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SOME STRUCTURAL PROPERTIES OF THE SET OF 
REMOTE POINTS OF A METRIC SPACE 

CATHERINE L. GATES 

A remote point of a metric space X is a point in fiX\X not in the /3AT-closure 
of any discrete subset of X. Remote points have been studied by Fine and 
Gillman [2], Plank [4], Robinson [6], Woods [9, 10], Van Douwen [7] and 
others. The main results concerning the existence of remote points are listed in 
Section 1. In this paper we determine some structural properties of the set of 
remote points of a metric space which has no isolated points. The notat ion of 
Gillman and Jerison [3] and Walker [8] will be used. All spaces are assumed to 
be Tychonoff. 

Let X be a space. The general remote points of X, denoted TX, are those 
points in fiX\X which are not in the /SAT-closure of any nowhere dense sets of 
X. If X is a metric space without isolated points, then TX is precisely the set 
of remote points of X as defined in Walker [8]. In Section 2, it is shown tha t if 
F is a normal space which is the image of a space X under a closed irreducible 
continuous mapping then the set of general remote points of X and tha t of Y 
are homeomorphic. Thus it follows tha t coabsolute normal spaces have 
homeomorphic sets of general remote points. In Section 3 we show tha t an 
arbi t rary normal space has a "decomposit ion" which carries over to the set of 
general remote points and reduces the s tudy of the sets of general remote 
points for normal spaces to two types of spaces: (i) those spaces for which the 
set of locally compact points is dense, and (ii) the nowhere locally compact 
spaces. In Section 4, machinery and properties are developed for the s tudy of 
the general remote points of a space by using the absolute of the space as a 
subspace of its Stone space. Using this approach, it is easy to see t h a t when X 
is a dense subset of Y where X and Y are normal spaces, TY is homeomorphic 
to a subset of TX. In Section 5, the results of Section 4 are used to investigate 
the s t ructure of the set of remote points of a metric space for which the set of 
locally compact points is dense. I t is shown tha t the set of remote points for 
these spaces is made entirely of homeomorphic copies of the set of remote 
points of the real numbers. 

1. Pre l iminar i e s . In this section we list the known results about remote 
points which will be used in this paper. Although the original proofs of 
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Theorems 1.1, 1.2, and 1.4 assumed the continuum hypothesis (Ki = 2Xo), 
it has recently been shown (e.g. van Douwen [7]) that this is not necessary. 

THEOREM 1.1. (Plank) If X is a non-compact separable metric space in which 
the set of isolated points has compact closure, then fiX contains 2C remote points 
which form a dense sub space of fiX\X. 

THEOREM 1.2. (Robinson) Every locally compact metric space X without 
isolated points contains a set of remote points which is dense in (iX\X. 

THEOREM 1.3. (Van Douwen) If X is a normal non-pseudocompact space of 
countable w-weight, then there are 2° remote points in fiX; if in addition each 
closed pseudo-compact subspace of X is compact, then TX is dense in fiX\X. 

For a space X, dX denotes the density of X. 

THEOREM 1.4. (Woods) Let X and Y be two locally compact, non-compact 
metric spaces without isolated points. If dX = dY then TX and TY are homeo-
m orphie. 

The next lemma is useful in some of the straightforward proofs which have 
been omitted in this paper. It is a special case of Lemma 3.2 [7]. Let Bdx-S" = 
c l x 5\ int x 5 where S Q X for any space X and let ExxU = pX\clpx(X\U) 
where U is any open subset of a space X. Van Douwen [7] has shown that 
Bdpx(ExxU) = c\px(BdxU) where U is any open set in X and X is any com­
pletely regular space. For our purposes we use the following version of this 
fact. 

LEMMA 1.5. Let R C X be regular closed. Then Exx(intxR) = int^YcW^, so 

c\pxR\mtpxc\pxR = c\px(R\intxR); 

therefore, if p £ c\pxR\intpxchxR for some regular closed subset R of X, then 
p € TX. 

2. General remote points are preserved by closed irreducible map­
pings. A continuous mapping f from a space X onto a space Y is closed 
irreducible if the image under / of every proper closed subset of X is a proper 
closed subset of Y. Some properties of closed irreducible mappings are given in 
the following lemma. 

LEMMA 2.1. Let f:X —> Y be closed irreducible and continuous. 
(a) If S Ç Y is dense, then fL (S) is dense in X. 
(b) / / CÇÏ X is closed nowhere dense in X, then / (C) is closed nowhere dense 

in Y. 
(c) If A and B are disjoint closed subsets of X, then f(A) C\f(B) is closed 

nowhere dense in Y. 
(d) p:$X —» pY is closed irreducible where f13 is the Stone extension off. 
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(e) If x (z X is an isolated point in X, then f(x) is an isolated point in Y. If 
y Ç Y is an isolated point in F, thenfl(y) is an isolated point of X. 

Proof. See [9] for (a). For (b) : If U Qf(C) and U is a non-empty open set 
in F, then fz(U) C\ X\C ^ 0, so X\fz(U) VJ C is a proper closed subset of 
X which maps onto F, contradicting the assumption t h a t / is closed irreducible. 
So U = 0. 

(c) If U ^f(A) r\f(B) is a non-empty open set in F, then / z ( c 7 ) H 
4 ^ 0 so X\fz(U) U i ^ i s a proper closed subset of X . But f(X\fz(U) VJ 
B) = F which is a contradiction of the assumption t h a t / is closed irreducible. 
So U = 0. 

(d) Since /3X is compact, / ' is closed and onto. Let C £ /3X be a proper 
closed subset of (3X and £7 be open in j3X such tha t C Ç U Ç cl&Y£/ ^ 0X. 
Then 

/'(O c/0(cWE/) =f(cW(^ni)) = chYf(unx). 
Iff 0(C) = (3 Y then / ( U C\ X) is dense in /3 Y and also in F ; so 

Y = c\Yf(unx) =/(dx([/ni)). 
S i n c e / is closed irreducible, c\x(U C\ X) = X and this contradicts c\$xU 9^ 
(3X. The re fo r e / ' (C ) 9* &Y. 

(e) The proof is straightforward. 

The next two lemmas are needed for the proof tha t closed irreducible 
functions "preserve" general remote points. 

L E M M A 2.2. Let X and Y be spaces with Y normal, and let f:X —> F be a 
closed irreducible continuous mapping. If fP'.fiX —» /3Y is the Stone extension of 
/ , thenfz(TY) = TX. 

Proof. Suppose p G X bu t p $ TX. If p g / 8Z \Z , then /*(£) g 0 F \ F so 
/ ' ( / ? ) g T F . If p G PX\X, then there exists a closed nowhere dense F Q X 
such tha t £ Ç c l ^ ^ - Then 

/ '( />) G / ' ( c W F ) =ckYf(F) 

s i n c e / ' is closed and continuous. Since f(F) is closed nowhere dense in F by 
Lemma 2.1(b), then f(p) g TY. So fz(TY) C TX. 

On the other hand suppose p G &X and £ £ f z ( r F ) . Uf(p) is an isolated 
point of Y, p is an isolated point in X so p d TX. Otherwise there exists a 
closed nowhere dense set F in Y such t h a t / " ( p ) Ç cl^y/^. If p (? clf tx-( / z(F)) , 
then since /WtT is regular, there exists a set U open in /3X such tha t p (L U and 
c W C / n c W ( / z ( F ) ) = 0. Since £ É z\»xV, 

f(p) epidexU) = cWf(dx(ur\x)). 
So 

f(p) e cWficiAun x)) r\ cWF. 
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But c\x(Ur^X)nfl(F) = 0 s o / ( c l x ( £ / n X ) ) n F = 0; and since F is 
normal, disjoint closed sets in F are completely separated so 

c W / ( c W l / n X ) ) H c W F = 0, 

which is a contradiction. So >̂ G c\px(f
Z (F)). By Lemma 2.1(a) , fl(F) is 

closed nowhere dense so p (? 7 X . T h u s 7^X Qf^z(TY). 

LEMMA 2.3. Le/ X and Y be spaces and let f:X —> Y be a closed irreducible 
continuous mapping with f0 : /3X —» /3Y the Stone extension of f. If p 6 /3Y and 

\PZ(P)\ > i, fa^ g rV. 

Proof. Suppose q\ ^ ç2 bu t qi and g2 belong to fffZ(p) where p £ (3Y. Le t 
f/i and Ui be open subsets of fiX with disjoint closures such t h a t qt 6 £/,-, 
i = 1, 2; then 

f(cW£/i) n/^(cWi/2) = C W ^ E / O n cW/'(ï/2) 
has empty interior by Lemma 2.1(d) and (c). T h u s there is an open subset 
U Q (3X (e.g. C/i or U.2) with 

£ Ç c W ^ ( £ / ) \ i n t ^ c W ^ ( C / ) . 

Now 

pY\ff>(0X\U) Qf*(U) C clPY(pY\fp(Px\U)) 

where the last inclusion is justified by Lemma 10.49 [8] since f13 is closed 
irreducible. So if W = pY\f?(pX\U), clPYW = clfiYfp(U) ; and thus 

£ G cl/srM^Xint^ycl^rl^. 

Now c\$YW = cl/jr'Ccl/srT^r^ F) and c l^y lFP i F is regular closed in F, so we 
have precisely the situation of Lemma 1.5. T h u s p d TY. 

T H E O R E M 2.4. Let X and Y be spaces with Y normal, and let f'.X —> F be a 
closed irreducible continuous mapping with f& : @X —» 0 Y the Stone extension of f. 
Then fP\TX: TX —> TY is a homeomorphism with f@z (TY) = TX. 

Proof. f$\TX is onto by Lemma 2.2, one-to-one by Lemma 2.3, and con­
tinuous. Fur thermore , since TX = f$z (TY) by Lemma 2.2 and since any 
closed set in TX is of the form C P\ TX for some closed C in f}X, 

(p\TX)(cn TX) =f(cr\ TX) = f(Q n TY 

which is closed in TY. Sof$\TX is closed. T h u s it is a homeomorphism. 

Recall t ha t a space is extremally disconnected if the closure of every open 
set is open. 

COROLLARY 2.5. Let X be an extremally disconnected space and let Y be a 
metric space without isolated points and let f : X —» F be closed irreducible and 
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continuous withf^lfiX —> fi Y the Stone extension off. Then TY is precisely those 
points of fi Y whose inverse image under f^ is a single point. 

Proof. Suppose p £ (3Y and p d TY. Since Y has no isolated points, if 
p d TY then for some closed nowhere dense subset Z of Y, p £ c\pYZ. Since Z 
is nowhere dense and Y is metric without isolated points, Z Ç R C\ F \ i n t F ^ 
for some regular closed subset R of Y ([5], Lemma 1.2). So 

p e c\0YRr^c\0Y(Y\mt0YR). 

Now 

clerR = ^ ( c W ( / z (intYR))) a n d c W ( F \ i n t F 7 ? ) = f(c\,x(f
z (Y\R))) ; 

and s i n c e / z (intFjR) a n d / z ( F \ / ^ ) are disjoint open subsets of X which is an 
extremally disconnected space, the /3.X-closures of these two sets are also dis­
joint ([3], Exercise 1H4). So there are a t least two distinct points in f^L (p). 
T h u s \fz(p)\ > 1. This result, along with Lemma 2.3, shows tha t p £ TY if 
and only if \PA(p)\ = 1. 

Van Douwen [7] defined a space X to be extremally disconnected a t a point p 
if p $_ c\xU Pi c l x F for any two disjoint open subsets U and V in X . Using 
this terminology, the proofs of Corollary 2.5 and Lemma 2.3 show the follow­
ing: Let X be an extremally disconnected space and let F be a completely 
regular space, and l e t / : X — > F be closed irreducible and continuous with 
fP'.fiX —• /3F the Stone extension of/. Then the points where /3 Y is extremally 
disconnected are precisely those points of p Y whose inverse image under p 
is a singleton. 

For each space X, there is a unique (up to a homeomorphism) extremally 
disconnected space EX called the absolute of X t ha t can be mapped onto X 
by a closed irreducible perfect continuous mapping. If X and F are spaces for 
which EX and £ F a r e homeomorphic, then X and F a r e said to be coabsolute. 
The following corollary to Theorem 2.4 is immediate. This corollary appears , 
in par t , in Theorem 4.3 [9]. 

COROLLARY 2.6. If X is normal then TEX and TX are homeomorphic where 
EX is any homeomorphic copy of the absolute of X. Thus, if two normal spaces 
are coab solute ^ their sets of general remote points are homeomorphic. 

The second s ta tement in Corollary 2.6 indicates tha t a sufficient condition 
for two normal spaces to have homeomorphic sets of general remote points is 
tha t the spaces be coabsolute. The following example shows tha t this condition 
is not necessary. 

Example 2.7. Let / be the closed unit interval, 0 be the space of rational 
numbers and X be the disjoint union of / and 0 - Then TX = TQ since / is 
compact . But EX and EQ are not homeomorphic because EQ is nowhere 
locally compact bu t EX is not. This follows since the inverse image of a no-
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where locally compact space under a closed irreducible cont inuous mapping is 
nowhere locally compact and the inverse image of a locally compact space 
under a perfect continuous mapping is locally compact [1]. 

3. D e c o m p o s i t i o n of TX. If X is a space then LX will denote the subspace 
of locally compact points of X, i.e., all those points x G X for which there 
exists an open neighborhood U in X such tha t c l x ^ is compact ; NX will 
denote X\c\xLX. Clearly NX and LX have the following properties: NX and 
LX are disjoint open subsets of X with NX regular open, and c\xNX and 
c\xLX are regular closed subsets oî X; X = c\xNX VJ c\xLX; c\xNX H 
c\xLX is closed nowhere dense in X and so cl^^VX and c\xLX have disjoint 
interiors. Some other properties of c\xNX and c\xLX are given in Lemma 3.1. 

LEMMA 3.1. Let X be a space. 

(a) / / V C X is open and V C NX then c\xV is a nowhere locally compact 
space. In particular, c\xNX is a nowhere locally compact space. 

(b) The locally compact points of c\xLX are dense in c\xLX. 

LEMMA 3.2. Let X be a space and let j :c\xLX KJ c\xNX —> X be the map with 
j\c\xLX and j\c\xNX the identity maps on c\xLX and c\xNX respectively. Then 
j is a closed irreducible perfect continuous mapping. 

Proof. This follows from a more general s ta tement : Let {R(l'(i £ A} be a 
locally finite cover of regular closed subsets of X with pairwise disjoint in­
teriors. Then the m a p p i n g / : XRa —> X w h e r e / \Ra is the ident i ty mapping is 
a closed irreducible perfect continuous mapping. T h e proof of this assertion is 
straightforward. 

By making appropr ia te assumptions on the space X, a decomposition for 
TX is obtained using Lemma 3.2 along with Theorem 2.4 as shown in the 
following theorem. 

T H E O R E M 3.3. Let X be a normal space. Then TX and T(c\xLX) KJ T(c\xNX) 
are homeomorphic. Thus TX has a decomposition into disjoint clop en sets A and 
B such that A = TYfor some normal space Y for which the set of locally compact 
points is dense and B = TW for some nowhere locally compact normal space W. 

Proof. Since f3(c\xLX \J c\xNX) = f3(clxLX) VJ /3(c\xNX), 

T(c\xLX \J c\xNX) = T{c\xLX) \J T(dxNX), 

and by Lemma 3.2 and Theorem 2.4, TX and T(c\xLX VJ c\xNX) are homeo­
morphic. T h e last s ta tement of the theorem follows from Lemma 3.1 by 
choosing Y = dxLX and W = c\xNX. 

Previous studies of remote points of metric spaces have focused primari ly 
on locally compact metric spaces or nowhere locally compact metric spaces. 
Theorem 3.3 shows tha t , in fact, the remote points for any metric space 
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without isolated points may be studied by considering (i) nowhere locally 
compact metric spaces and (ii) perfect metric spaces with a dense subset which 
is locally compact. We show in the next theorem tha t Theorem 1.2 generalizes 
to spaces of type (ii). 

The following lemma is proved by Robinson. 

LEMMA 3.4. ([6], Lemma p. 338) Let X be a metric space and let R be a 
regular closed subset of X. Every remote point of R is a remote point of X, i.e., 
every remote point of R is contained in c\pxR P TX (since fiR — c\pxR 
([3], 6 .9(a) ) ) . 

LEMMA 3.5. Let Y be a metric space, and let X be open and dense in Y with the 
property that whenever R is a regular closed subset of Y and R C X, then R is 
compact. Then Y is a compact space. 

The proof of Lemma 3.5 is straightforward. 

T H E O R E M 3.6. Let X be a non-compact metric space without isolated points 
which has a dense locally compact subset. Then TX is dense in (3X\X. 

Proof. Let W Q X be dense and locally compact and let U C f3X be open 
with U P I3X\X ^ 0. We must show tha t U P TX ^ 0. Let V be open in 
PX with V C d0xV C U and V P (3X\X ^ 0. Since 

dx(Vn W) = c f e F H I ^ c W F , 

clx(V r\ W) is not compact so by Lemma 3.5 there is a non-compact regular 
closed subset R of dx{V C\ W) (and thus of X) with RQ V C\ W. Since R 
is non-compact, locally compact metric, TR ^ 0. By Lemma 3.4, TR Ç 
c\0xRr\TX and since c\0xR Q c\0xV Q U, TR Q U C\TX. Thus U C\ 
TX * 0. 

4. General r e m o t e p o i n t s of t h e a b s o l u t e . According to Corollary 2.6, 
we can use the absolute of a normal space to s tudy the general remote points 
of the space. In this section we use this approach on a particular representation 
of the absolute. The results are rather technical and some details which are 
routine to verify are omitted. The advantage of such a s tudy is tha t some 
structural properties of the set of remote points become quite t ransparent due 
to the simple nature of the absolute and its Stone-Cech compactiflcation. 

The reader is assumed to be familiar with Boolean algebras and the Stone 
Representation Theorem. For a space X, the family of regular closed subsets of 
X, denoted by R(X), is a complete Boolean algebra under the following 
operations: 

Let ,4, B, Aa e R(X). 

(i) A S B if and only if A Q B. 
(ii) WnAa = clx(UaintxAa) = c\x \J(iAa. 
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(iii) AaAa = c l x i n t x ( DaAa). 
(iv) A' = c\x(X\A). 

The following version of the Stone Representation Theorem can be found in 
[9]. 

THEOREM 4.1. Let X be a space and S(R(X)) be the set of Boolean algebra 
ultrafilters on R(X). For each A 6 R(X), let \(A) = {a G S(R(X)):A G a}. 
Then {\(A) :A £ R(X)} can be used as a base for a topology on S(R(X)); and 
S(R(X)), so topologized, is a compact extremally disconnected space. The map 
A —+\(A) is a Boolean algebra isomorphism from R(X) onto the clopen subsets 
of S(R(X)). If kpx:S(R(X)) -> &X is defined by kpx(a) = f W c W - 4 , then 
kpx is a well-defined closed irreducible continuous mapping from S(R(X)) onto 
$X and k(ix(\(A)) = c\pxA for any A G R(X). 

Since S(R(X)) is extremally disconnected, the absolute of X may be identi­
fied with k$x

A (X) Ç S(R(X)). This identification is convenient since then 
$EX = S(R(X)) and so TEX QS(R(X))\EX. For the remainder of this 
section this identification of EX will be used to obtain topological properties 
of TEX and consequently of TX. 

LEMMA 4.2. Let X be a normal space and let EX = k$x
A(X). Then 

hxA(dexA C\ TX) = \{A) C\ TEX for A G R(X), so c\pxA H TX and 
\(A) Pi TEX are homeomorphic. Furthermore, \(A) H TEX = TEA where 
\(A) H EX is identified with EA (and thus fiEA = X(^4)) for any space X, 
so c\pxA r\ TX is homeomorphic to TA when X is normal. 

The proof of this lemma follows from Theorem 4.1 and Theorem 2.4. 

When A Ç R(X), it is sometimes convenient to write TA when the actual 
set being referred to is c\$xA Pi TX\ this will be indicated by saying that the 
canonical representation of TA is being used. 

The following structural information concerning the set of general remote 
points is a consequence of Lemma 4.2 and properties of the space S(R(X)). 

THEOREM 4.3. Let X be a normal space. Then TX is a zero-dimensional space 
with {TA: A G R(X)} as a clopen basis, where the sets {TA \A £ R(X)} have 
the canonical representation. 

We are interested in the relationship between TX and T Y when X is a dense 
subspace of Y. In general, /3X and (3 Y are different spaces which complicates 
efforts to compare TX and TY. However, the absolutes of X and Y and their 
Stone-Cech compactifications can be obtained within a single space, namely 
S(R(Y)). 

Since X is dense in Y, R(X) and R(Y) are isomorphic Boolean algebras 
under the Boolean algebra isomorphism of R(X) onto R(Y) defined by 
A —> clF^4 where A Ç R(X). The inverse of this isomorphism, mapping R(Y) 
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onto R(X), is denned by B - • B C\ X where B G R(Y). Thus S(R(X)) = 
S(R(Y)) where a G S(i?PO) is identified with { c M :4 G a} G S(i?(F)), or 
equivalently, a* G 5(i?(F)) is identified with {BC^X'.B G a*} G 5(7?(X)). 
Note that, under this identification, 

hx{a) = riA€«cW^ if a G S(R(X)) and 

*/*(«*) = f W cW(^4 H X) if a* G S(1?(F)). 

It is straightforward to check that the following diagram commutes. 

S(R( F)) ^ • /3 F 

Ul Ul 

kfiy^Y)kfirlkfiY^Y) 

Ul 

> F 

Ul 
kfiY\hY^(X) 

keY
z(X) ' V > X 

Each containment is dense, each space on the left is extremally disconnected, 
and each mapping indicated is closed irreducible perfect and continuous; so 
the spaces on the left are homeomorphic to the absolutes of the corresponding 
spaces on the right. Using these representations, EX C EY C S(R(Y)) and 
PEX = (3EY = S(R(Y))y so TE Y and TEX are subsets of S(R(Y)). In 
addition, the following diagrams commute. Here i:X 
map. 

kpx 

Y is the inclusion 

S(R(X)) 

II 
S(R(Y)) 

Ul 

S(R(Y)) 

'(X) 

LEMMA 4.4. Let Y be a space and let X be a dense subset of F Let EX = 
kpY

z(X) andEY = k0Y
z(Y). 

(a) TEYQ TEX as sub spaces of S(R(Y)). 
(b) If A G R(Y) and A Q X, then \(A) H TEY = \(A) H TEX. 
(c) Let X be an open dense subset of Y and Y be normal. 

If H(X) = {A G R(Y): A QX}, then 

TEY = Unix) (\(A)r\ TEY) = Unix) (HA) H TEX) 

and so TE Y is an open subset of TEX. Furthermore, {X (A ) P» TE Y: A G H(X)) 
is a clopen basis for TE Y. 

Proof, (a) Suppose p G S(R(Y))\TEX. If p G EY then p G TEY. If 
p G S(R(Y))\EY, since p G T£X there exists a closed nowhere dense subset 
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F of EX with p G C\S(R(Y))F. Thus 

P G c L s U ( F ) ) / 7 = c l , S ( B ( r ) ) ( c W F ) . 

But cl^yf is closed nowhere dense in EY since EX is dense in EY, and so 
£ g TE Y. Therefore TE Y C T£X. 

(b) Let ^ Ç 7?(7) and i Ç I . Then \(A) C\ EX = \(A) P E F . By (a), 
X(A) H TEY ^ X(A) r\ TEX. To show the other inclusion, suppose £ £ \(A) 
and £ G T £ K If p G. £ F , then p t EX since X(4) H E F = X(^) P E Z . 
If £ G E F , there exists a closed nowhere dense subset F oi EY with p G 
C\S(R(Y))F. Now /? G X(,4) ^ cbsciedo)/7 and since X(̂ 4) is clopen in S(R(Y)), 

\(A) P c\s(R{Y))F = cls(R(Y))(\(A) P F). 

Furthermore, since \(A) C\ EX = \(A) n EY and F Q EY, \(A) P F ÇZ 
X(/l) P EX and thus \ ( ^ ) H f i s a closed nowhere dense subset of EX. So 
p (? T£X. 

(c) By (b), 

Unix) (\(A) P TEX) = UH(X) (HA)n TEY) 

and clearly UH(X) (X(^4) P TEX) is an open subset of TEX. It is also clear 
that 

Unix) ( X ( ^ ) n TEY) Q TEY. 

Thus the conclusions of (c) will follow provided we showr that {\(A) P TEY: 
A G H(X)\ is an open basis for TEY. Let p G TEY C\ \(B) where B G 2?(F). 
Since F is normal, kpY(p) G ? T ; so kpY(p) G c\pY(Y\X) since F \ X is a 
closed nowhere dense subset of F. Thus we can find a regular closed subset C 
of 0 F with kfiY(p) G i n t ^ C and C P F \ Z = 0; so C P F Ç I and 
/> 6 \ ( C H F). Thus ? B ( C n F ) n \(B) = X(r) where 7̂  = (Cn Y) A 
7 3 Ç C P F Ç X so Te H(X). Finally then, p G X(r) H T E F C \ ( £ ) P 
T £ F and \(T) C\TEY £ \\(A) C\TEY\A £ H(X)}. So jX(yl) C\ TEY: 
A G i 7 p 0 } is an open basis for TEY. 

If X is a proper open dense subset of F with F metric and if X is locally 
compact, the embedding of TEY into TEX of Lemma 4.4 is not a dense 
embedding as Lemma 4.7 will indicate. Lemma 4.5 is proved in [9]. 

LEMMA 4.5. Let X be a metric space, or nowhere locally compact, or real-
compact and let EX = k^x

Z(X). Then 

k0x\S(R(X))\EX :S(R(X))\EX -> /3X\X 

is closed irreducible. 

LEMMA 4.6. Let Y be a space which is first countable at each point of Y\X 
where X is a locally compact dense subset of Y. For each y G Y\X, there exists an 
A G R(Y) such that y G A, A P Y\X = {y}, and A is compact, 
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LEMMA 4.7. Let Y be a first countable space of countable ir-weight with X a 
locally compact dense normal realcompact subset of Y, or Y metric without 
isolated points and X a locally compact dense subset of Y. Then for each y G Y\X 
there exists an A G R(Y) such that y G A and \(A) H TE Y = 0 but \(A) H 
TEX ^ 0 where EX = k0x

z(X), EY = kpY
z (Y) and S(R(X)) is identified 

with S(R(Y)). Thus TE Y is not dense in TEX. 

Proof. Let y G Y\X. By Lemma 4.6 there is an A G R(Y) such tha t 
A H Y\X = \y) and A is compact. T h u s \(A) C EY so X(4) H T E F = 0. 
However i H I = A W G ^ ( X ) is not compact, so \(A) nS(R(Y))\EX 
^ 0. Since TX is dense in /3X\X by Theorem 1.2 or 1.3, then kpx

z(TX) = TEX 
is dense in S(R(Y))\EX by Lemmas 4.5 and 2.1(a). Thus TEX C\\(A) ^ 0. 
Since TEX C\ \(A) is a non-empty subset of TEX and r £ F H À ( i ) = 0, 
it follows tha t J T E F is not dense in TEX. 

The following proposition is a res ta tement of Lemmas 4.4 and 4.7 in terms of 
the remote points of the spaces rather than the general remote points of their 
absolutes. 

PROPOSITION 4.8. Let Y be a normal space and let X be a dense subset of Y. 
(a) If X is normal, then TY is homeomorphic to a subset of TX. 
(b) / / X is open in Y, then TY can be represented as UAZR(Y),AÇX TA where 

{TA: A C I , A G R(Y)} is a clopen basis for TY. 
(c) If X is open in Y and normal, then TY is homeomorphic to an open 

subset of TX. 
(d) If Y is normal, first countable, and of countable ir-weight and X is locally 

compact, normal and realcompact, or if Y is metric without isolated points and X 
is locally compact, then TY is homeomorphic to a non-dense subset of TX. 

5. S t ruc tura l propert ies of t h e se t of r e m o t e p o i n t s of a m e t r i c space 
w i t h c\xLX = X. R will denote the metric space of real numbers with the 
usual topology. In this section we use the machinery of the preceding section 
to analyze the set of remote points for metric spaces X for which c\xLX = X. 
First we give some examples of metric spaces with this property. Let 

X = {(x, y):0 S x < 1,0 S y < 1} Q R2,X1 = X VJ { (1 ,0 )} , 

X2 = XVJ {(1, l/n):n G N j , a n d X 3 = X2 U { (1 ,0 )} . 

Each of these is a metric space as a subspace of R2 and LX t = X for i — 1, 2, 3 
with c\XiLXi = Xf. X\LXi is a singleton; X2\LX2 is non-compact; X 3 \ Z X 3 

is compact, bu t not a singleton. 
Let X be a metric space without isolated points. When X = c\xLX, LX is 

an open dense subset of X so we know (Lemma 4.4(c)) t ha t TX is homeo­
morphic to a union of clopen sets homeomorphic to {TA:A G R(X), 
A Ç LX}, and these sets form a clopen basis for TX. A 7r-basis of a space is a 
collection B of non-empty open sets of the space such tha t every non-empty 
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open set of the space contains a member of B. We now show t h a t {TA : 

A Ç R(X), A Ç L X , A is separable and non-compact} is a 7r-basis for TX. 

LEMMA 5.1. (Robinson) Let X be a locally compact, non-compact metric space. 
There there is an A £ R(X) such that A is separable and non-compact. 

T H E O R E M 5.2. Let X be a non-compact metric space without isolated points. 
If X = c\xLX then TX has a w-basis of clop en sets each homeomorphic to LR. 

Proof. Let B = {TA:A £ R(X), A is separable and non-compact and 
A Ç LX where TA is represented canonically}. If B ^ 0, by Theorems 1.1 
and 1.4, B consists of non-empty sets and they are clopen subsets of TX each 
homeomorphic to LR. Let U be open in /3X with U P\ TX ^ 0. Since /3X is 
regular, there exists V open in /3X with V Ç c\pxV C U and V C\ TX ^ 0. 
Now c\x{V C\ LX) Ç i ? (X) and is not compact since c\px{c\x(V C\ LX)) = 
c\pxV and c l ^ F P i L X 9e 0, and F P i L X is non-empty open and dense in 
c\x(V C\ LX); so by Lemma 3.5, there is an A G R(clx(V H L X ) ) such t ha t 
A C F n L X and A is not compact . Since A is a locally compact , non-com­
pact metric space, there exists an 5 Ç R(A) such t ha t S is separable and non-
compact , by Lemma 5.1. Now S £ R(A) and A £ R(X) so S e R(X) and 
S QA Q LX, so r S G 5 . Fur ther , c W S Ç clfixA C £/ and by Lemma 3.4, 
TS Ç c W S nTX so TSQ U H LX. T h u s £ is a 7r-basis for LX. 

Since a 7r-basis of a space is a cover for an open dense subspace, it follows 
from Theorem 5.2 t ha t when X = c l x L X , L X contains an open dense sub-
space which is the union of clopen sets each homeomorphic to LR. When it is 
also assumed t ha t X is separable, then the 7r-basis B of L X defined in the proof 
of Theorem 5.2 is a cover of LX. So L X is the union of clopen sets each 
homeomorphic to 7 H , and, in addit ion, this characterizes the proper ty t ha t 
X = c l x L X when X is separable. This fact is included in the next theorem. 

T H E O R E M 5.3. Let X be a non-compact separable metric space without isolated 
points. The following are equivalent: 

(a) X = c l x LX. 
(b) TX is a union of open sets each homeomorphic to TK. 
(c) TX is a union of clopen sets each homeomorphic to LR. 

Proof. Firs t it will be shown tha t (a) implies (c). By Proposition 4.8, if 
X = c l x L X then L X is homeomorphic to UAÇR(X),AÇLX TA with TA clopen. 
If A Ç R(X), A C L X and A is non-compact , then L^4 is homeomorphic to 
LR since A is locally compact and separable. If A is compact , then L^4 = 0. 

Clearly (c) implies (b) . T o show tha t (b) implies (a) , suppose L X is a 
union of open subsets each homeomorphic to LR. I t is known tha t L R has no 
non-empty open extremally disconnected subsets (since L R is a dense subset 
of 0 N \ N ) , so the same proper ty is t rue of LX. Now 

L X = T(c\xLX) W T(c\xNX) 
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by Theorem 3.3 and since c\xNX is a nowhere locally compact separable 
metric space, T(c\xNX) is extremally disconnected [9]; thus T(dxNX) = 0 
so c\xNX = 0 and X = c\xLX. 

When X is a normal space, we have already seen tha t TX = UAÇR(X) TA, 
and when X = c\xLX then TX = \JA^H{LX) TA where H(LX) is the sub-
collection of R(X) of regular closed subsets of X contained in LX. Next we 
show tha t when X\LX is non-empty and compact and the quotient space 
obtained by identifying X\LX to a point p is first countable a t p, then we can 
find a countable subcollection D of H(LX) such tha t TX = ^ A O > TA. First 
it will be shown tha t when X\LX is non-empty and compact with X — ç\xLX 
it suffices to assume tha t X\LX is a single point when studying TX. 

L E M M A 5.4. Let Y be a normal space and let X be a proper open dense subset 
of Y. Let Yx — X U { Y\X) be the quotient space of Y with Y\X identified to a 
point, and let f: Y —> Yx be the quotient mapping. 

(a) The quotient space Yx is normal, and f is a closed irreducible, continuous 
mapping. 

(b) / / Y is a metric space and Y\X is compact, then Yx is a metric space. 
(c) / / Y\X is compact and LY = X, then L(YX) = X. 

Proof, (a) Since Y\X is closed in Y, Yx is normal and / is closed and con­
tinuous. T o see t h a t / is closed irreducible, let C C F be a closed subset such 
t h a t / ( C ) = Yx. Since X Ç Yx a n d / is one-to-one on X, X Ç C; and since C 
is closed in F, C = Y. 

(b) By par t (a) , / is closed and continuous. Fur thermore, since Y\X is 
compact, / is perfect. So Yx is metric since perfect mappings preserve metriz-
ability ([1], X I , Theorem 5.2). 

(c) Since Yx = X U { Y\X\ with the identification topology, and since 
LY = X, it is clear t ha t X Ç LYX. But Yx is not locally compact s i n c e / is 
perfect, and the inverse image of a locally compact space under a perfect 
mapping is locally compact ([1], X I , 6.6). Thus L(YX) 7e- Yx, so L(YX) = X. 

By Lemma 5.4, if X is normal and c\xLx = X with X\LX non-empty and 
compact, then XLX is normal with L(X) = L(XLX) and such tha t TX and 
T(XLX) are homeomorphic. Fur ther , if X is metric, then XLx is metric. T h e 
following two lemmas give some technical results which will be used for the 
case tha t X is dense in F and Y\X is a single point. 

LEMMA 5.5. Let X be a normal space which is first countable at p £ X. Let 
{ Un : n £ Nj be a neighborhood base for p of regular open sets such that c l x£4+i Q 
Un for each n G N. / / Si = X\Ui and Si = c\x(Ui-\c\xUi) for i ^ 2, then 
TX = ^ ? = i TSi where the representation on the right is canonical. 

Proof. Clearly Si G R(X) and p d St for each i G N. Since kpx is a homeo-
morphism between TEX and TX where kpx

z(X) = EX and also between 
\(St) Pi TEX and c\pxSi C\ TX for each i Ç N by Theorem 2.4 and Lemma 
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4.2, it suffices to show tha t (i) X(S<) H \(Sj) H TEX = 0 for i ^ j and (ii) 
T £ X = UT=i (X(S*) H T E X ) . Since t / ^ y i x f / , H Uj-i\clxUj = 0 for 
; ^ j , i n t Y 5 , H int x5 ; - = 0 for i ^ j ; so 5 , A Sj = 0 and X(SZ) H X(S?) = 0 
and thus (i) is t rue. I t is clear t h a t 

u?-i (x(s<) n r£X) c r£X. 
So suppose a Ç S(R(X)) bu t a $ UT=i M^O- Then for any w 6 N, 
a (? \(X\Un) since X ( Z \ [ / n ) = X(Si) U . . . U \ ( S J . So a £ X(clxC/J for 
each n G N. T h u s it follows t ha t a £ k$x

l (p) Q EX since { C/n:w Ç N) is a 
neighborhood base for p. So a $ TEX. T h u s T E X C UT=i X(Sj) and (ii) 
follows. 

LEMMA 5.6. Let X be a space without isolated points with X first countable at 
p (z X and such that p has no compact neighborhood. Then for any countable 
neighborhood base \Un'.n £ Nj for p of regular open sets such that c l x ^n+i £ Un, 
there is a subsequence \nk\ of N such that c\x(Unj\c\xUnk+l) is not compact for 
each k. 

Proof. Suppose {Un:n £ N\ is a neighborhood base for p of regular open 
sets for which there is no subsequence \nk] C N such t h a t c\x(Unk\c\xUnic+l) is 
not compact for each k. Then clxiU^clxUn+i) is compact for each n è K for 
some i£ Ç N. Let M > K. Since p G UM Q c\xUM, c\xUM is not compact ; so, 
there exists a family F of closed subsets of X which are contained in c\xUM 

and which have non-empty finite intersections, b\\t*r\F = 0. Thus , for some 
C f F, p d C, s o C H Un = 0 for some n > M; and so 

C Q c\xUM\Un ç U ï i dx(Uk\c\xUk+1) 

wrhich is a contradiction. 

T h e following proposition describes the s t ructure of TX when X\LX is 
non-empty and compact and XLX is first countable a t the point to which 
X\LX is identified. 

PROPOSITION 5.7. Let X be a non-compact normal space such that c\xLX = X 
where X\LX is non-empty and compact, and for which there is a countable collec­
tion { Un'.n G N} of open sets such that if X\LX C W where W is open in X 
then there exists an n Ç N for which X\LX Ç JJn C W. Then TX is homeo-
morphic to ^ N TXn where the disjoint countable sum can be represented canoni-
cally for a collection \Xn\n Ç N} Ç R(X) with Xn C LX. Further; 

(a) if X has countable ir-weight and each closed pseudo-compact subspace of X 
is compact, then the Xn's can be chosen so that TXt ^ 0 for each i; 

(b) if X is a metric space without isolated points, then TX is homeomorphic to 

Z N T( J^cin R ) where dX ^ dn > 0 for n Ç N. 

Proof. As indicated before Lemma 5.4, it suffices to consider the case where 
X\LX = {p}. The hypothesis implies t h a t X is first countable a t p. By Lemmas 
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5.5 and 5.6, TX — ]T]N IX t where Xt is a non-compact regular closed subset 

of X such tha t p (f_ Xt for each i Ç N and the representation is canonical. 

Since p g Xu Xt ÇJ LX. For (a), by Theorem 1.3, TX t ^ 0 since Xt can be 

chosen to be non-compact by Lemma 5.6. For (b), TXt = T{^4(li R ) where 

rfj = dX t by Theorem 1.4. 

COROLLARY 5.8. Any two separable metric spaces without isolated points for 

which the set of non-locally compact points is non-empty and compact have 

homeomorphic sets of remote points. 

Proof. By Proposition 5.7, TX = £ N TR. 

The author wishes to thank the referee for his helpful comments and 

suggestions. 
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