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SOME STRUCTURAL PROPERTIES OF THE SET OF
REMOTE POINTS OF A METRIC SPACE

CATHERINE L. GATES

A remote point of a metric space X is a point in 8X\X not in the gX-closure
of any discrete subset of X. Remote points have been studied by Fine and
Gillman {2], Plank [4], Robinson [6], Woods [9, 10], Van Douwen [7] and
others. The main results concerning the existence of remote points are listed in
Section 1. In this paper we determine some structural properties of the set of
remote points of a metric space which has no isolated points. The notation of
Gillman and Jerison [3] and Walker [8] will be used. All spaces are assumed to
be Tychonoff.

Let X be a space. The general remote points of X, denoted 7X, are those
points in BX\X which are not in the X -closure of any nowhere dense sets of
X. If X is a metric space without isolated points, then 7X is precisely the set
of remote points of X as defined in Walker [8]. In Section 2, it is shown that if
V is a normal space which is the image of a space X under a closed irreducible
continuous mapping then the set of general remote points of X and that of ¥
are homeomorphic. Thus it follows that coabsolute normal spaces have
homeomorphic sets of general remote points. In Section 3 we show that an
arbitrary normal space has a ‘“‘decomposition’’ which carries over to the set of
general remote points and reduces the study of the sets of general remote
points for normal spaces to two types of spaces: (i) those spaces for which the
set of locally compact points is dense, and (ii) the nowhere locally compact
spaces. In Section 4, machinery and properties are developed for the study of
the general remote points of a space by using the absolute of the space as a
subspace of its Stone space. Using this approach, it is easy to see that when X
is a dense subset of ¥ where X and ¥ are normal spaces, 7'V is homeomorphic
to a subset of 7X. In Section 5, the results of Section 4 are used to investigate
the structure of the set of remote points of a metric space for which the set of
locally compact points is dense. It is shown that the set of remote points for
these spaces is made entirely of homeomorphic copies of the set of remote
points of the real numbers.

1. Preliminaries. In this section we list the known results about remote
points which will be used in this paper. Although the original proofs of
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Theorems 1.1, 1.2, and 1.4 assumed the continuum hypothesis (X, = 2Xo),
it has recently been shown (e.g. van Douwen [7]) that this is not necessary.

THEOREM 1.1. (Plank) If X s ¢ non-compuct separable metric space in which
the set of 1solated points has compact closure, then 8X contains 2¢ remote points
which form a dense subspace of BX\X.

TuaEOREM 1.2. (Robinson) Every locally compact metric space X without
isolated points contains a set of remote points which is dense in BX\X.

TrEOREM 1.3. (Van Douwen) If X is « normal non-pseudocompact space of
countable w-weight, then there are 2° remote points in BX; if in addition each
closed pseudo-compact subspace of X is compact, then TX is dense in BX\X.

For a space X, dX denotes the density of X.

THEOREM 1.4. (Woods) Let X and Y be two locally compact, non-compact
metric spaces without isolated points. If dX = dY then TX and T'Y are homeo-
morphic.

The next lemma is useful in some of the straightforward proofs which have
been omitted in this paper. It is a special case of Lemma 3.2 [7]. Let BdyxS =
clxS\intyS where S C X for any space X and let ExyU = 8X\clsx (X\U)
where U is any open subset of a space X. Van Douwen [7] has shown that
Bdsx (ExxU) = clgx(BdxU) where U is any open set in X and X is any com-
pletely regular space. For our purposes we use the following version of this
fact.

LEmMA 1.5. Let R © X be regular closed. Then Exyx(intyR) = intgyclagxR, so
Clg‘yR\intﬂ_\’Clﬂxl< = Clﬂx(R\int};]{),'

therefore, if p € clgyR\intgyclgyR for some regular closed subset R of X, then
p€TX.

2. General remote points are preserved by closed irreducible map-
pings. A continuous mapping f from a space X onto a space YV is closed
irreducible if the image under f of every proper closed subset of X is a proper
closed subset of Y. Some properties of closed irreducible mappings are given in
the following lemma.

LemMaA 2.1, Let f: X — YV be closed irreducible and continuous.

(a) If S C Y is dense, then f* (S) is dense in X.

(b) If CC X 1s closed nowhere dense in X, then f(C) is closed nowhere dense
n Y.

(c) If A and B are disjoint closed subsets of X, then f(4) M f(B) 1s closed
nowhere dense in Y.

(d) f8:8X — BY 1s closed irreducible where f? is the Stone extension of f.
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(e) If x € X 1s an tsolated point in X, then f(x) is an isolated point in Y. If
y € Yis an isolated point in Y, then f“ (v) is an isolated point of X.

Proof. See [9] for (a). For (b): If U C f(C) and U is a non-empty open set
in ¥, then f4(U) N X\C # 0, so X\ f4(U) U Cis a proper closed subset of
X which maps onto ¥, contradicting the assumption that f is closed irreducible.
So U = 0.

() If UCf(4)Nf(B) is a non-empty open set in ¥, then f4(U) N
A # 0 so X\ f4(U) U B is a proper closed subset of X. But f(X\ f4(U) \J
B) = Y which is a contradiction of the assumption that f is closed irreducible.
So U = @.

(d) Since BX is compact, f# is closed and onto. Let C C X be a proper
closed subset of 3X and U be open in 8X such that C C U C clgy U & BX.
Then

FA(C) S fo(clax U) = fP(clex (UM X)) = clgy fF(UN X).
If f8(C) = BY then f(U M X) is dense in 8Y and also in ¥; so
V=cly f(UNX) = flcx(UN X)).
Since f is closed irreducible, clxy (UM X) = X and this contradicts clgy U #

BX. Therefore f8(C) # BY.
(e) The proof is straightforward.

The next two lemmas are needed for the proof that closed irreducible
functions “‘preserve’’ general remote points.

LEmMMA 2.2, Let X and YV be spaces with Y normal, and let f:X — Y be a
closed irreducible continuous mapping. If f8:8X — BY is the Stone extension of
f, then f84(TY) = TX.

Proof. Suppose p € X but p ¢ TX. If p ¢ X\X, then f8(p) ¢ BY\Y so
fB(p) ¢ TY. If p € BX\X, then there exists a closed nowhere dense F C X
such that p € clgxF. Then

JE(p) € fP(clex F) = clgy f(F)

since f# is closed and continuous. Since f(F) is closed nowhere dense in ¥V by
Lemma 2.1(b), then f8(p) ¢ TY.So 84 (1Y) C TX.

On the other hand suppose p € X and p ¢ fB4(TY). If f8(p) is an isolated
point of ¥, p is an isolated point in X so p ¢ TX. Otherwise there exists a
closed nowhere dense set F"in ¥ such that f8(p) € clgyF. If p ¢ clgx(f4(F)),
then since BX is regular, there exists a set U open in X such that p € U and
clgx U N clox (f4(F)) = 0. Since p € clgy U,

FE(p) € fB(clgx U) = clgy f(clx (U M X)).
So
fB(p) € clgy fclx (UM X)) M clgy F.
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But cly (UNX) N f4(F) = 0 so flclyx(UN X)) N F = @; and since Y is
normal, disjoint closed sets in ¥ are completely separated so

clgy felx (UM X)) N clgy F = 0,

which is a contradiction. So p € clax(f“(F)). By Lemma 2.1(a), f(F) is
closed nowhere dense so p ¢ T'X. Thus TX C f84(TY).

LEMMA 2.3. Let X and YV be spaces and let f:X — YV be « closed irreducible
continuous mapping with f8:8X — BY the Stone extension of f. If p € BY and
| f84(p)| > 1, then p ¢ TY.

Proof. Suppose ¢, # ¢» but ¢; and ¢, belong to 84 (p) where p € B8Y. Let
U, and U, be open subsets of X with disjoint closures such that ¢; € U,
1 =1, 2; then

fB(clsx Uy) me(ClﬂxUQ) = ClﬁYfﬁ(Ul) M Clﬁyfﬁ(U‘z)

has empty interior by Lemma 2.1(d) and (c). Thus there is an open subset
U C BX (e.g. Uyor Us) with

p € claxfP(U)\intgxclgx f5(U).
Now
BY\ f(BX\U) C f8(U) < clgy (BY\ fA(Bx\U))

where the last inclusion is justified by Lemma 10.49 [8] since f# is closed
irreducible. So if W = Y\ f8(BX\U), clsgyW = clgy f8(U); and thus

p € clgy W\in tgyclay W.

Now clgy W = clgy(clsy WM V) and clgy W M Y is regular closed in ¥, so we
have precisely the situation of Lemma 1.5. Thus p ¢ T'Y.

THEOREM 2.4. Let X and YV be spaces with YV normal, and let f: X — YV be a
closed irreducible continuous mapping with f#:8X — BY the Stone extension of f.
Then f8|TX :TX — T'Y is a homeomorphism with 8 (TY) = T'X.

Proof. f8|TX is onto by Lemma 2.2, one-to-one by Lemma 2.3, and con-
tinuous. Furthermore, since 7X = f84(1'Y) by Lemma 2.2 and since any
closed set in 7X is of the form C M TX for some closed C in 8X,

(fITX)Y(CNTX) =fB(CNTX) =fC)NTY
which is closed in 7'Y. So f#|T'X is closed. Thus it is a homeomorphism.

Recall that a space is extremally disconnected if the closure of every open
set is open.

COROLLARY 2.5. Let X be an extremally disconnected space and let Y be a
metric space without isolated points and let f: X — YV be closed irreducible and
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continuous with f8:8X — BY the Stone extension of f. Then T'Y is precisely those
points of BY whose inverse image under f8 is a single point.

Proof. Suppose p € Y and p ¢ T'Y. Since V has no isolated points, if
p & T'Y then for some closed nowhere dense subset Z of ¥V, p € clgyZ. Since Z
is nowhere dense and Y is metric without isolated points, Z C R M Y\intyR
for some regular closed subset R of ¥ ([5], Lemma 1.2). So

p € clgyR M clgy (V\intgyR).
Now
clgyR = fB(clay (f“ (intyR))) and clgy (V\intyR) = f8(clgy (f4(VY\R)));

and since 4 (intyR) and f* (V\R) are disjoint open subsets of X which is an
extremally disconnected space, the 8X-closures of these two sets are also dis-
joint ([3], Exercise 1H4). So there are at least two distinct points in f84 (p).
Thus | f84 (p)| > 1. This result, along with Lemma 2.3, shows that p ¢ TV if
and only if | f84 (p)| = 1.

Van Douwen [7] defined a space X to be extremally disconnected at a point p
if p @ clyU M clyl for any two disjoint open subsets U and 17 in X. Using
this terminology, the proofs of Corollary 2.5 and Lemma 2.3 show the follow-
ing: Let X be an extremally disconnected space and let ¥ be a completely
regular space, and let f:X — ¥ be closed irreducible and continuous with
fB:8X — BY the Stone extension of f. Then the points where 8V is extremally
disconnected are precisely those points of Y whose inverse image under f#
is a singleton.

For each space X, there is a unique (up to a homeomorphism) extremally
disconnected space EX called the absolute of X that can be mapped onto X
by a closed irreducible perfect continuous mapping. If X and YV are spaces for
which EX and EY are homeomorphic, then X and Y are said to be coabsolute.
The following corollary to Theorem 2.4 is immediate. This corollary appears,
in part, in Theorem 4.3 [9].

COROLLARY 2.6. If X is normal then TEX and 1°X are homeomorphic where
EX 1is any homeomorphic copy of the absolute of X. Thus, if two normal spaces
are coabsolute, their sets of general remote points are homeomorphic.

The second statement in Corollary 2.6 indicates that a sufficient condition
for two normal spaces to have homeomorphic sets of general remote points is
that the spaces be coabsolute. The following example shows that this condition
is not necessary.

Excmple 2.7. Let I be the closed unit interval, Q be the space of rational
numbers and X be the disjoint union of 7 and Q. Then TX = T'Q since I is
compact. But £X and EQ are not homeomorphic because EQ is nowhere
locally compact but £X is not. This follows since the inverse image of a no-
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where locally compact space under a closed irreducible continuous mapping is
nowhere locally compact and the inverse image of a locally compact space
under a perfect continuous mapping is locally compact [1].

3. Decomposition of 7X. If X is a space then LX will denote the subspace
of locally compact points of X, i.e., all those points x € X for which there
exists an open neighborhood U in X such that clyU is compact; NX will
denote X\clxLX. Clearly NX and LX have the following properties: NX and
LX are disjoint open subsets of X with NX regular open, and clyNX and
clyLX are regular closed subsets of X; X = clxyNX U clxLX; clxNX M
clyLX is closed nowhere dense in X and so clyNX and clyLX have disjoint
interiors. Some other properties of cly/NX and clyLX are given in Lemma 3.1.

Lemma 3.1. Let X be a space.

(@) If VC X s open and V € NX then clxV is a nowhere locally compact
space. In particular, cly NX is a nowhere locally compact space.

(b) The locally compact points of clxLX are dense in clylX.

LEMMA 3.2, Let X be a space and let j:clxLX \J clxNX — X be the map with
JIcdxLX and j|clx NX the identity maps on clxyLX and clyNX respectively. Then
715 a closed trreducible perfect continuous mapping.

Proof. This follows from a more general statement: Let {R,:¢ € A} be a
locally finite cover of regular closed subsets of X with pairwise disjoint in-
teriors. Then the mapping f: 2R, — X where f |R, is the identity mapping is
a closed irreducible perfect continuous mapping. The proof of this assertion is
straightforward.

By making appropriate assumptions on the space X, a decomposition for
7X is obtained using Lemma 3.2 along with Theorem 2.4 as shown in the
following theorem.

THEOREM 3.3. Let X be a normal space. Then 1'X and T (cly LX) \J 1'(clxyNX)
are homeomorphic. Thus TX has a decomposition into disjoint clopen sets A and
B such that A = TY for some normal space Y for which the set of locally compact
points is dense and B = TW for some nowhere locally compact normal space W.

Proof. Since B(clxyLX \J clyNX) = B(clxLX) \J B(clyNX),
T(clyLX \J clyNX) = T(clyLX) \J T(clxNX),

and by Lemma 3.2 and Theorem 2.4, I’X and 7 (clyLX \J clyNX) are homeo-
morphic. The last statement of the theorem follows from Lemma 3.1 by
choosing ¥ = clyLX and W = clyNX.

Previous studies of remote points of metric spaces have focused primarily
on locally compact metric spaces or nowhere locally compact metric spaces.
Theorem 3.3 shows that, in fact, the remote points for any metric space
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without isolated points may be studied by considering (i) nowhere locally
compact metric spaces and (ii) perfect metric spaces with a dense subset which
is locally compact. We show in the next theorem that Theorem 1.2 generalizes
to spaces of type (ii).

The following lemma is proved by Robinson.

Lemma 3.4. ([6], Lemma p. 338) Let X be a metric space and let R be a
regular closed subset of X. Every remote point of R is a remote point of X, 1.e.,
every remote point of R is contained in clgxR M TX (since BR = clgxR

(131,6.9(a))).

LEMMA 3.5. Let YV be a metric space, and let X be open and dense in Y with the
property that whenever R 1s « regular closed subset of ¥ and R C X, then R 1s
compact. Then Y is a compact space.

The proof of Lemma 3.5 is straightforward.

THEOREM 3.6. Let X be « non-compact metric space without isolated points
which has a dense locally compact subset. Then TX s dense in BX\X.

Proof. Let W € X be dense and locally compact and let U € X be open
with UM BX\X 5 . We must show that UM TX # @. Let I be open in
BX with V C clgxV € U and VN BX\X # 0. Since

e (VA W) = clgg VN X 5 clgy 1,

clx (VM W) is not compact so by Lemma 3.5 there is a non-compact regular
closed subset R of cly (VM W) (and thus of X) with R C VM W. Since R
is non-compact, locally compact metric, TR # . By Lemma 3.4, TR C
clgxR M TX and since clgxyR CclgxyVC U, TRC UNTX. Thus UN
TX # 0.

4. General remote points of the absolute. According to Corollary 2.6,
we can use the absolute of a normal space to study the general remote points
of the space. In this section we use this approach on a particular representation
of the absolute. The results are rather technical and some details which are
routine to verify are omitted. The advantage of such a study is that some
structural properties of the set of remote points become quite transparent due
to the simple nature of the absolute and its Stone-Cech compactification.

The reader is assumed to be familiar with Boolean algebras and the Stone
Representation Theorem. For a space X, the family of regular closed subsets of
X, denoted by R(X), is a complete Boolean algebra under the following
operations:

Let 4, B, A, € R(X).

(i) A £ Bif and only if 4 C B.
(i1) V.4, = clx (U, intxd,) = clxy U A4..
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(i) Awd, = cly inty( MNad,).
(iv) A" = cle(X\4).

The following version of the Stone Representation Theorem can be found in

[9].

THEOREM 4.1. Let X be a space and S(R(X)) be the set of Boolean algebra
ultrafilters on R(X). For each A € R(X), let N(4) = {a € S(R(X)):4 € a}.
Then {N(A):A4 € R(X)} can be used as a base for a topology on S(R(X)),; and
S(R(X)), so topologized, is a compact extremally disconnected space. The map
A — NA) 1s a Boolean algebra isomorphism from R(X) onto the clopen subsets
of S(R(X)). If ksx:S(R(X)) — BX 1s defined by kgx(a) = Mo ClgxA, then
ksx s a well-defined closed irreducible continuous mapping from S(R(X)) onto
BX and kgxy(N(A)) = clgxd4 for any A € R(X).

Since S(R (X)) is extremally disconnected, the absolute of X may be identi-
fied with ksy4(X) € S(R(X)). This identification is convenient since then
BEX = S(R(X)) and so TEX CS(R(X))\EX. For the remainder of this
section this identification of £X will be used to obtain topological properties
of TEX and consequently of 7°X.

LEMMA 4.2. Let X be a mormal space and let EX = kgy“(X). Then
kv ? (ClaxA N TX) = N(A) NTEX for A € R(X), so clgxd N TX and
NA) N\ TEX are homeomorphic. Furthermore, N(A) M TEX = TEA where
MNA) M EX is identified with EA (and thus BEA = N(A)) for any space X,
so clgxA M TX is homeomorphic to TA when X is normal.

The proof of this lemma follows from Theorem 4.1 and Theorem 2.4.

When 4 € R(X), it is sometimes convenient to write 7’4 when the actual
set being referred to is clgyA M TX; this will be indicated by saying that the
canonical representation of TA is being used.

The following structural information concerning the set of general remote
points is a consequence of Lemma 4.2 and properties of the space S(R(X)).

THEOREM 4.3. Let X be a normal space. Then TX 1s a zero-dimensionul space
with {TA: A € R(X)} as « clopen basis, where the sets {TA:A4 ¢ R(X)} have
the canonical representation.

We are interested in the relationship between 77X and 7Y when X is a dense
subspace of V. In general, X and BY are different spaces which complicates
efforts to compare 7X and 7'Y. However, the absolutes of X and ¥ and their
Stone-Cech compactifications can be obtained within a single space, namely
S(R(Y)).

Since X is dense in ¥, R(X) and R(Y) are isomorphic Boolean algebras
under the Boolean algebra isomorphism of R(X) onto R(Y) defined by
A — cly4 where A € R(X). The inverse of this isomorphism, mapping R(Y)
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onto R(X), is defined by B — B/M X where B € R(Y). Thus S(R(X)) =
S(R(Y)) where ¢ € S(R(X)) is identified with {cly4:4 € a} € S(R(Y)), or
equivalently, «* ¢ S(R(Y)) is identified with {B M X:B € a*} € S(R(X)).
Note that, under this identification,

ksx(a) = NMaeaclgxAd if @ € S(R(X)) and

kex (a*) = Macar clgx (A N X) if a* € S(R(Y)).

It is straightforward to check that the following diagram commutes.

SR(V))—For__, gy

ul ul
ksy 4 (Y) kay kay “ ( Y); Y
Ul Ul
kgy‘(X) kﬂYlkﬂYA(X) X

Each containment is dense, each space on the left is extremally disconnected,
and each mapping indicated is closed irreducible perfect and continuous; so
the spaces on the left are homeomorphic to the absolutes of the corresponding
spaces on the right. Using these representations, EX C EYV C S(R(Y)) and
BEX = BEY = S(R(Y)), so TEY and TEX are subsets of S(R(Y)). In
addition, the following diagrams commute. Here ¢:X — ¥ is the inclusion

map.
S(R(X)—F_s gx SR,
| | ul | | 4
S(R(Y)) X SR(X))

Ul /4 b l BY
by £ ()~ Farlar 40 S A

Lemma 4.4, Let 'V be a space and let X be a dense subset of Y. Let EX =
ksy“(X) and EY = kgy* (V).

(a) TEY C TEX as subspaces of S(R(Y)).

M) IfA € R(Y)and A C X, then N(A) NYTEY = \N4) N TEX.

(c) Let X be an open dense subset of Y and Y be normal.
If HX) = {4 € R(Y): A C X}, then

TEY = Unxy WA)NTEY) = Unxy (NA) N TEX)

and so TEY is an open subset of TEX. Furthermore, {N(A) N TEY:4 ¢ H(X)}
is a clopen basis for TEY.

Proof. (a) Suppose p € S(R(YV)\TEX. If p € EY then p ¢ TEY. 1If
p € S(R(Y))\EY, since p ¢ TEX there exists a closed nowhere dense subset
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Fof EX with p € clggunf. Thus
p € cswranF = cls@on (Cley F).

But clyy I is closed nowhere dense in EY since EX is dense in EY, and so
p ¢ TEY. Therefore TEY C TEX.

(b) Let 4 € R(Y)and 4 € X. Then N(4) N EX = XNA) N EY. By (a),
NMA)YNTEY C AMA4) N\ TEX. To show the other inclusion, suppose p € A(4)
and p ¢ TEY. If p € EY, then p ¢ EX since N(A) N EY = A4) N EX.
If p ¢ EY, there exists a closed nowhere dense subset F of EY with p €
clsrirnF. Now p € NA) M clsgyy F and since A(A4) is clopen in S(R(Y)),

AMA) N clsrant’ = cls@orn (NA) M F).

Furthermore, since N(4) M EX = NA) N EY and FC EY, N(4d) N\ FC
NA) M EX and thus N(4) M F is a closed nowhere dense subset of EX. So
p ¢ TEX.
(c) By (b),
Unwy WA) N TEX) = Uy WA) N TEY)

and clearly Ugxy (NA) M TEX) is an open subset of TEX. It is also clear
that

Une, ANA) N TEY) C TEY.

Thus the conclusions of (¢) will follow provided we show that {A(4) N T'EY:
A € H(X)} isan open basis for TEY. Let p ¢ TEY M N(B) where B € R(Y).
Since YV is normal, kgy(p) € T'Y; so ksgy(p) ¢ clgy(VY\X) since V\X is a
closed nowhere dense subset of V. Thus we can find a regular closed subset C
of BY with ksy(p) € intgyC and CN YV\X =0; so CNYCX and
P ENCNY) Thus p € N(CNY)NNB) = NT) where "= (CNY) A
BCCNYCX so?1 ¢ HX). Finally then, p € N(T) N\ TEY C A(B) N
TEY and N(T)NTEY € (NA)NTEY:4 ¢ H(X)}. So {(NA)NNTEY:
A € H(X)} is an open basis for TEY.

If X is a proper open dense subset of ¥ with ¥ metric and if X is locally
compact, the embedding of 7TEY into TEX of Lemma 4.4 is not a dense
embedding as Lemma 4.7 will indicate. Lemma 4.5 is proved in [9].

LemMa 4.5, Let X be a metric space, or nowhere locally compact, or real-
compact and let EX = ksx“(X). Then

kx| S(R(X)N\EX :S(R(X)\EX — BX\X
1s closed 1rreducible.

LeEMMA 4.6. Let 'V be a space which is first countable at each point of Y\X
where X is « locally compact dense subset of Y. For eachy € V\X, there exists an
A € R(Y) such thaty € A, A M Y\X = {y}, and A is compact.
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LEMMA 4.7. Let 'V be « first countable space of countable w-weight with X «
locally compact dense normal realcompact subset of Y, or Y metric without
isolated points and X «a locally compact dense subset of Y. Then for eachy ¢ Y\X
there exists an A € R(Y) such that y € A and N(A) N\ TEY = @ but N(4) N
TEX # @ where EX = kgy“(X), EY = kgy“(V) and S(R(X)) is identified
with S(R(Y)). Thus TEY is not dense in TEX.

Proof. Let y € Y\X. By Lemma 4.6 there is an 4 € R(Y) such that
AN Y\X = {y} and 4 is compact. Thus A\(4) € EY so N\(4) N TEY = @.
However 4 M X = A\{y} € R(X) is not compact, so AN(4) NS(R(Y))\EX
# @. Since 7X isdense in BX\X by Theorem 1.2 or 1.3, then k,gX‘ (I'X) = TEX
is dense in S(R(Y))\EX by Lemmas 4.5 and 2.1(a). Thus TEX N \(4) # 0.
Since TEX M A(A4) is a non-empty subset of TEX and TEY N A (4) = 0,
it follows that T'EY is not dense in TEX.

The following proposition is a restatement of Lemmas 4.4 and 4.7 in terms of
the remote points of the spaces rather than the general remote points of their
absolutes.

ProrositioN 4.8. Let ¥V be « normal space and let X be « dense subset of Y.

(a) If X is normal, then T'Y is homeomorphic to a subset of TX.

(b) If X is open in YV, then T'Y can be represented as \Jser(yvy,1cx 1A where
174:4 C X, A ¢ R(Y)} s a clopen basis for T'Y.

(c) If X is open in YV and normal, then T'Y is homeomorphic to an open
subset of T'X.

(d) If Y is mormal, first countable, and of countable w-weight and X 1s locally
compact, normal and realcompact, or if Y is metric without isolated points and X
1s locally compact, then 1Y is homeomorphic to « non-dense subset of T'X.

5. Structural properties of the set of remote points of a metric space
with clyLX = X. R will denote the metric space of real numbers with the
usual topology. In this section we use the machinery of the preceding section
to analyze the set of remote points for metric spaces X for which clyLX = X.
First we give some examples of metric spaces with this property. Let

X=1x»0=sx<1,0=y <1 SRLX, = XU I(L0),
Xo=XU [, 1/n)in e Nj,and Xy = X, U {(1,0)}.

IEach of these is a metric space as a subspace of R?and LX; = X for7z = 1,2,3
with cly,LX; = X, X\\LX, is a singleton; X, \LX, is non-compact; X;\LX;
is compact, but not a singleton.

Let X be a metric space without isolated points. When X = clyL X, LX is
an open dense subset of X so we know (Lemma 4.4(c)) that 77X is homeo-
morphic to a union of clopen sets homeomorphic to {74:4 € R(X),
A C LX}, and these sets form a clopen basis for 7X. A =-basis of a space is a
collection B of non-empty open sets of the space such that every non-empty
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open set of the space contains a member of B. We now show that {74:
A € R(X), A C LX, A is separable and non-compact} is a w-basis for 7'X.

LemMmA 5.1. (Robinson) Let X be a locally compact, non-compact metric space.
There there is an A € R(X) such that A is separable and non-compact.

THEOREM 5.2. Let X be a non-compact metric space without isolated points.
If X = clyLX then TX has a w-basts of clopen sets each homeomorphic to TR.

Proof. Let B =1{T4:4 € R(X), 4 is separable and non-compact and
A C LX where TA is represented canonically}. If B # @, by Theorems 1.1
and 1.4, B consists of non-empty sets and they are clopen subsets of 7X each
homeomorphic to 7R. Let U be open in 8X with UM TX # §. Since BX is
regular, there exists 7 open in X with V C clgxVV € U and VN TX # 0.
Now clxy (VN LX) € R(X) and is not compact since clgx(clx (VN LX)) =
clgxV and clgxy VN TX # @, and 1V LX is non-empty open and dense in
clx (VM LX); so by Lemma 3.5, there isan A € R(clx(V M LX)) such that
A C VN LX and 4 is not compact. Since 4 is a locally compact, non-com-
pact metric space, there exists an .S € R(A4) such that S is separable and non-
compact, by Lemma 5.1. Now S € R(4) and 4 € R(X) so S € R(X) and
SC A4 C LX,so TS ¢ B. Further, clgxS C clgx4d € U and by Lemma 3.4,
IS CclgxSNTX so TS C UN TX. Thus B is a w-basis for 7'X.

Since a w-basis of a space is a cover for an open dense subspace, it follows
from Theorem 5.2 that when X = clyLX, 7X contains an open dense sub-
space which is the union of clopen sets each homeomorphic to 7R. When it is
also assumed that X is separable, then the w-basis B of 7°X defined in the proof
of Theorem 5.2 is a cover of TX. So TX is the union of clopen sets each
homeomorphic to 7R, and, in addition, this characterizes the property that
X = clxLX when X is separable. This fact is included in the next theorem.

THEOREM 5.3. Let X be a non-compact separable metric space without isolated
points. The following are equivalent:

(a) X = clxLX.

(b) TX is a union of open sets each homeomorphic to TR.

(¢c) TX 15 a union of clopen sets each homeomorphic to TR.

Proof. First it will be shown that (a) implies (c). By Proposition 4.8, if
X = clyLX then 7°X is homeomorphic to U4crx).acx 1A with TA clopen.
If A € R(X), A € LX and A4 is non-compact, then 74 is homeomorphic to
TR since 4 is locally compact and separable. If 4 is compact, then 74 = @.

Clearly (c) implies (b). To show that (b) implies (a), suppose 7'X is a
union of open subsets each homeomorphic to TR. It is known that 7R has no
non-empty open extremally disconnected subsets (since 7R is a dense subset
of BN\N), so the same property is true of 7X. Now

TX = T(clxLX) U T(clxNX)
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by Theorem 3.3 and since cly NX is a nowhere locally compact separable
metric space, 7°(cly/NX) is extremally disconnected [9]; thus T (clyNX) = @
s0 clyNX = @ and X = clyLX.

When X is a normal space, we have already seen that 7X = U4cpax 14,
and when X = clyLX then TX = Uxegryy T4 where H(LX) is the sub-
collection of R(X) of regular closed subsets of X contained in LX. Next we
show that when X\LX is non-empty and compact and the quotient space
obtained by identifying X\LX to a point p is first countable at p, then we can
find a countable subcollection D of H(LX) such that TX = Y. ,¢p T4. First
it will be shown that when X\ LX is non-empty and compact with X = clxyLX
it suffices to assume that X\LX is a single point when studying TX.

LEMMA 5.4. Let YV be a normal space and let X be « proper open dense subset
of Y. Let Yy = X \J {Y\X be the quotient space of Y with Y\X identified to a
point, and let f: YV — Yx be the quotient mapping.

(a) The quotient space Yx 1s normal, and f 1s a closed irreducible, continuous
mapping.

(b) If Y s a metric space and Y\X 1is compact, then Yx is a metric space.

(c¢) If Y\X s compact and LY = X, then L(YVx) = X.

Proof. (a) Since Y\X is closed in ¥, Yy is normal and f is closed and con-
tinuous. To see that f is closed irreducible, let C C Y be a closed subset such
that f(C) = V. Since X C Yy and f is one-to-one on X, X C (; and since C
isclosedin V¥, C = Y.

(b) By part (a), f is closed and continuous. Furthermore, since Y\X is
compact, f is perfect. So Yy is metric since perfect mappings preserve metriz-
ability ([1], XI, Theorem 5.2).

(c) Since Yy = X \U {¥\X} with the identification topology, and since
LY = X, it is clear that X © LY. But Yx is not locally compact since f is
perfect, and the inverse image of a locally compact space under a perfect
mapping is locally compact ([1], XI, 6.6). Thus L(Vy) # Vx,so L(Vyx) = X.

By Lemma 5.4, if X is normal and clyLy = X with X\LX non-empty and
compact, then X .y is normal with L(X) = L(X .x) and such that 77X and
T(X px) are homeomorphic. Further, if X is metric, then X,y is metric. The
following two lemmas give some technical results which will be used for the
case that X is dense in ¥ and Y\X is a single point.

LEMMA 5.5. Let X be a normal space which is first countable at p ¢ X. Let
{U,:n € N} be a neighborhood base for p of regular open sets such that cly U,y
U, for each n € N. If S; = X\U; and S; = clx(U._\clxU,) for 1 = 2, then
TX = Y %1 1T'S; where the representation on the right is canonical.

Proof. Clearly S; € R(X) and p ¢ S, for each 7 € N. Since kgx is a homeo-
morphism between TEX and 7X where kgy“(X) = EX and also between
NS) N TEX and clgxS; M TX for each © € N by Theorem 2.4 and Lemma
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4.2, it suffices to show that (i) N(S;) N N(S;)) N TEX = @ for ¢ # j and (ii)
TEX = UZ, (\MS) N TEX). Since UpN\lxUiN U N\clxU, = @ for
17 j, intyS; N intyS; = B for i # j; s0.S; A S; = B and N(S) NN(S,) = 0
and thus (i) is true. It is clear that

w1 (NS) NTEX) € TEX.

So suppose « € S(R(X)) but ¢« ¢ UT ANS:). Then for any »n € N,
a ¢ NMX\U,) since NX\U,) = AS1) U ... \UX(S,). So « € \clyU,) for
each n € N. Thus it follows that « € ks “(p) € EX since {U,:n € N} isa
neighborhood base for p. So « ¢ TEX. Thus TEX C U%1 N\ (S;) and (ii)
follows.

LEmMMA 5.6. Let X be a space without 1soluted points with X first countable at
p € X and such that p has no compact neighborhood. Then for any countable
neighborhood base { U,:n € N} for p of regular open sets such that clx U, C U,
there is « subsequence {n} of N such that cly (U, \clxU,,, ) ts not compact for
each k.

Proof. Suppose {U,:n € N} is a neighborhood base for p of regular open
sets for which there is no subsequence {7} € N such that cly (U, \clx Unpy,) is
not compact for each k. Then cly (U\clx U,41) is compact for each n = K for
some K € N. Let M > K. Since p € Uy C cly Uy, clx Uy is not compact; so,
there exists a family F of closed subsets of X which are contained in clyU,,
and which have non-empty finite intersections, but+M\F = @. Thus, for some
CeEFp¢d CsoCMU,=@forsomen > M;and so

C c CIXUM\Ur - UZ:%{ Clx(Uk\ClekH)

which is a contradiction.

The following proposition describes the structure of 7’X when X\LX is
non-empty and compact and X px is first countable at the point to which
X\LX is identified.

Prorosition 5.7. Let X be a« non-compact normal space such that clyLX = X
where X\LX 1s non-empty and compact, and for which there is u countable collec-
tion {U,:n € N} of open sets such that if X\LX C W where W 1s open in X
then there exists an m € N for which X\LX C U, C W. Then TX is homeo-
morphic to Y _x T'X, where the disjoint countable sum can be represented canoni-
cally for a collection {X,:n € N} C R(X) with X, C LX. Further;

(a) if X has countable w-weight and each closed pseudo-compact subspace of X
15 compact, then the X,'s can be chosen so that TX ; # @ for each 15

(b) of X is a metric space without isolated points, then TX is homeomorphic to
>N T(Zd,, R) where dX = d, > 0 for n € N.

Proof. As indicated before Lemma 5.4, it suffices to consider the case where
X\LX = {p}. The hypothesis implies that X is first countable at p. By Lemmas
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5.5and 5.6, TX = D n 1'X, where X, is a non-compact regular closed subset
of X such that p ¢ X, for each 7« € N and the representation is canonical.
Since p ¢ X;, X; € LX. For (a), by Theorem 1.3, 7.X; # @ since X ; can be
chosen to be non-compact by Lemma 5.6. For (b), 77X, = 1( Zd, R) where
d; = dX; by Theorem 1.4.

COROLLARY 5.8. Any two separcble melric spaces without isolated points for
which the set of non-locally compact points is non-emply and compact have
homeomorphic sets of remote points.

Proof. By Proposition 5.7, TX = > .n TR.

The author wishes to thank the referee for his helpful comments and
suggestions.
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