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Abstract
Human-centered intelligent human–robot interaction can transcend the traditional keyboard and mouse and have
the capacity to understand human communicative intentions by actively mining implicit human clues (e.g., identity
information and emotional information) to meet individuals’ needs. Gait is a unique biometric feature that can
provide reliable information to recognize emotions even when viewed from a distance. However, the insufficient
amount and diversity of training data annotated with emotions severely hinder the application of gait emotion
recognition. In this paper, we propose an adversarial learning framework for emotional gait dataset augmentation,
with which a two-stage model can be trained to generate a number of synthetic emotional samples by separating
identity and emotion representations from gait trajectories. To our knowledge, this is the first work to realize the
mutual transformation between natural gait and emotional gait. Experimental results reveal that the synthetic gait
samples generated by the proposed networks are rich in emotional information. As a result, the emotion classifier
trained on the augmented dataset is competitive with state-of-the-art gait emotion recognition works.

1. Introduction
Human emotions can be perceived not only through explicit facial expressions [1], voice information [2],
or text cues [3], but also through implicit body language, including eye movements [4], body postures
[5], and gait traits [6]. Nonverbal communication plays a major role in recent human–robot interaction
(HRI) [7]. Body language delivers nonverbal signals that can provide important cues for a person’s
mental and physiological state and intentions. Gait is a unique biometric trait that can be obtained from
a distance without individuals’ attention or cooperation [8]. Meanwhile, ref. [9] has reported that a
human’s walking pattern is difficult to imitate or intentionally deceive. Human gait conveys significant
information that can be used to identify people and recognize emotions [10]. HRI can not only transfer
mechanical power [11, 12] but also emotional signals [13] between the human and robotic machines.
Emotion is a ubiquitous element of HRI. Compared to traditional emotion detection biometrics, such
as facial expression, voice, and physiological signals, gait provides a new source and can be obtained
from a long distance without the subject’s cooperation. Gait fills the emotion recognition field gaps
when other traits are infeasible in long-distance observation. Recent paper [14] presented a review of
current gait emotion recognition research and possible future developments. There are many application
scenarios based on gait-based emotion recognition such as psychology diagnosis, emotionally aware
robot [13], customer services, interactive games, and virtual reality [15]. This field has great potential
to be improved to a higher level to support a broader range of applications.

Understanding human emotion through facial expressions has been well studied [7]. However, the
ability to rely on body language to perceive emotion becomes important when a person is not directly
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Figure 1. We present a data augmentation method for gait emotion and identity recognition to perform
emotionally aware robot navigation.

facing the robot, or facial expressions are not visible from a distance. Recent work [16] observed that col-
laborative robots can improve interaction and performance by understanding the movement intentions
of human operators. For example, in space-sharing application scenarios such as hospitals, airports,
and shopping malls, robots can understand the intention of pedestrians through gait recognition of
emotional states and determine whether to provide friendly navigation services or to wisely avoid caus-
ing untimely disturbances (as illustrated in Fig. 1). It is expected that the emotionally aware robot can
navigate safely through crowds without causing discomfort to nearby pedestrians. Meanwhile, identity
recognition is a prerequisite for robots to provide personalized services. Since each person’s emotional
expression will have individual differences, having personalized emotion understanding capability is the
key to achieving intelligent HRI. Gait-based identity and emotion recognition as an aspect of nonverbal
communication can help analyze and understand human intentions.

Previous work [17] discovered that variances in a person’s emotional states during training and testing
datasets can degrade the recognition performance in an identity verification task from gait. Moreover,
several research [18, 19] have indicated that through multi-task learning (MTL), the emotion recogni-
tion task can benefit from training with secondary related tasks. However, most of the existing works
learn identity representations and emotional feature separately and treat them independently to each
other. In ref. [10], models trained with MTL for gait-based emotion and identity recognition have shown
additional performance improvements. They believed gait-based identity and emotion recognition are
interrelated tasks that are favorable for jointly learning. The MTL models entangle information between
the tasks to capture the joint dependencies from the multi-labels of the training data [20]. However, there
has also been a noticeable absence of studies on MTL for emotional gait, mainly due to the lack of gait
datasets annotated with both emotion and identity labels.

Deep learning models often require a great quantity of data for training to obtain good predictions
or classification performance. Nevertheless, the procedure of collecting gait samples is often costly
and time-consuming, making it very difficult to obtain a well-annotated dataset with sufficient samples
[21]. It is particularly prominent in gait emotion recognition tasks because the annotation of emotional
categories is ambiguous and vulnerable to subjective factors [22]. To reduce the impact of personal
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subjectivity, it is often necessary to recruit multiple annotators to strengthen the annotation reliability.
However, in some cases, it is impossible to ensure the accuracy of the results even for experienced
annotators [23]. Therefore, the insufficient data problem severely hinders the application of gait emotion
recognition in reality.

With the increasing applications of deep learning in emotion recognition tasks, data augmentation via
generative adversarial networks (GANs) on the training set to augment the original to obtain improve-
ment for recognition results may offer a solution for this challenge. Using a data augmentation strategy
similar to ours, ref. [24] recorded hundreds of annotated gait videos and augmented them with syn-
thetic gaits built on conditional variational autoencoder (CVAE) to increase the emotion classification
accuracy.

Traditional methods for data augmentation are generally based on GANs or autoencoders, such as
conditional GANs (cGANs) [25] or conditional VAE (CVAE) [26]. The decoder of CVAE produces
random samples from a conditional distribution and generates synthetic data to learn different distribu-
tions for the specific categories [27]. Pix2pix [28] can generate high-quality image results in the case
of paired training data using a cGAN to implement the mapping function. To train with unpaired data,
CycleGAN [29], DiscoGAN [30], MUNIT [31], and StarGAN [32] exploit cycle consistency to con-
strain the training process. Applying data enhancement to gait emotion recognition, ref. [24] designed
a gait generation network STEP, based on CVAE to generate thousands of synthetic samples.

Motivated by the achievements of emotional conversion in voice [33, 34] and face expression [35],
we propose the emotional gait conversion approach to transform natural gaits into emotional gaits by
separating identity and emotion representations for data augmentation. The contributions of this work
can be summarized as follows:

• We introduce a MTL discriminator for gait identity and emotion joint learning, which takes into
account nonverbal communication clues to enhance HRI.

• We propose a novel emotional gait conversion model with adversarial loss and cycle consistency
loss to realize the mutual transformation between natural gait and emotional gait.

• We propose two kinds of data augmentation strategies by the emotional conversion model to
increase the amount and diversity of the existing restricted dataset.

• We present an augmented synthetic dataset of human emotional gait, validated by a multitask
classifier and achieved a corresponding 2.1% and 6.8% absolute increase in identity recognition
and emotion recognition, respectively.

2. The proposed method
The main idea of this work is to increase the amount and diversity of the original limited dataset by
transforming natural gaits into emotional gaits. We first extract gait trajectories from the original videos
to represent the discriminative gait features. Then two autoencoders are trained to separate latent iden-
tity embedding and emotion-specific embedding using two auxiliary classifiers to guarantee the minimal
mutual information related to each other. In the second stage, we propose a novel cycle consistency GAN
to realize the synthesis of the separated identity and emotion features from different samples. After car-
rying out this data generation process, we can train an enhanced gait emotion classifier on the augmented
dataset to obtain a significantly improved performance. Figure 2 illustrates how we incorporate our data
augmentation method for gait emotion and identity recognition into an end-to-end emotionally guided
navigation pipeline.

2.1. Gait trajectories generation
In this work, the gait data were recorded by two Microsoft Azure Kinect DK sensors placed in front
and on the side of the subjects. Kinect DK is a convenient body tracking toolkit to capture RBG image,
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Figure 2. An overview of the pipeline for emotionally aware robot navigation system using gait-based
dataset augmentation method. The well-annotated dataset is augmented by the emotional conversion
strategy. The large-scale restricted dataset is augmented by adapting the Gaussian sampling to generate
different variants of emotion-labeled synthetic samples.

depth information, and human skeleton coordinates all at once, reducing the need for sophisticated model
extraction processes. By the body tracking function, we can extract a real-time data stream of the body
joints, represented by 25 joint coordinates in a 3D space. We selected 20 joints with relatively large
ranges of motion to represent the gait movement. Then, we concatenated the coordinates of each joint to
form a continuous trajectory by the motion across time. Finally, to eliminate the impact of the distance
variations between people and cameras, we normalized the coordinates using the distance between a
subject’s hip and neck.

2.2. Learning separated representations
Let x ∈X be a gait trajectory sequence and X be the collection of all the trajectories in the training data.
In stage 1, Eid denotes the identity encoder and Eem denotes the emotion encoder. To learn separated
identity and emotion representations, we employ two classifiers Cid and Cem with adversarial learning
constraints on the feature encoders. These constraints ensure that changes in one factor cannot be pre-
dicted from another factor to realize independence between them. Based on the adversarial training
concept, Eem maximizes the retention of emotional information and discards identity information by
minimizing the negative log probability to differentiate the identities. On the other hand, the classifier
Cem is trained adversarially to induce the encoder Eid to extract only identity-related features. We thus
apply the loss:

Lem
cls =

∑
− log PCem

(
cx

em | Eem (x)
)

+
∑

log PCem

(
cx

id | Eid (x)
)

(1)

Lid
cls =

∑
− log PCid

(
cx

id | Eid (x)
)

+
∑

log PCid

(
cx

em | Eem (x)
)

(2)
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To perform random sampling at test time, we restrict the emotion feature representation to a condi-
tionally independent Gaussian distribution, by introducing KL divergence loss to match the posterior
distribution p(zem|x) to the prior N(0, I). We thus apply the loss:

LKL = E [KL (zem|x‖N(0, 1))] (3)

where KL(p‖q) represents the Kullback–Leibler Divergence score and quantifies the difference between
two given probability distributions p and q.

The generator G is trained to generate x′ which is a reconstruction of x from the concatenation of
emotion representation zem and identity representation zid, given the original emotion label cx and target
emotion label cx′ :

x′ = G(Eid(x), Eem(x)) (4)

By using both original and target label as conditional information, this restriction encourages all the
converted data to be close to real data. The mean absolute error is minimized in training the generator.
So the reconstruction loss is given:

Lrec =
∑ ∥∥x′ − x

∥∥
1

(5)

The full objective in stage 1 is deployed by the following equation:

Ltotal
1 = λrec

1 Lrec + λKL
1 LKL + λem

1 Lem
cls + λid

1 Lid
cls (6)

which integrates the above losses and the hyperparameters λ1s control the importance of each term. The
encoders and the discriminators are trained alternatively.

2.3. Cycle-consistent GANs
Here, to learn an emotional gait conversion with paired emotional gait samples using the separated
representation of identity in stage 1, we propose a cycle consistency technique to exploit the further
features for cyclic reconstruction. Let x, y ∈X be the two sampled gait trajectory sequences (as illustrated
in Fig. 3). cx

em and cx
id denote the emotion label and identity label of sequence x, respectively, and cy

em

and cy
id denote the labels of sequence y. We encode them into vector {vx

id} and {vy
id, vy

em} by the pretrained
encoders Eem and Eid. We then perform the generation process by reassembling the extracted identity
vector vx

id and the emotion vector vy
em into a combined representation of a synthetic sample z:

z = G
(
vx

id, vy
em

)
(7)

We further encode z into {vz
em, vz

id}. Then, a cycle consistency loss Lid
cycl for vx

id, vy
id, and vz

id, the same
structure as triplet loss [36], is designed to enforce identity preservation:

Lid
cycl =

∑ [∥∥vz
id − vx

id

∥∥2

2
− ∥∥vz

id − vy
id

∥∥2

2
+ α

]
+

(8)

where α is the value of the margin in two terms. Another cycle consistency loss Lem
cycl between vy

em and
vz

em is used to enforce emotion preservation:

Lem
cycl =

∑ ∥∥vz
em − vy

em

∥∥2

2
(9)

We employ the reconstruction loss Lrec only when cx
id = cy

id:

Lrec =
{∑ ‖z − x‖1 , cx

id = cy
id

0, Otherwise
(10)

We also impose domain adversarial losses by a unified MTL discriminator DMTL to discriminate
between natural gaits and generated gaits in each conversion process and distinguish the generated data
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Figure 3. The framework of the proposed adversarial learning network for emotional gait dataset
augmentation.

in both the emotion and identity domains. This adversarial MTL loss can be expressed as:

LMTL =
∑

( log (DMTL(x)) + log (DMTL(y)))

+
∑

log (1 − DMTL(z))

−
∑

log PDMTL

(
cy

em | Eem (z)
)

−
∑

log PDMTL

(
cx

id | Eid (z)
)

Here, we also restrict the emotion attribute representation to a conditionally independent Gaussian dis-
tribution, by introducing KL divergence loss LKL. The overall loss is a weighted sum of the above losses:

Ltotal
2 = λrec

2 Lrec + λMTL
2 LMTL + λid

2 Lid
cycl

+ λemo
2 Lem

cycl + λKL
2 LKL (11)

where hyperparameters λ2s are the regularization weights.

2.4. Gait-based recognition with data augmentation
According to its own specific defects of the training datasets, we design two strategies for data aug-
mentation. For the small-scale dataset with complete labels, data augmentation is implemented by
disentangling and composing the emotion and identity feature vector from different people, as illustrated
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Figure 4. Data augmentation by emotional conversion strategy. Data augmentation is implemented by
disentangling and composing the emotion and identity feature vector from different people to improve
the scale and variability of the original dataset.

Figure 5. Data augmentation by random emotion sampling. Our model could generate specific emotion
vectors from the common emotion space by adapting the Gaussian stochastic sampling. With the random
emotion vector, we can generate different variants of emotion-labeled synthetic samples to derive an
augmentation for the target restricted dataset.

in Fig. 4. In this strategy, we synthesize each target samples with three alternative emotion vectors and
the specific identity vectors to generate the same amount of each emotional samples. For the large-scale
dataset with restricted labels, data augmentation is implemented by random emotion sampling, which is
shown in Fig. 5. With the random emotion vector, we can generate different variants of emotion-labeled
samples to increase the amount and diversity of the original dataset.

After applying data augmentation strategies, we can easily train a multitask discriminator on the
augmented and original dataset as our recognition model and then assess the quality of these synthetic
samples through the discriminator. As illustrated in Fig. 3(c), the discriminator DMTL attempts to discrim-
inate between natural gaits and generated gaits in each conversion process and distinguish the generated
data in both of the emotion and identity domains.

3. Experiment
3.1. Data preparation
To evaluate our approach and measure the quality of the synthetic dataset, we conducted several
experiments for verification tasks on the public UPCV gait (K1&K2) dataset and multi-class labeled
EmoGait3d dataset.
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Figure 6. Images and skeleton joints of three different emotion from the EmoGait3d dataset.

The UPCV gait dataset contains 60 subjects in total from two subsets: UPCV gait K1 [37] and UPCV
gait K2 [38]. The former contains five gait sequences for 30 participants captured using the Microsoft
Kinect V1 sensor, and the latter captured by the Kinect V2 sensor contains a total of 300 sequences
from 30 walkers. Each person walks in a straight line at a normal speed. The sensor maintains a fixed
viewpoint in the walking direction at a frame rate of 30 fps. While, samples in UPCV gait are only
annotated with identity labels and hardly perceived for their emotion categories through walking char-
acteristics. Here, we regard the dataset as a large-scale restricted dataset and annotate all the samples
with the emotion label of a neutral state. Because each gait sequence has a varied temporal duration, we
extract 32-frame subsequences with a three-frame interval from each original sequence. With the pose
estimation algorithm, we estimate the joint coordinates from each continuous 32-frame image sequence
to obtain a 32 × 20 × 3 trajectories vector as a gait sample. In the UPCV gait dataset, we can get a set
of 15,053 samples as the original dataset. By implementing the data augmentation of random emotion
sampling, each neutral sample can be transferred into positive, neutral, and negative samples. We finally
obtained a set of 15053 × 3 synthetic samples as the augmented dataset of UPCV gait.

The EmoGait3d dataset is built to validate the effectiveness of the MTL structure by jointly training
on multiple gait-related tasks. It consists of 1484 real-world gait videos annotated with identity labels
and emotion labels. We recruited 27 volunteers (10 female and 17 male, aged 18–35 years) from cam-
puses and took RGB and depth videos with two Microsoft Azure Kinect DK sensors. Each participant
was asked to walk multiple times under three emotions (shown in Fig. 6). Participants’ emotions were
elicited by watching emotional movie clips, which were selected prior to the experiments based on their
questionnaires. After completing the data collection, subjects were required to rate their emotional state
during walking with a value on a scale from 1 to 10. When the emotion evoked by the film was consistent
with the subject’s self-assessment emotion, and the rating score was higher than 8, the video could be
labeled as the elicited emotion. Otherwise, it would be marked as an invalid video. With the proposed
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Figure 7. Synthetic emotional gait trajectories. A real gait sample from the EmoGai3d database is
represented on the left, and the synthetic target emotional gaits are shown on the right.

data augmentation method, we generated 1484 × 3 synthetic emotional samples (shown in Fig. 7), by
separating identity and emotion representations from the original EmoGait3d dataset for each of the
three emotion categories.

3.2. Implementation details
The network architecture is illustrated in Fig. 3 with details listed in Table I. The encoders take
32-dimensional gait skeleton sequences as input and learn disentangled identity and emotion representa-
tions. In the emotion encoder, we apply instance normalization (IN) to removes the identity information
while preserving the emotion information. The identity encoder provides the global identity information
μi and σi to the generator by adaptive instance normalization (AdaIN) layer before activation. μe and σe

denote the channel-wise mean and standard variation of the emotion feature vector e. The formula for a
layer is given as follows:

AdaIN(e, i) = σi

(
e − μe

σe

)
+ μi (12)

The generator and encoders are implemented with recurrent layers and 1d convolutional layers to capture
temporal dependencies and spatial patterns, respectively. Then, the temporal and spatial features are
combined to represent a more discriminative embedding vector to feed the dense layers.

The experiments are conducted on a system with two GTX TITAN XP GPUs. We first train the
encoders to learn separated identification and emotion representations from 32-dimensional gait skeletal
sequences. Then, the separated features are then combined to generate the synthetic emotional sample
by dense layers. We use the Adam optimizer with a learning rate of 0.001. The batch size is set at 128.
To reduce overfitting, we use the dropout approach with a dropout rate of 0.5. The discriminator and
generator are updated with a 1:5 iteration frequency. We selected the parameters by using the early
stopping criterion. If the validation error does not improve before the training epoch reaches the set
value, the training procedure will be terminated earlier. We first pretrained the identity and emotion
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Table I. Network architecture. C-K indicates convolution layer with kernel
size K. IN is instance normalization. ReLU indicates ReLU activation and
FC indicates fully connected layer.

Emotion encoder
Conv1d, IN, ReLU C-128-5
Downsample1d × 2, IN C-256-5, C-512-5
Dense block1d × 4, IN, Res FC-512
Recurrent layer Bidirectional GRU-512
Combine layer Dense output + Recurrent output
Dense layer × 2 FC-512, FC-256

Identity Encoder
Conv1d, ReLU C-128-5
Downsample1d × 2 C-256-5, C-512-5
Dense block1d × 4, Res FC-512
Recurrent layer Bidirectional GRU-512
Combine layer Dense output + Recurrent output
Dense layer × 2 FC-512, FC-256

Decoder/Generator
Conv1d, AdaIN, ReLU C-512-3
Upsample1d × 2, AdaIN C-512-5, C-256-5
Dense block1d × 4, AdaIN, Res FC-256
Recurrent layer Bidirectional GRU-256
Combine layer Dense output + Recurrent output
Dense layer × 2 FC-256, FC-128

Classifier
Conv1d, IN, ReLU C-128-5
Downsample1d × 3, IN, ReLU C-256-5, C-512-5, C-1024-5
Dense layer × 2, Softmax FC-512, FC-N/FC-3

MTL Discriminator
AT-GCN × 3, BN, ReLU C-128, C-256, C-512
Dense block1d × 3, BN, Res FC-512, FC-256, FC-128
Dense layer, Softmax FC-N, FC-3, FC-1 (real/fake)

classifiers with Lemo
cls and Lid

cls in Eq. (1) and (2) for 10,000 mini-batches. Then we train the models in
stage 1 and stage 2 successively for 30,000 mini-batches and 20,000 mini-batches. Also inference speed
is an important aspect to evaluate the model. The preprocessing for pose estimation takes most of the
time. The network inference procedure is relatively faster, which takes about 0.17 ms for each frame.
Our model has low complexity and need to be optimized for real-world applications.

3.3. Objective evaluation
We evaluate the quality of the synthetic samples by comparing the recognition performance of the
original and augmented EmoGait3d using the same setting of MTL classifiers. As shown in Table II,
noticeable performance improvements of 2.1% and 6.8% can be observed by augmenting the origi-
nal dataset. The experimental results show that samples generated by our model carry discriminative
information that contributes to consistently higher performance for gait-based identity and emotion
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Table II. Results of the identity and emotion classification on the original and aug-
mented dataset.

Emo Acc (%)

Id Acc (%) Neg Neu Pos Avg
EmoGait3d 91.4 87.9 81.5 87.7 85.7
EmoGait3d augmented 93.5 93.7 90.2 93.9 92.5
UPCV gait 98.2 - - - -
UPCV gait augmented 96.3 90.0 88.7 91.1 89.9
EmoGait3d+UPCV gait augmented 94.9 91.6 89.8 93.3 91.6

Table III. Comparison of different generative models. Accuracies are computed
using the same MTL classifier. The best results are marked in bold.

Emo Acc (%)

Id Acc (%) Neg Neu Pos Avg
CVAE [26] 92.3 88.3 84.6 88.6 87.2
CGAN [25] 90.8 87.9 79.7 89.4 85.7
CVAE-GAN [39] 93.2 91.0 86.5 89.8 89.1
Cycle-GAN [29] 93.7 92.1 88.2 91.1 90.4
MUNIT [31] 93.1 91.9 89.0 92.6 91.2
StarGAN v2 [32] 93.9 91.7 88.4 92.9 91.0
Ours(Stage 1) 92.2 86.9 85.8 89.1 87.3
Ours(Stage 2) 93.1 91.3 88.0 92.3 90.5
Ours(Stage 1 + 2) 93.5 93.7 90.2 93.9 92.5

recognition. There is no emotion annotation in the original UPCV gait dataset, so we cannot get the
emotion recognition results. While after data augmentation, the UPCV gait dataset is transferred to an
emotional gait dataset with no significant reduction in the discriminative identity features.

To highlight the effectiveness of our model, we also trained respective MTL classifiers for identity and
emotion recognition using augmented data from CVAE, CGAN, CVAE-GAN, CycleGAN, StarGAN,
and MUNIT and compared their performance, as shown in Table III. All the settings of baseline gen-
erative data augmentation approaches and classifiers are the same as ours for a fair comparison. The
performance of our model obtains the best results of them. In contrast to these generative models, our
model employs the separated features, and cycle consistency loss clearly outperforms all the others,
especially for the gait emotion recognition task, which is 1.3% better than the baseline model MUNIT
in average recognition accuracy. We can also observe that the model’s performance without stage 1 or
disentangle learning process significantly declines, which shows the prominent effect of the two-stage
emotional gait conversion model intuitively.

Both CVAE and CGAN can generate synthetic data similar to the training data. For CVAE, the gen-
erated gait sample is relatively stable, but the curves tend to be straight lines to cheat the discriminator.
For CGAN, the diversity of the generated sample is better, but the naturalness of the generated sample
is poor. Since CVAE-GAN combines a variational autoencoder with GAN, the quality of the generated
data is better than CVAE and CGAN. Without the cycle loss as Cycle-GAN, the CVAE-GAN model fails
to capture the temporal details of gait trajectories. Due to the absence of a feature separating process,
the performance of the synthetic sample generated by CycleGAN or StarGAN is also not ideal. MUNIT
adopts a weaker form of cycle consistency constraint between the content and style spaces, the generated
sample of which is deficient in temporal details.
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Figure 8. Average preference scores on naturalness and similarity of synthetic samples of different
generative models.

Figure 9. Visualization of the feature space after Principal Component Analysis (PCA) for the original
and augmented EmoGait3d dataset. Three shapes of dots represent three kinds of emotional feature
vectors, and the different colors correspond to different identities.

3.4. Subjective evaluation and Discussion
We also performed subjective human evaluations for the synthetic gait. Twenty subjects were given pairs
of converted samples in random order and asked which one they preferred in terms of two measures: the
naturalness and the similarity in emotional characteristics of the converted gait trajectories. We com-
puted the distance between 600 pairs of synthetic gait trajectories converted from 200 real samples. As
shown in Fig. 8, we calculated average preference scores on these synthetic samples from source to target
emotion. Higher values indicate higher quality of the synthetic sample after emotional conversion. The
proposed model achieves the highest scores in terms of the naturalness and the similarity in emotional
characteristics of the converted gait samples.

To evaluate the effect of our model, we further visualize the feature distribution of each emotion
class from the original and enhanced EmoGait3d datasets. As shown in Fig. 9, we observe that almost
all of the identity and emotion features for each type of synthetic sample are well generated, and the
synthetic samples are well aligned with the authentic samples. It shows the effectiveness of learned
features intuitively. The well-aligned data distributions are key in increasing the amount and diversity
of the original EmoGait3d dataset to achieve improved accuracy for gait emotion recognition.
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4. Conclusion
This paper proposes a novel emotional gait conversion model with adversarial loss and cycle consistency
loss as a data augmentation method to overcome the insufficient data problem for gait emotion recog-
nition. Meanwhile, this is the first work to realize the mutual transformation between natural gait and
emotional gait. By the emotional gait conversion model, we generated numerous synthetic gait samples
that enhance the diversity of the original datasets. Experimental results show that our emotion classi-
fiers are competitive with state-of-the-art gait emotion recognition systems by the augmented dataset.
It is expected that the integration of emotion recognition as an aspect of nonverbal communication
enhances HRI. We only identify three emotional states through gait information, while human emo-
tions are extremely diverse. We will gather gait data from more emotions in the future to investigate the
fine-grained space of gait-based emotions. Moreover, different modalities can complement each other
to represent more discriminative features. We will try to incorporate appearance information to promote
the performance of gait-based recognition.
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