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Abstract

In this paper we present new fixed point theorems for inward and weakly inward type maps between
Fréchet spaces. We also discuss Kakutani-Monch and contractive type maps.
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1. Introduction

In [11], using multivalued maps K,, we presented new fixed point theorems for
Urysohn type maps. In this paper we remove these maps X, and replace them
with a more natural sequentially compact condition. In Section 2 we present new
fixed point theorems for weakly inward Kakutani maps and new Leray—Schauder
alternatives for inward acyclic and approximable Urysohn type maps and weakly
inward Kakutani maps in Fréchet spaces. Also, in Section 2, we discuss Kakutani—
Monch type operators and contractive maps. The proofs rely on fixed point theory in
Banach spaces and viewing a Fréchet space as the projective limit of a sequence of
Banach spaces. Our theory is partly motivated by the papers [2-5, 11].

We begin by presenting some definitions and some known facts. Let X and Y be
subsets of Hausdorff topological vector spaces E and E» respectively. We will look at
maps F : X - K(Y), where K (Y) denotes the family of nonempty compact subsets
of Y. We say that F : X — K(Y) is Kakutani if F is upper semicontinuous with
convex values. A nonempty topological space is said to be acyclic if all its reduced
Cech homology groups over the rationals are trivial. Now F : X — K (Y) is acyclic
if F is upper semicontinuous with acyclic values.

Given two open neighbourhoods U and V of the origins in E; and E; respectively,
a (U, V)-approximate continuous selection of F' : X — K (Y) is a continuous function
s : X — Y satisfying

sx)e(Flx+U)nX]+V)NnYy forevery x € X.
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We say that F : X — K (Y) is approximable if it is a closed map and if its restriction
F|g to any compact subset K of X admits a (U, V)-approximate continuous selection
for every open neighbourhood U and V of the origins in £ and E; respectively.

Let O be a subset of a Hausdorff topological space X and x € X. The inward set
Io(x) is defined by

lox)={x+r(y—x)[yeQ, r=0}.

If Q is convex and x € Q then
Iox)=x+{r(y—x)|yeQ, r=1}.

A mapping F : Q — 2% (here 2X denotes the family of all nonempty subsets of X) is
said to be weakly inward with respect to Q if F'(x) N Ip(x) # @ forall x € Q.

Existence in Section 2 is based on the following continuation theory for Ac Ap
maps. A map is said to be AcAp if it is either acyclic or approximable. In our next
definitions E is a Banach space, C a closed convex subset of E and Uy a bounded open
subset of E. We will let U = Uy N C and 0 € U. In our definitions U and U denote
the closure and the boundary of U in C respectively.

DEFINITION 1.1. We say that F € AU, E) if F:U — K(E) is a closed AcAp
countably condensing map with F(x) C Ic(x) forall x € U.

DEFINITION 1.2. A map F € Ayy(U, E) if Fe A(U, E) with x ¢ Fx for all
x eadU.

DEFINITI@ 1.3. Amap F e Ay (U, E) is essential in Ayy (U, E) if for every
G € Ayy (U, E) with G|yy = F|yy there exists x € U with x € Gx.

The following result was established in [10].

THEOREM 1.4. Let E, C, Uy, and U be as above, 0 € U and F € A(ﬁ, E) with
x ¢AFx forallx € U and X € (0, 1].

Then F is essential in Ayy (U, E).

REMARK 1.5. The proof of Theorem 1.4 is based on the fact that the zero map is
essential in Agy (U, E) and F =0in Ayy (U, E).

If the map F in Theorem 1.4 is Kakutani then in fact we can obtain more general
results. The following result can be found in [6, 9].

THEOREM 1.6. Let E be a Banach space and C a closed bounded convex subset
of E. Suppose that F : C — CK(E) is an upper semicontinuous condensing map
with F(x) N Ic(x) #£ @ for all x € C, where C K (E) denotes the family of nonempty
convex compact subsets of E. Then F has a fixed point in E.

Again in our next definitions E is a Banach space, C a closed convex subset of E
and Uy a bounded open subset of E. We will let U = Uy N C.
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DEFINITION 1.7. We say that F € KWU,E) if F:U — CK(E) is an upper
semicontinuous condensing map with F(x) N Ic(x) # @ forall x e U.

DEFINITION 1.8. A map F € Kyy(U, E) if Fe K(U, E) with x ¢ Fx for all
x €eadU.

DEFINITION 1.9. A map F € Kyy (U, E) is essential in Kyy (U, E) if for every
G € Kyy (U, E) with G|3y = Flay there exists x € U with x € Gx.

DEFINITION 1.10. Two maps F, G € Kyy (U, E) are homotopic in Kyy (U, E),
written F = G in Kyy (U, E), if there exists an upper semicontinuous condensing
map N :U x [0, 11— CK(E) such that N;(u) = N(t, u) : U — CK(E) belongs to
Kyu (U, E) foreacht € [0, 1]and Ng=F, N =G.

The topological transversality theorem for weakly inward Kakutani maps was
established in [9].

THEOREM 1.11. Let E, C, Uy and U be as above. Suppose that F and G are maps
in Kyy(U, Eywith F =G in_KaU(U, E). Then F is essential in Kyy (U, E) if and
only if G is essential in Kyy (U, E).

REMARK 1.12. If the map F in Definition 1.7 (and throughout) is countably
condensing instead of condensing then we have to assume that F(x) N Ic(x) # @ for
all x € U instead of F(x) N I¢(x) # (@ forallx € U in Definition 1.7 (and throughout);
see [10] for details.

REMARK 1.13. If 0 € U then the zero map is essential in Kyu (U, E); see [10] for
details (the proof uses Theorem 1.6).

The following Krasnoselskii type result was established in [9] (there is also an
obvious analogue for countably condensing maps if we note Remark 1.12).

THEOREM 1.14. Let E be a Banach space, C a closed convex subset of E, and let W

and V be open bounded subsets of E with Uy =W N C and Uy =V N C. Suppose

that 0 Uy CU| C U, and that F:U, — CK(E) is an upper Ssemicontinuous,

condensing map, weakly inward with respect to C (that is, F(x) N Ic(x) # @ for all

x € Uy). In addition, assume that the following conditions are satisfied:

(i) x¢MrFxforallx € dU, and X € [0, 1];

(ii) there exists v € C\{0} withx ¢ Fx + v forall § > 0 and x € dUy;

(ili) F()4+ pv:U; - CK(E) is a weakly inward map with respect to C for all
w >0 (that is, [F (x) + uv] N Ic(x) # @ for all x € Uy).

Then F has a fixed point in Up\U].

In this paper we also discuss Monch type compactness conditions instead of
countable condensing. In Section 2 one of our results will be based on a Leray—
Schauder alternative for Kakutani-Ménch maps [2, 13] which we state here for the
convenience of the reader.
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THEOREM 1.15. Let K be a closed convex subset of a Banach space X, let U be a
relatively open subset of K, xo € U, and suppose that F : U — CK (K) is an upper
semicontinuous map. Also assume that the following conditions hold:

@) Mc U, M C co({xo} U F(M)) with M = C and C C M countable, implies that
M is compact; B
1) x¢(d —A){xo} +1Fx forall x e U\U and » € (0, 1).

Then there exists a compact set ¥ of U and an element x € ¥ with x € Fx.

In Section 2 we will also discuss inward Kakutani-Monch maps. In our next
definition and theorem E is a Banach space, C a closed convex subset of E and Uy a
bounded open subset of E. We will let U = Uy N C and 0 € U. In our definitions U
and dU denote the closure and the boundary of U in C respectively.

DEFINITION 1.16. We say that Fe KM(U, E) if F:U — CK(E) is upper
semicontinuous, F(U) is bounded, F(x) C I¢(x) for all x € U; and if D C E with
D Cco({0}U F(DNU))and D = B with B C D countable then D N U is compact.

The following theorem [3, 11] will be needed in Section 2.

THEOREM 1.17. Let E, C, Uy, and U be as in Definition 1.16, 0 € U and F €
KM, E), with

x ¢éAFx forallx € U and X € (0, 1).

Then there exists a compact set = of U and an element x € X with x € Fx.

Finally, in Section 2 we consider contractive type maps. We recall the following
two results from the literature [1, 8].

THEOREM 1.18 [8, Theorem 3.9]. Let U be an open subset in a Banach space (X,
|- |I) and F : U — X. Assume that O € U and suppose that there exists a continuous
nondecreasing function ¢ : [0, 0o) — [0, 00) satisfying ¢(z) <z for all z >0 such
that |Fx — Fy|| < ¢(llx — y||) for all x, y € U. In addition, assume that F(U) is
bounded and x # AFx for all x € U and A € (0, 1). Then F has a fixed point in U.

THEOREM 1.19 [1, Theorem 2.3 (and Remark 2.1)]. Let U be an open subset in a
Banach space (X, || - ||) and let F : U — C(X) be a closed map (that is, it has a closed
graph), where C(X) denotes the family of nonempty closed subsets of X. Assume
that 0 € U and suppose that there exists a continuous strictly increasing function
¢ : [0, o00) — [0, o0) satisfying ¢(z) <z for all z>0 such that H(Fx, Fy) <
d(lx — yl) for all x, y € U. In addition, assume that the following conditions hold:
i) @:[0, 00) — [0, 00), given by ®(x) = x — ¢(x), is strictly increasing;

() & Ya)+ o ') <d Y a+b)fora b=>0;

(i) Y720 @' (t) < oo fort > 0;

(v) Y2, ¢’ (x — ¢ (x)) < ¢(x) forx > 0;
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(v) F(U) is bounded;
(vi) x ¢ LFx forall x € U and A € (0, 1).

Then F has a fixed point in U.

REMARK 1.20. In fact the assumption that F is closed can be removed in
Theorem 1.19. In [1, Theorem 2.3] we assumed a more general contractive condition
and the condition is needed there.

Let (X, d) be a metric space and S a nonempty subset of X. For x € X let
d(x, §) =infycg d(x, y). Now suppose that G:S — 2X. Then G is said to be
hemicompact if each sequence {x,},en in S has a convergent subsequence whenever
d(x,, G(x,)) — 0asn — oo.

Now let I be a directed set with order < and let {Ey}qe; be a family of locally
convex spaces. For each a € I, B €[ for which a <8, let my 5: Eg — E4 be a
continuous map. Then the set

{x = (X0) € [ [ Ea: % =Tap(xp) Ve BEI, @ 5,3}

ael

is a closed subset of ]_[aE ; Eo which is called the projective limit of {Ey}yer and is
denoted by lim E, (or lim. {E,, 7y g} or the generalized intersection [9, p.439]

ﬂael Ea)'

2. Fixed point theory in Fréchet spaces

Let E = (E, {| - |n}nen) be a Fréchet space with the topology generated by a family
of seminorms {| - |, | n € N}, where N ={1, 2, ...}. We assume that the family of
seminorms satisfies

Il <|xl2<Ix[3<--- foreveryxe€E. .1)

A subset X of E is bounded if for every n € N there exists r, >0 such that
x|, <r, for all xe X. For r>0 and x € E we denote B(x,r)={yekE:
|x —yl, < rforallne N}. We associate with E a sequence of Banach spaces
{(E,, | - |n)} described as follows. For every n € N we consider the equivalence
relation ~,, defined by

x ~,y ifandonlyif |x — y|, =0. (2.2)

We denote by E"=(E/~,,|-|,) the quotient space, and by (E,,|-|,) the
completion of E"” with respect to |- |, (the norm on E"” induced by |- |, and its
extension to E,, are still denoted by | - |,). This construction defines a continuous map
iUy - E — E,. Now since (2.1) is satisfied the seminorm | - |,, induces a seminorm on
E,, for every m > n (again this seminorm is denoted by | - |,). Also (2.2) defines an
equivalence relation on E,, from which we obtain a continuous map (i : E,, — E,
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since E,, /~;, can be regarded as a subset of E,,. Now 4y ik = n ik ifn <m <k
and [, = fn,m Wm if n < m. We now assume that the following condition holds:

for each n € N there exist a Banach space (E,, | - |,)

and an isomorphism (between normed spaces) j, : E, — E,. 2.3)

REMARK 2.1.

(i) For convenience the norm on E,, is denoted by | - |,.

(i) In our applications E, = E" for eachn € N.

(iii) Note that if x € E, (or E*) then x € E. However, if x € E,, then x is not
necessarily in E and in fact E), is easier to use in applications (even though E, is
isomorphic to E,;). For example, if £ = C[0, c0), then E" consists of the class
of functions in E which coincide on the interval [0, n] and E,, = C|0, n].

Finally, we assume that

EiDEyD--- and
foreachn € N, |jultnnttjyi1Xln < |Xlns1 Yx € Eng1. (24

(Here we use the notation from [9]; that is, decreasing in the generalized sense.)
Let lim. E, (or ﬂloo E,, where ﬂcfo is the generalized intersection [9]) denote the
projective limit of {E, },cn (note that 7w, », = ju Un.m j,;l :E,, — E, form >n)and
note that lim E, = E, so for convenience we write £ =lim_ E,.

For each X C E and each n € N we set X,, = j, u,(X), and we let X, int X,, and
d X, denote respectively the closure, the interior and the boundary of X,, with respect
to | - |, in E,. Also the pseudo-interior of X is defined by

pseudo-int(X) = {x € X | ju un(x) € X,,\0X,, for every n € N}.

The set X is pseudo-open if X = pseudo-int(X). For r > 0 and x € E,, we denote
By(x,r)={y€Ey:|x —ylp<r}

We now show how easily one can extend fixed point theory in Banach spaces
to applicable fixed point theory in Fréchet spaces. Our results are motivated by
Urysohn type operators. In this case the map F, will be related to F by the closure
property (2.10).

THEOREM 2.2. Let E and E, be as described at the beginning of Section 2, C a
convex subset in E, V a pseudo-open bounded subset of E, 0 e VNC, F:Y — 2E
withY CE,and U, =V, ﬂzn CY, foreachn € N (here U, =V, N C,). Also, for
eachn € N, assume that F,, : U, — 2 and suppose that the following conditions are
satisfied.

i Foreachn e€{2,3,...},ifye U, solves y € F,,y in E,, then 2.5)

Jk ko 3y () € U fork e {1, ... ,n— 1},
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For eachn € N, the map F, U, _lK(En) is a closed Ac Ap . 2.6)
countably condensing map, where U, denotes the closure of U,, in C,,. '
For eachn € N, we have F,(x) C Ifn (x) forall x € U,. 2.7
For eachn € N, we have y ¢ LF,y in E, for all \ € (0, 11 and 2.8)
y € dU,, where dU, denotes the boundary of U,, in C,,. ’
For any sequence {y,}nen with y, € U, and y,, € F,y, in E, for

n € N and for every k € N there exists a subsequence 2.9)

Ny g_{k+1,k+2, ...}, Ntk C Ng—1 forke{l,2,...}, No=N, and
2k € Uy with ji pgn jn’l(yn) — zrin Ep asn — oo in Ny.

If there exist w € Y and a sequence {y,}nen with y, € U, and

yn € Fyy, in E,, such that for every k € N there exists a subsequence (2.10)
SCik+1,k+2, ...} of N with ji ftkn j; ' (ya) = Jji ik (w) in Ex
asn—ooin S, thenw € Fw in E.

Then F has a fixed point in E.

REMARK 2.3. Notice that to check (_2.9) we need to show that for each k € N the
sequence {jk Uk.n J, l(yn)}VlENk—l C Uy, is sequentially compact.

PROOF. Fix n € N. We would like to apply Theorem 1.4. To do so we need to show

C,, is convex (2.11)

and
V, is a bounded open subset of E, and j, 1, (0) € U,. (2.12)

First we check (2.11). To see this, let x, y € u,(C) and A € [0, 1]. Then for
every x € M;l(i) and y € u;l(f)) we have Ax + (1 — L)y € C since C is convex
and so AxX + (1 — M)y = A, (x) + (1 — M), (y). Itis easy to check that Au, (x) +
(I —=2M)up(y) = pn(Ax + (1 — X)y) so as aresult

AX 4+ (1 =2 = pn(Ax + (1 = V)y) € un(C),

and so u, (C) is convex. Now since j, is linear, C;, = j, (1, (C)) is convex and as a
result C,, is convex. Thus (2.11) holds.

Now since V is pseudo-open and 0 € V then j, u,(0) € pseudo-int V so j, u,(0) €
Vn\a V,, (here V,, and 8V, denote the closure and boundary of V,, in E,, respectively).
Of course

Vn\avn = (Vn U aVn)\avn = Vn\avn

SO jn 1, (0) € V,\0V,, and in particular j, wu,(0) € V, (this is easy to see anyway from
the definition of V,,). Thus j, i, (0) € V,, N C,, = U,. Next notice that V,, is bounded
since V is bounded (note that if y € V,, then there exists x € V with y = j, i, (x)). It
remains to show that V,, is open. First notice that V,, C V,,\a V, since if y € V,, then
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there exists x € V with y = j, u, (x), and this together with V = pseudo-int V' yields
Jnttn(x) € V,\0Vy; thatis, y € V,\dV,. In addition, notice that

V,\0V, = (int V,, UdV,)\dV, =int V,\dV, =int V,
since int V,, N dV,, = @#. Consequently,
V, SV, \0V, =intV,, soV,=intV,.

As aresult V,, is open in E},. Thus (2.12) holds.

For each n € N (see Theorem 1.4) there exists y, e U, =V, NC, with Yn €
F,y,. Let us look at {y,},en. Notice that y; € Uy and ji 1, jn_l(yn) e U, for
ke{2,3,...}. Now (2.9) with k =1 guarantees that there exist a subsequence
Ny C{2,3,...} and z1 € U with ji w1, j; '(yn) — z1 in Ey as n — oo in Nj.
Look at {yn}nen,. Now jr u2, jn_l(yn) € U, for k € Ni. Now (2.9) with k =2
guarantees that there exist a subsequence Ny € {3,4, ...} of N and z; € U, with
J2 Mo jn_l(yn) — 7o in E7 as n — oo in Np. Note from (2.4) and the uniqueness
of limits that j; ui2 jz_] Zp =21 in Ej since No € N; (note that ji i1, jn_](y,,) =
J1K12 Jy ! J2 M2 Jo 1(yn) for n € N3). Proceed inductively to obtain subsequences
of integers

NIDNyD--- where Ny Clk+1,k+2,...}

and zx € Uy with jk,uk,njn*l(yn)—>zk in Ey as n— oo in N;. Note that

jkl/«k,k+ljk_+11 Zky1 =z in Ep fork € {1, 2, .. .}
Fix k € N. Note that

. .—1 . —1 . —1
Zk = JkMkk+1Jg412k+1 = Jelb k1] g1 Je+1k+1,k+2 g 42 Tk+2
. .—1 . .1
= JkMk k+2Jg42%k+2 =+ = JkMk,mJym Zm = Tk,mZm

for every m > k. We can do this for each k € N. Asaresult y = (zx) € lim E, = E
and also note that y € Y since zx € Uy C Y for each k € N. Also since y, € F, v,
in E, forn € Ny and ji pg.n jn’l(yn) — zx = y in Ey as n — oo in Nj, we have from
(2.10)that y € Fy in E. O

REMARK 2.4. From the proof we see that condition (2.5) can be removed from
the statement of Theorem 2.2. We include it only to explain condition (2.9) (see
Remark 2.3).

REMARK 2.5. Note that we could replace U, C Y, above with U, a subset of the
closure of Y, in E,, if Y is a closed subset of E (so in this case we cantake Y = C NV
if C, NV, is a subset of the closure of Jn ma(C N V) in E, and if C is closed). To see
this, note that zx € Uy, y = (zx) € lim— E, = E and Tk.m (Ym) = zx in Ex asm — 00
and we can conclude that y € Y =Y (note that ¢ € Y if and only if for every k € N
there exists (xg,m) € Y, Xk,m = Tk, n(Xn,m) for n >k with xg , — jr ux(g) in Ex as
m — 00).
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REMARK 2.6. Suppose that in Theorem 2.2 we replace (2.9) with the following.

For any sequence {yn}nen with y, € U, and y, € F,y, in E, for

n € N and for every k € N there exist a subsequence

Ny Clk+1,k+2,...}, where Ny C Ny— fork € {1, 2, ...}, where (2.9%
No =N, and zx € Uy with ji [tk n jn_l(yn) —zxin Exasn — oo

in N.

In addition, we assume that F : ¥ — 2F with Un C Y, for each n € N is replaced by
F:Y — 2F with U, C Y, for each n € N . Then the result in Theorem 2.2 is again
true.

The proof follows the reasoning in Theorem 2.2 except in this case z; € Uy.

Next we present a result for weakly inward Kakutani maps using Theorem 1.6.

THEOREM 2.7. Let E and E, be as described at the beginning of Section 2, C a
convex bounded subset in E, F:Y — 2E with Y C E, and 6,1 CY, foreachn € N.
Also for each n € N assume that F, : C, — 25 and suppose that the following
conditions are satisfied.

{ Foreachne{2,3,...),ify € C, solves y € F,y in E,, then (2.13)

Ji btk Jy ) € Crfork e {1, ... n—1).
For eachn € N, the map F, :C, — CK(E,) is upper semicontinuous (2.14)
and condensing. '
Foreachn e N, F,,(x) N Ifn (x) # @ forx e Cp. (2.15)
For any sequence {y,},en with y, € Cp and yn € Fpy, in E, for
n € N and for every k € N there exist a subsequence

1 Ne Slk+ 1, k+2, ...}, where Ny € Ny forke{1,2,.. .}, (2.16)
No =N, and zi € Cy with ji [l n jn_l(yn)—> Zk in E asn — 00
in Ng.

If there exist w € Y and a sequence {y, }nen With y, € C, and
Yn € Fuy, in E,, such that for every k € N there exists a subsequence 2.17)

SCik+1,k+2, ...} of N with ji pten jy ' vn) = jk tr(w) in Ex
asn—>ooin S, thenw e Fw in E.

Then F has a fixed point in E.

PROOF. For each n € N there exists (Theorem 1.6) y, € C, with Yn € Fpy, in E,.
Essentially the same reasoning as in Theorem 2.2 establishes the result.

REMARK 2.8. Condition (2.13) can be removed from the statement of Theorem 2.7.

REMARK 2.9. Note that we could replace C, C Y, above with C,, a subset of the
closure of Y, in E,, if Y is a closed subset of E (so in this case we can take Y = C if C
is a closed subset of E).
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For our next definitions E and E,, are as described at the beginning of Section 2, C
is a convex subset of E, V a bounded pseudo-open subset of E and F:Y — 2F
with Y C E. Also assume that either U, =V, NC, C Y, for each n € N (here
U,=V,NC,) or U, is a subset of the closure of ¥, in E, for each n € N (with
Y a closed subset of E). In addition, assume for each n € N that F,, : U,, — 2En.

DEFINITION 2.10. F € K(Y, E) if, for each n € N, F, € K(Uy, E,) (that is, for
eachneN, F,:U, — CK(E,) is an upper semicontinuous condensing map with
F,(x)N Ifn (x) # @ for all x € U,), where U,, denotes the closure of U,, in C,.

DEFINITION 2.11. Fe Ky(Y, E)if Fe K(Y, E) and,_for eachn € N, x ¢ F,(x) for
all x € dU,,, where aU,, denotes the boundary of U, in C,.

DEFINITION_2.12. Amap F € Ky(Y, E)_is essential in Ky(Y, E) if, foreachn € N,
F, € Kyy, (_U,, E,) is essential in Ky, (Uy, Ej) (that is, for_each n € N, every map
G € Kyy,(Uy, E,) with Glay, = Fu|su, has a fixed point in U ,\0U,).

REMARK 2.13. Note that if j, u,(0) € U, for each n € N then 0 € Ky(Y, E) is
essential in Ky (Y, E) by Remark 1.13.

DEFINITION 2.14. (We assume that j, u,(0) € U, for each n € N.) The maps F,
0 € Ky(Y, E) are homotopic in_Ka(Y, E), written F =0 in K3(Y, E), if, for each
neN, F, = j, 1y(0) in Kyy, Uy, Ey).

THEOREM 2.15. Let E and E, be as described at the beginning of Section 2, C a
convex subset in E, V a bounded pseudo-open subset of E and F : Y — 2 withY C
E. Also assume that either U, =V, N C, C Y, foreachn € N (here U, =V, N C,)
or U, is a subset of the closure of Yy, in E, for each n € N (with Y a closed subset
of E). Suppose that 0 € V N C and for each n € N assume that F, : U, — 2" and
also suppose that F € Ky(Y, E) with (2.5) and that the following condition satisfied.

F=0 inKy(, E). (2.18)

Also assume that (2.9) and (2.10) hold. Then F has a fixed point in E.

PROOF. Fix n € N. Remark 2.13 guarantees that the zero map (that is, G(x) =
Jn n(0))is essential in Ky, (Un, Ep) foreachn € N. Now Theorem 1.11 guarantees
that F, is essential in Kpy, (Up, Ep) so in particular there exists y, € U, with y, €
F, y,. Essentially the same reasoning as in Theorem 2.2 (with Remark 2.5) establishes
the result. O

REMARK 2.16. Condition (2.5) can be removed from the statement of Theorem 2.15.

REMARK 2.17. If for each ne N the map Fj, :U, — CK(E,) is countably
condensing instead of condensing in Definition 2.10 (and throughout) then we assume
that F,, (x) N I (x) # @ for all x € U,, instead of F,(x) N I (x) # @ for all x € U,
in Definition 2.10 (and throughout).
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REMARK 2.18. Notice that 0 € V N C and (2.18) could be replaced by F =G in
K5(Y, E) (of course we assume that G € K3(Y, E) and we must specify G, forn € N
here).

REMARK 2.19. Remark 2.6 also holds in this situation.

THEOREM 2.20. Let E and E, be as described at the beginning of Section 2, C a
convex subset in E, V a bounded pseudo-open subset of E and F :Y — 2F with
Y CE. Also assume that either U, =V, NC, C Y, for each n € N (here U, =
VN Cp) or Uy, is a subset of the closure of Y, in E,, for eachn € N (with Y a closed
subset of E). Suppose that 0 € V N C and for each n € N assume that F, : U, — 2En
and also suppose that F € Ky(Y, E) with (2.5), (2.9), (2.10) and that the following
condition satisfied:

foreachn € N, we have y ¢ AF,y in E, forall A € (0, 1]and y € 0U,. (2.19)

Then F has a fixed point in E.

PROOF. Now (2.18) is immediate if we take for each n € N, H,(x, A) = A F(x) for
(x,A) e U, x [0, 1]. Our result follows from Theorem 2.15. O

Next we present a Krasnoselskii type result for weakly inward maps in the Fréchet
space setting.

THEOREM 2.21. Let E and E, be as described at the beginning of Section 2, C a
convex subset in E, and suppose that U and V are bounded pseudo-open subsets
of E with 0e U CUCV and F:Y — 2E with Y CE. Also assume that either
W,=V,NC,CY, for each n € N (here W,, =V, NC,) or W, is a subset of the
closure of Yy in Ey for eachn € N (with Y a closed subset of E). Also for eachn € N
assume that F, : W,, — 257 and suppose that the following conditions are satisfied:

For eachn € N the map F, : W, — CK (E,) is upper semicontinuous

condensing with F,(x) N I (x) # @ forall x € W, where W, (2.20)
denotes the closure of Wy, in C .
Foreachn e N, y ¢ L\F,y in E, forall . € [0, 1] and y € oW, (2.21)

For eachn € N, there exists v, € 6,1\{9} with x & F,x + Sv, for all (2.22)
8> 0and x € 9, where Q, = U, N C,,. '
Foreachn € N, the map Fo(:) + 1 v, : 2, — CK(E,) is weakly
inward with respect to C,, for all u > 0 (tﬁat is, (2.23)
[F,(x) + pnv, N Ie, (x) # @ for all x € Q).

{ Foreachn e {2,3,...},ify e W)\, solves y € F,,y in E,, then

Je o i ) € Wi fork e {1, ..., n— 1}, 224
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For any sequence {y,}nen with y, € W\, and y, € F,y, in E, for
n € N and for every k € N there exist a subsequence

Ny Clk+1,k+2,...}, with Ny C Ny_1 forke{l,2,...}, No=N,
and zi € Wy with ji Wk.n jn_l(yn) — zx in Ep as n — oo in Ny.

(2.25)

For every k € N and any subsequence A C {k, k+ 1, ...}, ifx € Cp is

such that x € W\, for some n € A then there exists y >0 (2.26)
(independent of k and n) with | jx ik n jn_1 x|k =>y.

If there exist w € Y and a sequence {y,}nen with y, € W,\2,, and

Yn € Fyyy in E,, such that for every k € N there exists a subsequence 2.27)
SClk+1,k+2,...} of N with ji piin i (y) = jk px(w) in Ex ’
asn—ooin S, thenw € Fw in E.

Then F has a fixed point in E.

PROOF. Fix n € N. Now C,, is convex and U, V, are open bounded subsets of E,
with j, u,(0) € U, C V,. It just remains to show that U,, C U, C V,. Of course since
Ucucyv,

Un = jntin(U) C juptn(U) S jupn(V) = Vy

and since j,u, is continuo_us Uy C jultn (U) < Jn n(U) =U,. Also we see that
Un(U) € uy (V) (note that U C V) so since j, is an isometry,

Un = juln(U) = juptn(U) C jupin (V) = V.

Theorem 1.14 guarantees that there exists y, € W,\Q, with y, € F,y, in E,.
As in Theorem 2.2 there exist a subsequence Ny C {2,3,...} and z; € W, with
J1 1 jN(yn) = z1 in Ey asn — oo in Ny. Also y, € W, \, together with (2.26)
yields |j1 1,0 j,fl(yn)ll >y for n€ N and so |z1|1 > y. Proceed inductively to
obtain subsequences of integers

NIDNyD--- where Ny Clk+1,k+2,...}

and z; € Wi with jkuk,njn’l(yn) —zr in Ep as n— oo in N;. Note that
jkuk,k+1j,;11zk+1 =z in Ey for k € {1,2, ...} and |zx|x = y. Now essentially the
same reasoning as in Theorem 2.2 (with Remark 2.5) guarantees the result. O

REMARK 2.22. Condition (2.24) can be removed from the statement of Theo-
rem 2.21.

REMARK 2.23. Condition (2.26) is only needed to guarantee that the fixed point y
satisfies | jx ux(y)|x > y for k € N. If we assume all the conditions in Theorem 2.21
except (2.26) then again F has a fixed point in E but the above property is not
guaranteed.

We next present a Monch type result using Theorem 1.15.

THEOREM 2.24. Let E and E, be as described at the beginning of Section 2, X C E
and F : Y — 2E withint X,, C Y, for each n € N or int X, is a subset of the closure
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of Yy in E, for eachn € N (with Y a closed subset of E). Also for eachn € N assume
that F, :int X,, — 257 and suppose that the following conditions are satisfied.

Foreachn e{2,3,...}ifyeint X, solves y € F,y in E,, then
Jk Mi.n jn_l(y) eint Xy forke{l,...,n—1}.
xo € pseudo-int(X). (2.29)

(2.28)

For eachn € N, the map F, :int X,, - CK (E,) is upper (2.30)
SemiCcONtinuous.

For ea_ch neN, M Cint X, with M C CO({ln Un(x0)} U F,,(M)) with
M = C and C C M countable implies that M is compact.

Foreachn e N, y ¢ (1 — &) j, un(x0) + AF,y in E, forall A € (0, 1]
and 'y € 9 int X,.

(2.31)

(2.32)

For any sequence {y,},en with y, € int X, and y, € F,y, in E,, for

n € N and for every k € N there exist a subsequence

Ny Clk+1,k+2,...}, with Ny C Ny forke{l,2,...}, No=N,
and zj € int Xy with jk i n jn’l(yn) — zx in E asn — 00 in Ni.

(2.33)

If there exist w € Y and a sequence {y,},en with y, € int X,, and
Yn € Fyyn in E,, such that for every k € N there exists a subsequence (2.34)

SCik+1,k+2, ...} of N with ji ftxn jy  (yn) = Jji wk(w) in Ey
asn—ooin S, then we FwinE.

Then F has a fixed point in E.

REMARK 2.25. Condition (2.28) can be removed from the statement of Theo-
rem 2.24.

REMARK 2.26. Suppose that in Theorem 2.24 we replace (2.33) with the following
condition.

For any sequence {y,}nen with y, € int X, and y, € F,y, in E, for

n € N and for every k € N there exist a subsequence

Ny Clk+1,k+4+2,...}, with Ny C Ny_1 forke{l,2,...}, No=N,
and zi € int Xy with ji (ik.n jn_l(yn) — zx in Ey asn — oo in Ni.

(2.9%%)

In addition, we assume that F : Y — 2£ with int X,, C Y, (or int X,, is a subset of
the closure of Y, in E, if Y is a closed subset of E) for each n € N is replaced by
F : X — 2E, and suppose that (2.34) is true with w € ¥ replaced by w € X. Then the
result in Theorem 2.24 is again true.

Also we have the following result for Monch inward type maps (just apply
Theorem 1.17 in this case).

THEOREM 2.27. Let E and E, be as described at the beginning of Section 2, C a
convex subset in E, V a pseudo-open bounded subset of E, 0 e VNC, F:Y — 2E

withY CE,andU, =V,NC, C Y, foreachn € N (here U, =V, NCporU,isa
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subset of the closure of Yy, in E, (with Y a closed subset of E). Also for eachn € N
assume that Fy, : U, — 2En and suppose that (2.5), (2.7), (2.8) and the following
conditions hold.

For eachn € N, the map F,, : U 'n = CK(Ey) is upper semicontinuous (2.35)
and F,(U,) is bounded, where U, denotes the closure of Uy in C. '

Foreachn € N, D C E,, with D C co({j, u,(0)} U F,,(D N Uy,)) and
D = B with B C D countable implies that D N U, is compact.

(2.36)

In addition, assume that (2.9) and (2.10) hold. Then F has a fixed point in E.
REMARK 2.28. Remarks 2.4 and 2.6 also hold in this situation.

Finally, we consider contractive type maps. First we consider single-valued maps
(just apply Theorem 1.18).

THEOREM 2.29. Let E and E,, be as described at the beginning of Section 2, X C E
and F :Y — E withint X,, CY, for each n € N or int X,, is a subset of the closure
of Y, in E, for each n € N (with Y a closed subset of E). Also for each n € N
assume that Fy :int X, — E, and suppose that (2.28) and the following conditions
are satisfied.

0 € pseudo-int(X). 2.37)
Foreachn € N, F,(int X,,) is bounded. (2.38)
For eachn € N, there exists a continuous nondecreasing function

¢n : [0, 00) — [0, 00) satisfying ¢, (z) < z for z > 0 such that (2.39)
| Fnx — Fuyln < @u(lx — Y1) forall x, y € int X,,.

Foreachn e N,y #AF,y in E, forall > € (0, 1] and y € 0 int X,. (2.40)

Also assume that (2.33) (with y, € F,y, replaced by y, = F,y,) and (2.34) (with
Yn € Fuy, and w € Fw replaced by y, = F,y, and w = Fw) hold. Then F has a
fixed point in E.

REMARK 2.30. Note that there is an analogue of Remarks 2.25 and 2.26 in this
situation and also in the next.

THEOREM 2.31. Let E and E,, be as described at the beginning of Section 2, X C E
and F 1Y — 2F withint X,, C Y, for each n € N or int X, is a subset of the closure
of Yy in E, for eachn € N (with Y a closed subset of E). Also for eachn € N assume
that F,, :int X,, — 25 and suppose that (2.28), (2.37) and the following conditions
are satisfied.

For eachn € N, F, (int X,) is bounded. (2.41)

Foreachn € N, F,, :int X,, — C(E},) and there exists a continuous

strictly increasing function ¢y, : [0, 0co) — [0, 00) satisfying ¢,(z) < z (2.42)
for z > 0 such that H,(Fy,x, Fp,y) < ¢n(|x — y|pn) for all

X, y €int X,,.
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For eachn € N, the map ®,, : [0, co) — [0, c0) given by
D, (x) =x — ¢, (x) is strictly increasing,

@, (a)+ @, ' (b) < @, (a+b) fora, b>0, with f ¢h(1) < oo for  (2.43)

i=0
m .
t>0and ) ¢, (x —Pp(x)) < Pu(x) forx > 0.
i=1
Foreachn e N,y ¢ AF,y in E,, forall . € (0, 1] and y € 9 int X,,. (2.44)

Also assume that (2.33) and (2.34) hold. Then F has a fixed point.
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