi}) =: η0 � ε. We

first find ε-atomic points α1, . . . , αm of d1∗(µXbX0
), i.e.,

d1∗(µXbX0
)({t})

≥ ε if t = αi,

< ε if t 6= αi,

if these exist. We put

Xi := d−11 ({αi}) ∩X0, i = 1, . . . ,m, and X(1) :=
m⋃
i=1

Xi ⊂ X0.
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16 D. Kazukawa, H. Nakajima and T. Shioya

There exist finitely many disjoint closed intervals I0, . . . , Il1 of R such that

0 < d1∗(µXbX0
)(Ii) =: κi ≤ ε, i = 0, . . . , l1,

and d1∗(µXbX0
)(R \ ({α1, . . . , αm} t

l1⊔
i=0

Ii)) =: η1 � ε.

We put Ai := d−11 (Ii) ∩X0. Note that µX(Ai) = κi.
We next find ε-atomic points αi1, . . . , αimi of d2∗(µXbXi) for i = 1, . . . ,m if

these exist, and we set

Xij := d−12 ({αij}) ∩Xi, j = 1, . . . ,mi, and X(2) :=
m⋃
i=1

mi⋃
j=1

Xij ⊂ X(1).

There exist finitely many disjoint closed intervals Il1+1, . . . , Il1+l2 such that

0 < d2∗(µXbXi(j))(Ij) =: κj ≤ ε, j = l1 + 1, . . . , l1 + l2, for some i(j) ∈ {1, . . . ,m},

and d2∗(µXb
X(1))(R \ ({αij}i,j t

l1+l2⊔
j=l1+1

Ij)) =: η2 � ε.

We put Aj := d−12 (Ij) ∩Xi(j) for every j = l1 + 1, . . . , l1 + l2.

Repeating this construction, we obtain a monotone sequence X(1) ⊃ X(2) ⊃ · · ·
and a disjoint family {Ai} on X.

We prove that X(n) = ∅ for some n. It is sufficient to prove
⋂∞
n=1X

(n) = ∅ since
this implies µX(X(n)) → 0 as n → ∞, which contradicts the fact µX(X(n)) ≥ ε if
X(n) 6= ∅. Suppose that there exists a point x0 ∈

⋂∞
n=1X

(n) 6= ∅. Then, there exists
a sequence {ik}k such that x0 ∈ Xi1i2···ik for any k, where ik ∈ {1, . . . ,mi1i2···ik−1}.
Then it holds that

∞⋂
k=1

Xi1i2···ik = {x0}.

Indeed, suppose that there exists another point y ∈
⋂∞
k=1Xi1i2···ik and let r0 :=

dX(x0, y)/4. There exists a sufficiently large k0 such that dX(ξk0 , x0) ≤ r0. Since
x0, y ∈ Xi1i2···ik0

, we have

dX(ξk0 , x0) = dX(ξk0 , y) = αi1i2···ik0
,

which implies the contradiction 4r0 = dX(x0, y) ≤ dX(ξk0 , x0) + dX(ξk0 , y) ≤ 2r0.
Thus, we obtain

µX({x0}) = µX(
∞⋂
k=1

Xi1i2···ik) = lim
k→∞

µX(Xi1i2···ik) ≥ ε,

but this contradicts the assumption of this lemma.
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Therefore, we have

Sep(X; a1, . . . , ak, κ0, . . . , κN ) ≥ min{min
i6=j

dX(xi, xj),min
i,j

dX(xi, Aj),

min
i6=j

dX(Ai, Aj)} > 0,

where N = l1 + l2 + · · ·+ ln, and

1 = µX(X0) +
k∑
i=1

µX({xi}) + η0

= µX(X(1)) +

l1∑
i=0

κi + η1 +
k∑
i=1

µX({xi}) + η0

= µX(X(2)) +

l1+l2∑
i=0

κi +
2∑
i=0

ηi +
k∑
i=1

µX({xi})

= µX(X(n)) +
N∑
i=0

κi +
n∑
i=0

ηi +
k∑
i=1

µX({xi}).

Therefore, taking ηi with
∑n
i=0 ηi ≤ ε −

∑k
i=1(µX({xi}) − ai), we obtain the

conclusion. �

Proof of theorem 1.7. Since (iv) ⇒ (i) ⇒ (ii) ⇒ (iii) is trivial, we prove (iii) ⇒
(iv). Assume that a pyramid P satisfies the condition (iii). Let {Yn}∞n=1 be an
approximation of P and let

Y∞ := lim
←−

Yn

be the inverse limit of {Yn}∞n=1. There exists a probability measure µY∞ such that

πn∗µY∞ = µYn

for any n, where πn : Y∞ → Yn is the projection (see [2]). Note that Y∞ admits an
extended metric that can take values in [0,+∞] and πn is 1-Lipschitz.

Let {yi}Mi=1 ⊂ Y∞, M ≤ +∞, be the sequence of atomic points of µY∞ and let

ai := µY∞({yi})

for every i. By relabeling, we can assume that

a1 ≥ a2 ≥ · · · ≥ aM ≥ 0 =: aM+1 = aM+2 = · · ·

and then A := {ai}∞i=1 ∈ A. Then, for any n, we have

M∑
i=1

aiδπn(yi) = πn∗(
M∑
i=1

aiδyi) ≤ πn∗µY∞ = µYn .

�
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18 D. Kazukawa, H. Nakajima and T. Shioya

Claim 4.2. It holds that

P ⊂ PA.

Proof. Take any X ∈ P. Then there exist Borel maps fn : Yn → X such that fn is
1-Lipschitz up to εn with non-exceptional domain Ỹn, that is, µYn(Ỹn) ≥ 1 − εn
and

dX(fn(y), fn(y
′)) ≤ dYn(y, y

′) + εn

for any y, y′ ∈ Ỹn, and dP(fn∗µYn , µX) ≤ εn for some εn → 0 (see [10, lemma 4.6]).
We prove that, for each i = 1, 2, . . . ,M , the sequence {fn ◦ πn(yi)}∞n=1 ⊂ X

has a convergent subsequence. Suppose that {fn ◦ πn(yi)}∞n=1 has no convergent
subsequence. Then, there exist a real number η > 0 and a subsequence {nk}∞k=1 of

{n} such that {Bη(fnk ◦ πnk(yi))}
∞
k=1 is a disjoint family. Since πnk(yi) ∈ Ỹnk for

sufficiently large k and

Bη
2
(πnk(yi)) ∩ Ỹnk ⊂ f−1nk (B

η
2+εnk

(fnk ◦ πnk(yi))),

we have

0 < ai ≤ µYnk ({πnk(yi)}) ≤ µYnk (B
η
2
(πnk(yi)))

≤ fnk∗µYnk (B
η
2+εnk

(fnk ◦ πnk(yi))) + εnk ≤ µX(Bη(fnk ◦ πnk(yi))) + 2εnk

for sufficiently large k, which contradicts the disjointness of {Bη(fnk ◦πnk(yi))}
∞
n=1.

Thus, {fn ◦ πn(yi)}∞n=1 has a convergent subsequence.
Let

xi := lim
k→∞

fnk ◦ πnk(yi),

where {nk} is a subsequence of {n} such that {fnk ◦πnk(yi)}
∞
k=1 converges for any

i = 1, 2, . . . ,M (by the diagonal argument). We prove

M∑
i=1

aiδxi ≤ µX .

For any non-negative bounded continuous function ϕ : X → [0,+∞), by Fatou’s
lemma, we have

M∑
i=1

ai ϕ(xi) ≤ lim inf
k→∞

M∑
i=1

ai ϕ(fnk ◦πnk(yi)) ≤ lim
k→∞

∫
Ynk

ϕ◦fnk dµYnk =

∫
X

ϕdµX ,

which implies
∑M
i=1 aiδxi ≤ µX . Therefore, the proof of this claim is completed. �
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We next prove the converse inclusion under the condition (iii). We take any ε> 0
and any positive integer k such that

k = sup {i | ai ≥ ε}.

Then, for sufficiently large n, since πn : {y1, . . . , yk} → Yn is injective, we have

µYn({y})

≥ ai if y = πn(yi),

< ε if y 6= πn(yi),
and

k∑
i=1

(µYn({πn(yi)})− ai) < ε.

Indeed, if not, then the atomic part of µY∞ on the inverse limit Y∞ is not equal

to
∑M
i=1 aiδyi . Thus, by lemma 4.1, there exist κ0, . . . , κN > 0 such that κi ≤ ε for

every i,

0 < 1−
k∑
i=1

ai −
N∑
i=0

κi ≤ ε, and Sep(Yn; a1, . . . , ak, κ0, . . . , κN ) > 0

for some large n. Thus, we have

Sep(P; a1, . . . , ak, κ0, . . . , κN ) ≥ Sep(Yn; a1, . . . , ak, κ0, . . . , κN ) > 0.

Combining this and the condition (iii) implies that

Sep(P; a1, . . . , ak, κ0, . . . , κN ) = ∞.

By the limit formula of the separation distance, we have

lim
η→0+

lim
n→∞

Sep(Yn; a1 − η, . . . , ak − η, κ0 − η, . . . , κN − η) = ∞.

Now we prove the following claim.

Claim 4.3. It holds that

P ⊃ PA.

Proof. We take any mm-space X admitting a sequence {xi}∞i=1 ⊂ X such that∑∞
i=1 aiδxi ≤ µX . By the approximation, we can assume that X is finite.

Indeed, there exist finite nets Nn of X and Borel maps ξn : X → Nn such that
limn→∞ dP(ξn∗µX , µX) = 0. Then, we have

∞∑
i=1

aiδξn(xi) ≤ ξn∗µX ,

so that X can be approximated keeping our assumption. Let {z1, . . . , zm} := X
and

νX := µX −
k∑
i=1

aiδxi .
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Since limη→0+ limn→∞ Sep(Yn; a1− η, . . . , ak− η, κ0− η, . . . , κN − η) = ∞, there
exist Borel subsets Yn,1, . . . , Yn,N+k+1 ⊂ Yn for any sufficiently large n such that

µYn(Yn,i) ≥ ai − ηfor i = 1, . . . , k, µYn(Yn,j+k+1) ≥ κj − ηfor j = 0, . . . , N,

and min
i6=j

dYn(Yn,i, Yn,j) ≥ diamX

for some η < (N + k + 1)−1ε. We define a Borel map gn : Yn → X satisfying

gn(Yn,i) = xifor i = 1, . . . , k and gn(Yn,j+k+1) = zlfor jl−1 ≤ j < jl,

where

j0 := 0 and jl := max

j ≥ jl−1

∣∣∣∣∣ νX({zl}) ≥
j−1∑

i=jl−1

κi

 for l = 1, . . . ,m.

Letting Ỹn :=
⋃jm+k
i=1 Yn,i, by the definition of gn, we have

0 ≤ µX({zl})− gn∗(µYnbỸn)({zl}) ≤ 2ε

for any l = 1, . . . ,m. In particular, 1− µYn(Ỹn) ≤ 2mε. Moreover, for any B ⊂ X,
we have

gn∗µYn(B) ≤ gn∗(µYnbỸn)(B) + 2mε ≤ µX(B) + 2mε.

Thus, gn is 1-Lipschitz up to 2mε with non-exceptional domain Ỹn and
dP(gn∗µYn , µX) ≤ 2mε. Since Yn ∈ P, taking ε→ 0, we obtain X ∈ P (see [10,
corollary 4.7]). �

We finish the proof of this theorem.

4.2. Topological structure of Fix(Π)

The goal here is to prove theorem 1.8.

Lemma 4.4. The map A 3 A 7→ PA ∈ Fix(Π) is injective.

Proof. Take any A = {ai}∞i=1, A
′ = {a′i}∞i=1 ∈ A with A 6= A′. There exists a

number k such that ai = a′i for any i < k and ak 6= a′k. We can assume that
ak < a′k. An mm-space X is defined as the unit interval ([0, 1], | · |) with probability
measure

µX :=
∞∑
i=1

aiδ2−i +

(
1−

∞∑
i=1

ai

)
L1,
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where L1 is the Lebesgue measure on [0, 1]. Then, we have X ∈ PA and X 6∈
PA′ . Indeed, if X ∈ PA′ , then there exists a sequence {xi}∞i=1 ⊂ X such that∑∞
i=1 a

′
iδxi ≤ µX . Since A is monotone non-increasing, we have

k∑
i=1

a′i ≤ µX({x1, . . . , xk}) ≤
k∑
i=1

ai <
k∑
i=1

a′i,

which is a contradiction. Therefore, we obtain PA 6= PA′ . This completes
the proof. �

Lemma 4.5. The map A 3 A 7→ PA ∈ Fix(Π) is continuous.

Proof. Assume that An = {ani}∞i=1 ∈ A converges weakly to A = {ai}∞i=1 ∈ A. Let
us prove that PAn converges weakly to PA.

We first prove that limn→∞�(X,PAn) = 0 for any X ∈ PA. By the standard
approximation, X can be assumed to be a finite mm-space. Take any ε> 0 and find
a number k such that ak+1 < ε. Then, for sufficiently large n, we have

|ani − ai| <
ε

2i
for i = 1, . . . , k and an,k+1 < ε.

Since An is a monotone non-increasing sequence, an,k+1 < ε implies supi>k ani < ε.
Take such large n and fix it. Let {xi}∞i=1 be a sequence in X such that

∑∞
i=1 aiδxi ≤

µX and let {y1, . . . , yN} := X. We define

X̃ := {ξ1, . . . , ξk, η1, . . . , ηN}

and define two maps ϕ : X̃ → X and ψ : X → X̃ by

ϕ(x) :=

xi if x = ξi,

yi if x = ηi,
and ψ(yi) := ηi.

We now define two probability measures µX̃ and µX̃n on X̃ as

µX̃ :=
k∑
i=1

aiδξi + ψ∗(µX −
k∑
i=1

aiδxi), µX̃nb{ξ1,...,ξk}:=
k∑
i=1

aniδξi

and µX̃nb{η1,...,ηN } is determined as follows. Find finitely many real numbers
bn1, . . . , bnM ∈ [0, ε) with

M∑
i=1

bni = 1−
∞∑
i=1

ani

and set

cnj :=

bnj if 1 ≤ j ≤M,

an,j−M+k if j > M.
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Note that supj cnj < ε. We define

µX̃n({ηi}) :=
ji∑

j=ji−1+1

cnj

for i = 1, . . . , N , where j0 := 0, jN := +∞, and

ji := inf

j > ji−1

∣∣∣∣∣
j∑

l=ji−1+1

cnl ≥ µX̃({ηi})


for i = 1, . . . , N −1. Under inf ∅ = +∞, if there exists i0 < N such that ji0 = · · · =
jN = +∞, then we understand

µX̃n({ηi0+1, . . . , ηN}) = 0.

Letting i0 := min {1 ≤ i ≤ N | ji = +∞}, we have

µX̃({ηi}) ≤ µX̃n({ηi}) ≤ µX̃({ηi}) + ε

for any i < i0 by the definition. On the other hand, since

1−
k∑
i=1

ani =
∞∑
j=1

cnj ≤
i0∑
i=1

µX̃({ηi}) + (i0 − 1)ε,

we have

N∑
i=i0+1

µX̃({ηi}) = 1−
k∑
i=1

ai −
i0∑
i=1

µX̃({ηi}) ≤
k∑
i=1

|ani − ai|+ (i0 − 1)ε ≤ i0ε.

These imply that

|µX̃n({ηi0})− µX̃({ηi0})|

≤
i0−1∑
i=1

|µX̃n({ηi})− µX̃({ηi})|+
N∑

i=i0+1

µX̃({ηi}) +
k∑
i=1

|ani − ai|

≤ 2i0ε ≤ 2Nε.

Hence, we have

dTV(µX̃n , µX̃) =
1

2

k∑
i=1

|ani − ai|+
1

2

N∑
i=1

|µX̃n({ηi})− µX̃({ηi})| ≤ 2Nε.

Therefore, letting Xn := (X, dX , ϕ∗µX̃n), we obtain Xn ∈ PAn and

�(X,Xn) ≤ 2dTV(µX , ϕ∗µX̃n) ≤ 2dTV(µX̃ , µX̃n) ≤ 4Nε,

which imply limn→∞�(X,PAn) = 0.

https://doi.org/10.1017/prm.2024.111 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.111


Principal bundle structure of X 23

We next prove that lim infn→∞�(X,PAn) > 0 for anyX ∈ X \PA. It is sufficient
to prove that if Xn ∈ PAn �-converges to X, then we have X ∈ PA, due to
considering the contraposition and extracting a subsequence. Assume that Xn ∈
PAn �-converges to X. Let {xni}∞i=1 be a sequence in Xn with

∞∑
i=1

aniδxni ≤ µXn .

There exist Borel maps fn : Xn → X and a sequence εn → 0 such that fn is 1-
Lipschitz up to εn and dP(fn∗µXn , µX) ≤ εn (actually, fn can be assumed to be an
εn-mm-isomorphism but this is unnecessary here). The sequence {fn(xni)}∞n=1 has
a convergent subsequence by the same argument as in the proof of claim 4.2. Let

xi := lim
k→∞

fnk(xnki),

where {nk} is a subsequence of {n} such that {fnk(xnki)}
∞
k=1 converges for any

i. Then, since An converges weakly to A and fn∗µXn converges weakly to µX, we
have

∞∑
i=1

ai ϕ(xi) ≤ lim inf
k→∞

∞∑
i=1

anki ϕ(fnk(xnki)) ≤ lim
k→∞

∫
Xnk

ϕ◦fnk dµXnk =

∫
X

ϕdµX

for any non-negative bounded continuous function ϕ : X → [0,+∞), where the
first inequality follows from Fatou’s lemma. This implies

∑∞
i=1 aiδxi ≤ µX , so that

X ∈ PA. The proof of this lemma is now completed. �

Proof of theorem 1.8. By lemmas 4.4 and 4.5, the map A 3 A 7→ PA ∈ Fix(Π) is
a continuous bijection from the compact space A to the Hausdorff space Fix(Π).
Thus, this is a homeomorphism. The proof is completed. �

5. Contractibility of total and base spaces

In this section, we study the topology of the total space X∗ = X \{∗} and the base
space Σ = X∗/R+, and prove proposition 1.5. Since X∗ and Σ (resp. Π∗ and Π∗/R)
are weakly homotopy equivalent to each other, proposition 1.5 implies corollary 1.6
directly.

Proof of proposition 1.5(i). Let Z be an arbitrary mm-space with at least two
different points and let p ∈ [1,∞]. We define a map H : [0, 1]×X∗ → X∗ by

H(t,X) := (1− t)X ×p tZ, t ∈ [0, 1], X ∈ X∗,

where ×p means the lp-product of two mm-spaces and we agree 0X := ∗ for any
X ∈ X . We see that

H(0, X) = X ×p ∗ = X, H(1, X) = ∗ ×p Z = Z,

and each mm-space H(t,X) has at least two different points, that is, H(t,X) ∈ X∗
for any t ∈ [0, 1] and X ∈ X∗. Since the scaling and the lp-product are continuous
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operations (see [9]), the map H is continuous with respect to both the box and
concentration topologies. Thus, H is a deformation retraction of X∗ onto {Z}.
Therefore, X∗ is contractible. �

On another note, the following proposition can be obtained by the same proof
as above.

Proposition 5.1. Let F be the family of all finite mm-spaces. Then, X \ F is
contractible.

Proof. Just take Z as ([0, 1], | · |,L) in the proof of proposition 1.5(i). Then, H(t,X)
is a deformation retraction of X \ F onto {Z} since H(t,X) is not finite. �

We next prove proposition 1.5(ii) for pyramids. In order to prove this, we prepare
the following lemma about the continuity of the lp-product of pyramids. As for the
lp-product of pyramids, we refer to [4, 11].

Lemma 5.2. If a sequence {Pn}∞n=1 of pyramids converges weakly to a pyramid
P, then, for any mm-space Z and any p ∈ [1,∞], the sequence {Pn ×p PZ}∞n=1

converges weakly to P ×p PZ , where the lp-product of two pyramids P and Q is
given by

P ×p Q :=
⋃

X∈P,Y ∈Q
PX×pY

�

.

Proof. The outline of this proof is similar to that of [10, theorem 1.2]. For simplicity
of the proof, we assume that p < +∞. The case of p = +∞ can be proved in the
same way.

We first prove that for any Y ∈ P ×p PZ ,

lim
n→∞

�(Y,Pn ×p PZ) = 0. (5.1)

Note that (5.1) holds if and only if there exist mm-spaces Xn ∈ Pn, n = 1, 2, . . .,
such that

lim
n→∞

�(Y,PXn×pZ) = 0.

It is sufficient to prove (5.1) for any mm-space Y with Y ≺ X×pZ for some X ∈ P.
Assume that Y ≺ X ×p Z for some X ∈ P. Since Pn → P, there exists a sequence
{Xn}∞n=1 �-converging to X such that Xn ∈ Pn for every n. Then, we have

lim sup
n→∞

�(Xn ×p Z,X ×p Z) ≤ lim
n→∞

�(Xn, X) = 0

by [9, proposition 4.1]. Since Y ≺ X ×p Z, we have

lim sup
n→∞

�(Y,PXn×pZ) = 0

by [18, proposition 6.10]. Therefore, we obtain (5.1) for Y ≺ X ×p Z, and then for
any Y ∈ P ×p PZ .
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We next prove that if an mm-space Y satisfies (5.1), then Y ∈ P×pPZ conversely,
which implies that

lim inf
n→∞

�(Y,Pn ×p PZ) > 0

for any Y 6∈ P×pPZ by choosing an appropriate subsequence. Assume that an mm-
space Y satisfies (5.1) and assume that Y has at least two different points since
∗ ∈ P ×p PZ is always true. Then there exist mm-spaces Xn ∈ Pn, n = 1, 2, . . .,
such that

lim
n→∞

�(Y,PXn×pZ) = 0.

By [10, lemma 4.6], there exist a Borel measurable map fn : Xn ×p Z → Y and a

Borel measurable subset Ỹn ⊂ Xn ×p Z such that dP(fn∗(µXn ⊗ µZ), µY ) ≤ εn,

µn(Ỹn) ≥ 1− εn, and

sup
(x,z),(x′,z′)∈Ỹn

(dY (fn(x, z), fn(x
′, z′))− dXn×pZ((x, z), (x

′, z′))) ≤ εn

for some εn → 0.
Take any ε> 0 and fix it. There exist open subsets Y1, . . . , YN ⊂ Y such that

diamYj < ε and µY (Yj) > 0 for any j = 1, . . . , N ,

N∑
j=1

µY (Yj) > 1− ε, and δ′ := min
j 6=j′

dY (Yj , Yj′) > 0,

cf. [17, lemma 42]. Let

Y0 := Y \
N⊔
j=1

Yj

and take yj ∈ Yj for each j = 0, 1, . . . , N . In the case of Y0 = ∅, it is rather easy

and will be omitted. We define an mm-space Ẏ by

Ẏ := ({yj}Nj=0, dY ,
N∑
j=0

µY (Yj)δyj ).

Let 0 < η � ε be a small real number as

Nη < ε and δ :=
δ′

2
− η > 0.

Then, there exist pairwisely disjoint open subsets Z1, . . . , ZM ⊂ Z such that
diamZi < η and µZ(Zi) > 0 for any i = 1, . . . ,M , and

M∑
i=1

µZ(Zi) > 1− η.

We define subsets Anij ⊂ Xn for every i = 1, . . . ,M , j = 1, . . . , N by

Anij :=
{
x ∈ Xn | there exists z ∈ Zisuch that (x, z) ∈ f−1n (Yj) ∩ Ỹn

}
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and define a 1-Lipschitz map Φn : Xn → (RMN , ‖ · ‖∞) by

Φn(x) := (min{dXn(x,Anij),diam Ẏ })i=1,...,M,j=1,...,N

for x ∈ Xn. By letting

νn := Φn∗µXn ,

since supp νn ⊂ {w ∈ RMN | ‖w‖∞ ≤ diam Ẏ }, the sequence {νn}∞n=1 is tight.
Thus, we can assume that {νn}∞n=1 converges weakly to a Borel probability measure
ν on RMN .

We now define an mm-space X by

X := (RMN , ‖ · ‖∞, ν).

Note that X ∈ P because (RMN , ‖ · ‖∞, νn) ≺ Xn ∈ Pn for every n. Our goal is to
construct a Borel map Ψ: X ×p Z → Ẏ such that dP(Ψ∗(µX ⊗ µZ), µẎ ) < 2ε and

sup
(x,z),(x′,z′)∈Ỹ

(dẎ (Ψ(x, z),Ψ(x′, z′))− dX×pZ((x, z), (x
′, z′))) ≤ 3ε

for some Borel subset Ỹ ⊂ X×pZ with µX⊗µZ(Ỹ ) > 1−2ε. Indeed, if such a map
Ψ exists, then we have Y ∈ PX×pZ by applying [10, lemma 4.6] to the composition

ι ◦Ψ of the inclusion map ι : Ẏ → Y and the map Ψ: X ×p Z → Ẏ . Therefore, we
obtain

Y ∈ P ×p PZ

since PX×pZ ⊂ P ×p PZ .
For each i ∈ {1, . . . ,M}, we set proji : RMN → RN the projection given by

proji((wkl)k=1,...,M,l=1,...,N ) := (wil)l=1,...,N = (wi1, . . . , wiN )

for (wkl)k,l ∈ RMN . Put

νi := proji∗ν and Φn,i := proji ◦ Φn.

We see that {Φn,i∗µXn}
∞
n=1 converges weakly to νi on RN as n → ∞. For each

j ∈ {1, . . . , N}, we define a closed subset Wj ⊂ RN by

Wj :=
{
(w1, . . . , wN ) ∈ RN |wj = 0and wj′ ≥ δfor every j′ 6= j

}
.

�
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We now prepare two claims.

Claim 5.3. For any sufficient large n and for any i = 1, . . . ,M , j = 1, . . . , N , we
have

Φn,i(A
n
ij) ⊂Wj .

Proof. Take any x ∈ Anij . We have

(Φn,i(x))j = min{dXn(x,Anij),diam Ẏ } = 0.

We prove that for any j′ 6= j,

(Φn,i(x))j′ = min{dXn(x,Anij′),diam Ẏ } ≥ δ.

By the definition of δ, it is clear that δ ≤ δ′ ≤ diam Ẏ . We take any x′ ∈ An
ij′ . Then

there exist z, z′ ∈ Zi such that

(x, z) ∈ f−1n (Yj) ∩ Ỹn and (x′, z′) ∈ f−1n (Yj′) ∩ Ỹn.

Thus, we have

δ′ ≤ dY (Yj , Yj′) ≤ dY (fn(x, z), fn(x
′, z′)) ≤ dXn×pZ((x, z), (x

′, z′)) + εn

= (dXn(x, x
′)p + dZ(z, z

′)p)1/p + εn ≤ (dXn(x, x
′)p + ηp)1/p + εn

which implies that dXn(x, x
′) ≥ δ if n is large as εn < δ′/2. Therefore, we have

dXn(x,A
n
ij′) ≥ δ. This completes the proof. �

Claim 5.4. For any j = 1, . . . , N , we have

µY (Yj) ≤
M∑
i=1

νi(Wj)µZ(Zi) + η.

Proof. A straight-forward calculation implies

µY (Yj) ≤ lim inf
n→∞

(µXn ⊗ µZ)(f
−1
n (Yj) ∩ Ỹn)

≤ lim sup
n→∞

M∑
i=1

(µXn ⊗ µZ)(f
−1
n (Yj) ∩ Ỹn ∩ (Xn × Zi)) + η

≤ lim sup
n→∞

M∑
i=1

µXn(A
n
ij)µZ(Zi) + η

≤ lim sup
n→∞

M∑
i=1

Φn,i∗µXn(Wj)µZ(Zi) + η

≤
M∑
i=1

νi(Wj)µZ(Zi) + η,

where the fourth inequality follows from claim 5.3. �

https://doi.org/10.1017/prm.2024.111 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.111


28 D. Kazukawa, H. Nakajima and T. Shioya

We define a Borel map Ψ: X ×p Z → Ẏ by

Ψ(x, z) :=

yj if proji(x) ∈Wjand z ∈ Zi,

y0 otherwise.

First, we prove that

dP(Ψ∗(µX ⊗ µZ), µẎ ) < 2ε. (5.2)

For any j = 1, . . . , N , we have

µẎ ({yj}) = µY (Yj) ≤
M∑
i=1

νi(Wj)µZ(Zi) + η

by claim 5.4. On the other hand, we have

Ψ∗(µX ⊗ µZ)({yj}) = µX ⊗ µZ(
M⊔
i=1

{(x, z) ∈ X × Z | proji(x) ∈Wjand z ∈ Zi})

=
M∑
i=1

νi(Wj)µZ(Zi).

Therefore, we have

µẎ ({yj}) ≤ Ψ∗(µX ⊗ µZ)({yj}) + η

for any j = 1, . . . , N . Taking µẎ ({y0}) < ε and Nη < ε into account, we
obtain (5.2).

Let

Ỹ :=
M⊔
i=1

(proj−1i (
N⊔
j=1

Wj)× Zi) ⊂ X × Z.

We see that

µX ⊗ µZ(Ỹ ) =
M∑
i=1

N∑
j=1

νi(Wj)µZ(Zi) ≥
N∑
j=1

(µẎ ({yj})− η) ≥ 1− ε−Nη > 1− 2ε.

(5.3)
Finally, we prove that

sup
(x,z),(x′,z′)∈Ỹ

(dẎ (Ψ(x, z),Ψ(x′, z′))− dX×pZ((x, z), (x
′, z′))) ≤ 3ε. (5.4)
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Take any (x, z), (x′, z′) ∈ Ỹ and find i, i′ ∈ {1, . . . ,M} and j, j′ ∈ {1, . . . , N} such
that proji(x) ∈ Wj , z ∈ Zi, proji′(x

′) ∈ Wj′ , and z′ ∈ Zi′ . There exist xn ∈ Anij
and x′n ∈ An

i′j′ , n = 1, 2, . . ., such that

‖Φn(xn)− x‖∞, ‖Φn(x′n)− x′‖∞ → 0

as n → ∞. There exists zn ∈ Zi such that (xn, zn) ∈ f−1n (Yj) ∩ Ỹn. For any

x̃n ∈ An
i′j′ and z̃n ∈ Zi′ with (x̃n, z̃n) ∈ f−1n (Yj′) ∩ Ỹn, we have

dẎ (yj , yj′) ≤ dY (Yj , Yj′) + 2ε ≤ dY (fn(xn, zn), fn(x̃n, z̃n)) + 2ε

≤ dXn×pZ((xn, zn), (x̃n, z̃n)) + εn + 2ε

≤ (dXn(xn, x̃n)
p + (dZ(z, z

′) + 2η)p)1/p + εn + 2ε

≤ (dXn(xn, x̃n)
p + dZ(z, z

′)p)1/p + εn + 2ε+ 2η,

which implies that

dẎ (yj , yj′) ≤ (((Φn(xn))i′j′)
p + dZ(z, z

′)p)1/p + εn + 2ε+ 2η.

Thus, we have

dẎ (yj , yj′) ≤ lim sup
n→∞

(((Φn(xn))i′j′)
p + dZ(z, z

′)p)1/p + 3ε

= lim sup
n→∞

(((Φn(xn)− Φn(x
′
n))i′j′)

p + dZ(z, z
′)p)1/p + 3ε

≤ lim sup
n→∞

(‖Φn(xn)− Φn(x
′
n)‖p∞ + dZ(z, z

′)p)1/p + 3ε

= (‖x− x′‖p∞ + dZ(z, z
′)p)1/p + 3ε

= dX×pZ((x, z), (x
′, z′)) + 3ε.

This implies (5.4). Thus, the map Ψ: X ×p Z → Ẏ satisfies (5.2), (5.3), and (5.4),
so that we obtain Y ∈ PX×pZ ⊂ P ×p PZ . Therefore, the sequence {Pn×p PZ}∞n=1

converges weakly to the pyramid P ×p PZ .

Remark 5.5. We conjecture that if two sequences {Pn}∞n=1 and {Qn}∞n=1 of pyra-
mids converge weakly to pyramids P and Q, respectively, then {Pn ×p Qn}∞n=1

converges weakly to P ×pQ as n→ ∞ for all p ∈ [1,∞]. Furthermore, this may be
true for the setting that extends [9]. However, we need some new idea/proof that
does not rely on the partition of the fixed mm-space Z.

Proof of proposition 1.5(ii). Let Z be an arbitrary mm-space with at least two
different points and let p ∈ [1,∞]. We define a map H : [0, 1]×Π∗ → Π∗ by

H(t,P) := Ft(P)×p PtZ , t ∈ [0, 1], P ∈ Π∗,

where Ft(s) := min{s, 1t − 1} for s ≥ 0, which is a monotone metric preserving
function, and Ft(P) for a pyramid P is given by F1(P) := P∗ and

Ft(P) :=
⋃
X∈P

P(X,Ft◦dX,µX )

�

∈ Π
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for t ∈ [0, 1). It is a known fact that F0(P) = P and the map (t,P) 7→ Ft(P)
is continuous on [0, 1] × Π∗. We remark that the map (t,P) 7→ (1 − t)P is not
continuous at t =1. See [11, §5] for more details. We see that

H(0,P) = F0(P)×p P∗ = P, H(1,P) = F1(P)×p PZ = PZ .

Moreover, H(t,P) ∈ Π∗ since H(t,P) 6= P∗ and H(t,P) has finite observable
diameter if t > 0. We prove the continuity of H. Assume that tn → t on [0, 1] and
Pn → P on Π∗. If t > 0, then we have

H(tn,Pn) =
tn
t
(
t

tn
Ftn(Pn)×p PtZ) → Ft(P)×p PtZ = H(t,P)

as n→ ∞ by lemma 5.2 and [10, corollary 1.5]. If t =0, then we have

ρ(H(tn,Pn),H(0,P)) ≤ ρ(H(tn,Pn), Ftn(Pn)) + ρ(Ftn(Pn),P)

≤ ObsDiam(tnZ) + ρ(Ftn(Pn),P)

by [11, proposition 3.4], which implies that

lim
n→∞

ρ(H(tn,Pn),H(0,P)) = 0.

Thus, the map H is continuous, so that it is a deformation retraction of Π∗ onto
{Z}. Therefore, Π∗ is contractible. �

6. Further questions

It is asked in [1, Question 9.1] if the Gromov–Hausdorff space is homeomorphic to
l2. In our previous article [11], we have proved that X is not homeomorphic to l2

with respect to the concentration topology. The following question remains.

Questiona 6.1. Is X homeomorphic to l2 with respect to the box topology?

We also ask the following.

Questiona 6.2. If two sequences {Pn}∞n=1 and {Qn}∞n=1 of pyramids converge
weakly to pyramids P and Q, respectively, then does {Pn ×p Qn}∞n=1 converge
weakly to P ×p Q as n→ ∞ for all p ∈ [1,∞]?

Questiona 6.3. Are Σ and Π∗/R+ contractible?

Questiona 6.4. Are the spaces X and X∗ locally contractible with respect to the
box and/or concentration topologies?

Questiona 6.5. Are Π and Π∗ locally contractible?

The following is already stated in our previous article [11].

Questiona 6.6. Is the observable metric on X geodesic? Is the pyramidal
compactification Π of X geodesic?
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