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Abstract

In this paper we present new fixed point theorems for inward and weakly inward type maps between
Fréchet spaces. We also discuss Kakutani–Mönch and contractive type maps.
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1. Introduction

In [11], using multivalued maps Kn , we presented new fixed point theorems for
Urysohn type maps. In this paper we remove these maps Kn and replace them
with a more natural sequentially compact condition. In Section 2 we present new
fixed point theorems for weakly inward Kakutani maps and new Leray–Schauder
alternatives for inward acyclic and approximable Urysohn type maps and weakly
inward Kakutani maps in Fréchet spaces. Also, in Section 2, we discuss Kakutani–
Mönch type operators and contractive maps. The proofs rely on fixed point theory in
Banach spaces and viewing a Fréchet space as the projective limit of a sequence of
Banach spaces. Our theory is partly motivated by the papers [2–5, 11].

We begin by presenting some definitions and some known facts. Let X and Y be
subsets of Hausdorff topological vector spaces E1 and E2 respectively. We will look at
maps F : X→ K (Y ), where K (Y ) denotes the family of nonempty compact subsets
of Y . We say that F : X→ K (Y ) is Kakutani if F is upper semicontinuous with
convex values. A nonempty topological space is said to be acyclic if all its reduced
Čech homology groups over the rationals are trivial. Now F : X→ K (Y ) is acyclic
if F is upper semicontinuous with acyclic values.

Given two open neighbourhoods U and V of the origins in E1 and E2 respectively,
a (U, V )-approximate continuous selection of F : X→ K (Y ) is a continuous function
s : X→ Y satisfying

s(x) ∈ (F[(x +U ) ∩ X ] + V ) ∩ Y for every x ∈ X .
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2 R. P. Agarwal and D. O’Regan [2]

We say that F : X→ K (Y ) is approximable if it is a closed map and if its restriction
F |K to any compact subset K of X admits a (U, V )-approximate continuous selection
for every open neighbourhood U and V of the origins in E1 and E2 respectively.

Let Q be a subset of a Hausdorff topological space X and x ∈ X . The inward set
IQ(x) is defined by

IQ(x)= {x + r(y − x) | y ∈ Q, r ≥ 0}.

If Q is convex and x ∈ Q then

IQ(x)= x + {r(y − x) | y ∈ Q, r ≥ 1}.

A mapping F : Q→ 2X (here 2X denotes the family of all nonempty subsets of X ) is
said to be weakly inward with respect to Q if F(x) ∩ IQ(x) 6= ∅ for all x ∈ Q.

Existence in Section 2 is based on the following continuation theory for Ac Ap
maps. A map is said to be Ac Ap if it is either acyclic or approximable. In our next
definitions E is a Banach space, C a closed convex subset of E and U0 a bounded open
subset of E . We will let U =U0 ∩ C and 0 ∈U . In our definitions U and ∂U denote
the closure and the boundary of U in C respectively.

DEFINITION 1.1. We say that F ∈ A(U , E) if F :U → K (E) is a closed Ac Ap
countably condensing map with F(x)⊆ IC (x) for all x ∈U .

DEFINITION 1.2. A map F ∈ A∂U (U , E) if F ∈ A(U , E) with x /∈ Fx for all
x ∈ ∂U .

DEFINITION 1.3. A map F ∈ A∂U (U , E) is essential in A∂U (U , E) if for every
G ∈ A∂U (U , E) with G|∂U = F |∂U there exists x ∈U with x ∈ Gx .

The following result was established in [10].

THEOREM 1.4. Let E, C, U0, and U be as above, 0 ∈U and F ∈ A(U , E) with

x /∈ λFx for all x ∈ ∂U and λ ∈ (0, 1].

Then F is essential in A∂U (U , E).

REMARK 1.5. The proof of Theorem 1.4 is based on the fact that the zero map is
essential in A∂U (U , E) and F ∼= 0 in A∂U (U , E).

If the map F in Theorem 1.4 is Kakutani then in fact we can obtain more general
results. The following result can be found in [6, 9].

THEOREM 1.6. Let E be a Banach space and C a closed bounded convex subset
of E. Suppose that F : C→ C K (E) is an upper semicontinuous condensing map
with F(x) ∩ IC (x) 6= ∅ for all x ∈ C, where C K (E) denotes the family of nonempty
convex compact subsets of E. Then F has a fixed point in E.

Again in our next definitions E is a Banach space, C a closed convex subset of E
and U0 a bounded open subset of E . We will let U =U0 ∩ C .
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DEFINITION 1.7. We say that F ∈ K (U , E) if F :U → C K (E) is an upper
semicontinuous condensing map with F(x) ∩ IC (x) 6= ∅ for all x ∈U .

DEFINITION 1.8. A map F ∈ K∂U (U , E) if F ∈ K (U , E) with x /∈ Fx for all
x ∈ ∂U .

DEFINITION 1.9. A map F ∈ K∂U (U , E) is essential in K∂U (U , E) if for every
G ∈ K∂U (U , E) with G|∂U = F |∂U there exists x ∈U with x ∈ Gx .

DEFINITION 1.10. Two maps F, G ∈ K∂U (U , E) are homotopic in K∂U (U , E),
written F ∼= G in K∂U (U , E), if there exists an upper semicontinuous condensing
map N :U × [0, 1] → C K (E) such that Nt (u)= N (t, u) :U → C K (E) belongs to
K∂U (U , E) for each t ∈ [0, 1] and N0 = F , N1 = G.

The topological transversality theorem for weakly inward Kakutani maps was
established in [9].

THEOREM 1.11. Let E, C, U0 and U be as above. Suppose that F and G are maps
in K∂U (U , E) with F ∼= G in K∂U (U , E). Then F is essential in K∂U (U , E) if and
only if G is essential in K∂U (U , E).

REMARK 1.12. If the map F in Definition 1.7 (and throughout) is countably
condensing instead of condensing then we have to assume that F(x) ∩ IC (x) 6= ∅ for
all x ∈U instead of F(x) ∩ IC (x) 6= ∅ for all x ∈U in Definition 1.7 (and throughout);
see [10] for details.

REMARK 1.13. If 0 ∈U then the zero map is essential in K∂U (U , E); see [10] for
details (the proof uses Theorem 1.6).

The following Krasnoselskii type result was established in [9] (there is also an
obvious analogue for countably condensing maps if we note Remark 1.12).

THEOREM 1.14. Let E be a Banach space, C a closed convex subset of E, and let W
and V be open bounded subsets of E with U1 =W ∩ C and U2 = V ∩ C. Suppose
that 0 ∈U1 ⊆U 1 ⊆U2 and that F :U 2→ C K (E) is an upper semicontinuous,
condensing map, weakly inward with respect to C (that is, F(x) ∩ IC (x) 6= ∅ for all
x ∈U 2). In addition, assume that the following conditions are satisfied:

(i) x /∈ λFx for all x ∈ ∂U2 and λ ∈ [0, 1];
(ii) there exists v ∈ C\{0} with x /∈ Fx + δv for all δ ≥ 0 and x ∈ ∂U1;
(iii) F(·)+ µv :U 1→ C K (E) is a weakly inward map with respect to C for all

µ≥ 0 (that is, [F(x)+ µv] ∩ IC (x) 6= ∅ for all x ∈U 1).

Then F has a fixed point in U2\U1.

In this paper we also discuss Mönch type compactness conditions instead of
countable condensing. In Section 2 one of our results will be based on a Leray–
Schauder alternative for Kakutani–Mönch maps [2, 13] which we state here for the
convenience of the reader.

https://doi.org/10.1017/S000497270900080X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270900080X


4 R. P. Agarwal and D. O’Regan [4]

THEOREM 1.15. Let K be a closed convex subset of a Banach space X, let U be a
relatively open subset of K , x0 ∈U, and suppose that F :U → C K (K ) is an upper
semicontinuous map. Also assume that the following conditions hold:

(i) M ⊆U, M ⊆ co({x0} ∪ F(M)) with M = C and C ⊆ M countable, implies that
M is compact;

(ii) x /∈ (1− λ){x0} + λFx for all x ∈U\U and λ ∈ (0, 1).

Then there exists a compact set 6 of U and an element x ∈6 with x ∈ Fx.

In Section 2 we will also discuss inward Kakutani–Mönch maps. In our next
definition and theorem E is a Banach space, C a closed convex subset of E and U0 a
bounded open subset of E . We will let U =U0 ∩ C and 0 ∈U . In our definitions U
and ∂U denote the closure and the boundary of U in C respectively.

DEFINITION 1.16. We say that F ∈ K M(U , E) if F :U → C K (E) is upper
semicontinuous, F(U ) is bounded, F(x)⊆ IC (x) for all x ∈U ; and if D ⊆ E with
D ⊆ co({0} ∪ F(D ∩U )) and D = B with B ⊆ D countable then D ∩U is compact.

The following theorem [3, 11] will be needed in Section 2.

THEOREM 1.17. Let E, C, U0, and U be as in Definition 1.16, 0 ∈U and F ∈
K M(U , E), with

x /∈ λFx for all x ∈ ∂U and λ ∈ (0, 1).

Then there exists a compact set 6 of U and an element x ∈6 with x ∈ Fx.

Finally, in Section 2 we consider contractive type maps. We recall the following
two results from the literature [1, 8].

THEOREM 1.18 [8, Theorem 3.9]. Let U be an open subset in a Banach space (X,
‖ · ‖) and F :U → X. Assume that 0 ∈U and suppose that there exists a continuous
nondecreasing function φ : [0,∞)→ [0,∞) satisfying φ(z) < z for all z > 0 such
that ‖Fx − Fy‖ ≤ φ(‖x − y‖) for all x, y ∈U. In addition, assume that F(U ) is
bounded and x 6= λFx for all x ∈ ∂U and λ ∈ (0, 1). Then F has a fixed point in U.

THEOREM 1.19 [1, Theorem 2.3 (and Remark 2.1)]. Let U be an open subset in a
Banach space (X, ‖ · ‖) and let F :U → C(X) be a closed map (that is, it has a closed
graph), where C(X) denotes the family of nonempty closed subsets of X. Assume
that 0 ∈U and suppose that there exists a continuous strictly increasing function
φ : [0,∞)→ [0,∞) satisfying φ(z) < z for all z > 0 such that H(Fx, Fy)≤
φ(‖x − y‖) for all x, y ∈U. In addition, assume that the following conditions hold:

(i) 8 : [0,∞)→ [0,∞), given by 8(x)= x − φ(x), is strictly increasing;
(ii) 8−1(a)+8−1(b)≤8−1(a + b) for a, b ≥ 0;
(iii)

∑
∞

i=0 φ
i (t) <∞ for t > 0;

(iv)
∑
∞

i=1 φ
i (x − φ(x))≤ φ(x) for x > 0;
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(v) F(U ) is bounded;
(vi) x /∈ λFx for all x ∈ ∂U and λ ∈ (0, 1).

Then F has a fixed point in U.

REMARK 1.20. In fact the assumption that F is closed can be removed in
Theorem 1.19. In [1, Theorem 2.3] we assumed a more general contractive condition
and the condition is needed there.

Let (X, d) be a metric space and S a nonempty subset of X . For x ∈ X let
d(x, S)= infy∈S d(x, y). Now suppose that G : S→ 2X . Then G is said to be
hemicompact if each sequence {xn}n∈N in S has a convergent subsequence whenever
d(xn, G(xn))→ 0 as n→∞.

Now let I be a directed set with order ≤ and let {Eα}α∈I be a family of locally
convex spaces. For each α ∈ I , β ∈ I for which α ≤ β, let πα,β : Eβ→ Eα be a
continuous map. Then the set{

x = (xα) ∈
∏
α∈I

Eα : xα = πα,β(xβ) ∀α, β ∈ I, α ≤ β

}
is a closed subset of

∏
α∈I Eα which is called the projective limit of {Eα}α∈I and is

denoted by lim← Eα (or lim←{Eα, πα,β} or the generalized intersection [9, p. 439]⋂
α∈I Eα).

2. Fixed point theory in Fréchet spaces

Let E = (E, {| · |n}n∈N ) be a Fréchet space with the topology generated by a family
of seminorms {| · |n | n ∈ N }, where N = {1, 2, . . .}. We assume that the family of
seminorms satisfies

|x |1 ≤ |x |2 ≤ |x |3 ≤ · · · for every x ∈ E . (2.1)

A subset X of E is bounded if for every n ∈ N there exists rn > 0 such that
|x |n ≤ rn for all x ∈ X . For r > 0 and x ∈ E we denote B(x, r)= {y ∈ E :
|x − y|n ≤ r for all n ∈ N }. We associate with E a sequence of Banach spaces
{(En, | · |n)} described as follows. For every n ∈ N we consider the equivalence
relation ∼n defined by

x ∼n y if and only if |x − y|n = 0. (2.2)

We denote by En
= (E/∼n, | · |n) the quotient space, and by (En, | · |n) the

completion of En with respect to | · |n (the norm on En induced by | · |n and its
extension to En are still denoted by | · |n). This construction defines a continuous map
µn : E→ En . Now since (2.1) is satisfied the seminorm | · |n induces a seminorm on
Em for every m ≥ n (again this seminorm is denoted by | · |n). Also (2.2) defines an
equivalence relation on Em from which we obtain a continuous map µn,m : Em→ En
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since Em/∼n can be regarded as a subset of En . Now µn,m µm,k = µn,k if n ≤ m ≤ k
and µn = µn,m µm if n ≤ m. We now assume that the following condition holds:

for each n ∈ N there exist a Banach space (En, | · |n)

and an isomorphism (between normed spaces) jn : En→ En. (2.3)

REMARK 2.1.

(i) For convenience the norm on En is denoted by | · |n .
(ii) In our applications En = En for each n ∈ N .
(iii) Note that if x ∈ En (or En) then x ∈ E . However, if x ∈ En then x is not

necessarily in E and in fact En is easier to use in applications (even though En is
isomorphic to En). For example, if E = C[0,∞), then En consists of the class
of functions in E which coincide on the interval [0, n] and En = C[0, n].

Finally, we assume that

E1 ⊇ E2 ⊇ · · · and

for each n ∈ N , | jnµn,n+1 j−1
n+1x |n ≤ |x |n+1 ∀x ∈ En+1. (2.4)

(Here we use the notation from [9]; that is, decreasing in the generalized sense.)
Let lim← En (or

⋂
∞

1 En where
⋂
∞

1 is the generalized intersection [9]) denote the
projective limit of {En}n∈N (note that πn,m = jn µn,m j−1

m : Em→ En for m ≥ n) and
note that lim← En ∼= E , so for convenience we write E = lim← En .

For each X ⊆ E and each n ∈ N we set Xn = jn µn(X), and we let Xn , int Xn and
∂Xn denote respectively the closure, the interior and the boundary of Xn with respect
to | · |n in En . Also the pseudo-interior of X is defined by

pseudo-int(X)= {x ∈ X | jn µn(x) ∈ Xn\∂Xn for every n ∈ N }.

The set X is pseudo-open if X = pseudo-int(X). For r > 0 and x ∈ En we denote
Bn(x, r)= {y ∈ En : |x − y|n ≤ r}.

We now show how easily one can extend fixed point theory in Banach spaces
to applicable fixed point theory in Fréchet spaces. Our results are motivated by
Urysohn type operators. In this case the map Fn will be related to F by the closure
property (2.10).

THEOREM 2.2. Let E and En be as described at the beginning of Section 2, C a
convex subset in E, V a pseudo-open bounded subset of E, 0 ∈ V ∩ C, F : Y → 2E

with Y ⊆ E, and U n = Vn ∩ Cn ⊆ Yn for each n ∈ N (here Un = Vn ∩ Cn). Also, for
each n ∈ N, assume that Fn :U n→ 2En and suppose that the following conditions are
satisfied.{

For each n ∈ {2, 3, . . .}, if y ∈Un solves y ∈ Fn y in En , then
jk µk,n j−1

n (y) ∈Uk for k ∈ {1, . . . , n − 1}. (2.5)
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[7] Fixed point theory for various classes of inward multivalued maps 7{
For each n ∈ N, the map Fn :U n→ K (En) is a closed Ac Ap
countably condensing map, where U n denotes the closure of Un in Cn .

(2.6)

For each n ∈ N, we have Fn(x)⊆ ICn
(x) for all x ∈U n . (2.7){

For each n ∈ N, we have y /∈ λFn y in En for all λ ∈ (0, 1] and
y ∈ ∂Un , where ∂Un denotes the boundary of Un in Cn .

(2.8)


For any sequence {yn}n∈N with yn ∈Un and yn ∈ Fn yn in En for
n ∈ N and for every k ∈ N there exists a subsequence
Nk ⊆ {k + 1, k + 2, . . .}, Nk ⊆ Nk−1 for k ∈ {1, 2, . . .}, N0 = N, and
zk ∈U k with jk µk,n j−1

n (yn)→ zk in Ek as n→∞ in Nk .

(2.9)


If there exist w ∈ Y and a sequence {yn}n∈N with yn ∈Un and
yn ∈ Fn yn in En such that for every k ∈ N there exists a subsequence
S ⊆ {k + 1, k + 2, . . .} of N with jk µk,n j−1

n (yn)→ jk µk(w) in Ek
as n→∞ in S, then w ∈ Fw in E.

(2.10)

Then F has a fixed point in E.

REMARK 2.3. Notice that to check (2.9) we need to show that for each k ∈ N the
sequence { jk µk,n j−1

n (yn)}n∈Nk−1 ⊆U k is sequentially compact.

PROOF. Fix n ∈ N . We would like to apply Theorem 1.4. To do so we need to show

Cn is convex (2.11)

and
Vn is a bounded open subset of En and jn µn(0) ∈Un . (2.12)

First we check (2.11). To see this, let x̂, ŷ ∈ µn(C) and λ ∈ [0, 1]. Then for
every x ∈ µ−1

n (x̂) and y ∈ µ−1
n (ŷ) we have λx + (1− λ)y ∈ C since C is convex

and so λx̂ + (1− λ)ŷ = λµn(x)+ (1− λ)µn(y). It is easy to check that λµn(x)+
(1− λ)µn(y)= µn(λx + (1− λ)y) so as a result

λx̂ + (1− λ)ŷ = µn(λx + (1− λ)y) ∈ µn(C),

and so µn(C) is convex. Now since jn is linear, Cn = jn(µn(C)) is convex and as a
result Cn is convex. Thus (2.11) holds.

Now since V is pseudo-open and 0 ∈ V then jn µn(0) ∈ pseudo-int V so jn µn(0) ∈
V n\∂Vn (here V n and ∂Vn denote the closure and boundary of Vn in En respectively).
Of course

V n\∂Vn = (Vn ∪ ∂Vn)\∂Vn = Vn\∂Vn

so jn µn(0) ∈ Vn\∂Vn , and in particular jn µn(0) ∈ Vn (this is easy to see anyway from
the definition of Vn). Thus jn µn(0) ∈ Vn ∩ Cn =Un . Next notice that Vn is bounded
since V is bounded (note that if y ∈ Vn then there exists x ∈ V with y = jnµn(x)). It
remains to show that Vn is open. First notice that Vn ⊆ V n\∂Vn since if y ∈ Vn then
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there exists x ∈ V with y = jnµn(x), and this together with V = pseudo-int V yields
jnµn(x) ∈ V n\∂Vn; that is, y ∈ V n\∂Vn . In addition, notice that

V n\∂Vn = (int Vn ∪ ∂Vn)\∂Vn = int Vn\∂Vn = int Vn

since int Vn ∩ ∂Vn = ∅. Consequently,

Vn ⊆ V n\∂Vn = int Vn, so Vn = int Vn.

As a result Vn is open in En . Thus (2.12) holds.
For each n ∈ N (see Theorem 1.4) there exists yn ∈Un = Vn ∩ Cn with yn ∈

Fn yn . Let us look at {yn}n∈N . Notice that y1 ∈U1 and j1 µ1,n j−1
n (yn) ∈U1 for

k ∈ {2, 3, . . .}. Now (2.9) with k = 1 guarantees that there exist a subsequence
N1 ⊆ {2, 3, . . .} and z1 ∈U 1 with j1 µ1,n j−1

n (yn)→ z1 in E1 as n→∞ in N1.
Look at {yn}n∈N1 . Now j2 µ2,n j−1

n (yn) ∈U2 for k ∈ N1. Now (2.9) with k = 2
guarantees that there exist a subsequence N2 ⊆ {3, 4, . . .} of N1 and z2 ∈U 2 with
j2 µ2,n j−1

n (yn)→ z2 in E2 as n→∞ in N2. Note from (2.4) and the uniqueness
of limits that j1 µ1,2 j−1

2 z2 = z1 in E1 since N2 ⊆ N1 (note that j1 µ1,n j−1
n (yn)=

j1 µ1,2 j−1
2 j2 µ2,n j−1

n (yn) for n ∈ N2). Proceed inductively to obtain subsequences
of integers

N1 ⊇ N2 ⊇ · · · where Nk ⊆ {k + 1, k + 2, . . .}

and zk ∈U k with jkµk,n j−1
n (yn)→ zk in Ek as n→∞ in Nk . Note that

jkµk,k+1 j−1
k+1 zk+1 = zk in Ek for k ∈ {1, 2, . . .}.

Fix k ∈ N . Note that

zk = jkµk,k+1 j−1
k+1zk+1 = jkµk,k+1 j−1

k+1 jk+1µk+1,k+2 j−1
k+2zk+2

= jkµk,k+2 j−1
k+2zk+2 = · · · = jkµk,m j−1

m zm = πk,m zm

for every m ≥ k. We can do this for each k ∈ N . As a result y = (zk) ∈ lim← En = E
and also note that y ∈ Y since zk ∈U k ⊆ Yk for each k ∈ N . Also since yn ∈ Fn yn
in En for n ∈ Nk and jk µk,n j−1

n (yn)→ zk = y in Ek as n→∞ in Nk , we have from
(2.10) that y ∈ Fy in E . 2

REMARK 2.4. From the proof we see that condition (2.5) can be removed from
the statement of Theorem 2.2. We include it only to explain condition (2.9) (see
Remark 2.3).

REMARK 2.5. Note that we could replace U n ⊆ Yn above with U n a subset of the
closure of Yn in En if Y is a closed subset of E (so in this case we can take Y = C ∩ V

if Cn ∩ Vn is a subset of the closure of jn µn(C ∩ V ) in En and if C is closed). To see
this, note that zk ∈U k , y = (zk) ∈ lim← En = E and πk,m(ym)→ zk in Ek as m→∞
and we can conclude that y ∈ Y = Y (note that q ∈ Y if and only if for every k ∈ N
there exists (xk,m) ∈ Y , xk,m = πk,n(xn,m) for n ≥ k with xk,m→ jk µk(q) in Ek as
m→∞).
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[9] Fixed point theory for various classes of inward multivalued maps 9

REMARK 2.6. Suppose that in Theorem 2.2 we replace (2.9) with the following.
For any sequence {yn}n∈N with yn ∈Un and yn ∈ Fn yn in En for
n ∈ N and for every k ∈ N there exist a subsequence
Nk ⊆ {k + 1, k + 2, . . .}, where Nk ⊆ Nk−1 for k ∈ {1, 2, . . .}, where
N0 = N, and zk ∈Uk with jk µk,n j−1

n (yn)→ zk in Ek as n→∞
in Nk .

(2.9∗)

In addition, we assume that F : Y → 2E with U n ⊆ Yn for each n ∈ N is replaced by
F : Y → 2E with Un ⊆ Yn for each n ∈ N . Then the result in Theorem 2.2 is again
true.

The proof follows the reasoning in Theorem 2.2 except in this case zk ∈Uk .

Next we present a result for weakly inward Kakutani maps using Theorem 1.6.

THEOREM 2.7. Let E and En be as described at the beginning of Section 2, C a
convex bounded subset in E, F : Y → 2E with Y ⊆ E, and Cn ⊆ Yn for each n ∈ N.
Also for each n ∈ N assume that Fn : Cn→ 2En and suppose that the following
conditions are satisfied.{

For each n ∈ {2, 3, . . .}, if y ∈ Cn solves y ∈ Fn y in En , then
jk µk,n j−1

n (y) ∈ Ck for k ∈ {1, . . . , n − 1}.
(2.13){

For each n ∈ N, the map Fn : Cn→ C K (En) is upper semicontinuous
and condensing.

(2.14)

For each n ∈ N, Fn(x) ∩ ICn
(x) 6= ∅ for x ∈ Cn . (2.15)

For any sequence {yn}n∈N with yn ∈ Cn and yn ∈ Fn yn in En for
n ∈ N and for every k ∈ N there exist a subsequence
Nk ⊆ {k + 1, k + 2, . . .}, where Nk ⊆ Nk−1 for k ∈ {1, 2, . . .},
N0 = N, and zk ∈ Ck with jk µk,n j−1

n (yn)→ zk in Ek as n→∞
in Nk .

(2.16)


If there exist w ∈ Y and a sequence {yn}n∈N with yn ∈ Cn and
yn ∈ Fn yn in En such that for every k ∈ N there exists a subsequence
S ⊆ {k + 1, k + 2, . . .} of N with jk µk,n j−1

n (yn)→ jk µk(w) in Ek
as n→∞ in S, then w ∈ Fw in E.

(2.17)

Then F has a fixed point in E.

PROOF. For each n ∈ N there exists (Theorem 1.6) yn ∈ Cn with yn ∈ Fn yn in En .
Essentially the same reasoning as in Theorem 2.2 establishes the result.

REMARK 2.8. Condition (2.13) can be removed from the statement of Theorem 2.7.

REMARK 2.9. Note that we could replace Cn ⊆ Yn above with Cn a subset of the
closure of Yn in En if Y is a closed subset of E (so in this case we can take Y = C if C
is a closed subset of E).
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For our next definitions E and En are as described at the beginning of Section 2, C
is a convex subset of E , V a bounded pseudo-open subset of E and F : Y → 2E

with Y ⊆ E . Also assume that either U n = Vn ∩ Cn ⊆ Yn for each n ∈ N (here
Un = Vn ∩ Cn) or U n is a subset of the closure of Yn in En for each n ∈ N (with
Y a closed subset of E). In addition, assume for each n ∈ N that Fn :U n→ 2En .

DEFINITION 2.10. F ∈ K (Y, E) if, for each n ∈ N , Fn ∈ K (U n, En) (that is, for
each n ∈ N , Fn :U n→ C K (En) is an upper semicontinuous condensing map with
Fn(x) ∩ ICn

(x) 6= ∅ for all x ∈U n), where U n denotes the closure of Un in Cn .

DEFINITION 2.11. F ∈ K∂(Y, E) if F ∈ K (Y, E) and, for each n ∈ N , x /∈ Fn(x) for
all x ∈ ∂Un , where ∂Un denotes the boundary of Un in Cn .

DEFINITION 2.12. A map F ∈ K∂(Y, E) is essential in K∂(Y, E) if, for each n ∈ N ,
Fn ∈ K∂Un (U n, En) is essential in K∂Un (U n, En) (that is, for each n ∈ N , every map
G ∈ K∂Un (U n, En) with G|∂Un = Fn|∂Un has a fixed point in U n\∂Un).

REMARK 2.13. Note that if jn µn(0) ∈Un for each n ∈ N then 0 ∈ K∂(Y, E) is
essential in K∂(Y, E) by Remark 1.13.

DEFINITION 2.14. (We assume that jn µn(0) ∈Un for each n ∈ N .) The maps F ,
0 ∈ K∂(Y, E) are homotopic in K∂(Y, E), written F ∼= 0 in K∂(Y, E), if, for each
n ∈ N , Fn ∼= jn µn(0) in K∂Un (U n, En).

THEOREM 2.15. Let E and En be as described at the beginning of Section 2, C a
convex subset in E, V a bounded pseudo-open subset of E and F : Y → 2E with Y ⊆

E. Also assume that either U n = Vn ∩ Cn ⊆ Yn for each n ∈ N (here Un = Vn ∩ Cn)
or U n is a subset of the closure of Yn in En for each n ∈ N (with Y a closed subset
of E). Suppose that 0 ∈ V ∩ C and for each n ∈ N assume that Fn :U n→ 2En and
also suppose that F ∈ K∂(Y, E) with (2.5) and that the following condition satisfied.

F ∼= 0 in K∂(Y, E). (2.18)

Also assume that (2.9) and (2.10) hold. Then F has a fixed point in E.

PROOF. Fix n ∈ N . Remark 2.13 guarantees that the zero map (that is, G(x)=
jn µn(0)) is essential in K∂Un (U n, En) for each n ∈ N . Now Theorem 1.11 guarantees
that Fn is essential in K∂Un (U n, En) so in particular there exists yn ∈Un with yn ∈

Fn yn . Essentially the same reasoning as in Theorem 2.2 (with Remark 2.5) establishes
the result. 2

REMARK 2.16. Condition (2.5) can be removed from the statement of Theorem 2.15.

REMARK 2.17. If for each n ∈ N the map Fn :U n→ C K (En) is countably
condensing instead of condensing in Definition 2.10 (and throughout) then we assume
that Fn(x) ∩ ICn

(x) 6= ∅ for all x ∈U n instead of Fn(x) ∩ ICn
(x) 6= ∅ for all x ∈U n

in Definition 2.10 (and throughout).
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REMARK 2.18. Notice that 0 ∈ V ∩ C and (2.18) could be replaced by F ∼= G in
K∂(Y, E) (of course we assume that G ∈ K∂(Y, E) and we must specify Gn for n ∈ N
here).

REMARK 2.19. Remark 2.6 also holds in this situation.

THEOREM 2.20. Let E and En be as described at the beginning of Section 2, C a
convex subset in E, V a bounded pseudo-open subset of E and F : Y → 2E with

Y ⊆ E. Also assume that either U n = Vn ∩ Cn ⊆ Yn for each n ∈ N (here Un =

Vn ∩ Cn) or U n is a subset of the closure of Yn in En for each n ∈ N (with Y a closed
subset of E). Suppose that 0 ∈ V ∩ C and for each n ∈ N assume that Fn :U n→ 2En

and also suppose that F ∈ K∂(Y, E) with (2.5), (2.9), (2.10) and that the following
condition satisfied:

for each n ∈ N , we have y /∈ λFn y in En for all λ ∈ (0, 1] and y ∈ ∂Un. (2.19)

Then F has a fixed point in E.

PROOF. Now (2.18) is immediate if we take for each n ∈ N , Hn(x, λ)= λ F(x) for
(x, λ) ∈U n × [0, 1]. Our result follows from Theorem 2.15. 2

Next we present a Krasnoselskii type result for weakly inward maps in the Fréchet
space setting.

THEOREM 2.21. Let E and En be as described at the beginning of Section 2, C a
convex subset in E, and suppose that U and V are bounded pseudo-open subsets
of E with 0 ∈U ⊆U ⊆ V and F : Y → 2E with Y ⊆ E. Also assume that either

W n = Vn ∩ Cn ⊆ Yn for each n ∈ N (here Wn = Vn ∩ Cn) or W n is a subset of the
closure of Yn in En for each n ∈ N (with Y a closed subset of E). Also for each n ∈ N
assume that Fn :W n→ 2En and suppose that the following conditions are satisfied:

For each n ∈ N the map Fn :W n→ C K (En) is upper semicontinuous
condensing with Fn(x) ∩ ICn

(x) 6= ∅ for all x ∈W n , where W n

denotes the closure of Wn in Cn .

(2.20)

For each n ∈ N, y /∈ λFn y in En for all λ ∈ [0, 1] and y ∈ ∂Wn . (2.21){
For each n ∈ N, there exists vn ∈ Cn\{0} with x /∈ Fnx + δvn for all
δ ≥ 0 and x ∈ ∂�n , where �n =Un ∩ Cn .

(2.22)
For each n ∈ N, the map Fn(·)+ µ vn :�n→ C K (En) is weakly
inward with respect to Cn for all µ≥ 0 (that is,
[Fn(x)+ µ vn] ∩ ICn

(x) 6= ∅ for all x ∈�n).
(2.23)

{
For each n ∈ {2, 3, . . .}, if y ∈Wn\�n solves y ∈ Fn y in En , then
jk µk,n j−1

n (y) ∈Wk for k ∈ {1, . . . , n − 1}. (2.24)
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For any sequence {yn}n∈N with yn ∈Wn\�n and yn ∈ Fn yn in En for
n ∈ N and for every k ∈ N there exist a subsequence
Nk ⊆ {k + 1, k + 2, . . .}, with Nk ⊆ Nk−1 for k ∈ {1, 2, . . .}, N0 = N,
and zk ∈W k with jk µk,n j−1

n (yn)→ zk in Ek as n→∞ in Nk .

(2.25)

 For every k ∈ N and any subsequence A ⊆ {k, k + 1, . . .}, if x ∈ Cn is
such that x ∈Wn\�n for some n ∈ A then there exists γ > 0
(independent of k and n) with | jk µk,n j−1

n x |k ≥ γ .
(2.26)


If there exist w ∈ Y and a sequence {yn}n∈N with yn ∈Wn\�n and
yn ∈ Fn yn in En such that for every k ∈ N there exists a subsequence
S ⊆ {k + 1, k + 2, . . .} of N with jk µk,n j−1

n (yn)→ jk µk(w) in Ek
as n→∞ in S, then w ∈ Fw in E.

(2.27)

Then F has a fixed point in E.

PROOF. Fix n ∈ N . Now Cn is convex and Un , Vn are open bounded subsets of En
with jn µn(0) ∈Un ⊆ Vn . It just remains to show that Un ⊆U n ⊆ Vn . Of course since
U ⊆U ⊆ V ,

Un = jnµn(U )⊆ jnµn(U )⊆ jnµn(V )= Vn

and since jnµn is continuous Un ⊆ jnµn(U )⊆ jn µn(U )=U n . Also we see that
µn(U )⊆ µn(V ) (note that U ⊆ V ) so since jn is an isometry,

U n = jnµn(U )= jnµn(U )⊆ jnµn(V )= Vn.

Theorem 1.14 guarantees that there exists yn ∈Wn\�n with yn ∈ Fn yn in En .
As in Theorem 2.2 there exist a subsequence N1 ⊆ {2, 3, . . .} and z1 ∈W 1 with
j1 µ1,n j−1

n (yn)→ z1 in E1 as n→∞ in N1. Also yn ∈Wn\�n together with (2.26)
yields | j1 µ1,n j−1

n (yn)|1 ≥ γ for n ∈ N and so |z1|1 ≥ γ . Proceed inductively to
obtain subsequences of integers

N1 ⊇ N2 ⊇ · · · where Nk ⊆ {k + 1, k + 2, . . .}

and zk ∈W k with jkµk,n j−1
n (yn)→ zk in Ek as n→∞ in Nk . Note that

jkµk,k+1 j−1
k+1zk+1 = zk in Ek for k ∈ {1, 2, . . .} and |zk |k ≥ γ . Now essentially the

same reasoning as in Theorem 2.2 (with Remark 2.5) guarantees the result. 2

REMARK 2.22. Condition (2.24) can be removed from the statement of Theo-
rem 2.21.

REMARK 2.23. Condition (2.26) is only needed to guarantee that the fixed point y
satisfies | jk µk(y)|k ≥ γ for k ∈ N . If we assume all the conditions in Theorem 2.21
except (2.26) then again F has a fixed point in E but the above property is not
guaranteed.

We next present a Mönch type result using Theorem 1.15.

THEOREM 2.24. Let E and En be as described at the beginning of Section 2, X ⊆ E
and F : Y → 2E with int Xn ⊆ Yn for each n ∈ N or int Xn is a subset of the closure
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of Yn in En for each n ∈ N (with Y a closed subset of E). Also for each n ∈ N assume
that Fn : int Xn→ 2En and suppose that the following conditions are satisfied.{

For each n ∈ {2, 3, . . .} if y ∈ int Xn solves y ∈ Fn y in En then
jk µk,n j−1

n (y) ∈ int Xk for k ∈ {1, . . . , n − 1}. (2.28)

x0 ∈ pseudo-int(X). (2.29){
For each n ∈ N, the map Fn : int Xn→ C K (En) is upper
semicontinuous.

(2.30){
For each n ∈ N, M ⊆ int Xn with M ⊆ co({ jn µn(x0)} ∪ Fn(M)) with
M = C and C ⊆ M countable implies that M is compact.

(2.31){
For each n ∈ N, y /∈ (1− λ) jn µn(x0)+ λFn y in En for all λ ∈ (0, 1]
and y ∈ ∂ int Xn .

(2.32)
For any sequence {yn}n∈N with yn ∈ int Xn and yn ∈ Fn yn in En for
n ∈ N and for every k ∈ N there exist a subsequence
Nk ⊆ {k + 1, k + 2, . . .}, with Nk ⊆ Nk−1 for k ∈ {1, 2, . . .}, N0 = N,
and zk ∈ int Xk with jk µk,n j−1

n (yn)→ zk in Ek as n→∞ in Nk .

(2.33)


If there exist w ∈ Y and a sequence {yn}n∈N with yn ∈ int Xn and
yn ∈ Fn yn in En such that for every k ∈ N there exists a subsequence
S ⊆ {k + 1, k + 2, . . .} of N with jk µk,n j−1

n (yn)→ jk µk(w) in Ek
as n→∞ in S, then w ∈ Fw in E.

(2.34)

Then F has a fixed point in E.

REMARK 2.25. Condition (2.28) can be removed from the statement of Theo-
rem 2.24.

REMARK 2.26. Suppose that in Theorem 2.24 we replace (2.33) with the following
condition.

For any sequence {yn}n∈N with yn ∈ int Xn and yn ∈ Fn yn in En for
n ∈ N and for every k ∈ N there exist a subsequence
Nk ⊆ {k + 1, k + 2, . . .}, with Nk ⊆ Nk−1 for k ∈ {1, 2, . . .}, N0 = N,
and zk ∈ int Xk with jk µk,n j−1

n (yn)→ zk in Ek as n→∞ in Nk .

(2.9∗∗)

In addition, we assume that F : Y → 2E with int Xn ⊆ Yn (or int Xn is a subset of
the closure of Yn in En if Y is a closed subset of E) for each n ∈ N is replaced by
F : X→ 2E , and suppose that (2.34) is true with w ∈ Y replaced by w ∈ X . Then the
result in Theorem 2.24 is again true.

Also we have the following result for Mönch inward type maps (just apply
Theorem 1.17 in this case).

THEOREM 2.27. Let E and En be as described at the beginning of Section 2, C a
convex subset in E, V a pseudo-open bounded subset of E, 0 ∈ V ∩ C, F : Y → 2E

with Y ⊆ E, and U n = Vn ∩ Cn ⊆ Yn for each n ∈ N (here Un = Vn ∩ Cn) or U n is a
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subset of the closure of Yn in En (with Y a closed subset of E). Also for each n ∈ N
assume that Fn :U n→ 2En and suppose that (2.5), (2.7), (2.8) and the following
conditions hold.{

For each n ∈ N, the map Fn :U n→ C K (En) is upper semicontinuous
and Fn(U n) is bounded, where U n denotes the closure of Un in Cn .

(2.35){
For each n ∈ N, D ⊆ En with D ⊆ co({ jn µn(0)} ∪ Fn(D ∩Un)) and
D = B with B ⊆ D countable implies that D ∩Un is compact.

(2.36)

In addition, assume that (2.9) and (2.10) hold. Then F has a fixed point in E.

REMARK 2.28. Remarks 2.4 and 2.6 also hold in this situation.

Finally, we consider contractive type maps. First we consider single-valued maps
(just apply Theorem 1.18).

THEOREM 2.29. Let E and En be as described at the beginning of Section 2, X ⊆ E
and F : Y → E with int Xn ⊆ Yn for each n ∈ N or int Xn is a subset of the closure
of Yn in En for each n ∈ N (with Y a closed subset of E). Also for each n ∈ N
assume that Fn : int Xn→ En and suppose that (2.28) and the following conditions
are satisfied.

0 ∈ pseudo-int(X). (2.37)

For each n ∈ N, Fn(int Xn) is bounded. (2.38){ For each n ∈ N, there exists a continuous nondecreasing function
φn : [0,∞)→ [0,∞) satisfying φn(z) < z for z > 0 such that
|Fnx − Fn y|n ≤ φn(|x − y|n) for all x, y ∈ int Xn .

(2.39)

For each n ∈ N, y 6= λFn y in En for all λ ∈ (0, 1] and y ∈ ∂ int Xn . (2.40)

Also assume that (2.33) (with yn ∈ Fn yn replaced by yn = Fn yn) and (2.34) (with
yn ∈ Fn yn and w ∈ Fw replaced by yn = Fn yn and w = Fw) hold. Then F has a
fixed point in E.

REMARK 2.30. Note that there is an analogue of Remarks 2.25 and 2.26 in this
situation and also in the next.

THEOREM 2.31. Let E and En be as described at the beginning of Section 2, X ⊆ E
and F : Y → 2E with int Xn ⊆ Yn for each n ∈ N or int Xn is a subset of the closure
of Yn in En for each n ∈ N (with Y a closed subset of E). Also for each n ∈ N assume
that Fn : int Xn→ 2En and suppose that (2.28), (2.37) and the following conditions
are satisfied.

For each n ∈ N, Fn(int Xn) is bounded. (2.41)
For each n ∈ N, Fn : int Xn→ C(En) and there exists a continuous
strictly increasing function φn : [0,∞)→ [0,∞) satisfying φn(z) < z
for z > 0 such that Hn(Fnx, Fn y)≤ φn(|x − y|n) for all
x, y ∈ int Xn .

(2.42)
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For each n ∈ N, the map 8n : [0,∞)→ [0,∞) given by
8n(x)= x − φn(x) is strictly increasing,

8−1
n (a)+8−1

n (b)≤8−1
n (a + b) for a, b ≥ 0, with

∞∑
i=0

φi
n(t) <∞ for

t > 0 and
∞∑

i=1
φi

n(x − φ(x))≤ φn(x) for x > 0.

(2.43)

For each n ∈ N, y /∈ λFn y in En for all λ ∈ (0, 1] and y ∈ ∂ int Xn . (2.44)

Also assume that (2.33) and (2.34) hold. Then F has a fixed point.

References

[1] R. P. Agarwal, J. Dshalalow and D. O’Regan, ‘Fixed point and homotopy results for generalized
contractive maps of Reich type’, Appl. Anal. 82 (2003), 329–350.

[2] R. P. Agarwal, J. H. Dshalalow and D. O’Regan, ‘Fixed point theory for Mönch type maps defined
on closed subsets of Fréchet spaces: the projective limit approach’, Int. J. Math. Math. Sci. 17
(2005), 2775–2782.

[3] R. P. Agarwal, J. H. Dshalalow and D. O’Regan, ‘Leray–Schauder principles for inward Kakutani
Mönch type maps’, Nonlinear Funct. Anal. Appl. 10 (2005), 325–330.

[4] R. P. Agarwal, M. Frigon and D. O’Regan, ‘A survey of recent fixed point theory in Fréchet
spaces’, in: Nonlinear Analysis and Applications: to V. Lakshmikantham on his 80th Birthday,
Vol. 1 (Kluwer Academic Publishers, Dordrecht, 2003), pp. 75–88.

[5] R. P. Agarwal and D. O’Regan, ‘Fixed point theory for weakly inward Kakutani maps: the
projective limit approach’, Proc. Amer. Math. Soc. 135 (2007), 417–426.

[6] K. Deimling, Multivalued Differential Equations (Walter de Gruyter, Berlin, 1992).
[7] L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces (Pergamon Press,

Oxford, 1964).
[8] D. O’Regan, ‘Fixed point theorems for nonlinear operators’, J. Math. Anal. Appl. 202 (1996),

413–432.
[9] D. O’Regan, ‘A continuation theory for weakly inward maps’, Glasg. Math. J. 40 (1998), 311–321.

[10] D. O’Regan, ‘Homotopy and Leray–Schauder type results for admissible inward multimaps’,
J. Concr. Appl. Math. 2 (2004), 67–76.

[11] D. O’Regan, ‘Leray–Schauder results for inward acyclic and approximable maps defined on
Fréchet space’, Appl. Math. Lett. 19 (2006), 976–982.

[12] D. O’Regan, ‘Fixed point theory in Fréchet spaces for Mönch inward and contractive Urysohn
type operators’, East Asian Math. J. 24 (2008), 233–249.

[13] D. O’Regan and R. Precup, ‘Fixed point theory for set valued maps and existence principles for
integral inclusions’, J. Math. Anal. Appl. 245 (2000), 594–612.

RAVI P. AGARWAL, Department of Mathematical Science,
Florida Institute of Technology, Melbourne, Florida 32901, USA
e-mail: agarwal@fit.edu

DONAL O’REGAN, Department of Mathematics, National University of Ireland,
Galway, Ireland
e-mail: donal.oregan@nuigalway.ie

https://doi.org/10.1017/S000497270900080X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270900080X

