
J. Fluid Mech. (2022), vol. 944, A22, doi:10.1017/jfm.2022.479

Surface-tension-driven evolution of a viscoplastic
liquid coating the interior of a cylindrical tube

James D. Shemilt1,†, Alexander Horsley2, Oliver E. Jensen1,
Alice B. Thompson1 and Carl A. Whitfield1,2

1Department of Mathematics, University of Manchester, Manchester M13 9PL, UK
2Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester,
Manchester M13 9PL, UK

(Received 23 February 2022; revised 16 May 2022; accepted 24 May 2022)

One mechanism for airway closure in the lung is the surface-tension-driven instability of
the mucus layer which lines the airway wall. We study the instability of an axisymmetric
layer of viscoplastic Bingham liquid coating the interior of a rigid tube, which is a simple
model for an airway that takes into account the yield stress of mucus. An evolution
equation for the thickness of the liquid layer is derived using long-wave theory, from which
we also derive a simpler thin-film evolution equation. In the thin-film case we show that
two branches of marginally yielded static solutions of the evolution equation can be used
to both predict the size of the initial perturbation required to trigger instability and quantify
how increasing the capillary Bingham number (a parameter measuring yield stress relative
to surface tension) reduces the final deformation of the layer. Using numerical solutions
of the long-wave evolution equation, we quantify how the critical layer thickness required
to form a liquid plug in the tube increases as the capillary Bingham number is increased.
We discuss the significance of these findings for modelling airway closure in obstructive
conditions such as cystic fibrosis, where the mucus layer is often thicker and has a higher
yield stress.

Key words: plastic materials, capillary flows, pulmonary fluid mechanics

1. Introduction

The surface-tension-driven instability of a liquid layer lining the interior of a cylindrical
tube is of physiological importance since, when it occurs in a lung airway, it can cause
obstruction or airway closure by redistributing the liquid lining the airway, potentially
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leading to formation of a liquid plug. The liquid that lines the lungs’ airways consists
primarily of mucus, a non-Newtonian fluid exhibiting various rheological properties such
as shear thinning and viscoelasticity (Hill et al. 2022). Importantly, mucus also has a yield
stress, which is significantly increased in diseases such as cystic fibrosis (CF) and chronic
obstructive pulmonary disease (COPD) compared with its typical value in healthy lungs
(Patarin et al. 2020). Increased prevalence of airway obstruction by mucus plugging is also
a key symptom of CF and COPD (Mall 2016). Motivated by this application, we study the
effect of viscoplastic liquid rheology on the evolution of a layer coating the interior of a
cylindrical tube, which is a simple model for an airway. Additionally, there are numerous
potential applications of this class of flow in engineering and industry, as highlighted by
Craster & Matar (2009) for thin-film and coating flows, and Balmforth, Frigaard & Ovarlez
(2014) for thin-film and free-surface viscoplastic flows.

The surface-tension-driven flow of a viscous film coating a rigid circular cylinder has
been well studied in the case that the liquid layer is Newtonian. Goren (1962) identified
that a flat layer can be linearly unstable. Everett & Haynes (1972) found and analysed
capillary-static configurations of a volume of liquid inside a tube, which were either
annular collars of fluid or liquid plugs. A nonlinear evolution equation using thin-film
theory was first derived and solved by Hammond (1983), who found that an initially
flat layer evolves into a configuration with large quasi-static annular collars separated by
thin films which slowly drain into the collars. Lister et al. (2006) studied the long-time
dynamics of the thin-film system, finding that at very long times collars can translate along
the tube, potentially consuming other collars in the process, provided other physical effects
do not intervene first, while Xu & Jensen (2017) showed how collars can be pinned by
wall roughness. Hammond’s theory was extended by Gauglitz & Radke (1988) to predict
plug formation by retaining certain higher-order terms in the thin-film theory, notably
the exact free-surface curvature. This approach provides a composite approximation to
the evolution of layers with thickness comparable to the tube radius, which accurately
determines capillary-static effects whilst approximating the dynamics well where the
layer is thin. They identified a critical average layer thickness, approximately 12 % of the
tube radius, required for a liquid plug to form during the evolution. A similar composite
approximation was compared with full two-dimensional numerical simulations by Johnson
et al. (1991); whilst their quasi-one-dimensional theory could predict when a plug would
form, it could not capture the genuinely two-dimensional dynamics which occur around
coalescence. Otis et al. (1993) derived a similar reduced-order model by making a
long-wave assumption when simplifying the governing equations.

At this point, we clarify the distinction between thin-film and long-wave approaches
to deriving reduced-order evolution equations: in thin-film theory, it is assumed that the
thickness of the layer is much smaller than the radius of the tube, while in long-wave
theory, it is assumed that the tube radius is much smaller than the characteristic axial length
scale of the flow but the layer is not necessarily thin compared with the radius. Making the
thin-film assumption results in an evolution equation with the same mobility function as
would appear in the planar case, and the curvature of the cylindrical geometry is felt only
through the linearised free-surface curvature. In long-wave theory, additional terms appear
in the mobility which arise due to the curvature of the geometry, and the full expression
for the free-surface curvature is generally retained. Thin-film models benefit from their
relative simplicity, but long-wave models capture the effects of the curved geometry more
accurately (Camassa & Ogrosky 2015), allowing the dynamics leading to plug formation
to be described.
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Evolution of a viscoplastic liquid coating a cylindrical tube

Various physical effects that can modify the evolution of the coating layer have
previously been incorporated into models. Halpern, Fujioka & Grotberg (2010) used a
long-wave evolution equation to model the effect of viscoelasticity, showing that the
critical layer thickness for plug formation is not changed but the time to form a plug
can be shortened by increasing the Weissenberg number (a parameter proportional to the
relaxation time of the fluid). Romanò et al. (2019) used a volume-of-fluid method to model
the pre- and post-coalescence phases of Newtonian plug formation, and recently extended
this work to include the effect of viscoelasticity (Romanò et al. 2021). They found that
post-coalescence bi-frontal plug growth can induce significant stresses on the tube wall,
and that viscoelasticity can induce additional wall stress due to the occurrence of an elastic
instability. Erken et al. (2022) studied the instability of a two-layer coating on the interior
of a tube as a model for a lung airway which takes into account the periciliary liquid
layer that lies beneath the mucus layer and is generally less viscous than mucus. They
found that plug formation occurs more quickly in a two-layer model due to the lubricating
effect of the base layer, but that the combined critical thickness of the layers required
for plug formation can be significantly larger than the single-layer result of Gauglitz &
Radke (1988). Halpern & Grotberg (1992) modelled the evolution of a liquid layer coating
an elastic tube and subsequently extended the model to include the effect of insoluble
surfactants (Halpern & Grotberg 1993). They found that the presence of surfactant can
significantly increase the critical layer thickness required to form a plug and can delay
plug formation when it does occur, while decreasing the wall stiffness has the opposite
effect, decreasing both the critical layer thickness for plug formation and the closure
time. Heil, Hazel & Smith (2008) showed that the volume of liquid required for a plug
to form is significantly decreased if there is non-axisymmetric collapse of the elastic tube
wall. Halpern & Grotberg (2003) developed a thin-film model that included the effect
of an oscillating air flow in the centre of the tube, showing that at certain frequencies
of oscillation, air flow can suppress deformation of the liquid layer. Camassa, Ogrosky
& Olander (2014) developed a long-wave model for gravity-driven flow, and identified
families of travelling-wave solutions which they found can be used to predict the critical
thickness for plug formation as a function of the Bond number. Camassa, Ogrosky &
Olander (2017) also found travelling-wave solutions for the case of flow driven by air flow
in the centre of the tube and recently Ogrosky (2021) extended the long-wave model to
include the combined effects of gravity, air flow and surfactant.

Turning to viscoplastic flows with applications in airway modelling, Craster & Matar
(2000) modelled surfactant-driven flow on a single-layer or two-layer film of viscoplastic
or Newtonian fluids, showing that, at least in the single-layer case, yield stress decreases
spreading rates and can cause the layer to become frozen in a non-trivial static shape.
Modelling of propagation of viscoplastic liquid plugs in tubes and channels has shown
that increasing the yield stress increases the stress applied to the wall and increases
the thickness of the layer of liquid left behind as a plug propagates (Zamankhan et al.
2012; Zamankhan, Takayama & Grotberg 2018). Rupture of viscoplastic liquid plugs has
also been modelled both experimentally (Hu et al. 2015) and numerically (Hu, Romanò
& Grotberg 2020), showing that increased yield stress can inhibit plug rupture because
a larger pressure drop is required across the plug to make it yield. Recently, Bahrani
et al. (2022) proposed a model of elastoviscoplastic plugs, which they validated against
experimental results, showing that increased yield stress slows the propagation of a plug
but can speed up its rupture since the trailing film thickness is increased. The distribution
of mucus throughout a whole lung has also been studied using a viscoplastic model for
mucus, showing that the yield stress and the strength of air flow (in this case modelling air
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flow induced by chest physiotherapy) influence the mucus layer thickness in each airway
generation (Mauroy et al. 2011, 2015).

The exposition of viscoplastic thin-film theory by Balmforth & Craster (1999) has
provided the basis for various studies of canonical viscoplastic free-surface flows. In their
theory, there are regions of plug-like flow near the free surface, which have the same
structure as the ‘pseudo-plugs’ first identified in a bounded annular flow by Walton &
Bittleston (1991). Viscoplastic thin-film theory was used by Balmforth et al. (2000) to
study axisymmetrically spreading gravity currents and the work was recently extended
to model droplets spreading under surface tension as well as gravity (Jalaal, Stoeber &
Balmforth 2021), showing that after spreading, the fluid is frozen in a non-trivial static
shape in which the hydrostatic or capillary pressure is balanced by resistance from the
yield stress. Jalaal et al. (2021) also compared results for the final shape and size of the
droplets computed using thin-film theory to results from computational fluid dynamics
(CFD) simulations showing good agreement except when the capillary Bingham number
was very large. Gravity-driven flow down inclined planes has been well studied using
viscoplastic thin-film theory, as reviewed by Balmforth et al. (2007a). Balmforth, Ghadge
& Myers (2007b) investigated the surface-tension-driven fingering instability of a film
travelling down an inclined plane, finding that increasing the Bingham number (which
measures yield stress relative to viscous stress) slows growth of the linear instability and,
when it is above a critical value, instability is fully suppressed. Jalaal & Balmforth (2016)
also used thin-film theory to model the steady propagation of a bubble through a tube
filled with viscoplastic fluid, and compared their results to CFD simulations, showing that
thin-film theory predicts the behaviour accurately when the liquid film is thin but less well
when the Bingham number is increased and the film is thicker. Viscoplastic flows are often
solved using regularisation of the constitutive equation; Frigaard & Nouar (2005) review
popular regularisation approaches. Jalaal (2016) introduced a regularisation specifically
designed for thin-film flows which we describe in § 2.4 and use when solving our evolution
equations numerically.

With this study, we aim to quantify the effect of viscoplastic liquid rheology on the
surface-tension-driven Rayleigh–Plateau instability of a layer coating the interior of a
cylindrical tube. This flow has not previously been studied in the case that the liquid layer
is viscoplastic. We ask how the yield stress affects the dynamics during the evolution
of the layer and the critical layer thickness required to form a plug. To answer these
questions, we derive an evolution equation using long-wave theory, with the detailed flow
structure inspired by the viscoplastic thin-film theory of Balmforth & Craster (1999), but
we include additional terms arising from the cylindrical geometry which are neglected in
the thin-film approximation. We then show how this model reduces, in the appropriate
limit, to a thin-film evolution equation, analogous to the Newtonian version derived by
Hammond (1983). Other complicating effects are neglected in the model so that the effect
of the viscoplastic rheology can be examined in isolation: the tube is rigid, the flow is
axisymmetric, surface tension is constant and the air in the centre of the tube is passive and
inviscid. We use the Bingham model for the liquid layer since it is the simplest viscoplastic
rheology, without the potentially complicating effects of, for example, shear thinning,
elasticity or thixotropy. We compute marginally yielded static solutions to the thin-film
evolution equation, and show how they can be used to predict both the size of perturbation
to a flat layer required to trigger instability, and the final shape of the layer when there
is instability. The thin-film theory cannot, however, predict formation of liquid plugs.
By solving the long-wave evolution equation numerically, we examine the critical layer
thickness required for plug formation and the time taken for plugs to form, quantifying
how both can be increased by increasing the capillary Bingham number.
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Evolution of a viscoplastic liquid coating a cylindrical tube

Ψ

Unyielded

r
zR

εH

Yielded

ŵ

Yield surface

r = R

r = 1

r = Ψ

Figure 1. Sketches of the geometry and flow structure in the long-wave model. In non-dimensionalised
variables the free surface is at r = R and the layer thickness is εH. The surface r = Ψ separates a region
of shear-dominated flow near the cylinder wall and a region of plug-like flow near the free surface. We define
Ψ ≡ min(1, ψ) with ψ defined in (2.13) and Ψ = 1 corresponding to regions of unyielded fluid. The thin-film
model has qualitatively the same flow structure.

The rest of the paper will be organised as follows. In § 2 we formulate the models,
presenting the long-wave evolution equation in § 2.2, and the thin-film equation in § 2.3.
A brief discussion of the methods for solving these equations is given in § 2.4. Results
for thin layers are presented in § 3. We discuss a representative numerical solution of the
thin-film evolution equation in § 3.1, and we examine the behaviour of the layer at long
times in § 3.2. We compute and analyse static solutions of the thin-film evolution equation
in § 3.3, and investigate the dependence of the evolution on the initial conditions and the
capillary Bingham number in § 3.4. Results for layers with finite thickness are presented
in § 4. We discuss an example numerical solution of the long-wave equation in § 4.1 and
examine the dependence of the evolution on the capillary Bingham number, layer thickness
and initial conditions in § 4.2, including discussion of the critical layer thickness for plug
formation and the time taken to form a plug. A summary of the results, and a discussion
of their significance for modelling lung airways is given in § 5.

2. Model formulation

2.1. The Stokes system
We consider a rigid circular cylinder of radius a coated on the inside by a layer of
Bingham fluid. The rest of the tube is filled with a gas which is assumed inviscid with
spatially uniform pressure. The geometry is illustrated in figure 1. We consider only the
flow in the liquid layer. The flow is assumed to be axisymmetric, and is described by
cylindrical coordinates (r∗, z∗). The air–liquid interface is located at r∗ = R∗(z∗, t∗) =
a − H∗(z∗, t∗). The fluid velocity in the film is (u∗(r∗, z∗, t∗),w∗(r∗, z∗, t∗)), where u∗
and w∗ are measured in the positive r∗ and z∗ directions, respectively. The non-zero
components of the shear-rate tensor, γ̇ ∗ = ∇u∗ + ∇u∗T, are therefore

γ̇ ∗
rr = 2∂∗

r u∗, γ̇ ∗
rz = ∂∗

r w∗ + ∂∗
z u∗, γ̇ ∗

θθ = 2
u∗

r∗ , γ̇ ∗
zz = 2∂∗

z w∗. (2.1a–d)

The liquid is assumed to be incompressible and have no inertia, so the flow is governed by
the Stokes equations,

0 = ∂∗
z w∗ + 1

r∗ ∂
∗
r (r

∗u∗), (2.2a)

0 = −∂∗
r p∗ + 1

r∗ ∂
∗
r (r

∗τ ∗
rr)+ ∂∗

z τ
∗
rz − τ ∗

θθ

r∗ , (2.2b)

0 = −∂∗
z p∗ + 1

r∗ ∂
∗
r (r

∗τ ∗
rz)+ ∂∗

z τ
∗
zz, (2.2c)
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where τ ∗(r∗, z∗, t∗) is the stress tensor and p∗(r∗, z∗, t∗) is pressure measured relative to
the gas pressure. The Bingham fluid constitutive relation is

τ ∗
ij =

(
η + τY

γ̇ ∗

)
γ̇ ∗

ij if τ ∗ > τY ,

γ̇ ∗
ij = 0 if τ ∗ ≤ τY ,

⎫⎪⎬
⎪⎭ (2.3)

where η is a viscosity, τY is the yield stress, and γ̇ ∗ and τ ∗ are the second invariants
of shear rate and stress, respectively. The second invariant of a tensor T is defined as
T = √

T ijT ij/2.
The boundary conditions are as follows. There is no slip and no penetration at the

cylinder wall,
u∗ = w∗ = 0 on r∗ = a. (2.4)

The kinematic boundary condition at the free surface is

∂∗
t R∗ + w∗∂∗

z R∗ = u∗ on r∗ = R∗(z∗, t∗). (2.5)

The gas phase applies no shear stress to the liquid film so

− p∗ni + τ ∗
ij nj = σκ∗ni on r∗ = R∗(z∗, t∗), (2.6)

where ni are the components of the normal to the free surface, σ is the constant value of
surface tension and

κ∗ = 1√
1 + (∂∗

z R∗)2

[
1

R∗ − ∂∗
zzR

∗

1 + (∂∗
z R∗)2

]
(2.7)

is the free-surface curvature. At the side boundaries, we impose symmetry boundary
conditions,

∂∗
z R∗ = τ ∗

rz = w∗ = 0 at z = {0, L∗}. (2.8)

Rather than solve the full Stokes problem defined above, we will derive reduced-order
models using long-wave and thin-film theories, presented in §§ 2.2 and 2.3, respectively.

Surface tension at the air–liquid interface introduces an associated energy, proportional
to the surface area of the air–liquid interface,

E∗ ≡ σ

∫ L∗

0
2πR∗

√
1 + (∂∗

z R∗)2 dz∗. (2.9)

In Appendix A.1 we show that the Stokes equations and boundary conditions (2.2)–(2.8)
imply that

∂∗
t E∗ = −

∫
V
(η(γ̇ ∗)2 + τY γ̇

∗) dV ≤ 0, (2.10)

where V is the volume of the layer, so the interfacial energy is always decreasing. In the
Newtonian problem the final shape that the layer reaches after its evolution can be found
by solving for shapes which locally minimise interfacial energy (Everett & Haynes 1972).
However, in the viscoplastic problem this is not necessarily the case because we expect
that the yield stress may freeze some or all of the layer before it has reached a minimal
energy state. Analysing the final static shapes of viscoplastic layers will form a large part
of our discussion, particularly in the thin-film case (cf. § 3.3).
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Evolution of a viscoplastic liquid coating a cylindrical tube

2.2. The long-wave model
We non-dimensionalise the governing equations and boundary conditions (2.2)–(2.8) by
defining

(r, z) =
(

r∗

a
,

z∗

a

)
, (u, ŵ) = η

σ
(u∗,w∗), R = R∗

a
, τ = a

σ
τ ∗,

γ̇ = ηa
σ
γ̇ ∗, t̂ = σ

aη
t∗, p̂ = a

σ
p∗, κ̂ = aκ∗, L = L∗

a
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.11)

where hats are used to distinguish ŵ, t̂, p̂ and κ̂ from the scaled, thin-film quantities w, t, p
and κ which we will define in § 2.3. After non-dimensionalising, we consider (2.2)–(2.8)
in a long-wave limit by introducing a characteristic axial length scale for the flow, a/δ,
where δ � 1. There is no assumption at this point that the liquid layer is thin. We then
rescale the system using the small aspect ratio, δ, defining

z̄ ≡ δz, ū ≡ u
δ
, t̄ ≡ δt̂, p̄ ≡ δp̂, L̄ ≡ δL, (2.12a–e)

with other variables remaining unstretched. The resulting scaled, dimensionless equations
are given in Appendix B.

To derive the long-wave evolution equation, we propose a similar flow structure in the
long-wave model to that of the thin-film theory of Balmforth & Craster (1999). Where the
fluid is yielded, the flow is separated into a shear-dominated region, ψ ≤ r ≤ 1, adjacent
to the no-slip boundary, where the shear stress is large compared with the normal stresses,
and a region, R ≤ r < ψ , adjacent to the free surface, where we say the flow is ‘plug-like’
as the axial velocity, ŵ, is independent of r (figure 1). We make separate expansions for
the velocities and stresses in the shear-dominated and plug-like regions. In the plug-like
region the shear stress is below the yield stress, but the fluid is still yielded because the
normal stresses are large enough that the total stress exceeds the yield stress. We solve at
leading order in δ in the shear-dominated and plug-like regions, match the solutions from
the two regions together, and finally arrive at the evolution equation which we state below.
The full derivation is given in Appendix B.

Following the approach of, e.g. Camassa et al. (2012), we write the evolution equation
in terms of the unscaled variables (2.11) rather than the scaled variables (2.12a–e), so δ
does not appear in the equations. However, the limit in which the theory is formally valid
remains δ � 1.

From now on, we will use subscripts to denote derivatives. We determine the surface
between the shear-dominated and plug-like regions to be

ψ(z, t̂) = B̂
|p̂z|

⎛
⎝1 +

√
1 +

( |p̂z|R
B̂

)2
⎞
⎠ , where B̂ ≡ τYa

σ
(2.13)

is a capillary Bingham number, which measures yield stress relative to capillary stress. We
use the hat notation to distinguish B̂ from the thin-film version, B, which we will introduce
in § 2.3. The capillary pressure is proportional to the free-surface curvature, and is given
by

p̂ = −κ̂ = − 1

R
√

1 + R2
z

(
1 − RRzz

1 + R2
z

)
. (2.14)

We have retained the full expression for capillary pressure (2.14) including all terms which
are higher order in δ. Although this is not strictly consistent with the asymptotic analysis, it
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allows the evolution equation to describe capillary-static effects accurately and is a widely
used device (e.g. Gauglitz & Radke 1988). The axial velocity is defined separately in the
shear-dominated and plug-like regions,

ŵ =
{1

2 p̂z[ 1
2(r

2 − 1)− Ψ 2 log(r)] + B̂ sgn(p̂z)[Ψ log (r)+ 1 − r], R ≤ r < Ψ,

1
2 p̂z[ 1

2(Ψ
2 − 1)− Ψ 2 log(Ψ )] + B̂ sgn(p̂z)[Ψ log (Ψ )+ 1 − Ψ ], Ψ ≤ r ≤ 1,

(2.15)

where Ψ (z, t̂) ≡ min(1, ψ). The function Ψ is defined so that (2.15) applies to the whole
layer, including regions of unyielded fluid. Where Ψ = 1, the fluid is unyielded, so there
is no motion and ŵ = 0. The axial flux, Q̂, is calculated by radially integrating ŵ.

The long-wave evolution equation is

Rt̂ + 1
R

Q̂z = 0, where Q̂ = p̂z

16
f1(R, Ψ )+ B̂

12
sgn(p̂z)f2(R, Ψ ), (2.16)

with non-negative functions f1 and f2 (see figure 9 below) given by

f1(R, Ψ ) ≡ (1 − Ψ 2)2 − 2R2(1 − Ψ 2 + 2Ψ 2 logΨ ), (2.17a)

f2(R, Ψ ) ≡ 2 − 3Ψ + Ψ 3 − 6R2(Ψ logΨ + 1 − Ψ ). (2.17b)

The boundary conditions at the sides of the domain are

Rz = Q̂ = 0 at z = {0, L}. (2.18)

The initial conditions which we impose when solving (2.16) are

R(z, t = 0) =
√
(1 − ε)2 − ε2A2/2 − εA cos

(πz
L

)
, (2.19)

which corresponds to a flat layer perturbed by a single Fourier mode with wavelength 2L.
The constant A is the perturbation amplitude and the constant ε is the ratio of average layer
thickness to tube radius when A = 0. The constant term in (2.19) is chosen so that the total
volume of the layer is independent of A for a given ε.

We derive an expression for the shear stress in Ψ ≤ r ≤ 1 (B11), which when evaluated
at r = 1 gives the stress exerted on the tube wall,

τ̂w ≡ 1
2 p̂z(1 − Ψ 2)+ B̂ sgn(p̂z)Ψ. (2.20)

Note that (2.20) only holds in regions where the fluid is yielded (where Ψ < 1). In
unyielded regions, the stress is not defined by the constitutive relation (2.3) but we do
know that the wall stress must be bounded by the yield stress, so |τ̂w| ≤ B̂ where Ψ = 1.

From (2.9), the dimensionless interfacial energy is

E ≡ 2π

∫ L

0
R
√

1 + R2
z dz. (2.21)

In Appendix A.2 we deduce directly from (2.14)–(2.18) that Et̂ ≤ 0. Hence, the result (2.10)
is preserved in the long-wave theory.
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Evolution of a viscoplastic liquid coating a cylindrical tube

2.3. The thin-film model
We now derive the analogous evolution equation for a thin film, no longer requiring δ � 1,
but assuming that |1 − R| � 1. The thin-film evolution equation can be derived using
the approach of Balmforth & Craster (1999), but here we derive it by taking a thin-film
limit of the long-wave system (2.13)–(2.18). The thin-film approximation acts to flatten the
geometry, so that terms in the long-wave mobility (2.17) which arise due to the curvature
of the geometry are negligible. The effect of the cylindrical geometry is then only felt
through the free-surface curvature, which is linearised.

We consider a layer with characteristic thickness εa, and now let ε � 1. We rescale time,
defining t ≡ ε3 t̂, then define the dimensionless film thickness, H(z, t), which satisfies

R(z, t̂) = 1 − εH(z, t). (2.22)

It is convenient to define a radial coordinate, y, measured from the no-slip boundary, which
satisfies r = 1 − εy. Then the free surface is located at y = H. Substituting (2.22) into
(2.14) gives p̂ = −κ̂ = −1 − ε(H + Hzz)+ O(ε2). We define the thin-film curvature and
capillary pressure as κ ≡ (κ̂ − 1)/ε and p ≡ (1 + p̂)/ε, then linearise in ε, so that the
pressure gradient driving the flow is

pz = −κz = −Hz − Hzzz. (2.23)

We define the thin-film capillary Bingham number as

B ≡ B̂
ε2 = τYa

σε2 . (2.24)

Expanding (2.13), we find that ψ = 1 − εY + O(ε2), where

Y ≡ H − B
|pz| . (2.25)

As before, we augment this definition so that it holds in yielded and unyielded regions:
we define Y ≡ max(0,Y), which obeys Ψ = 1 − εY + O(ε2), with Y = 0 corresponding
to regions of unyielded fluid. Where Y > 0, the fluid is yielded, and the flow structure
is qualitatively the same as in the long-wave model. The value of Y then indicates the
boundary between the shear-dominated and plug-like regions of flow. The axial velocity
(2.15) becomes ŵ = ε3w + O(ε4), where the thin-film axial velocity is

w =
{1

2 pzy( y − 2Y), 0 ≤ y < Y,

−1
2 pzY2, Y ≤ y ≤ H.

(2.26)

Finally, substituting (2.22)–(2.25) into (2.16) and (2.17), and linearising in ε, gives

Ht + 1
6 [pzY2(Y − 3H)]z = 0, where Y = max(0,Y). (2.27)

Equation (2.27), with definitions (2.23) and (2.25), is the thin-film evolution equation.
In the thin-film limit the boundary conditions (2.18) become

Hz = Q = 0 at z = {0, L}, (2.28)

where we define the thin-film flux as Q ≡ pzY2(Y − 3H)/6. Note that in the Newtonian
problem (e.g. Hammond 1983), enforcing zero flux at z = {0, L} is equivalent to enforcing
zero third derivative, Rzzz = 0 or Hzzz = 0. Here, the zero flux conditions (2.18) and (2.28)
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Figure 2. Time evolution of a thin film with B = 0.05 and A = 0.2. (a) Snapshots of layer height H(z, t) and
the internal surface Y(z, t) (supplementary movie 1 is available at https://doi.org/10.1017/jfm.2022.479 for the
full evolution of H and Y up to t = 1000). Axial velocity, w, as defined in (2.26), is also shown. The plug-like
region lies between y = Y and y = H, showing significant transient deformation. (b) Time evolution of maxz H
compared with the same quantity for a Newtonian (B = 0) simulation, and time evolution of maxz Y and
maxz |τw| − B for the B = 0.05 simulation. (c) Example of the capillary-wave-like structures that are observed
ahead of the travelling yield surface at early times, similar to those discussed in Jalaal et al. (2021). Here Y
and pz are shown near to the travelling yield surfaces at t = 1. The sign changes in pz indicate reversals in the
direction of flow between these structures.

are preferable because the third derivatives, Rzzz and Hzzz, generally become discontinuous
at z = {0, L} during the evolution. This also occurs at any interior points where the
direction of flow changes (cf. figure 2c). This is an inconsistency in the theory which
could be resolved by finding a solution in the inner region (likely of axial length O(ε) in
the thin-film system or O(δ) in the long-wave system) around each of these points and
matching these to the global outer solution which we compute. Following the approach
of, e.g. Balmforth et al. (2000), we do not solve in these inner regions and assume that
the solution which we compute captures the global dynamics of the layer sufficiently
accurately.

After linearising in ε and combining with (2.22), the initial condition (2.19) becomes

H(z, 0) = 1 − A cos
(πz

L

)
, (2.29)
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Evolution of a viscoplastic liquid coating a cylindrical tube

which is the initial condition we will use when solving (2.27). We define the thin-film wall
shear stress, τw ≡ τ̂w/ε

2, then linearise in ε to get

τw = pzY + B sgn( pz) = pzH, (2.30)

where we used (2.25) in the second equality. Note that (2.30) only holds in regions where
the fluid is yielded (Y > 0), but we have the bound |τw| ≤ B in unyielded regions (Y = 0).
The interfacial energy (2.21), when expanded in powers of ε, becomes

E = 2πL − εV0 + πε2
∫ L

0
(H2

z − H2) dz + O(ε3), (2.31)

where V0 is the (constant) total volume of the layer. We show in Appendix A.3 that (2.23),
(2.27) and (2.28) imply that Et ≤ 0 for ε � 1. Hence, the thin-film approximation also
preserves the result (2.10).

2.4. Solution methods
When solving both the thin-film and long-wave equations, we choose the domain length to
be L = √

2π. This length corresponds to the half-wavelength of the most unstable mode in
the Newtonian linear stability analysis (Hammond 1983). The instability in the viscoplastic
problem is inherently nonlinear, but this choice for L allows direct comparison to previous
literature on the Newtonian and viscoelastic versions of the problem (e.g. Gauglitz &
Radke 1988; Halpern et al. 2010). We found that small changes in L do not qualitatively
affect our results so L = √

2π can be considered a representative domain length. The form
of perturbation in the initial conditions, (2.19) or (2.29), then corresponds to the single
unstable Fourier mode that exists in the domain. In the long-wave theory δ is defined
as the ratio of tube radius a to a typical axial length scale. If that axial length scale
is taken to be the wavelength of the initial disturbance, then δ = 1/(2L) = 1/(2

√
2π).

Shorter wavelength structures also develop in the thin-film and long-wave simulations
(cf. capillary waves discussed in § 3.1), testing the validity of the long-wave theory.
Pending validation by computations of the full problem (2.1a–d)–(2.8), we anticipate
that our results provide a good approximation to the true behaviour, with additional
accuracy gained from retaining the exact expression for κ̂ in (2.14). We do not observe
any significantly different behaviour when applying periodic boundary conditions at the
sides of the domain compared with the boundary conditions (2.18) or (2.28), validating
our use of the latter in all the results presented.

When solving the systems (2.13)–(2.18) or (2.23)–(2.28) numerically, we use the method
proposed by Jalaal (2016). The evolution equations are regularised by redefining Y ≡
max(Ymin,Y) and Ψ ≡ min(Ψmax, ψ), where Ymin, 1 − Ψmax � 1. We choose Ymin =
1 − Ψmax = 10−6 after confirming this is small enough that the results are not sensitive
to the precise value of Ymin. For example, for the simulation presented in figure 6 below,
the absolute errors in maxz H(z, t = 120) and tp (the time to form a plug) are bounded
above by 800Y2

min and 40000Y2
min, respectively, for all 10−6 ≤ Ymin ≤ 10−3, which we find

to be typical of convergence rates in simulations. Where Y = Ymin or Ψ = Ψmax, there is a
very weak regularisation-induced flow, but since Ymin is chosen small enough for this flow
to be negligible, we treat these regions as unyielded, treating Y = Ymin or Ψ = Ψmax as
equivalent to Y = 0 or Ψ = 1. The regularised equations are solved using the method of
lines: the spatial derivatives are approximated using second-order centred finite differences
and the resulting system of ordinary differential equations (ODEs) is solved through time
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using a stiff solver in MATLAB. We have confirmed that the number of spatial grid points
used is large enough that the precise value does not affect our results.

3. Results: thin-film theory

3.1. Time evolution of a thin layer
Figure 2(a) shows snapshots from a numerical solution of the thin-film equations
(2.23)–(2.29) with B = 0.05 and A = 0.2. For any viscoplastic simulation, the initial
perturbation must be sufficiently large in order to trigger instability because a sufficiently
large pressure gradient must be created to overcome the yield stress and make the fluid
yield. Here, A is large enough that the fluid in the centre of the domain yields, but Y = 0
near the boundaries so the fluid there is initially rigid (figure 2a, t = 0). There is an
initial period during which there is minimal deformation in H, but Y deforms significantly
and, by t = 20, Y > 0 for all z ∈ (0, L) indicating that the whole layer is yielded. This
initial yielding period causes a delay in the growth of the instability, as can be seen when
maxz H(z, t) is compared with the same quantity from a Newtonian (B = 0) simulation in
figure 2(b). After the initial yielding period, there is a period of significant deformation of
the free surface. This coincides with a peak in maxz Y(z, t) and a peak in the wall shear
stress, |τw|, at around t = 100. This indicates that there is significant shear during this
period, with more of the layer exhibiting shear-dominated flow and the region of plug-like
flow becoming smaller.

At late times, the layer relaxes slowly towards a final marginally yielded static shape
in which Y → 0 across the whole layer (figure 2(a), t = 600). Figure 2(b) shows that
maxz Y decays towards zero at a rate proportional to t−1. From (2.30), we note that as
Y → 0, |τw| → B across the entire layer, which indicates that even when the layer reaches
its final static shape, viscous and capillary effects apply a uniform stress on the tube wall
equal to the yield stress. Figure 2(b) also indicates that maxz |τw| decays towards B at a
rate proportional to t−1, in contrast to the Newtonian result that the peak wall shear stress
decays towards zero at a rate proportional to t−1/4 (Jones & Wilson 1978; Hammond 1983).
The late time shape of the layer consists of a large collar of fluid around z = L and a small
collar around z = 0. Figure 2(b) shows that the final value of maxz H is lower for the
B = 0.05 solution compared with the Newtonian solution. This is because, unlike in the
Newtonian evolution, not all of the fluid drains into the large collar at late times. Instead,
some is trapped in the small collar so the peak height of the layer is decreased. Thus,
the yield stress inhibits the growth of the instability. In §§ 3.2 and 3.3 we quantify how
increasing B affects the final marginally yielded static shape of the layer.

In the early time period of gradual yielding, capillary-wave-like structures form ahead
of the travelling yield surfaces (where Y makes contact with zero). They can be identified
by observing the structure of Y and the pressure gradient pz (figure 2c). There is a jump
discontinuity and a change of sign in pz between each of these structures, indicating that
the direction of flow reverses. At each point that pz passes through zero, we also have
Y = 0. We expect there to exist additional waves with smaller wavelengths ahead of those
observed in figure 2(c), but the numerical method can only resolve the largest few since
it is limited by the size of the finite difference grid spacing. The observed structures
resemble closely the capillary waves identified by Balmforth et al. (2007b) and Jalaal
& Balmforth (2016), and studied in detail by Jalaal et al. (2021) in the context of spreading
viscoplastic droplets. They are a feature common to surface-tension-driven viscoplastic
flows, occurring when a yield surface advances into a region of unyielded fluid. Unlike
in previously studied flows, here the capillary waves, in general, only exist transiently,
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Evolution of a viscoplastic liquid coating a cylindrical tube

during the early time period of gradual yielding until the whole layer yields. However,
we find that for some values of A and B (mostly very large A), one or more of the jump
discontinuities in pz which develop can persist for the whole evolution. In § 3.4 we discuss
how this phenomenon can affect the final static shape of the layer, and present criteria for
it to occur. Until then, we focus on the case that the flow is unidirectional (Y > 0 for all
z ∈ (0, L)) after the early time capillary waves have passed.

3.2. Late time asymptotics for the thin-film evolution equation
To analyse the late time dynamics of the layer, we look for a solution in which Y = Y → 0
as t → ∞. Numerical simulations suggest that Y decays like t−1 (figure 2b), so we make
the expansions

H = H0(z; B)+ H1(z; B)
Bt

+ · · · , Y = Y = Y1(z; B)
Bt

+ · · · , as t → ∞. (3.1a,b)

The t−1 rate of decay of H towards a steady state is also consistent with the numerical
results in figure 2. For this analysis, we assume that the capillary pressure is monotonic,
or equivalently, the pressure gradient is one-signed, −H0,z − H0,zzz < 0 for all z ∈ [0, L].
This is equivalent to assuming unidirectional flow at late times. Substituting the expansions
(3.1a,b) into the definition of Y (2.25) and the evolution equation (2.27) gives

H0(H0,z + H0,zzz) = B, (3.2a)

B(H1 − Y1)+ H2
0(H1,z + H1,zzz) = 0, (3.2b)

H1 = 1
2(Y

2
1 )z. (3.2c)

The boundary conditions (2.28) imply that

H0,z = H1,z = Y1 = 0 at z = {0, L}, (3.3)

and mass conservation implies that∫ L

0
H0 dz = L

π
,

∫ L

0
H1 dz = 0. (3.4a,b)

From (3.2a), note that H = H0(z; B) is a static solution of the evolution equation (2.27)
in which Y = 0 uniformly. This is not a capillary-static solution in which the pressure
is everywhere uniform; instead it is a state in which the layer is uniformly marginally
yielded. From (2.30) we note that, in the static solution, τw = B uniformly, indicating that
there is a stress being applied in the positive z-direction, but it is resisted by the yield
stress, preventing flow. The functions H1(z; B) and Y1(z; B) quantify the rate at which the
layer approaches the static solution at late times.

The equations (3.2a) and (3.2c) were solved subject to (3.3) and (3.4a,b) using a
boundary value problem solver in MATLAB. A solution for B = 0.05 is shown in figure 3
with comparison to the final snapshot of the numerical simulation from § 3.1. Figure 3(a)
shows the agreement is very good between H0 and the late time shape of the layer from
the numerical solution. Figures 3(b) and 3(c) show that H1 and Y1 approximate well the
rates of decay of H towards H0, and Y towards zero, respectively. This indicates that
the expansion (3.1a,b) accurately describes the late time dynamics of the evolution and
confirms the O(t−1) rate of decay in Y determined empirically in figure 2(b).

944 A22-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

47
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.479


J.D. Shemilt and others

4

1

2

3

0 1 2 3

z z z
0

H0(z; B)
H(z, t = 104)

Y1(z; B)
BtY (z, t = 104)

H1(z; B)
Bt[H(z, t = 104) – H0(z; B)]

1 2 3 4

–4

–2

0

2

0 1 2 3 4

1

2

3

(b)(a) (c)

Figure 3. Late time asymptotic solutions for B = 0.05, compared with the final snapshot of the numerical
simulation with A = 0.2 and B = 0.05 at t = 104. (a) The static solution, H0, compared with the layer
height, H(z, t = 104), from the simulation. (b) Function H1 compared with Bt[H(z, t = 104)− H0] from the
simulation, which represents the rate of decay of H towards H0. (c) Function Y1 compared with BtY(z, t = 104)

from the simulation, which represents the rate of decay of Y towards zero.
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Figure 4. Solutions H0(z; B) of (3.2a), (3.3) and (3.4a), which are static solutions of the evolution equation
(2.27). (a) Bifurcation diagram showing maxz H0 for all values of B such that solutions exist. Dotted black lines
are the asymptotic approximations (3.6), (3.8) and (3.9). The arrows indicate time evolution as determined by
the near-bifurcation asymptotic analysis (Appendix C). The five dots on (a) correspond to the example solutions
shown in (b), at B = 0.05, B = 0.12 and B = B∗.

3.3. Static solutions
The marginally yielded static solutions, H0(z; B), can predict the final state of the layer.
To investigate the dependence of H0 on B, we solve (3.2a) with (3.3) and (3.4a), varying
B. We find that there exists a value B∗ ≈ 0.163 such that, for all 0 ≤ B < B∗, exactly
two solutions for H0 exist and, for B > B∗, no solutions exist. There is a bifurcation at
B = B∗. Figure 4(a) shows maxz H0(z; B) for all the solutions, which always coincides
with H0(z = L; B). Figure 4(b) shows several example solutions, some lying on the upper
branch in figure 4(a) and some lying on the lower branch.

The upper-branch solutions are significantly deformed layers with a large collar
around z = L and a small collar around z = 0. These shapes are approached by the
evolving layer at late times (figure 3). The upper branch in figure 4(a) quantifies the
decrease in the size of the large collar formed by the layer as B is increased. This
decrease can be significant: maxz H0 for the upper branch ranges from the Newtonian
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value, maxz H0(z; 0) = 2
√

2 ≈ 2.83, down to maxz H0(z; B∗) ≈ 1.98. This indicates that
increased yield stress can significantly inhibit deformation of the film.

The lower-branch solutions are near flat for small B, becoming more deformed as B
is increased. In numerical simulations an unstable layer evolves away from a near-flat
configuration towards a strongly deformed (upper-branch) static shape. This suggests that
the upper-branch solutions are stable and the lower-branch solutions are unstable. We
confirm the stability of the two branches using asymptotic analysis near to the bifurcation,
B ≈ B∗, presented in full in Appendix C. We find that H(z, t) ∼ H0(z; B∗)+ μA(T)φ1(z)
as μ ≡ √

B∗ − B → 0, where φ1(z) is a solution to a linear ODE, T = μ3t is a slow time
scale, and A(T) is an amplitude function which solves an ODE of the form

AT = C0(A2 − A2
0)

2, (3.5)

where C0 and A0 are positive constants. Equation (3.5) has two fixed points, A = ±A0,
and we compute A0 ≈ 2.20. Solutions evolve away from the negative fixed point towards
the positive one (figure 10b below), indicating that the positive fixed point is stable and
the negative one unstable. These fixed points correspond to two static solutions for H
which are the upper- and lower-branch solutions, respectively. With this stability result,
we identify the bifurcation at B = B∗ as a saddle-node bifurcation. We also approximate
the location of the branches in figure 4(a) by

max
z

H0 ∼ H0(L,B∗)± μA0φ(L) ≈ 1.98 ± 2.20μ as μ ≡
√

B∗ − B → 0. (3.6)

Since the lower-branch solutions satisfy Y = 0, they are marginal states between rigid
layers (Y ≤ 0) and fully yielded layers (Y > 0). We expect that if a layer is initially
more deformed than the lower-branch solution it will be yielded and unstable, but if it
is less deformed initially it is likely to be rigid and thus stabilised. We provide evidence
from numerical simulations to confirm this in § 3.4, where we show that the lower-branch
static solutions correspond almost exactly to the minimum amplitude of initial perturbation
required to trigger unstable growth.

Asymptotic analysis for small B shows that the lower-branch solutions have the regular
expansion,

H0(z; B) = 1 + B
[

x − L
2

− sin x + (1 − cos L) cos x
sin L

]
+ · · · as B → 0. (3.7)

Taking the maximum value of (3.7) gives

max
z

H0 = 1 + B
[

L
2

+ cot L − cosec L
]

+ · · · as B → 0, (3.8)

which approximates the lower branch in figure 4(a). To approximate the upper-branch
solutions for small B, we construct a solution by matched asymptotic expansions. The
analysis is presented in full in Appendix D and illustrated in figure 11 below. In addition
to the large collar around z = L and the small collar around z = 0, we identify a third,
inner region located around z = L − π where H0 ∼ O(B2). In contrast to the Newtonian
problem, where the inner region is described by an ODE of the form H3Hzzz = 1
(Hammond 1983), here the relevant ODE is of the form HHzzz = 1 (see (D 5)). The
difference arises because in the Newtonian problem there is constant flux across the inner
region during the late time draining regime, while here there must be constant stress across
the inner region since H0 is marginally yielded. After expanding and solving for H0(z,B)
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in each of the three regions and matching the solutions, a composite approximation to
H0(z,B) is found. This also provides an approximation to the maximum value,

max
z

H0 = 2L
π

+ 4a1B1/2 + 4 − π2

L
B + · · · as B → 0, (3.9)

where a1 is a constant which depends on L. For L = √
2π, we compute a1 ≈ −0.105.

Equation (3.9) approximates the upper branch in figure 4(a).
At the saddle-node bifurcation, B = B∗, the two static solutions annihilate each other,

so it is only possible for the layer to select the upper-branch solution if B < B∗. Note that
in this section we have only computed the static solutions that have monotonic pressure,
but other static solutions may exist. We show in the next section that even when B < B∗,
the layer may select a different final static shape, depending on the initial conditions of the
layer, and that it is possible to have some yielding and unstable growth for some B > B∗ if
the initial perturbation is sufficiently large.

3.4. Dependence on capillary Bingham number and initial conditions
The final shape of the layer can depend on its initial conditions as well as B. To investigate
this dependence, we solve the thin-film equations (2.23)–(2.29) numerically for a range
of values of B and a range of initial perturbation amplitudes A. We run simulations on a
regularly spaced grid of points in the range (0 ≤ B ≤ 0.5, 0 ≤ A ≤ 0.99). All simulations
are run to a fixed, long time, which we choose to be t = 1000. In figure 5(a) the final
maximum height, maxz H(z, t = 1000), is plotted for each simulation.

Figure 5(a) shows that there are three qualitatively different possible outcomes for an
evolving layer, depending on the values of B and A. First, there is a region for small A and
large B with maxz H(z, t = 1000) = 1 + A, so the final maximum height is equal to the
initial maximum height. In these cases, the initial perturbation does not generate a large
enough pressure gradient to make the layer yield, so the yield stress entirely suppresses
unstable growth. This region also extends to all of B > 0.5 for all 0 ≤ A < 1. We call this
the yield-stabilised region. We can seek a bound for the yield-stabilised region using the
minimum amplitude, A = Am(B), such that the whole layer is initially unyielded if and
only if A < Am. We identify that Am is the value of A such that the initial condition (2.29)
makes Y non-negative at exactly one point in the domain, and, thus, we find Am is given
implicitly by √

1 + 8A2
m − 1

(4A2
m +√

1 + 8A2
m − 1)3/2

= k|1 − k2|
25/2B

, (3.10)

where k = L/π = √
2/2. The curve A = Am(B) provides a strict lower bound on the

boundary of the yield-stabilised region (figure 5a). A small number of yield-stabilised
simulations have A > Am(B): in these simulations the fluid initially yields a small amount
in the centre of the domain but rigidifies before the sides of the domain yield, so there is
no growth in maxz H.

In the second possible outcome, there is unstable growth and the layer evolves towards
the upper-branch static solution with monotonic pressure which we computed in § 3.3. This
occurs for a large set of B and A as indicated in figure 5(a), with maxz H(z, t = 1000) being
independent of A in this region since all simulations approach the same final shape for a
given B. Figure 5(b) shows the final shape for a simulation with A = 0.4, B = 0.1, which
is within the monotonic pressure region. The pressure gradient pz is non-positive meaning
the flow is unidirectional in the positive z-direction at t = 1000 when the simulation is
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Figure 5. (a) Data from numerical solutions of the thin-film evolution equation at various B and A. Each dot
corresponds to a simulation with the colour indicating max H(z, t = 1000). The data are linearly interpolated
to produce the black contour lines, which are evenly spaced. When A is small and B is large, the layer is
yield stabilised: no unstable growth occurs. The critical amplitude for any yielding to occur, Am(B) (dashed
red), defined in (3.10), is a strict lower bound on the boundary of the yield-stabilsed region. When there is
growth, the final shape either has monotonic or non-monotonic pressure, depending on A and B. The quantity
1 − H0(z = 0,B) (magenta) from the static solutions (figure 4) predicts the boundary of the monotonic pressure
region. The maximum value of B along the magenta curve is B∗. Two large black dots indicate the location of
the example solutions shown in (b) and (c), with H, 70Y (scaled for clarity) and pz plotted at t = 1000. Plot
(b) shows a solution in the monotonic pressure region (pz ≤ 0) and (c) shows a solution in the non-monotonic
pressure region (pz changes sign once in the domain).

stopped. Here Y is positive but close to zero for all z ∈ (0, L) at t = 1000, so the layer is
almost rigid and H is very close to the upper-branch static solution. Within the monotonic
pressure region in figure 5(a), the value of max H(z, t = 1000) decreases as B is increased,
consistent with the decrease shown in the upper branch in figure 4(a).

The final possible outcome involves unstable growth of the layer leading to the final
static shape having non-monotonic pressure. Figure 5(a) shows that this occurs mainly
when A is very large. In these simulations, maxz H(z, t = 1000) depends on both B and A
and the final shape is not predicted by the upper-branch static solutions in figure 4(a). An
example of a late time shape with non-monotonic pressure is shown in figure 5(c) from a
simulation with A = 0.95, B = 0.1. Comparing this with figure 5(b), there is less fluid in
the collar near z = 0 and so the collar near z = L is larger, even though B is the same. In
figure 5(c) there is exactly one point in the domain where the sign of pz changes, which
corresponds to a point where the direction of flow changes. For most values of B and A in
the non-monotonic pressure region, the final shape selected by the layer has exactly one
sign change in pz but, for A very close to 1, we found that there can be more. The sign
changes in pz develop during the early time yielding period, caused by the presence of
capillary waves near the yield surfaces (figure 2c). Most of the sign changes exist only
during this early time period, but we see here that one or more can persist and affect
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J.D. Shemilt and others

the late time dynamics, suggesting that in these cases the early time capillary waves can
influence the entire evolution. In general, the location of the sign change(s) in pz affects
the final shape of H, and the location of the sign change(s) depends on the initial shape of
the layer.

There is a sharp boundary in the numerical data between the yield-stabilised and
monotonic pressure regions, across which maxz H(z, t = 1000) jumps significantly. There
is also a clear boundary between the monotonic and non-monotonic pressure regions,
indicated by where the contours of maxz H(z, t = 1000) begin to curve. Figure 5(a)
shows that we can predict the locations of both boundaries using the quantity 1 −
H0(z = 0; B), where H0(z; B) are the static solutions with monotonic pressure computed
in § 3.3.

First, we give an explanation for why 1 − H0(z = 0; B) coincides with the boundary
between the yield-stabilised and monotonic pressure regions. Consider a simulation with A
just above the boundary, so the fluid yields just enough to trigger instability (e.g. figure 2).
After the initial period of gradual yielding, Y is very close to zero but positive everywhere.
At this point the layer’s shape is very close to the lower-branch static solution with the
same B, which has Y = 0 everywhere. Since the fluid at z = 0 is unyielded for most of the
initial period of the evolution in which the layer gradually yields, the height at z = 0 does
not change significantly in this period. Hence, the height at z = 0 must have initially been
very close to H0(z = 0; B), the height of the lower-branch static solution at that point. The
initial height at z = 0 is H(0, 0) = 1 − A, so the boundary between the yield-stabilised and
monotonic pressure regions is predicted by A = 1 − H0(z = 0; B), and the lower-branch
static solutions effectively correspond to the minimum amplitude of perturbation required
to trigger instability.

Secondly, we give an explanation for why 1 − H0(z = 0; B) coincides with the boundary
between the monotonic and non-monotonic pressure regions in figure 5(a). To do this,
we determine a condition for a final solution with monotonic or non-monotonic pressure
to be selected during the evolution. If the initial height of the layer at z = 0 is smaller
than the height of the corresponding (i.e. for the same B) upper-branch static solution
at z = 0, then there must be fluid flow towards z = 0 in the negative z-direction during
the evolution if this solution is to be selected. This would mean that the flow at late
times must not be unidirectional, and, hence, the pressure of the final shape must be
non-monotonic. (The transient early time capillary waves in these simulations create flow
reversal but it is very weak so can be neglected in this argument.) So, if H(z = 0, t =
0) < H0(z = 0; B), for a given value of B, then the layer will select a final shape with
non-monotonic pressure. Noting again that H(0, 0) = 1 − A, we see that A > 1 − H0(z =
0; B) is an equivalent condition for the layer to select a final shape with non-monotonic
pressure.

The results in figure 5(a) are specific to the sinusoidal form of initial perturbation used
in (2.29). However, we also ran simulations with initial conditions of the form H(z, 0) =
1 + A tanh (2z − L) and the results for maxz H(z, t = 1000) were qualitatively, and largely
quantitatively, the same. The quantity 1 − H(z = 0; B) was still found to accurately bound
the monotonic pressure region.

In this section we have illustrated the complex dependence of the evolution of a thin
layer on B and A, and shown how the static solutions with monotonic curvature can provide
insight into the dynamics of the layer. However, thin-film theory cannot capture the full
range of possible dynamics for the system because the volume of fluid in a thin layer is too
small to form a liquid plug in the tube. We now address this by using long-wave theory to
model layers with finite thickness.
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Ŷ

p̂z

z

t 4

4
0

1

(×10–5)

204204204204

t = 0

H(z, t)
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Figure 6. (a) Snapshots of a numerical simulation with ε = 0.125, B = 0.05 and A = 0.2 (supplementary
movie 2 is available at https://doi.org/10.1017/jfm.2022.479 for the full evolution of H and Ŷ). Axial velocity, ŵ,
as defined in (2.15), is also shown. (b) Time evolution of maxz H, maxz Ŷ and maxz |τ̃w| for the same simulation,
with plugging occurring at tp ≈ 140. The simulation is stopped when maxz H = 0.7/ε as it is clear that a plug
will form. The evolution of maxz H and maxz |τ̃w| for a Newtonian (B = 0) simulation with the same ε and
A shows plug formation occurring earlier, tp ≈ 70. (c) Snapshots of the B = 0.05 simulation at evenly spaced
time points between t = 50 (darkest lines) and t = 130 (lightest lines). Inset shows Ŷ becoming equal to zero
across progressively more of the domain, indicating that the small collar of fluid around z = 0 is rigidifying.
There is a small jump in p̂z where Ŷ makes contact with zero, but still p̂z ≤ 0 everywhere.

4. Results: long-wave theory

4.1. Time evolution of a layer with finite thickness
Figure 6(a) shows snapshots from a numerical solution of the long-wave equations
(2.13)–(2.19) with film thickness ε = 0.125, capillary Bingham number B = 0.05 and
initial perturbation amplitude A = 0.2. For ease of comparison with the thin-film results,
we describe solutions in terms of thin-film parameters and variables: instead of B̂ we use
B = B̂/ε2, instead of t̂ we use t = ε3 t̂, instead of R(z, t̂) we use H(z, t), instead of Ψ (z, t̂)
we use Ŷ(z, t) ≡ (1 − Ψ )/ε and instead of τ̂w we use τ̃w ≡ τ̂w/ε

2.
The early time behaviour is qualitatively the same as in the thin-film simulations. There

is a delay to the growth as the fluid gradually yields (figure 6b) and capillary waves
develop, which are qualitatively the same as in the thin-film case. There is then a peak in
maxz Ŷ at around t ≈ 30, coinciding with significant deformation of the layer. Figure 6(b)
also shows that there is a small associated peak in the wall shear stress, maxz |τ̃w|, which
occurs slightly later, around t ≈ 40. The layer then evolves towards a shape with a large
collar near z = L and a smaller collar near z = 0 (figure 6a, t = 70).

Gauglitz & Radke (1988) identified the critical thickness required to form a plug in their
Newtonian simulations as ε = 0.12. Since ε = 0.125 is larger than this critical value, we
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expect plug formation may be possible in this simulation. Indeed, figure 6(b) shows that
at around t = 140, maxz H begins to rapidly increase towards the centre of the tube, which
is located at 1/ε = 8. The long-wave theory cannot model coalescence so, following the
approach of, e.g. Halpern et al. (2010), we stop simulations when maxz H = 0.7/ε, but
when we do run the simulation further, maxz H rapidly approaches 1/ε, so it is clear
that a plug will form. We denote the time taken to form a plug as tp, and use the time
at which we stop the simulation as a proxy for tp. Figure 6(b) shows that the plugging
time, tp ≈ 140, is significantly longer than the plugging time for a Newtonian (B = 0)
simulation, tp ≈ 70. This is partly due to the delay caused by the initial yielding period,
and partly because the rheology slows down the subsequent period of growth. Throughout
the evolution, maxz |τ̃w| is larger for the B = 0 simulation than for B = 0.05, suggesting
that the yield stress decreases the wall shear stress during this pre-coalescence phase of
plug formation. Note that maxz Ŷ and maxz |τ̃w| increase rapidly around t ≈ tp, suggesting
that the fluid in the large lobe is strongly yielded and the wall shear stress increases as
plug formation occurs. However, we cannot expect the theory to remain accurate during
this period since the assumption that radial velocities are weak no longer holds. As in
the Newtonian problem (Johnson et al. 1991), fully two-dimensional theory is required to
capture the coalescence phase of the evolution.

A new phenomenon which we have observed only in long-wave simulations is that the
small collar of fluid which forms near z = 0 can rigidify during the evolution. At t =
30 (figure 6a), the layer is fully yielded with Ŷ > 0 for all z ∈ (0, L). Figure 6(c) shows
that a yield surface (where Ŷ makes contact with zero) then travels from z = 0 at around
t = 50 to around z = 1.8 at t = 130, indicating that almost the entire small collar has
rigidified by this point. The speed at which the yield surface travels through the domain
decreases slightly through the evolution. We observe a small jump in p̂z at the point where
Ŷ becomes zero, but p̂z remains non-positive everywhere including in the rigid region. We
generally observe this rigidification of the small collar in our simulations whenever there is
enough fluid to form a plug, i.e. ε � 0.12. For thinner layers, ε � 0.11, we generally do not
observe this phenomenon; instead, Ŷ decays to zero from above everywhere in the domain,
qualitatively the same behaviour as we observed in thin-film simulations (e.g. figure 2).

4.2. Dependence on capillary Bingham number, layer thickness and initial conditions
We investigate the dependence of the long-wave evolution on the capillary Bingham
number, layer thickness and initial conditions by running large numbers of numerical
simulations varying B, ε and A. This allows us to examine the dependence of the critical
thickness required to form a plug, εc, on B and A. In figures 7 and 8 we plot the final
maximum heights of the layers from the numerical simulations. We run all simulations to
t = 1000, or if a plug begins to form before this time, the simulation is stopped and the
stopping time is identified as tp.

In figure 7 we vary ε and B between simulations while the initial perturbation amplitude
is fixed at A = 0.25. There are three distinct regions in the data, corresponding to three
qualitatively different outcomes for the layer. Firstly, when B is sufficiently large, there
is no growth so we say the layer is yield stabilised. As in the thin-film case in § 3.4, we
can find the minimum amplitude for yielding, A = Am(B, ε), such that the layer is initially
fully rigid if and only if A ≤ Am. This defines a corresponding capillary Bingham number,
B = Bm(ε,A), such that for a given A and ε, the layer is fully rigid if and only if B ≥
Bm. We compute Bm(ε,A) numerically by finding B = Bm such that the initial condition
(2.19) makes ψ = 1 at exactly one point in the domain, where ψ is defined in (2.13).
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Figure 7. Data from numerical solutions of the long-wave evolution equation for various values of B and
ε, with A = 0.25. Coloured dots correspond to simulations which did not plug, with the colour indicating
maxz H(z, t = 1000). Grey crosses correspond to simulations which are stopped early due to a plug forming.
The critical thickness εc required for plug formation can be identified as the boundary of the plugging region.
The plugging time, tp, is indicated by the grey contours. The maximum B for any yielding to occur, Bm(ε, 0.25)
(dashed red), provides a strict upper bound on the yield-stabilised region.
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Figure 8. Data from numerical solutions of the long-wave evolution equation for various values of B and A,
with (a) ε = 0.12, (b) ε = 0.125 and (c) ε = 0.13. Each dot corresponds to a solution with the colour indicating
maxz H(z, t = 1000). The data are interpolated linearly to produce the black contour lines, which are evenly
spaced. Grey points correspond to simulations which are stopped early due to a plug forming. In (c) grey
contours in the plugging region indicate the plugging time, tp. The critical amplitude for any yielding to occur,
Am(B, ε) (dashed red), provides a strict lower bound on the boundary of the yield-stabilised region. Unlike
in the thin-film case (figure 5a), the quantity 1 − H0(z = 0; B, ε) (solid magenta), where H0 are the static
solutions computed in Appendix E, does not provide useful information on the final shape of these layers.

Figure 7 shows that B = Bm(ε,A = 0.25) provides a strict upper bound on the boundary
of the yield-stabilised region. The second possible outcome for the layer is that there is
unstable growth but a liquid plug does not form, and instead the final shape at t = 1000
is a two-collar configuration, like in the thin-film simulations. Figure 7 shows that this
occurs for roughly 0 ≤ B � 0.1 and ε � 0.12, and the figure also indicates how the final
peak height of the large collar, maxz H(z, t = 1000), depends on both ε and B.
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In the third possible outcome, the layer forms a liquid plug, which occurs when the layer
is sufficiently thick, and B is not too large for it to be yield stabilised. The boundary of the
plugging region in figure 7 corresponds to the critical thickness required for plug formation
to occur, εc, which can be seen to depend strongly on B. For very small B, the critical value
is around εc ≈ 0.12, which is consistent with the results of Gauglitz & Radke (1988). As
B is increased, εc first increases slowly, to somewhere in the range 0.125 < εc < 0.1275
when B = 0.11, with two-collar final shapes being observed at ε = 0.125 when B = 0.11.
This suggests that for a few values of ε around ε ≈ 0.125, the layer can exhibit plugging,
two-collar or yield-stabilised behaviour, depending on the value of B. For B ≥ 0.12, the
plugging region is bounded by the yield-stabilised region and εc increases rapidly as B
is increased. Figure 7 also shows how the plugging time, tp, decreases as ε is increased
and increases as B is increased. There is a rapid increase in tp near to the boundary of
the plugging region, suggesting that we have located the boundary accurately by running
simulations to t = 1000. Simulations in the plugging region which are near the boundary
spend a long time in a near-static two-collar shape (e.g. figure 6a, t = 70) before eventually
transitioning to form a plug.

In figure 8 we investigate the dependence of the evolution on B and A, for ε =
0.12, 0.125, 0.13. We can again identify a yield-stabilised region, a two-collar region and
a plugging region for each value of ε. The boundary of the yield-stabilised region does not
change significantly between ε = 0.12 and ε = 0.13, which is consistent with the results in
figure 7. This boundary corresponds to the minimum amplitude of perturbation required
to trigger instability, which can be seen to strongly depend on B. Again, we put a strict
lower bound on the boundary of this region using Am(B, ε), the minimum amplitude for
any yielding to occur. The size of the two-collar region decreases quickly as ε is increased,
and it has almost entirely disappeared when ε = 0.13. This suggests that for ε ≥ 0.13,
as long as A is large enough to trigger growth, a plug is guaranteed to form. When the
two-collar region does exist (figure 8a,b), the location of its boundary with the plugging
region depends on A and B. When A is small, this boundary is largely independent of A, but
when A is large, the plugging region extends to higher B. We propose that this is because
highly deformed initial conditions place most of the fluid near z = L, so, compared with
simulations with small A, less fluid is trapped in the small collar near z = 0, making the
large collar larger and more unstable to plug formation. The results in figure 8 show that
the boundary of the plugging region depends on A as well as on B and ε. Hence, the critical
thickness for plug formation, εc, must also depend on A as well as B. The plugging time
also depends on both B and A, as indicated in figure 8(c), with tp increasing when B is
increased and decreasing when A is increased. As in figure 7, tp increases rapidly near to
the boundary of the plugging region.

In the thin-film problem, the quantity 1 − H0(z = 0; B) from the static solutions could
be used to predict the final shape of the layer in a large number of cases (figure 5a). We
have also computed static solutions, H0(z; B, ε), for the long-wave problem by solving
ψ = 1 and assuming monotonic pressure (see Appendix E). The quantity 1 − H0(z =
0; B, ε) is plotted for ε = 0.12, 0.125, 0.13 in figure 8. It predicts the threshold amplitude
required to trigger instability for small B, but underestimates it for larger B, and the
prediction becomes less accurate as ε is increased. The upper branch of the curve does not
appear to be correlated with the numerical results in any way. In numerical simulations
with ε ≥ 0.12, we generally observe that rigidification of the small collar near z = 0
(figure 6b) occurs whether a plug forms or not. When this rigidification happens, the final
static shape of the layer does not satisfy ψ = 1 everywhere, so the layer selects different
static solutions than those we have computed. The static solutions we have computed may
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Evolution of a viscoplastic liquid coating a cylindrical tube

predict the final shapes of the layer when ε is smaller, but they cannot do so when there is
rigidification of the small collar or when there is plug formation.

The results in figures 7 and 8 are specific to the sinusoidal form of initial perturbation
used in (2.19). However, we also ran simulations with initial conditions of the form
H(z, 0) = C0 + A tanh (2z − L), where C0 is a constant chosen so that the total volume
of fluid is independent of A, and found the same qualitative behaviour and only
minor quantitative differences. This suggests that the observed behaviour is not strongly
dependent on the exact form of initial perturbation.

5. Discussion

To summarise, we have quantified how viscoplastic rheology can either inhibit growth
of, or fully suppress, the surface-tension-driven instability of a layer of liquid coating the
interior of a cylindrical tube. We found that for both thin layers and layers with finite
thickness, the final shape after evolution depends sensitively on the capillary Bingham
number, B, as well as on the initial amplitude of perturbation, A. Using thin-film theory,
we showed that when A is below a critical value, which depends on B, there is no unstable
growth because the fluid does not yield. When there is unstable growth, the final shape of
the layer either coincides with the marginally yielded static solution, H0(z; B), from the
upper branch of figure 4(a), or the final shape has non-monotonic pressure. Figure 5(a)
shows that the quantity 1 − H0(z = 0; B) from the static solutions accurately predicts both
the minimum A required to trigger instability, and the large set of A and B for which the
final shape of the layer is H0(z; B). By solving the long-wave evolution, we quantified how
the critical layer thickness, εc, required to form a liquid plug is increased by increasing B.
Figure 7 shows that εc can be increased significantly beyond the Newtonian value of εc ≈
0.12 found by Gauglitz & Radke (1988), primarily because, when B is sufficiently large,
there is no yielding so no unstable growth. For 0.12 ≤ ε ≤ 0.13, it is possible for there
to be no unstable growth, unstable growth leading to plug formation, or unstable growth
with no plug formation, depending on the values of A and B (figure 8). For ε > 0.13, if A
is large enough to trigger instability, a plug will form.

One application of our results is to modelling mucus flow and airway closure in lungs.
We used a thin-film capillary Bingham number, B ≡ aτY/σε

2, to measure the relative
strength of the yield stress in the flow. To estimate B for a 12th generation healthy
airway, we propose the following typical values: airway radius a = 0.4 mm (Hsia, Hyde
& Weibel 2016), surface tension σ = 30 mNm (Chen et al. 2019) and mucus yield stress
τY = 0.27 Pa (Patarin et al. 2020). For a mucus layer with thickness ε = 0.125, this gives
B ≈ 0.2. Figure 8(b) shows that, for B = 0.2, we expect plug formation to be possible,
but only for A � 0.6, i.e. only if the mucus layer is significantly deformed initially. Patarin
et al. (2020) measured the yield stress in CF mucus to be 6.34 Pa, which would correspond
to B ≈ 5 when ε = 0.125. Figure 8(b) shows that B = 5 is well inside the yield-stabilised
region for all A, suggesting that airway closure would not occur via this mechanism for
these parameter values. However, other key symptoms of CF are increased volume of
mucus in airways and surfactant deficiency (Tiddens et al. 2010), which would correspond
to increases in ε and σ and, hence, a potentially significant decrease in B, making plug
formation more likely to occur. Thus, the net effect of CF symptoms on the likelihood of
airway closure by this mechanism is not obvious. Experiments and numerical modelling of
plug rupture (Hu et al. 2015, 2020) suggest that, once an airway does close, increased yield
stress makes airway reopening more difficult, which would contribute to the increased
prevalence of plugged airways in CF. Our results also suggest that airway closure could be
triggered if B is suddenly decreased, which could be caused by applying certain therapies
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which are commonly used in CF, such as mucolytics which decrease the mucus yield stress
(Patarin et al. 2020) or expectorants which increase the volume of liquid (Donaldson et al.
2006). However, detailed modelling of the effect of such therapies would be required to
confirm this conjecture.

We have also shown that yield stress can delay plug formation when it does occur
(figures 6c, 7 and 8c). If we set η = 10−2Pa s then the dimensional plugging time is
t∗p = (aη/σε3)tps ≈ 0.07tps for ε = 0.125. For the Newtonian simulation in figure 6(c),
tp ≈ 70, corresponding to t∗p ≈ 5 s, which is approximately the length of a breathing
cycle. The B = 0.05 simulation in figure 6(c) takes about twice as long to form a plug,
so t∗p is likely to be longer than a breathing cycle meaning airway closure is less likely to
occur via this mechanism. If we relate η to the measured viscosity of mucus (Lai et al.
2009), η = 10−2Pa s is a feasible value but it could also be significantly larger, meaning
plug formation for these simulations could be on the scale of minutes or hours instead
of seconds. The layer thickness also strongly influences tp (figure 7), and also t∗p depends
inversely on ε3, so a modest increase in layer thickness can significantly decrease the time
taken for plug formation to occur.

Our results also suggest that the shear stress exerted on the tube wall during the
pre-coalescence phase of plug formation can be decreased by yield stress (figure 6b). This
has physiological significance because a large shear stress exerted on an airway wall may
cause epithelial cell damage (Huh et al. 2007). However, we expect that the wall shear
stress is likely to be much larger in the post-coalescence phase, as is the case when the
liquid is Newtonian (Romanò et al. 2019), so we cannot make conclusions about the effect
of yield stress on wall shear stress during the entire closure process. Additionally, when
the layer is too thin to form a plug, the wall shear stress at late times approaches the yield
stress (figure 2b), so in these cases it increases as yield stress is increased.

We have focused on investigating the effect of viscoplastic rheology, so other physical
effects which are relevant to airway modelling have been neglected. Various extensions
to our work could be made to investigate how viscoplastic effects interact with, for
example, shear stress induced by air flow, elastic tube walls or surfactant, all of which
have been studied in the case that the liquid is Newtonian (Halpern & Grotberg 1992,
1993, 2003). Additionally, in order to isolate the effects of the viscoplastic rheology, we
have not incorporated shear thinning or viscoelastic rheologies, which are also known to
be exhibited by mucus (Hill et al. 2022). It remains an interesting open question how the
addition of other rheological properties would affect the dynamics of a viscoplastic layer
as studied here.

There are some limitations to the thin-film and long-wave theories that we have
used to derive reduced-order models. Thin-film theory cannot predict the formation
of liquid plugs, and the quasi-one-dimensional long-wave theory cannot capture the
fully two-dimensional dynamics which develop as a liquid plug is forming (requiring
simulations to be stopped just before coalescence). Viscoplastic thin-film theory is known
to break down at points where the direction of flow changes and the pressure gradient
has a jump discontinuity (Balmforth et al. 2000), and we observed this same behaviour
in our long-wave simulations. Additionally, the long-wave theory is strictly valid for
δ ≡ a/L � 1 but we solved the evolution equation in a finite domain with a small but
finite value of δ. We have not solved the full axisymmetric Stokes problem here, which
could be used to validate the long-wave model.

Our model predicts that viscoplastic rheology can significantly alter the evolution of a
layer coating a cylindrical tube. When the layer is thin, key aspects of the dynamics and the
final shape of the layer can be understood by studying marginally yielded static solutions.
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When the layer has finite thickness, the critical thickness required to form a liquid plug
can depend strongly on the capillary Bingham number. These results have implications for
modelling real-world problems where the coating liquid has a yield stress, such as models
of airway closure, particularly in the context of diseases which alter mucus rheology.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.479.
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Appendix A. Energy evolution

5. Energy in the Stokes system
The energy associated with the interfacial surface area is E∗, defined in (2.9).
Differentiating (2.9) with respect to t∗, integrating by parts and using the boundary
condition (2.8), gives

∂∗
t E∗ = σ

∫ L∗

0
2πκ∗R∗∂∗

t R∗ dz∗, (A1)

where κ∗ is defined in (2.7). Using a standard energy balance argument for Stokes flow,
such as that in Frigaard (2019), we can show that

1
2

∫
V
τ ∗ : γ̇ ∗ dV =

∫
∂V
(u∗ · np∗ + u∗ · τ ∗ · n) dS, (A2)

where V is the volume of the layer and n is the unit outward normal to V . The boundary
conditions (2.4) and (2.8) imply that u∗ · n = 0 and u∗ · τ ∗ · n = 0 on all boundaries
except r∗ = R∗. On r∗ = R∗, (2.6) implies that

u∗ · np∗ + u∗ · τ ∗ · n = σκ∗u · n = σκ∗ w∗∂∗
z R∗ − u∗√

1 + (∂∗
z R∗)2

= −σκ∗ ∂∗
t R∗√

1 + (∂∗
z R∗)2

, (A3)

where in the final equality we have used the kinematic boundary condition (2.5).

Substituting (A3) into (A1), then using (A2) and the fact that dS = 2πR∗
√

1 + (∂∗
z R∗)2dz∗,
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we arrive at

∂∗
t E∗ = −1

2

∫
V
τ ∗ : γ̇ ∗ dV. (A4)

Substituting the constitutive relation (2.3) into (A4) gives

∂∗
t E∗ = −

∫
V
(η(γ̇ ∗)2 + τY γ̇

∗) dV, (A5)

noting that regions where τ ∗ < τY make no contribution to ∂∗
t E∗ since γ̇ ∗ = 0. Finally,

since η, τY and γ̇ ∗ are strictly non-negative, (A5) implies that ∂∗
t E∗ ≤ 0.

5. Energy in the long-wave system
In the rest of Appendix A we use subscripts to denote derivatives. The
non-dimensionalised expression for energy, E, in the long-wave system is given in (2.21).
Differentiating (2.21) with respect to t̂, then inserting the evolution equation (2.16),
integrating by parts and using the boundary conditions (2.18), gives

Et̂ = 2π

∫ L

0
p̂zQ̂ dz, (A6)

where p̂ is defined in (2.14). Expanding Q̂ using the definition in (2.16) gives

Et̂ = −2π

∫ L

0

[
p̂2

z

16
f1(R, Ψ )+ B̂|p̂z|

12
f2(R, Ψ )

]
dz, (A7)

where the functions f1(R, Ψ ) and f2(R, Ψ ) are defined in (2.17).
From (A7), Et̂ ≤ 0 if f1(R, Ψ ) ≥ 0 and f2(R, Ψ ) ≥ 0 for all (R, Ψ ) ∈ D ≡ {(R, Ψ ) : 0 ≤

R ≤ Ψ ≤ 1}. To prove that this is the case, first note that f1 and f2 are both monotonically
decreasing in R, for (R, Ψ ) ∈ D. This can be seen from noting that

∂f1
∂R

= −4Rg1(Ψ ),
∂f2
∂R

= −12Rg2(Ψ ), (A8a,b)

where

g1(Ψ ) ≡ 1 − Ψ 2 + 2Ψ 2 logΨ, g2(Ψ ) ≡ 1 − Ψ + Ψ logΨ. (A9a,b)

The functions g1(Ψ ) and g2(Ψ ) are non-negative for all 0 ≤ Ψ ≤ 1 (figure 9a) so the
derivatives (A8) are both non-positive for all (R, Ψ ) ∈ D. This implies that if f1 and f2 are
non-negative on the boundary Ψ = R of D, then they are non-negative everywhere in D.
Setting Ψ = R in (2.17), we find the functions

f1(R,R) = (1 − R2)(1 − 3R2)− 4R4 log R, (A10a)

f2(R,R) = (R − 1)(7R2 + R − 2)− 6R3 log R, (A10b)

are indeed non-negative for 0 ≤ R ≤ 1 (figure 9b), so f1(R, Ψ ) ≥ 0 and f2(R, Ψ ) ≥ 0 for
all (R, Ψ ) ∈ D. Hence, Et̂ ≤ 0 for all admissible (R, Ψ ).
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0 0.5

Ψ

1.0

g2(Ψ )

g1(Ψ ) f1(R, R)

f2(R, R)

0.5

1.0

0 0.5

R
1.0

1

2(b)(a)

Figure 9. (a) The functions g1(Ψ ) and g2(Ψ ) defined in (A9). (b) The functions f1(R,R) and f2(R,R) defined
in (A10). All four functions are non-negative, which is used to prove that Et̂ ≤ 0.

5. Energy in the thin-film system
We can also show directly from the thin-film equations that energy is non-increasing. The
interfacial energy in the thin-film limit is (2.31), which when differentiated with respect to
t gives

Et ∼ πε

∫ L

0
p2

z Y2(Y − 3H) dz as ε → 0, (A11)

where we have used integration by parts, the boundary conditions (2.28) and the evolution
equation (2.27). Noting that 0 ≤ Y ≤ H, (A11) immediately implies that Et ≤ 0.

Appendix B. Derivation of the long-wave evolution equation

Starting from the governing equations and boundary conditions in the Stokes system
(2.1a–d)–(2.8), we derive the long-wave evolution equation (2.13)–(2.18). First, we rewrite
(2.1a–d)–(2.8) in terms of the non-dimensionalised and scaled variables (2.11) and
(2.12a–e). The Stokes equations (2.2) become

0 = ∂z̄ŵ + 1
r
∂r(ūr), (B1a)

0 = −∂rp̄ + δ
1
r
∂r(rτrr)+ δ2∂z̄τrz − δτθθ , (B1b)

0 = −∂z̄p̄ + 1
r
∂r(rτrz)+ δ∂z̄τzz. (B1c)

The non-zero components of the shear rate (2.1a–d) become

γ̇rr = 2δ∂rū, γ̇rz = ∂rŵ + δ2∂z̄ū, γ̇θθ = 2δ
ū
r
, γ̇zz = 2δ∂z̄ŵ, (B2a–d)

and the second invariants of stress and shear rate are

τ =
√

1
2
(τ 2

rr + τ 2
θθ + τ 2

zz)+ τ 2
rz, (B3a)

γ̇ =
√√√√2δ2

[
(∂rū)2 +

(
ū
r

)2

+ (∂z̄ŵ)2
]

+ (∂rŵ + δ2∂z̄ū)2. (B3b)
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The constitutive relation (2.3) becomes

τij =
(

1 + B̂
γ̇

)
γ̇ij if τ ≥ B̂,

γ̇ = 0 if τ < B̂,

⎫⎪⎬
⎪⎭ (B4)

where B̂ ≡ τYa/σ . From (2.4), the wall boundary conditions are

ū = ŵ = 0 on r = 1, (B5)

and from (2.5)–(2.7), the free-surface boundary conditions are

∂t̄R + ŵ∂z̄R = ū on r = R, (B6a)

τrz + δ∂z̄R(τrr − τzz)− δ2(∂z̄R)2τrz = 0 on r = R, (B6b)

δτrr − 2δ2∂z̄Rτrz + δ3(∂z̄R)2τzz = (1 + δ2(∂z̄R)2)(p̄ + δκ̄) on r = R, (B6c)

where

κ̄ = 1√
1 + δ2(∂z̄R)2

[
1
R

− δ2∂z̄z̄R
1 + δ2(∂z̄R)2

]
. (B7)

The symmetry boundary conditions (2.8) become

∂z̄R = τrz = ŵ = 0 at z̄ = {0, L̄}. (B8)

A description of the flow where the fluid is yielded is first derived, then regions of
unyielded fluid can subsequently be identified. Until otherwise stated, we assume that τ >
B̂. Separate expansions are made for the relevant variables in the shear-dominated region,
ψ ≤ r ≤ 1, and in the plug-like region, R ≤ r < ψ . Quantities in the shear-dominated
region are denoted by the superscript (·)s, and quantities in the plug-like region by (·)p. In
the shear-dominated region, let

ŵs = ws
0 + δws

1 + · · · , ūs = ūs
0 + δūs

1 + · · · , τ s
rz = τ s

0rz + δτ s
1rz + · · · ,

τ s
rr = δτ s

1rr + · · · , τ s
zz = δτ s

1zz + · · · , τ s
θθ = δτ s

1θθ + · · · .

}
(B9)

The leading-order second invariant of stress is then τ s
0 = |τ s

0rz|. After truncating at leading
order, the horizontal momentum equation (B1c) becomes

0 = −∂z̄p̄ + 1
r
∂r(rτ s

0rz) in ψ ≤ r ≤ 1, (B10)

and the vertical momentum equation (B1b) implies that p̄ = p̄(z̄, t̄) in ψ ≤ r ≤ 1.
The shear-dominated solution is only valid where |τ s

0| > B̂, so we identify that
|τ s

0| = |τ s
0rz| = B̂ at r = ψ . After integrating (B10) in r, we enforce |τ s

0rz| = B̂ at r = ψ
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to get

τ s
0rz = 1

2
∂z̄p̄

(
r − ψ2

r

)
+ B̂

r
sgn(∂z̄p̄)ψ in ψ ≤ r ≤ 1. (B11)

The shear component of the constitutive relation (B4), at leading order, gives

τ s
0rz = ∂rws

0 + B̂ sgn(∂rws
0) = ∂rws

0 + B̂ sgn(∂z̄p̄) in ψ ≤ r ≤ 1. (B12)

In both (B11) and the second equality of (B12), we have used the fact that the shear stress,
τ s

0rz, must have the same sign as the pressure gradient. Combining (B11) and (B12) gives

∂rws
0 = 1

2
∂z̄p̄

(
r − ψ2

r

)
+ B̂ sgn(∂z̄p̄)

(
ψ

r
− 1

)
in ψ ≤ r ≤ 1. (B13)

Integrating (B13), and enforcing the no-slip condition at r = 1, finally gives

ws
0 = 1

2
∂z̄p̄

[
1
2
(r2 − 1)− ψ2 log(r)

]
+ B̂ sgn(∂z̄p̄)[ψ log (r)+ 1 − r] (B14)

in ψ ≤ r ≤ 1.
In the plug-like region, R ≤ r < ψ , we make an expansion of the same form as (B9),

ŵp = wp
0 + δwp

1 + · · · , ūp = ūp
0 + δūp

1 + · · · , τ
p
rz = τ

p
0rz + δτ

p
1rr + · · · ,

τ
p
rr = δτ

p
1rr + · · · , τ

p
zz = δτ

p
1zz + · · · , τ

p
θθ = δτ

p
1θθ + · · · ,

}
(B15)

but we assume the leading-order axial velocity is independent of r, so wp
0 = wp

0(z̄, t̄). This
means that γ̇rz = O(δ), and so γ̇ = O(δ). Thus, the shear component of the constitutive
relation (B4) implies that

τ
p
0rz = B

γ̇
p
1
∂rw

p
1, (B16)

with (B3b) giving the leading-order second invariant,

γ̇
p
1 =

√√√√√2

⎡
⎣(∂ru

p
0)

2 +
(

up
0
r

)2

+ (∂z̄w
p
0)

2

⎤
⎦+ (∂rw

p
1)

2. (B17)

After truncating, the horizontal momentum equation (B1c) becomes

0 = −∂z̄p̄ + 1
r
∂r(rτ

p
0rz) in R ≤ r < ψ, (B18)

and the vertical momentum equation (B1b) implies that p̄ = p̄(z̄, t̄) in R ≤ r < ψ . The
stress boundary conditions (B6b) and (B6c) become

τ
p
0rz = 0, p̄ = −δκ̄ on r = R. (B19)

Integrating (B18), and enforcing the zero shear stress condition in (B19), gives

τ
p
0rz = ∂z̄p̄

(
r
2

− R2

2r

)
. (B20)
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Combining (B16) and (B17), then rearranging, gives

∂rw
p
1 =

√
2|τ p

0rz|
√√√√ [(∂ru

p
0)

2 + (up
0/r)

2 + (∂z̄w
p
0)

2]

B̂2 − (τ
p
0rz)

2
. (B21)

The expression (B21) is valid up to the point at which B̂ = |τ p
0rz|, which must coincide

with r = ψ . Hence, using (B20), we arrive at the definition,

ψ(z̄, t̄) = B̂
|∂z̄p̄|

⎛
⎝1 +

√
1 +

( |∂z̄p̄|R
B̂

)2
⎞
⎠ . (B22)

Note that from (B22), R ≤ ψ always holds.
The axial velocity in the shear-dominated region (B14) is matched to wp

0 by equating
them at r = ψ , which gives

wp
0 = 1

2
∂z̄p̄

[
1
2
(ψ2 − 1)− ψ2 log(ψ)

]
+ B̂ sgn(∂z̄p̄)[ψ log(ψ)+ 1 − ψ] (B23)

in R ≤ r < ψ . Since p̄ = p̄(z̄, t̄), (B19) implies that p̄ = −δκ̄ . Then (B14) and (B23)
provide the complete expression for axial velocity, w0, across the whole layer, R ≤ r ≤ 1,
in regions where the fluid is yielded. Using the same argument as Balmforth & Craster
(1999), we identify that if ψ(z̄, t̄) ≥ 1 then the shear-dominated region does not exist, and
the boundary conditions (B5) imply the plug-like region must be stationary, wp

0 = wp
1 = 0,

so the fluid is unyielded. If we replace ψ with Ψ (z̄, t̄) ≡ min(1, ψ) in (B14) and (B23),
then w0 = wp

0 for R ≤ r < Ψ and w0 = ws
0 for Ψ ≤ r ≤ 1 hold both where the fluid is

yielded and where it is unyielded. The leading-order axial flux is then

Q̂ ≡
∫ Ψ

R
wp

0r dr +
∫ 1

Ψ

ws
0r dr, (B24)

which when evaluated gives the expression in (2.16). Finally, the kinematic boundary
condition (B6a) and mass conservation (B1a) are combined to give the evolution equation
(2.16). When we present the evolution equation and relevant definitions in (2.13)–(2.18),
we write them in terms of the unscaled variables z, t̂, p̂, κ̂ , u, i.e. we view the system in
a frame unscaled by the small aspect ratio δ. However, the limit in which the theory is
formally valid remains δ � 1.

Appendix C. Dynamics near the bifurcation in the thin-film static solutions

We consider the dynamics of H(z, t), as governed by the thin-film system (2.23)–(2.28),
near to B = B∗, the location of the saddle-node bifurcation in the static solutions computed
in § 3.3. We define μ such that B = B∗ − μ2 and then expand

H = H0 + μH1 + μ2H2 + · · · , Y = Y0 + μY1 + μ2Y2 + · · · as μ → 0. (C1)

We assume monotonic capillary pressure, so |pz| = Hz + Hzzz, and consider situations
where the layer is fully yielded, so Y = Y = H − B/(Hz + Hzzz). We insert the expansions
(C1) into this definition of Y , and solve at each order in μ.
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Figure 10. (a) Solutions φ1, φ2 of the linear problem Lφ = 0, and the solution φ†
1 to the adjoint problem

L†φ† = 0. We set the amplitude of φ1 by choosing φ1(L) = 1 and the amplitude of φ†
1 by choosing φ†

2 = 1,
both of which are arbitrary values. (b) Solution of the evolution equation (C9), showing A evolving away from
the fixed point at −2.20 towards the fixed point at 2.20.

Solving at O(μ0) we get Y0 = 0 and H0(H0,z + H0,zzz) = B∗, so H0 = H0(z,B∗). The
function H0(z,B∗) was plotted in figure 4(b). To solve at O(μ), we look for a solution with
Y1 = 0. This gives

H1,zzz + H1,z + GH1 = 0, where G ≡ H0,zzz + H0,z

H0
. (C2)

The associated boundary conditions are H1,z = 0 at z = {0, L}, and mass conservation
implies that

∫ L
0 H1 dz = 0. We look for a separable solution of (C2) of the form H1 =

A(t)φ1(z). The function φ1(z) is found by solving the following linear ODE problem.
Defining the linear and boundary operators

L =
(
∂3

z + ∂z + G 0

1 −∂z

)
and B =

(
∂z|0,L 0

0 ·|0,L

)
, (C3a,b)

the vector φ = (φ1, φ2)
T is the solution to Lφ = 0 with boundary conditions Bφ = 0.

Figure 10(a) shows the computed solution. Note that the amplitude of φ1 is free, so to
solve we choose an arbitrary value by setting φ1(L) = 1.

We now note the linear ODE problem defined by (C 3) has an associated adjoint
problem. The adjoint operator, L†, and boundary operator, B†, are defined via the relation
〈φ†, Lφ〉 = 〈L†φ†,φ〉, where the inner product is defined as 〈ψ,χ〉 = ∫ L

0 ψ
Tχ dz for

vectors ψ , χ . This gives

L†=
(

−∂3
z − ∂z + G 1

0 ∂z

)
and B†=

( ·|0,L 0

∂2
z |0,L 0

)
. (C4a,b)

The adjoint solution, φ† = (φ
†
1, φ

†
2)

T , satisfies L†φ† = 0 with boundary conditions
B†φ† = 0. The function φ†

2 is constant; its value is arbitrary but sets the amplitude of
φ

†
1 . Figure 10(a) shows the computed solution for φ†

1 where we set φ†
2 = 1.

To find A(t), first note that the evolution equation (2.27) implies that μH1t = O(μ4).
We introduce a slow time scale T = μ3t and let A = A(T). An evolution equation for
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A(T) is found by solving the O(μ2) problem. At O(μ2), we get

H2(H0,z + H0,zzz)+ H0(H2,z + H2,zzz) = Y2(H0,z + H0,zzz)− 1 − H1(H1,z + H1,zzz).
(C5)

The associated boundary conditions are H2,z = Y2 = 0 at z = {0, L}, and mass
conservation implies that

∫ L
0 H2 dz = 0. Now, if we define ϕ2 = (H2, u2)

T with u2 =∫ z
0 H2(z′, t) dz′ then it satisfies a solvability condition,

〈φ†, Lϕ2〉 = 〈L†φ†,ϕ2〉 = 0. (C6)

Equation (C5) provides an expression for (∂3
z + ∂z + G)H2, so (C6) implies that

∫ L

0
φ

†
1

(
GY2 − 1

H0
+ A2φ2

1
H0

G
)

dz = 0. (C7)

The evolution equation (2.27), at leading order in μ, can be integrated once in z to give

2ATφ2 = −B∗Y2
2 , (C8)

where we have used the boundary conditions Y2 = φ2 = 0 at z = 0. Figure 10(a) shows
that φ2 ≤ 0, so (C8) requires AT ≥ 0. Using (C8), the solvability condition (C7) becomes∫ L

0
φ

†
1

(
G
[
−2ATφ2

B∗

]1/2

− 1
H0

+ A2φ2
1

H0
G
)

dz = 0, (C9)

which is the evolution equation for A(T). Notice that (C9) is independent of the amplitude
of φ†

1 , so the value of φ†
2 is truly arbitrary.

After computing φ and φ†, the coefficients in (C9) are found using numerical
integration. Equation (C9) has two fixed points at A ≈ ±2.20. Figure 10(b) is a solution of
(C9) with initial conditions A(0) = −2.19, showing that the solution evolves away from
the negative fixed point towards the positive one, suggesting the former is unstable and
the latter stable. Fixed points in A correspond to static solutions for H. Since φ1(L) > 0
(figure 10a), the negative fixed point must correspond to the lower-branch static solution in
figure 4(a), since then H1 < 0 so maxz H < maxz H0(z; B∗). Similarly, the positive fixed
point must correspond to the upper-branch solution since H1 > 0. This confirms that, at
least near B = B∗, the lower-branch solutions are unstable and the upper-branch solutions
are stable.

Appendix D. Small B approximation to the upper-branch thin-film static solutions

The upper-branch solutions in figure 4(a) are approximated in the limit B → 0 using
the method of matched asymptotic expansions. We identify three asymptotically distinct
regions in space which can be matched together. Region I is the smaller collar which lies
approximately in 0 < z � L − π. Region II is the thin inner region between the two collars,
approximately located at z = L − π. Region III is the large collar which lies approximately
in L − π � z < L. Separate asymptotic expansions for H0(z; B) will be proposed in each
of the three regions. To determine the leading-order form of the expansions in each region,
the following simple scaling argument is used.

Let LI , LII , LIII be horizontal length scales for regions I, II and III, respectively.
Similarly, let HI , HII , HIII be scales for the size of H0 in each of the three regions. Region
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Evolution of a viscoplastic liquid coating a cylindrical tube

I and region III both have O(1) width, so the length scales are LI ∼ 1 and LIII ∼ 1. The
width of region II is small, LII � 1; a precise scaling will be determined in the following.
Since the Newtonian solution is recovered as B → 0, H0 = O(1) in region III so HIII ∼ 1.
Also, the Newtonian solution has constant non-zero curvature in region III, so κ ∼ 1 in
region III. In region II, since LII � 1, the curvature is dominated by the second derivative,
so κ ∼ HII/L2

II . In order for regions II and III to match, these curvatures must balance, so
HII/L2

II ∼ 1. The ODE for H0, (3.2a), can now be used to obtain the remaining scalings.
In region I, LI ∼ 1, so (3.2a) implies that HI ∼ B1/2. In region II, (3.2a) implies that
H2

II/L
3
II ∼ B. This last result, combined with HII ∼ L2

II , gives HII ∼ B2 and LII ∼ B.
Informed by the scaling argument, we propose the following expansions for H0(z; B) in

the limit B → 0. In region I,

H0(z; B) = B1/2ĥ0(z)+ · · · . (D1)

In region II,

H0(z; B) = B2h̄0(ζ )+ B5/2h̄1(ζ )+ · · · , where z = L − π + B log Bz̄0 + Bζ + · · · ,
(D2)

and z̄0 is a constant which we determine below. The B log Bz̄0 term in (D2) determines
how the location of region II varies with B. In region III,

H0(z; B) = h̃0(z)+ B1/2h̃1(z)+ Bh̃2(z)+ · · · . (D3)

Inserting the expansions (D1)–(D3) into the ODE (3.2a), and equating at each order of
B, gives

ĥ0(ĥ0,zzz + ĥ0,z) = 1, (D4)

which holds in 0 ≤ z < L − π,

h̄0h̄0,ζ ζ ζ = 1, h̄3
0h̄1,ζ ζ ζ + h̄1 = 0, (D5a,b)

which hold in −∞ < ζ < ∞, and

ĥ0,zzz + ĥ0,z = 0, ĥ1,zzz + ĥ1,z = 0, ĥ2,zzz + ĥ2,z = 1

h̃0
, (D6a–c)

which hold in L − π < z ≤ L. The boundary conditions (2.28) imply that

ĥ0,z = 0 at z = 0, (D7a)

h̃0,z = h̃1,z = h̃2,z = 0 at z = L. (D7b)

Mass conservation implies that∫ L

L−π

h̃0 dz = L,
∫ L−π

0
ĥ0 dz +

∫ L

L−π

h̃1 dz = 0,
∫ L

L−π

h̃0 dz = 0. (D8a–c)

The problem is closed by determining matching conditions between the regions. To
match regions II and III, consider (D 5) in the limit ζ → ∞, which gives

h̄0 = a0ζ
2 − 1

a0
ζ log ζ + c0ζ + 1

4a3
0
(log ζ )2 +

(
3

4a3
0

− c0

2a2
0

)
log ζ + · · · , (D9a)

h̄1 = a1ζ
2 + a1

a0
ζ log ζ + · · · , (D9b)
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as ζ → ∞, for some constants a0, a1, c0. To derive boundary conditions at z = L − π,
we write ζ = (z − L + π)/B + log Bz̄0 + · · · in (D9), then equate the resulting expansion
for B2h̄0 + B5/2h̄1 + · · · with h̃0 + B1/2h̃1 + Bh̃2 + · · · in the limit z → (L − π)+. This
gives

h̃0 ∼ a0(z − L + π)2, h̃1 ∼ a1(z − L + π)2, (D10a,b)

h̃2 ∼ (z − L + π)

(
c0 − 1

a0
log(z − L + π)

)
, (D11)

as z → (L − π)+, and z̄0 = 1/(2a2
0). We find the general solutions to (D 6), apply the

boundary conditions (D7b) and mass conservation conditions (D 8), then expand in the
limit z → (L − π)+ and match this to (D 10) and (D11). This gives a0 = L/(2π), c0 =
2π log 2/L,

h̃0 = L
π

[1 + cos(z − L)], h̃1 = 2a1[1 + cos(z − L)], (D12a,b)

h̃2 = 2
L

+ π

L
sin(z − L)+ 2 − π2

L
cos(z − L)

+ π

L

[
(L − z) cos(z − L)+ 2 sin(z − L) log

(
cos

(
z − L

2

))]
, (D13)

and 2πa1 = − ∫ L−π

0 ĥ0 dz, which is determined numerically once ĥ0 is found.
To determine matching conditions between regions I and II, we follow a similar process.

Expanding now in the limit ζ → −∞ gives

h̄0 ∼
√

8
3
(−ζ )3/2 + · · · as ζ → −∞, (D14)

from which we infer the boundary condition

ĥ0 ∼
√

8
3
(L − π − z)3/2 as z → (L − π)−. (D15)

The region I problem is (D4) subject to boundary conditions (D7a) and (D15). When
solving the region I problem, we define a small constant ε̂ and solve (D4) in the domain
0 ≤ z ≤ L − π − ε̂. We enforce (D15) by setting ĥ0(L − π − ε̂) = √

8/3ε̂3/2 and ĥ′
0(L −

π − ε̂) = √
6ε̂1/2. We choose ε̂ sufficiently small that the solution in the rest of the domain

is insensitive to its exact value.
When solving the region II problem to find h̄0, we define a large constant ζ∞ and solve

(D5a) in the finite domain −ζ∞ < ζ < ζ∞. Informed by (D9a) and (D14), we enforce the
boundary conditions,

h̄0,ζ ζ =
√

6
2
ζ

−1/2
∞ at ζ = −ζ∞, (D16)

h̄0 = L
2π
ζ 2
∞ − 2π

L
ζ∞ log ζ∞, h̄0,ζ ζ = L

π
+ π

Lζ∞
at ζ = ζ∞. (D17a,b)

We choose ζ∞ large enough that the solution is insensitive to its exact value away from
the boundaries ζ = ±ζ∞.
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Figure 11. Approximation to the upper-branch static solution (figure 4a) with B = 10−3 using matched
asymptotic expansions. (a) Composite solution, Hc(z; 10−3), which is composed of the solutions in regions I
(magenta), II (black) and III (green). (b) Capillary pressure of the composite solution, pc ≡ −Hc − Hc,zz.

Figure 11(a) shows the composite solution, which we call Hc(z; B), for B = 10−3.
To compute this solution, we used ε̂ = 10−4 and ζ∞ = 600. The value a1 ≈ −0.105
computed with this solution completes the region III solution (D13). The constant a1

depends on L, which here is L = √
2π. For clarity, the solutions displayed in figure 11

are truncated shortly after the points where they overlap. This also means that the parts of
the solutions displayed are away from the boundaries so entirely independent of the values
of ε̂ and ζ∞ chosen. Figure 11(b) shows the capillary pressure, pc ≡ −Hc − Hc,zz, of the
composite solution.

Appendix E. Static solutions of the long-wave evolution equation

Following our approach in § 3.3, we look for marginally yielded static solutions, R =
R0(z; B, ε), of the long-wave equations (2.13)–(2.18). The static shapes R0(z; B, ε) are
solutions to ψ = 1, where ψ is defined in (2.13). As in the thin-film analysis, we assume
that the pressure is monotonic, so p̂z < 0. The ODE ψ = 1 can be rearranged to give

p̂z(1 − R2
0) = −2ε2B, (E1)

where p̂ is defined in (2.14) and ε2B = B̂. We solve (E1) subject to boundary conditions
R0,z(0; B, ε) = R0,z(L; B, ε) = 0, and the volume conservation condition,

2π

∫ L

0
(1 − R2

0) dz = 2πεL(2 − ε). (E2)

The problem is solved using a boundary value problem solver in MATLAB. We define
the layer thickness, H0(z; B, ε) ≡ (1 − R0)/ε, to aid discussion and comparison with the
thin-film static solutions computed in § 3.3.

Figure 12 shows solutions for ε = 0.1, 0.12, 0.14. Figure 12(a) shows that, like in
the thin-film case, we find an upper and a lower branch of solutions for each ε, and a
bifurcation point B = B∗

ε such that no solutions exist for B > B∗
ε . Note that the location of

the bifurcation now depends on ε. The boundary value problem solver is generally able to
compute the whole lower branch and most of the upper branch of solutions, except for very
small B. The upper-branch solutions are very singular for small B, with an increasingly
large jump in H0,zz around the minimum in H0, which makes computing them difficult.
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Figure 12. Static solutions, H0(z; B, ε), satisfying (E1) with monotonic curvature, for ε = 0.1, 0.12, 0.14.
(a) Maximum height of solutions, maxz H0(z; B, ε), (b) 1 − H0(z = 0; B, ε) and (c) three example
upper-branch solutions at B = 0.1, which correspond to the locations indicated by the markers on (a) and
(b).

Figure 12(b) shows plots of 1 − H0(0; B, ε). In § 3.4 we show that the same quantity
from the thin-film static solutions has particular significance in determining the outcome
of an evolving thin layer. Figure 8 shows that it has much less physical significance in
the long-wave problem when ε ≥ 0.12. We argue that this is because the evolving layer
generally does not select a static shape which is a solution to (E1). Instead, either a plug
forms, or the layer rigidifies near z = 0 early in the evolution which leads to a different
static two-collar solution being selected.
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