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Abstract

Nonsingular projective 3-folds V of general type can be naturally classified into 18
families according to the pluricanonical section index δ(V ) := min{m | Pm > 2} since
1 6 δ(V ) 6 18 due to our previous series (I, II). Based on our further classification
to 3-folds with δ(V ) > 13 and an intensive geometrical investigation to those with
δ(V ) 6 12, we prove that Vol(V ) > 1

1680 and that the pluricanonical map Φm is birational
for all m > 61, which greatly improves known results. An optimal birationality of Φm

for the case δ(V ) = 2 is obtained. As an effective application, we study projective 4-folds
of general type with pg > 2 in the last section.

1. Introduction

One of the fundamental aspects of birational geometry is to understand the behavior of the
natural pluricanonical map Φm of any variety for any m ∈ Z>0. The induced fibrations possibly
reduce the studies to lower-dimensional situations. Varieties of general type, which are those
with birational pluricanonical maps Φm for sufficiently large m, are therefore considered as the
basic building blocks of varieties.

For varieties of general type, a key problem is to find an effective integer m > 0 so that Φm

is birational. The remarkable theorem of Hacon and McKernan [HM06], Takayama [Tak06], and
Tsuji [Tsu06] says that there is a constant c(n) so that Φm is birational for all n-dimensional
varieties of general type and for all m > c(n). However, these constants are explicitly known only
when n 6 3.

In fact, the problem is almost equivalent to finding a practical lower bound of the canonical
volume which computes the rate of growth of plurigenera, or equivalent to find m0 such that
plurigenus Pm0 is sufficiently large. One may also refer to the nice survey article by Hacon and
McKernan [HM10] for various boundedness results in birational geometry.

The motivation of this series is to study birational geometry of 3-folds and higher-dimensional
varieties of general type. The main purpose is to investigate the following open problem.

Open problem 1.1. Find optimal constants v3 ∈ Q>0 and b3 ∈ Z>0 so that, for all nonsingular
projective 3-folds V of general type:

(i) Vol(V ) > v3; and

(ii) Φm is birational for all m > b3.
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Recall that we have proved the following theorem.

Theorem 1.2 [CC10b, Theorems 1.1, 1.2]. Let V be a nonsingular projective 3-fold of general
type. Then:

(1) Vol(V ) > 1
2660 ;

(2) there exists a positive integer m0(V ) 6 18 so that Pm0 > 2;

(3) the pluricanonical map Φm is birational onto its image for all m > 73.

For more results on explicit birational geometry of 3-folds of general type, one may refer to
our previous papers [CC10a, CC10b].

In order to formulate our main statements of this article, we need to recall some general
results and introduce some definition. Given a projective variety V of general type, there exists
a minimal model X birational to V (cf. [BCHM10]). Thanks to the Riemann–Roch formula and
vanishing theorem, Vol(V ) = KdimX

X . Note that in dimension three or higher, a minimal model
may have singularities. Hence, KdimX

X is just a positive rational number.
A minimal model has at worst terminal singularities. In dimension three, terminal

singularities were classified by Mori. A three-dimensional terminal singularity is one of the
following: a terminal quotient singularity of type (1/r)(1,−1, b) for some b relatively prime to r
which we usually denote it as (b, r) for short, an isolated cDV point, a quotient of an isolated cDV
point. It is well known to experts that a three-dimensional terminal point can be deformed into a
collection of terminal quotient singularities, which is called basket of singularities. An important
feature of three-dimensional birational geometry is the singular Riemann–Roch formula due to
Reid [Rei87]:

χ(X,mKX) =
m(m− 1)(2m− 1)K3

X

12
+ (1− 2m)χ(X,OX) + lm,

where lm denotes the contribution of singularities which can be computed by baskets. It follows
that all plurigenera and hence canonical volume of a minimal 3-fold X are completely determined
by P2(X), χ(X,OX) and baskets of singularities BX , of which we called such a triple the weighted
basket of X. For the basic properties of weighted baskets, one may refer to [CC10a, § 3]. Since
our problems are birational in nature, the studies of nonsingular threefold V is equivalent to the
studies of its minimal model X. In particular, we may and do consider the weighted basket of
V as the weighted basket of its minimal model X.1

Next, we would like to define the pluricanonical section index (or, in short, the ps-index)

δ(V ) := min{m | m ∈ Z>0, Pm(V ) > 2},

which is clearly a birational invariant. By Theorem 1.2, we have δ(V ) 6 18 for any 3-fold V of
general type. Note that 3-folds V with δ(V ) = 1 (i.e. pg(V ) > 2) have been studied intensively
in [Che03, Che07] where optimal results are realized. Threefolds of general type with δ(V ) > 2
are far from being clear. Sometimes we use the symbol δ(X) directly since X is birationally
equivalent to V .

Example 1.3. The ‘worst’ known minimal 3-fold is the weighted hyper-surface X := X46 ⊂
P(4, 5, 6, 7, 23) (cf. [Ian00]) which has the invariants: δ(X) = 10 and Vol(X) = K3

X = 1
420 . Also

Φ26 is not birational.

1 Even though minimal models are not necessarily unique, it is known that two birational minimal models are
connected by flops (cf. [Kaw08]). Together with the fact that a three-dimensional flop preserves singularity types
(cf. [Kol89]), it follows that baskets of V are independent of choices of minimal models.
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In this paper, we mainly investigate projective 3-folds of general type with δ(V ) > 2. Our
main results are as follows.

Theorem 1.4 (Theorem 5.1). Let V be a nonsingular projective 3-fold of general type with
δ(V ) > 13. Then its weighted basket B = {BV , P2(V ), χ(OV )} belongs to one of the types in
Tables F0, F1 and F2 in Appendix A and the following is true:

(1) δ(V ) = 18 if and only if B(V ) = {B2a, 0, 2};
(2) δ(V ) 6= 16, 17;

(3) δ(V ) = 15 if and only if B(V ) belongs to one of the types in Table F1;

(4) δ(V ) = 14 if and only if B(V ) belongs to one of the types in Table F2;

(5) δ(V ) = 13 if and only if B(V ) = {B41, 0, 2};

where B2a and B41 can be found in Table F0.

Some other results for 3-folds with large δ(V ) are given in § 4. For example, one has the
following corollary.

Corollary 1.5 (Corollary 4.8). Let V be a nonsingular projective 3-fold of general type with
Vol(V ) < 1

336 . Then δ(V ) > 8.

We also prove the following result.

Theorem 1.6. Let V be a nonsingular projective 3-fold of general type. Then:

(1) Φm is birational for all m > 61;

(2) Vol(V ) > 1
1680 ; furthermore, Vol(V ) = 1

1680 if and only if B(V ) = {B7a, 0, 2} or {B36a, 0, 2},
where B7a and B36a can be found in Table F2.

A direct by-product of our method is the following.

Corollary 1.7. Let V be a nonsingular projective 3-fold of general type with pg(V ) = 1. Then:

(1) Vol(V ) > 1
75 ;

(2) Φm is birational for all m > 18.

In the second part of this paper we prove some optimal results on 3-folds with δ(V ) = 2.

Theorem 1.8. Let V be a nonsingular projective 3-fold of general type with δ(V ) 6 2. Then:

(1) Φm is birational for all m > 11;

(2) if Φ10 is not birational, then 0 6 χ(OV ) 6 3 and |2KV | is composed of a rational pencil of
(1, 2) surfaces; furthermore, #{B(V )} < +∞ and the initial basket B0 of BV belongs to
one of the types in Tables II1, II2 and II3 in Appendix A.

The following examples show that our results in Theorem 1.8 are optimal.

Example 1.9 (Iano-Fletcher [Ian00, pp. 151–153]). (1) General weighted complete intersections
X22 ⊂ P(1, 2, 3, 4, 11) and X6,18 ⊂ P(2, 2, 3, 3, 4, 9) both have ps-index δ = 2. Since both X22 and
X6,18 have non-birational 10-canonical map, Theorem 1.8(1) is optimal.

(2) The 3-fold X22 corresponds to No. 1 in Table II1 with χ = 0 and X6,18 belongs to No. 11
(with t = 1) in Table II1.

Remark 1.10. Theorem 1.8 is parallel to the main results in [Che03]. We have similar statements
to Theorem 1.8 for 3-folds with δ(V ) > 3. We omit them since we are not sure whether they are
optimal or not.
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In the last part we study projective 4-folds. The main result is the following theorem.

Theorem 1.11 (Theorem 8.2). Let V be a nonsingular projective 4-fold of general type. Then:

(i) when pg(V ) > 2, Φ|mKV | is birational for all m > 35;

(ii) when pg(V ) > 19, Φ|mKV | is birational for all m > 18.

This paper is organized as follows. In § 2, we start with general setting on rational maps on

varieties of general type and review some known useful inequalities. Then we list several basic

lemmas on 3-folds. In § 3, we improve our technique used in [CC10b] to bound K3
X from below.

Applying our basket analysis developed in [CC10a], we obtain an effective function v(x) in § 4

so that K3
X > v(δ(X)) for any given minimal 3-fold X. Section 5 is devoted to compiling the

clean list for B(X) with δ(X) > 13. Then, in § 6, we are able to study the birationality of Φm.

Section 7 is dedicated to classifying 3-folds with δ = 2. Finally, we study nonsingular projective

4-folds of general type with pg > 2 in § 8. All subsidiary tables are presented in Appendix A.

Throughout we work over any algebraically closed field k of characteristic 0. We are in favor

of the following symbols:

◦ ‘∼’ denotes linear equivalence or Q-linear equivalence;

◦ ‘≡’ denotes numerical equivalence;

◦ ‘|A| � |B|’ means that |B| ⊇ |A|+ fixed effective divisors.

2. Preliminaries

We begin with the general setting on rational maps defined by some sub-linear system of the

pluricanonical system |mK| on varieties of general type. Let V be any nonsingular projective

variety of general type with dimension n > 3. According to the Minimal Model Program, V has

a minimal model (see, for example, [KMM87, KM98, BCHM10, Siu08]). From the point of view

of birational geometry, we may always consider the rational map on minimal varieties of general

type. A minimal model X is a normal projective variety with a nef canonical divisor KX and

with Q-factorial terminal singularities.

2.1 The rational map ΦΛ for Λ ⊂ |m0K|
Let X be a minimal projective variety of general type on which Pm0(X) > 2 for a positive

integer m0. Let Λ ⊂ |m0KX | be a positive dimensional linear system. Fix an effective Weil

divisor Km0 ∼ m0KX on X. Take successive blow-ups π : X ′ → X along nonsingular centers,

such that the following conditions are satisfied:

(i) X ′ is smooth;

(ii) the moving part of π∗(Λ) is base point free and so that g := ΦΛ ◦ π is a non-constant

morphism;

(iii) π∗(Km0) ∪ {π − exceptional divisors} has simple normal crossing supports.

Sometimes we will take further blow-ups so that π satisfies some more conditions, which will

be specified explicitly.
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We have a morphism g : X ′ −→ ΦΛ(X) ⊆ PN . Let X ′
f−→ Γ

s−→ ΦΛ(X) be the Stein
factorization of g. We have the following commutative diagram.

X ′
f //

π

��

g

''

Γ

s

��
X

ΦΛ

// ΦΛ(X)

We may write m0KX′ =Q π∗(m0KX) + Eπ,m0 where Eπ,m0 is an effective π-exceptional
Q-divisor. Denote by Mm0 (respectively MΛ) the movable part of |m0KX′ | (respectively π∗Λ).
Set dm0 := dim Φm0(X) (respectively dΛ := dim Γ). The Bertini theorem implies that the general
member of the moving part MΛ of π∗(Λ) is irreducible whenever dΛ > 2 and, otherwise, MΛ ≡
aΛF , where aΛ := deg f∗OX′(MΛ) and F is a general fiber of f . We set

θΛ :=

{
1 if dΛ > 2,

aΛ if dΛ = 1.

Recall our definition in [CC10b, Definition 2.4], the generic irreducible element Σ of π∗(Λ) is
defined as follows:

ΣΛ :=

{
the general member of the moving part of π∗(Λ) if dΛ > 2,

F if dΛ = 1.

By the above setting, we always have

m0π
∗(KX) ∼Q θΛΣΛ + E′Λ

for some effective Q-divisor E′Λ on X ′.

Convention. Whenever we are working on the complete linear system |m0KX |, we will use parallel
notation such as dm0 , θm0 , . . . (or even just d, θ, . . . , for simplicity).

We discuss the special case with dΛ = 1. Clearly the general fiber F is nonsingular projective
of dimension dim(X) − 1. Replace X ′ by its birational model, we may assume that there is a
birational contraction morphism σ : F −→ F0 onto a minimal model F0. We have the following
‘canonical restriction inequality’.

Lemma 2.1. Keep the above settings. Suppose that dΛ = 1. The following holds:

(i) if b := g(Γ) > 0, then π∗(KX)|F ∼ σ∗(KF0);

(ii) if b = 0, then

π∗(KX)|F > θΛ

m0 + θΛ
σ∗(KF0).

Proof. Statement (i) follows from Chen [Che10, Lemma 2.5].
Assume Γ ∼= P1. Choose a sufficiently large and divisible integer m so that both |mπ∗(KX)|

and |mKF0 | are base point free. By Kawamata’s extension theorem [Kaw99, Theorem A], we
have the surjective map

H0(X ′,mθΛ(KX′ + F )) −→ H0(F,mθΛKF ).

Since |m(θΛ + m0)KX′ | � |mθΛ(KX′ + F )|, Mov|mθΛKF | = |mθΛσ
∗(KF0)| and |m(θΛ + m0)

π∗(KX)| = |Mm(θΛ+m0)|, we obtain the following inequality:

m(θΛ +m0)π∗(KX)|F = Mm(θΛ+m0)|F > mθΛσ
∗(KF0),

which implies statement (ii). 2
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2.2 Key inequalities on 3-folds
Let X be minimal 3-fold of general type. Assume that Λ ⊂ |m0KX | is a linear system of positive
dimension. As in § 2.1, we obtain an induced fibration f : X ′ −→ Γ. Pick a generic irreducible
element S of |m0KX′ |. Let |G| be a given base point free linear system on S. Pick a generic
irreducible element C of |G|. Since π∗(KX)|S is nef and big, Kodaira’s lemma implies that
π∗(KX)|S > βC for some rational number β > 0. Then, by [CC10b, (2.1)], one has

K3
X > θβ

m0
ξ (1)

where ξ := (π∗(KX) · C)X′ . In addition, by [CC10b, Remark 2.12], one has

ξ > deg(KC)

1 +m0/θ + 1/β
. (2)

For any positive integer m so that αm := (m− 1−m0/θ − 1/β)ξ > 1, by Chen and Zuo [CZ08,
Theorem 3.1], one has

ξ > deg(KC) + dαme
m

. (3)

We have the following stronger form of inequality (3) when C is ‘even’.

Lemma 2.2. Under the above situation, if C is an even divisor on S (i.e. 1
2C ∈ Pic(S)), then,

for any m > 0 so that αm > 0, one has

ξ >
deg(KC) + 2d1

2αme
m

. (4)

Proof. We refer to the proof for Chen and Zuo [CZ08, Theorem 3.1]. The key point is to estimate
deg(D) where D = dQe|C and Q is a Q-divisor on S with (Q ·C) = αm. Since deg(D) > αm > 0
and deg(D) is even, we naturally have

deg(D) = 2(dQe · 1
2C) > 2d1

2αme

where we note that (dQe · 1
2C) is a positive integer. Clearly the rest of the proof of Chen and

Zuo [CZ08, Theorem 3.1] implies inequality (4). 2

When dΛ = 1, Lemma 2.1(ii) implies the following:

ξ = (π∗(KX) · C)X′ >
θ

m0 + θ
(σ∗(KF0) · C)F . (5)

2.3 Other useful Lemmas
Lemma 2.3 (See [Maş99, Proposition 4] or [Che14, Lemma 2.6]). Let S be a nonsingular
projective surface. Let L be a nef and big Q-divisor on S satisfying the following conditions:

(1) L2 > 8;

(2) (L · Cx) > 4 for all irreducible curves Cx passing through any very general point x ∈ S.

Then the linear system |KS + dLe| separates two distinct points in very general positions.
Consequently, |KS + dLe| gives a birational map.

Lemma 2.4. Let σ : S −→ S0 be a birational contraction from a nonsingular projective surface
S of general type onto the minimal model S0. Assume that (K2

S0
, pg(S0)) 6= (1, 2) and that C is

a moving curve on S. Then (σ∗(KS0) · C) > 2.
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Proof. When K2
S0

> 2, this is due to Hodge index theorem. When (K2
S0
, pg(S0)) = (1, 0), this

is due to Miyaoka [Miy76, Lemma 5]. When (K2
S0
, pg(S0)) = (1, 1), (σ∗(KS0) · C) = 1 implies

KS0 ≡ σ∗C by the Hodge index theorem. According to Bombieri [Bom73], we know that S0 is

simply connected. Thus, KS0 ∼ σ∗C, which is impossible since |KS0 | is not movable. 2

Lemma 2.5. Let σ : S −→ S0 be the birational contraction onto the minimal model S0 from a

nonsingular projective surface S of general type. Assume that (K2
S0
, pg(S0)) 6= (1, 2) and that C̃

is a curve on S passing through very general points. Then (σ∗(KS0) · C̃) > 2.

Proof. In fact, by the projection formula, this is equivalent to see (KS0 · C0) > 2 for any curve

C0 ⊂ S0 passing through very general points of S0.

In contrast, let us assume (KS0 ·C0) 6 1. Then g(C0) > 2 implies C2
0 > 1. The Hodge index

theorem says K2
S0

= 1 and KS0 ≡ C0. Recall that S0 is not a (1, 2) surface. So S0 must be either

a (1, 0) surface or a (1, 1) surface.

If (K2
S0
, pg(S0)) = (1, 0), then q(S0) = 0 and the torsion element θ := KS0 −C0 is of order at

most five (see Reid [Rei78]) and h0(S0, C0) = 1. Thus, there are at most a finite number of such

curves on S0 since #Tor(S0) 6 5, which is absurd by the choice of C0.

If (K2
S0
, pg(S0)) = (1, 1), then q(S0) = 0 and KS0 ∼ C0 since Tor(S0) = 0 by Bombieri [Bom73,

Theorem 15] and thus C0 is the unique canonical curve of S0, which is absurd as well. 2

2.4 The birationality principle

Definition 2.6. Pick two different generic irreducible elements S′, S′′ (respectively C ′, C ′′) in

|Mm0 | (respectively in |G|).

(i) We say that |mKX′ | distinguishes S′ and S′′ if Φ|mKX′ |(S
′) 6= Φ|mKX′ |(S

′′).

(ii) We say that |mKX′ | distinguishes C ′ and C ′′ if Φ|mKX′ |(C
′) 6= Φ|mKX′ |(C

′′).

We will apply the useful, but technical theorem of Chen and Zuo [CZ08] for the birationality

of Φm.

Theorem 2.7 (See Chen and Zuo [CZ08, Theorem 3.1] or [CC10b, Theorem 2.11, Part 2]).

Keep the same notation as above. Assume that, for some m > 0, |mKX′ | distinguishes S′ and

S′′, C ′ and C ′′ for generic S′ 6= S′′, C ′ 6= C ′′. Then Φm is birational under one of the following

conditions:

(i) αm > 2;

(ii) αm > 1 and C is not hyper-elliptic.

3. The lower bound of K3 in terms of m0

In the study of three-dimensional explicit birational geometry, a challenging problem is to

determine whether a given weighted basket B is geometric, i.e. equal to BX for some 3-fold

X or not. By exploiting geometric properties, one might be able to have a better estimation of

the lower bound of K3
X , and hence exclude some non-geometric formal baskets. In fact, in [CC10b,

(2.19)–(2.31)], we already proved some effective inequalities for K3
X . We shall go further along

this direction in this section.

Let X be a minimal 3-fold of general type. Assume Pm0(X) > 2. Mostly we will take Λ =

|m0KX |. Keep the settings in §§ 2.1 and 2.2.
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Table A1. Volumes in the case dm0 = 3.

m0 = 2 3 4 5 6 7 8

ξ > 4/3 1 3/4 5/8 1/2 6/13 2/5
K3 > 1/3 1/9 3/64 1/40 1/72 6/637 1/160

m0 = 9 10 11 12 13 14 15

ξ > 4/11 1/3 3/10 5/18 1/4 6/25 2/9

K3 > 4/891 1/300 3/1210 5/2592 1/696 3/2450 2/2025

Table A2. Volumes in the case dm0 = 2.

m0 = 2 3 4 5 6 7 8

ξ > 1/2 2/5 1/3 1/4 2/9 1/5 1/6

K3 > 1/8 2/45 1/48 1/100 1/162 1/245 1/384

m0 = 9 10 11 12 13 14 15

ξ > 2/13 1/7 1/8 2/17 1/9 1/10 2/21

K3 > 2/1053 1/700 1/968 1/1224 1/1521 1/1960 2/4725

3.1 The case dm0 = 3
If we take |G| to be |S|S |, then β = 1/m0. It is known, from [CC10b, (2.19)], that deg(KC) > 6, ξ >
10/(3m0 + 2) and K3

X > ξ/m2
0. Take m = 5m0 +4, . . . , (2t+1)m0 +2t, successively. Then, by (3),

one has ξ > 17/(5m0 + 4), 24/(7m0 + 6), . . . , (7t+ 3)/((2t+ 1)m0 + 2t), respectively. Taking the
limit, we obtain ξ > 7/(2m0 + 2). Therefore

K3
X > 7

2m2
0(m0 + 1)

. (6)

In fact, for each small m0, the explicit lower bound of K3 can be slightly improved by the
same trick and the results are given in Table A1.

3.2 The case dm0 = 2
If we take |G| = |S|S |, then β > (Pm0 − 2)/m0. By inequality (3), one has ξ > 2/(2m0 + 1).
Take m = 3m0 + 2, 5m0 + 4, . . . , (2t + 1)m0 + 2t successively. One gets from inequality (3)
that ξ > 4/(3m0 + 2), 7/(5m0 + 4), . . . , (3t+ 1)/((2t+ 1)m0 + 2t). Taking the limit, we have
ξ > 3/(2m0 + 2). By inequality (1), we have

K3
X > 3(Pm0 − 2)

2m2
0(m0 + 1)

> 3

2m2
0(m0 + 1)

. (7)

In fact, we have the estimation in Table A2 for each small m0, which slightly improves [CC10b,
Table A].

Under the same situation, if there exists a number m1 > 0 such that dm1 = 3, then, since
(m1π

∗(KX)|F · C) > 2, we have ξ > 2/m1. Thus, inequality (1) reads

K3
X > 2(Pm0 − 2)

m2
0m1

> 2

m2
0m1

. (8)
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Table A3. Volumes for the (1, 2)-fibration case.

m0 = 2 3 4 5 6 7 8

ξ > 1/2 1/3 2/7 1/4 1/5 2/11 1/6
K3 > 1/12 1/36 1/70 1/120 1/210 1/308 1/432

m0 = 9 10 11 12 13 14 15

ξ > 1/7 2/15 1/8 1/9 2/19 1/10 1/11
K3 > 1/630 1/825 1/1056 1/1404 1/1729 1/2100 1/2640

3.3 The case dm0 = 1, b = g(Γ) > 0
We have S = F by definition. Pick a very large number l > 0. Take |G| := |lσ∗(KF0)| which is base
point free by the surface theory. By definition, we have θ > Pm0 > 2. Since π∗(KX)|F ∼ σ∗(KF0)
by Lemma 2.1(i), we see β = 1/l and thus inequality (1) implies

K3
X > Pm0

m0
· 1

l
· lK2

F0
> Pm0

m0
. (9)

3.4 The case dm0 = 1, b = 0
By Lemma 2.1(ii), we have

K3
X > θ

m0
π∗(KX)|2F > θ3

m0(m0 + θ)2
·K2

F0
. (10)

We will choose suitable linear system |G| on F depending on the numerical type of F . From
the surface theory, we know that either K2

F0
> 2 or (K2

F0
, pg(F )) = (1, 2), (1, 1), (1, 0).

Subcase 3.4.1. K2
F0

> 2.

Inequality (10) implies

K3
X > 2θ3

m0(m0 + θ)2
. (11)

Subcase 3.4.2. (K2
F0
, pg(F0)) = (1, 2).

Take |G| := Mov|KF |. Then C, as a generic irreducible element of |G|, is a smooth curve of
genus 2 (see [BPV84]). By Lemma 2.1(ii), we have β = θ/(m0 + θ) > 1/(m0 + 1).

Inequality (2) implies ξ > θ/(m0 + θ). Take m = b(3m0 + 3θ)/θc+ 1 > (3m0 + 3θ)/θ. Then,
since αm > (m − 1 − m0/θ − 1/β)ξ > 1, inequality (3) gives ξ > 4/(b(3m0 + 3θ)/θc+ 1) >
4θ/(3m0 + 4θ). Inductively, take m = b((1 + 2

3(4t − 1))m0 + 3 · 4t−1θ)/4t−1θc + 1, one gets ξ >
4tθ/((1 + 2

3(4t − 1))m0 + 4tθ) and hence ξ > 3θ/(2m0 + 3θ) by taking the limit. Thus we have

K3
X > 3θ3

m0(m0 + θ)(2m0 + 3θ)
> 3

m0(m0 + 1)(2m0 + 3)
. (12)

A similar calculation leads to better estimation given in Table A3 for smaller m0.

Subcase 3.4.3. (K2
F0
, pg(F0)) = (1, 1).

Since |σ∗(KF0)| is not moving, we have to take |G| := |2σ∗(KF0)| which is base point free by
the surface theory. Naturally the generic irreducible element C of |G| is even and deg(KC) = 6.
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Table A4. Volumes for the (1, 1)-fibration case.

m0 = 2 3 4 5 6 7 8

ξ > 6/7 2/3 1/2 4/9 3/8 1/3 2/7
K3 > 1/14 1/36 1/80 1/135 1/224 1/336 1/504

m0 = 9 10 11 12 13 14 15

ξ > 4/15 6/25 2/9 1/5 4/21 14/79 1/6
K3 > 1/675 3/2750 1/1188 1/1560 1/1911 1/2370 1/2880

By Lemma 2.1(ii), we have β = θ/(2m0 + 2θ). Take m = b(3m0 + 3θ)/θc + 1. Since ξ > 0,
we have αm > 0. Thus, Lemma 2.2 implies ξ > 8θ/(3m0 + 4θ). Thus, inequality (1) reads

K3
X > 4θ3

m0(m0 + θ)(3m0 + 4θ)
. (13)

For each small m0, we have the better estimation given in Table A4.

Subcase 3.4.4. (K2
F0
, pg(F0)) = (1, 0).

Modulo further birational modification, we may assume that Mov|2KF | is base point free.
Take |G| = Mov|2KF |. By Catanese and Pignatelli [CP06], the generic irreducible element C of
|G| is a smooth curve of genus at least three. By Lemma 2.1(ii), we have β = θ/(2m0 + 2θ) >
1/(2m0 + 2). Lemma 2.4 implies ξ > θ/(m0 + θ) · (σ∗(KF0) · C) > 2θ/(m0 + θ). Thus, we have

K3
X > θ3

m0(m0 + θ)2
. (14)

Of course, for each small m0, one might obtain a slightly better estimation for ξ and K3
X .

Variant 3.4.5. If there exists a positive integer m1 such that Pm1 > 2 and that |m0KX′ | and
|m1KX′ | are not composed with the same pencil. We may take |G| = |Mm1|F | and then we have
β = 1/m1. Thus, inequality (1) and Lemma 2.4 imply

K3
X >

2θ2
m0

m0m1(m0 + θm0)
, (15)

provided that (K2
F0
, pg(F0)) 6= (1, 2).

3.5 Some other inequalities
Corollary 3.1. Let X be a minimal 3-fold of general type. Assume Pm0 = 2. Keep the same
notation as above. Suppose that the general fiber F of the induced fibration from Φm0 is not a
(1, 2) surface, and that Pm1 > 2 for some integer m1 > 0. Then

K3
X > min

{
(Pm1 − 1)3

m1(m1 + Pm1 − 1)2
,

2

m0m1(m0 + 1)

}
.

Proof. If |m0KX′ |, |m1KX′ | are composed with the same pencil, then both |m0KX′ | and |m1KX′ |
induce the same fibration f : X ′ −→ Γ. Consider Λ̃ = |m1KX′ |. Then, θm1 > Pm1 − 1. Since F
is not a (1,2) surface and by comparing inequalities (9), (11), (13) and (14), we have

K3
X > (Pm1 − 1)3

m1(m1 + Pm1 − 1)2
.
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Suppose that |m0KX′ |, |m1KX′ | are not composed with the same pencil. We have β = 1/m1.
Then we have inequality (15) as in Variant 3.4.5. 2

Now we are able to study the more restricted case.

Proposition 3.2. Let X be a minimal 3-fold of general type. Assume that Pm0(X) > 4 and
dm0 = 2, then

K3
X > min

{
8

m0(m0 + 2)2
,

6

m2
0(m0 + 2)

}
.

Proof. We need to study the image surface W ′ of X ′ through the morphism Φ|m0KX′ |. In fact,
we have the Stein factorization

Φm0 := Φ|m0KX′ | : X
′ f−→ Γ

s−→ W ′ ⊂ PPm0−1.

Denote by H ′ a very ample divisor on W ′ such that Mm0 ∼ Φ∗m0
(H ′). Furthermore, one has

Mm0 |S ≡ ãm0C for a general member S ∈ |Mm0 | and the integer ãm0 > deg(s) deg(W ′) >
deg(W ′) > Pm0 − 2, where C is a general fiber of f . Set |G| := |Mm0 |S |.

Case 1: ãm0 > 3.
We have β > 3/m0. Inequality (2) implies ξ > 6/(4m0 + 3). Takem= 2m0+2. Then inequality (3)
gives ξ > 2/(m0 + 1). Take m = b(11m0 + 9)/6c+ 1. Since αm > ((11m0 + 9)/6− 1−m0− 1/β)
ξ > 1, inequality (3) implies ξ > 24/(11m0 + 15). Thus, we have

K3
X > 72

m2
0(11m0 + 15)

. (16)

Case 2: ãm0 = 2.
Automatically we have Pm0 = 4, which also implies that deg(W ′) = 2 and deg(s) = 1. Recall
that an irreducible surface (in P3) of degree 2 is one of the following surfaces (see, for instance,
Reid [Rei97, p. 30, Example 19]):

(a) W ′ is the cone F2 obtained by blowing down the unique section with the self-intersection
(−2) on the Hirzebruch ruled surface F2;

(b) W ′ ∼= P1 × P1.

Case 2(a): W ′ = F2.
Replacing by its birational model, we may assume that Φm0 factors through the minimal

resolution F2 of W ′. So we have the factorization of Φm0 : X ′
h−→ F2

ν−→ W ′ where h is a
fibration and ν is the minimal resolution of W ′. Set Ĥ = ν∗(H ′). We know that H ′2 = 2 and
hence Ĥ2 = 2. Noting that Ĥ is nef and big on F2, we can write

Ĥ ∼ µG0 + nT,

where µ and n are integers,G0 denotes the unique section withG2
0 =−2, and T is the general fiber

of the ruling on F2. The property of Ĥ being nef and big implies that µ > 0 and n > 2µ > 2. Now
let pr : F2 −→ P1 be the ruling. Set f̃ := pr ◦ h : X ′ −→ P1, which is a fibration with connected
fibers. Denote by F a general fiber of f̃ . We have

Mm0 ∼ Φ∗m0
(H ′) = h∗(Ĥ) > 2F.
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Let Λ = |2F | � |m0KX′ |. Clearly we have θΛ = 2, dΛ = 1 and b = 0. By inequalities (11)–(14),
we have

K3
X > 8

m0(m0 + 2)2
. (17)

Case 2(b): W ′ = P1 × P1.
We have an induced fibration f : X ′ −→ W ′ = P1 × P1. Since a very ample divisor H ′ on W ′

with H ′2 = 2 is linearly equivalent to L1 +L2 = q∗1(point)+q∗2(point) where q1, q2 are projections
from P1 × P1 to P1 respectively. Set f̃i := qi ◦ f : X ′ −→ P1, i = 1, 2. Then f̃1 and f̃2 are two
fibrations onto P1. Let F1 and F2 be general fibers of f̃1 and f̃2, respectively. Then F1 ∩ F2 is
simply a general fiber C of f . We will estimate ξ in an alternative way. In fact, the following
argument is similar to the proof of [CZ08, Theorem 3.1].

Since ãm0 = 2, we have S|S ∼ 2C. On the other hand, we have S > F1 +F2. Modulo further
birational modifications, we may write m0π

∗(KX) ≡ F1 + F2 + H ′m0
where H ′m0

is an effective
Q-divisor with simple normal crossing supports. For any integer m > m0 + 1, we consider the
linear system

|KX′ + d(m−m0 − 1)π∗(KX)e+ F1 + F2| � |mKX′ |.

Since (m−m0−1)π∗(KX)+F2 is nef and big, Kawamata and Viehweg vanishing [Kaw82, Vie82]
gives the surjective map

H0(KX′ + d(m−m0 − 1)π∗(KX)e+ F2 + F1)

−→ H0(F1,KF1 + d(m−m0 − 1)π∗(KX)e|F1 + C).

Using the vanishing theorem again, one obtains the surjective map

H0(F1,KF1 + d(m−m0 − 1)π∗(KX)|F1e+ C) −→H0(C,KC + D̂m),

where D̂m := d(m−m0 − 1)π∗(KX)|F1e|C with

deg(D̂m) > (m−m0 − 1)ξ.

When m is large enough so that deg(D̂m) > 2, the above two surjective maps directly implies

mξ > deg(KC) + deg(D̂m) > 2 + d(m−m0 − 1)ξe. (18)

In particular, we have ξ > 2/(m0 + 1).
Take m = 2m0 + 3. Then (m−m0 − 1)ξ > 2 and inequality (18) gives ξ > 5/(2m0 + 3).
Assume m0 > 1 and take m = 2m0 + 2. One gets ξ > 5/(2m0 + 2). Take m =

b(7m0 + 12)/5c = b(7m0 + 7)/5c + 1 > (7m0 + 7)/5, one has ξ > 4/m > 20/(7m0 + 12).
Inductively, take m = b((2 + 5

3(4t − 1))m0 + 2 + 10
3 (4t − 1))/(5 · 4t−1)c for t > 1, one has ξ >

(5 · 4t)/((2 + 5
3(4t − 1))m0 + 2 + 10

3 (4t − 1)). We have ξ > 3/(m0 + 2) by taking the limit and,
hence,

K3
X > 1

m0
· (π∗(KX)|S)2 > 2

m2
0

· ξ > 6

m2
0(m0 + 2)

. (19)

We conclude the statement by comparing (16), (17) and (19). 2

Corollary 3.3. Let X be a minimal 3-fold of general type. The following holds:

K3
X >


min

{
8

m0(m0 + 2)2
,

7

2m2
0(m0 + 1)

}
when Pm0 > 4,

3

2m2
0(m0 + 1)

when Pm0 = 3.
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Proof. When Pm0 > 4, dm0 = 3, 2, 1 and the inequality follows from comparing inequality (6),
Proposition 3.2, inequalities (9) and (11)–(14) (with θm0 = 3), respectively.

When Pm0 = 3, dm0 = 2, 1 and the inequality follows immediately by comparing inequality (7)
with inequalities (9) and (11)–(14) (with θm0 = 2). 2

4. Threefolds with δ(V ) 6 12

The purpose of this section is to prove the following sharper bounds.

Theorem 4.1. Let X be a minimal projective 3-fold of general type with 2 6 δ(X) 6 12. Then
K3
X > v(δ(X)), where the function v(x) is defined as follows:

x 2 3 4 5 6 7

v(x) 1/14 1/36 1/90 1/135 1/224 1/336

x 8 9 10 11 12 —

v(x) 1/504 1/675 3/2750 1/1188 1/1560 —

We are going to estimate the lower bound of the volume, case by case, for a given δ. The
discussion here relies on those formulae in [CC10a, (3.6)–(3.12)].

Proposition 4.2. If P2(X) > 2, then K3
X > 1

14 .

Proof. Set m0 = 2. By Tables A1 and A2, inequalities (9) and (11), Tables A3 and A4 and
Corollary 3.3, we have K3

X > 1
14 unless P2 = 2, d2 = 1, b = 0 and F is of type (1, 0).

In the remaining case, we have that χ(OX) = 1 by [CC10b, Lemma 2.32]. By [CC10b, Lemma
3.2], one has P4 > 2P2 > 4. If d4 > 2, then K3

X > 1
12 by inequality (15) (with m0 = 2, m1 = 4,

θ2 = 1). If d4 = 1, then |2KX′ | and |4KX′ | are composed with the same pencil. Thus, we have
K3
X > 27

196 >
1
8 by inequality (14) (with m0 = 4, θ4 = 3). 2

Proposition 4.3. If P3(X) > 2, then K3
X > 1

36 .

Proof. Take m0 = 3 and Λ = |3KX′ |. One has K3
X > 1

36 by Tables A1 and A2, inequalities (9),
(11), Tables A3 and A4 and Corollary 3.3 (m0 = 3) unless we are in Subcase 3.4.4 with
P3 = 2. That is, P3 = 2, d3 = 1, b = 0 and F is of type (1, 0). Again, χ(OX) = 1. Thus, for any
m > 2, [CC10b, Lemma 3.2] implies Pm+2 > Pm + P2.

By Corollary 3.1, if P4 > 3 (respectively P5 > 3), then K3
X > 1

24 (respectively 1
30). Suppose

that both P4 6 2 and P5 6 2, then P5 = 2 and P2 = 0. By [CC10a, (3.6)], n0
1,2 = 5− 8 +P4 < 0,

which is a contradiction. Hence, either P4 or P5 > 3 in this case and we are done. 2

Proposition 4.4. If P4(X) > 2, then K3
X > 1

90 .

Proof. Similarly, we have K3
X > 1

80 unless P4 = 2, b = 0 and F is of (1, 0) type. In fact, in

this situation, we have at least K3
X > 1

100 by inequality (14). We will go a little bit further to
investigate this situation.

(0) We may and do assume that P2 6 1 and P3 6 1.

(1) If P7 > 3 (respectively P6 > 3, P5 > 3), then K3 > 8
567 > 1

80 (respectively 1
60 ,

1
50) by

Corollary 3.1 (with m0 = 4, and m1 = 7, 6, 5 respectively). So we may assume P5, P6, P7 6 2.
Since P6 > P4 + P2, we see that P2 = 0 and P6 = P4 = 2.
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(2) If P3 = 0, then n0
1,3 = P5 − 2 > 0 implies P5 = 2. Now n5

1,4 = 3 − σ5 > 0 gives σ5 6 3.

However, n5
1,3 > 0 implies σ5 > 4, a contradiction. We thus assume that P3 = 1 from now on.

(3) We thus can make the following complete table for B(5) depending on P5, σ5.

No. P5 σ5 B(5) K3 ε+ P7

1 1 0 {2× (1, 2), (2, 5), 5× (1, 4)} 1/20 4

2 1 1 {3× (1, 2), (1, 3), 4× (1, 4), (1, r)} 1/r − 1/6 4

3 2 1 {(1, 2), 2× (2, 5), 3× (1, 4), (1, r)} 1/r − 3/20 5

4 2 2 {2× (1, 2), (2, 5), (1, 3), 2× (1, 4), (1, r1), (1, r2)} 1/r1 + 1/r2 − 11/30 5

5 2 3 {3× (1, 2), 2× (1, 3), (1, 4), (1, r1), (1, r2), (1, r3)} 1/r1 + r2 + r3 − 7/12 5

(4) By definition, one has σ5 6 ε 6 2σ5. Note that No. 1 is impossible because ε = 0 but
P7 6 2 implies that ε > 2, a contradiction. In No. 3, P5 = 2 implies P7 = 2 and hence ε = 3 > 2σ5,
a contradiction.

In No. 2, one must have P7 = 2 and ε = 2 = 2σ5. Hence, r > 6. Then it follows that
K3 6 K3(B(5)) 6 0, a contradiction. Similarly, in No. 4, K3(B(5)) > 0 only when r1 = r2 = 5.
But then ε = 2, a contradiction.

(5) It remains to consider No. 5. Note that K3(B(5)) > 0 only when r1 = r2 = r3 = 5 and
K3(B(5)) = 1

60 . There are only finitely many possible packings. Among them, we search for
baskets with K3 > 1

100 . It turns out there is only one new baskets

B90 = {3× (1, 2), 2× (1, 3), (2, 9), 2× (1, 5)}

with K3(B90) = 1
90 . 2

Proposition 4.5. If P5 > 2, then K3
X > 1

135 .

Proof. Similarly, we have K3
X > 1

135 unless P5 = 2, b = 0 and F a (1, 0) surface, for which we
have K3

X > 1
180 . Furthermore, we may assume that Pm 6 2 for m = 6, 7, 8 by Corollary 3.1. It

suffices to consider: χ(OX) = 1, P2 = 0, P3 = 0, 1, P4 = 0, 1, P5 = P7 = 2 and P4 6 P6 6 P8 6 2.
We look at B(5) with K3 > 0 according to (P3, P4, P6) and σ5. It turns out that there is only

one,

B(5) = {2× (2, 5), 3× (1, 3), (1, 4), (1, 6)}

with K3(B(5)) = 1
60 , given by (P3, P4, P6) = (1, 1, 2) and σ5 = 2. Now P8 = 2 and, hence,

B(7) = {2× (2, 5), 2× (1, 3), (2, 7), (1, 6)}.

However, K3(B(7)) = 1
210 <

1
180 , which is impossible. 2

Proposition 4.6. If P6 > 2, then K3
X > 1

224 .

Proof. Similarly, we have K3
X > 1

224 unless P6 = 2, b = 0 and F a (1, 0) surface, for which we
have K3

X > 1
294 . Again, we may assume that Pm 6 2 for m = 7, 8, 9, 10. Therefore, it remains

to consider such a situation that χ(OX) = 1, P2 = 0, P4 6 1, P3 6 P5 6 1, P7 6 P9 6 2 and
P8 = P10 = 2. According to the value of (P3, P4, P5) and σ5, we have the following table.
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No. (P3, P4, P5) σ5 B(5) K3 ε+ P7

1 (0, 0, 0) 0 {5× (1, 2), 4× (1, 3), (1, 4)} 1/12 2

2 (0, 0, 1) 0 {3× (1, 2), 2 ∗ (2, 5), 3 ∗ (1, 3)} 1/10 3

3 (0, 1, 0) 0 {6 ∗ (1, 2), (1, 3), 3 ∗ (1, 4)} 1/12 3

4 (0, 1, 1) 0 {4 ∗ (1, 2), 2 ∗ (2, 5), 2 ∗ (1, 4)} 1/10 4

5 (0, 1, 1) 1 {5 ∗ (1, 2), 1 ∗ (2, 5), (1, 3), (1, 4), (1, r)} 1/r − 7/60 4

6 (0, 1, 1) 2 {6 ∗ (1, 2), 2 ∗ (1, 3), (1, r1), (1, r2)} 1/r1 + 1/r2 − 1/3 4

7 (1, 0, 1) 0 {(2, 5), 6 ∗ (1, 3), (1, 4)} 1/20 2

8 (1, 0, 1) 1 {(1, 2), 7 ∗ (1, 3), (1, r)} 1/r − 1/6 2

9 (1, 1, 1) 0 {(1, 2), (2, 5), 3 ∗ (1, 3), 3 ∗ (1, 4)} 1/20 3

10 (1, 1, 1) 1 {2 ∗ (1, 2), 4 ∗ (1, 3), 2 ∗ (1, 4), (1, r)} 1/r − 1/6 3

(1) It is clear that No. 2, 3, 4 and 9 are not allowed for ε = 0 and, hence, P7 > 3.

(2) In No. 1 and 7, the baskets allow at most one packing at level 7, i.e. ε7 6 1. However,
P7 = 2 and P8 = 2 yield ε7 > 2, a contradiction.

(3) Consider No. 10. Since K3 = 1/r − 1
6 > 0, it follows that r = 5. So ε = 1 and P7 = 2.

Then ε7 = 2 and
B(7) = {2× (1, 2), 2× (1, 3), 2× (2, 7), (1, 5)}.

This already implies ε8 = 0 and so we get P9 = 3, a contradiction.

(4) Consider No. 8. Since K3 > 0, thus we get

B(5) = {(1, 2), 7× (1, 3), (1, 5)}.

Since B(5) allows no further packing, hence K3
X = 1

30 in this case.

(5) Consider No. 5. Since K3 > 0, r = 6, 7, 8. It is easy to see that the basket with the
smallest volume and dominated by B(5) is

B210 = {(7, 15), (2, 7), (1, 6)}

with K3 = 1
210 . Thus, K3

X > 1
210 .

(6) Finally Consider No. 6. Since K3 > 0, (r1, r2) = (5, 5), (5, 6), (5, 7). It is easy to see that
the basket with the smallest volume and dominated by B(5) is

B105 = {6× (1, 2), 2× (1, 3), (1, 5), (1, 7)}

with K3 = 1
105 . Thus, K3

X > 1
105 . 2

Note that, when δ(X) > 7, we can utilize our explicit classification in [CC10b, § 3]. We shall
omit some details to avoid unnecessary redundancy.

Proposition 4.7. If P7 > 2, then K3
X > 1

336 .

Proof. Similarly, we have K3
X > 1

336 unless P7 = 2, b = 0, F a (1, 0) surface and χ(OX) = 1.
Again, we may assume that Pm 6 2 for m = 8, 9. Hence, P9 = 2 and P2 = 0.

By ε6 = 0, we have P4 + P5 + P6 = P3 + 2 + ε. Hence (P3, P4, P5, P6) = (0, 0, 1, 1), (0, 1, 0, 1),
(0, 1, 1, 1) or (1, 1, 1, 1) which corresponds to cases IV, V, VI and VIII in [CC10b, § 3], respectively.
The classification implies that, if K3

X < 1
336 , then BX � Bmin, where Bmin is a minimal positive

basket and belongs to one of the following:
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(b1) B6,4 = {(1, 2), (6, 13), (1, 3), 2× (1, 5)} with K3(B6,4) = 1
390 and P9(B6,4) = 3;

(b2) B6,6 = {3× (1, 2), (3, 7), (2, 5), (1, 4), (1, 6)} with K3(B6,6) = 1
420 and P9(B6,4) = 3;

(b3) B8,3 = {2× (2, 5), (1, 3), (3, 11), (1, 4)} with K3(B8,3) = 1
660 .

Clearly, case (b1) cannot happen because P9(BX) > P9(Bmin) = 3.

In case (b2), for a similar reason, BX 6= B6,6. Thus, BX � B60 := {4 × (1, 2), 2 × (2, 5),

(1, 4), (1, 6)} and so K3
X > K3(B60) = 1

60 .

Finally, in case (b3), the proof of [CC10b, Theorem 3.11] implies that BX 6= B8,3 and BX �
B210 = {2 × (2, 5), (1, 3), (2, 7), 2 × (1, 4)} with K3

X > K3(B210) = 1
210 . We have proved the

statement. 2

It is now immediate to see the following consequences.

Corollary 4.8 (Corollary 1.5). Let X be a minimal projective 3-fold of general type with

K3
X < 1

336 . Then δ(X) > 8.

Proposition 4.9. Let X be a minimal projective 3-fold of general type.

(1) If P8 > 2, then K3
X > 1

504 .

(2) If P9 > 2, then K3
X > 1

675 .

(3) If P10 > 2, then K3
X > 3

2750 .

(4) If P11 > 2, then K3
X > 1

1188 .

(5) If P12 > 2, then K3
X > 1

1560

Proof. We only prove statement (1). Other statements can be proved similarly.

When P8 > 2, Tables A1 and A2, inequalities (9) and (11), Tables A3 and A4 imply K3
X > 1

504

unless we are in Subcase 3.4.4, for which one has K3
X > 1

420 by [CC10b, Theorem 1.2(2)] since

χ(OX) = 1. 2

Propositions 4.2–4.7 and 4.9 imply Theorem 4.1.

An interesting by-product is the following corollary.

Corollary 4.10 (Corollary 1.7(1)). Let X be a minimal projective 3-fold of general type with

pg(X) = 1. Then K3
X > 1

75 .

Proof. We distinguish the following cases.

Case 1: P4 > 3.

By Corollary 3.3, K3
X > 3

160 .

Case 2: P4 = 2.

We have K3
X > 1

70 by inequalities (9), (11) and Table A3 unless b = 0 and F is either a (1, 1)

or a (1, 0) surface, for which we necessarily have h2(OX) = 0 and thus χ(OX) = 0. Reid’s

Riemann–Roch formula implies P5 > P4 = 2. Now Corollary 3.1 (with m0 = 4, m1 = 5) yields

K3
X > 1

50 .
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Case 3: P4 = 1.
Since pg(X) = 1, one has Pm > 0 for all m > 1. By [CC10a, (3.10)], we have

P4 + P5 + P6 = 3P2 + P3 + P7 + ε > 3P2 + P3 + P7.

If P4 = 1 (which implies P3 = P2 = 1), then we have

P5 > (P7 − P6) + 3 > 3.

Then, from [CC10a, (3.6)], n0
1,4 > 0 implies χ(OX) > 3. Owing to our previous result [CC08,

Corollary 1.2] for irregular 3-folds, we may assume q(X) = 0. Thus, we have h2(OX) = χ(OX) > 3.
Take a sub-pencil Λ of |5KX |. Then Λ induces a fibration f : X ′ −→ Γ after Stein factorization.
Let F be the general fiber and F0 be the minimal model of F .

Claim. K2
F0

> 2.

Proof. Clearly we may write

f∗ωX′ = OΓ ⊕OΓ(e2)⊕ · · · ⊕ OΓ(epg(F )−1)

with −2 6 ej 6 −1 for all j, since pg(X
′) = 1. Note that we have

h2(OX) = h1(f∗ωX′) + h0(R1f∗ωX′)

6 (pg(F )− 1) + h0(R1f∗ωX′).

If q(F ) > 0, we have K2
F0

> 2 by the surface theory. If q(F ) = 0, we have R1f∗ωX′ = 0 and thus
pg(F ) > h2(OX) + 1 > 4. Hence, we have K2

F0
> 4 by the Noether inequality. 2

If d5 > 2, then we may set m1 = 5 and apply inequality (15), which gives K3
X > 1

75 .
If d5 = 1, then |5KX′ | and Λ are composed with the same pencil. Thus, we have θ5 > 2 and

inequality (11) gives K3
X > 16

245 . 2

5. Threefolds with δ(V ) > 13

Let X be a minimal projective 3-fold of general type with δ(X) > 13. Now we are in the natural
position to classify baskets B(X) with δ(X) > 13. In fact, we have B12 � B(X) � Bmin for certain
minimal positive basket Bmin listed in [CC10b, Table C], where B12 is also listed there. However,
as pointed out in [CC10b, Proposition 4.5], our earlier classification in [CC10b, Table C] is not
clean since some minimal baskets in Table C are actually known to be ‘non-geometric’.

Recall that, by definition, a geometric weighted basket is a basket of a projective threefold
of general type. Hence, the following properties hold:

(A) PmPn 6 Pm+n if Pm = 1 and n > 0;

(B) Pm > 0 for all m > 0;

(C) K3 > f(m0) for some explicit function f(x) given in §§ 3 and 4 provided that Pm0 > 2.

Indeed, if B12 violates one of A,B,C, then so does B(X). Therefore B(X) is non-geometric.
If Bmin is non-geometric (e.g. cases No. 3a, 5b, 10a, . . . , etc.), then we need to check all baskets
between B12 and Bmin. The following Table H consists of non-geometric baskets with δ > 13. We
keep the same notation as in Table C.
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Table H.

No. (P12, . . . , P24) (n1,2, n4,9, . . . , n1,5) or Bmin K3 Offending

3a (1, 0, 0, 1, 0, 0, 2, 0, 3, 1, 1, 1, 3) {(2, 5), (3, 8), ∗} � {(5, 13), ∗} 17
30030 P8P8 > P16

5b (1, 0, 1, 2, 0, 0, 3, 0, 2, 1, 2, 2, 3) {(5, 13), (4, 15), ∗} 1
1170 P8P8 > P16

8 (1, 0, 2, 1, 0, 1, 3, 1, 4, 3, 2, 2, 5) (7, 1, 0, 1, 0, 2, 0, 0, 6, 0, 2, 0, 0, 0, 1) 1
770 P6P10 > P16

9 (1, 0, 2,−1, 1, 0, 2, 0, 1, 2, 1, 0, 2) (9, 0, 0, 2, 0, 0, 1, 1, 4, 0, 1, 0, 0, 1, 0) 1
5544 P15 = −1

10a (1, 0, 2, 1, 2,−1, 2, 0, 2, 2, 1, 2, 4) {(4, 9), (3, 7), ∗} � {(7, 16), ∗} 1
1680 P17 = −1

11a (1, 0, 2, 0, 2, 0, 2, 2, 2, 1, 1, 1, 3) {(3, 8), (4, 11), ∗} � {(7, 19), ∗} 1
2660 P8P14 > P22

13 (1, 0, 3,−1, 1, 1, 3, 1, 3, 3, 3, 1, 4) (12, 0, 0, 2, 0, 2, 0, 2, 4, 0, 2, 0, 0, 1, 0) 4
3465 P15 = −1

15a (1, 0, 3, 0, 1, 0, 2, 0, 3, 1, 1, 1, 4) {(4, 11), (1, 3), ∗} � {(5, 14), ∗} 1
2520 P8P14 > P22

15b (1, 0, 2, 0, 1, 0, 3, 0, 3, 2, 1, 1, 4) {(2, 5), (3, 8), ∗} � {(5, 13), ∗} 23
36036 P8P14 > P22

15c (1, 0, 3, 1, 2, 0, 3, 1, 3, 2, 2, 2, 5) {(7, 16), (7, 19), ∗} 31
31920 P8P14 > P22

16c (1, 0, 2, 1, 1,−1, 3,−1, 2, 2, 1, 1, 3) {{(5, 13), (7, 16)∗} 3
16016 P17 = −1

18a (1, 0, 3, 0, 1, 0, 2, 1, 2, 2, 2, 1, 3) {(4, 11), (1, 3), ∗} � {(5, 14), ∗} 1
3080 P6P11 > P17

19 (1, 0, 2, 0, 1, 1, 3, 0, 2, 2, 2, 1, 3) (8, 0, 1, 1, 0, 1, 0, 1, 5, 0, 1, 0, 0, 1, 0) 2
3465 P9P14 > P23

20a (1, 0, 1, 1, 1, 0, 3,−1, 2, 1, 0, 1, 3) {(2, 5), (3, 8), ∗} � {(5, 13), ∗} 1
16380 P19 = −1

21a (1, 1, 1, 1, 2, 0, 2, 1, 2, 1, 2, 2, 3) {(1, 3), (3, 10), ∗} � {(4, 13), ∗} 1
4680 P8P9 > P17

22 (1, 0, 1, 1, 1, 0, 2, 1, 3, 1, 1, 1, 3) (7, 1, 0, 1, 0, 1, 1, 0, 5, 1, 0, 0, 1, 0, 1) 1
9240 P8P9 > P17

23a (1, 0, 2, 1, 2, 0, 2, 1, 3, 1, 2, 2, 3) {(4, 9), (3, 7), ∗} � {(7, 16), ∗} 1
2640 P8P9 > P17

24 (1, 0, 2, 0, 0, 1, 3, 0, 3, 2, 2, 0, 3) (10, 1, 0, 1, 0, 3, 0, 1, 6, 0, 2, 0, 0, 1, 0) 1
3465 P8P8 > P16

26a (1, 0, 3, 1, 1, 1, 3, 0, 4, 1, 2, 2, 5) {(4, 11), (1, 3), ∗} � {(5, 14), ∗} 1
1260 P9P10 > P19

27.1 (1, 0, 2, 2, 1, 1, 5, 0, 4, 3, 3, 3, 6) {(2, 5), (3, 8), ∗} � {(5, 13), ∗} 71
45045 P9P10 > P19

27.2 (1, 0, 2, 2, 1, 1, 5,−1, 3, 2, 2, 2, 4) {(2, 5), (5, 13), ∗} � {(7, 18), ∗} 1
1386 P19 = −1

27a (1, 0, 2, 2, 1, 1, 5,−1, 3, 2, 2, 2, 3) {(2, 5), (7, 18), ∗} � {(9, 23), ∗} 1
1386 P19 = −1

27b (1, 0, 2, 2, 1, 1, 5,−1, 3, 2, 2, 2, 5) {(5, 13), (5, 18), ∗} 1
1170 P19 = −1

29a (1, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3) {(5, 14), (1, 3), ∗} � {(6, 17), ∗} 1
5335 P9P14 > P23

32b (1, 0, 3, 1, 1, 1, 3, 1, 3, 2, 3, 2, 4) {(4, 11), (1, 3), ∗} � {(5, 14), ∗} 1
1386 P9P14 > P23

33a (1, 1, 2, 0, 2, 1, 1, 1, 2, 2, 1, 2, 3) {(3, 10), (2, 7), ∗} � {(5, 17), ∗} 1
2856 P6P16 > P22

34b (1, 1, 2, 0, 1, 1, 3, 0, 3, 3, 1, 2, 4) {(2, 5), (3, 8), ∗} � {(5, 13), ∗} 1
1170 P6P13 > P19

39a (1, 1, 2, 1, 3, 0, 2, 1, 3, 2, 2, 3, 4) {(4, 9), (3, 7), ∗} � {(7, 16), ∗} 1
1680 P6P16 > P22

39b (1, 1, 2, 1, 3, 1, 2, 1, 3, 2, 2, 3, 5) {(3, 10), (2, 7), ∗} � {(5, 17), ∗} 4
5355 P6P16 > P22

40.1 (1, 1, 2, 1, 2, 1, 4, 0, 4, 3, 2, 3, 6) {(2, 5), (3, 8), ∗} � {(5, 13), ∗} 41
32760 P6P13 > P19

40a (1, 1, 2, 1, 2, 1, 4,−1, 3, 2, 1, 2, 4) {(4, 10), (3, 8), ∗} � {(7, 18), ∗} 1
2520 P6P13 > P19

40b (1, 1, 2, 1, 2, 1, 4, 0, 4, 3, 1, 2, 5) {(2, 5), (6, 16), ∗} � {(8, 21), ∗} 1
1260 P6P13 > P19

43a (1, 1, 3, 0, 2, 1, 2, 1, 3, 2, 2, 2, 4) {(4, 11), (1, 3), ∗} � {(5, 14), ∗} 1
2520 P7P8 > P15

43b (1, 1, 2, 0, 2, 1, 3, 1, 3, 3, 2, 2, 4) {(2, 5), (3, 8), ∗} � {(5, 13), ∗} 23
36036 P7P8 > P15
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Table H. Continued.

No. (P12, . . . , P24) (n1,2, n4,9, . . . , n1,5) or Bmin K3 Offending

44a (1, 1, 2, 1, 2, 1, 4, 1, 3, 4, 2, 2, 4) {(2, 5), (6, 16), ∗} � {(8, 21), ∗} 1
1386 P7P18 > P25 = 3

44b (1, 1, 2, 1, 2, 0, 3, 0, 2, 3, 2, 2, 3) {(7, 16), (5, 13), ∗} 3
16016 P7P10 > P17

46a (1, 1, 1, 1, 2, 1, 3, 0, 3, 1, 1, 2, 3) {(2, 5), (3, 8), ∗} � {(5, 13), ∗} 1
16380 P9P10 > P19

50a (1, 1, 3, 1, 2, 2, 3, 1, 4, 2, 3, 3, 5) {(4, 11), (1, 3), ∗} � {(5, 14), ∗} 1
1260 P7P14 > P21

51a (1, 1, 2, 2, 2, 2, 5, 0, 3, 3, 3, 3, 4) {(4, 10), (3, 8), ∗} � {(7, 18), ∗} 1
1386 P6P13 > P19

51b (1, 1, 2, 2, 2, 2, 5, 0, 3, 3, 3, 3, 5) {(5, 13), (5, 18), ∗} 1
1170 P6P13 > P19

52a (1, 1, 2, 1, 1, 0, 2, 1, 2, 2, 1, 2, 3) {(2, 5), (3, 8), ∗} � {(5, 13), ∗} 1
2184 P5P12 > P17

56a (1, 1, 2, 2, 1, 1, 2, 1, 3, 2, 2, 3, 3) {(4, 9), (3, 7), ∗} � {(7, 16), ∗} 1
1680 P5P14 > P19

57 (1, 0, 2, 2, 0, 1, 3, 1, 3, 2, 2, 2, 3) (3, 0, 1, 2, 0, 5, 0, 0, 4, 0, 0, 1, 0, 0, 0) 1
1386 P7P9 > P16

58a (1, 1, 2, 2, 2, 0, 2, 1, 3, 2, 2, 3, 4) {(4, 9), (3, 7), ∗} � {(7, 16), ∗} 1
1680 P5P12 > P17

59a (1, 1, 2, 1, 2, 1, 2, 3, 2, 2, 2, 2, 3) {(3, 8), (4, 11), ∗} � {(7, 19), ∗} 1
2660 Item C

60a (1, 1, 1, 2, 1, 1, 3, 0, 3, 1, 1, 2, 3) {(2, 5), (3, 8), ∗} � {(5, 13), ∗} 1
16380 P9P10 > P19

61 (1, 1, 1, 2, 1, 1, 2, 2, 3, 2, 2, 2, 3) (0, 1, 0, 1, 0, 3, 1, 0, 2, 0, 0, 0, 1, 0, 0) 1
9240 Item C

62a (1, 1, 2, 2, 2, 1, 2, 2, 3, 2, 3, 3, 3) {(4, 9), (3, 7), ∗} � {(7, 16), ∗} 1
2640 Item C

63 (1, 1, 3, 1, 2, 1, 3, 2, 3, 3, 2, 2, 4) (5, 0, 1, 2, 0, 1, 1, 1, 3, 0, 1, 0, 0, 0, 1) 1
5544 Item C

By eliminating non-geometric baskets, we obtain a shorter list of baskets, listed in Tables F0,
F1 and F2 in Appendix A. We summarize some observations from the tables.

Theorem 5.1 (Theorem 1.4). Let X be a minimal projective 3-fold of general type with the
weighted basket B(X) := {BX , P2, χ(OX)}. If δ(X) > 13, then P2 = 0 and B(X) belongs to one
of the types listed in Tables F0–F2 in Appendix A. Furthermore, the following hold:

(1) δ(X) = 18 if and only if B(X) = {B2a, 0, 2} (see Table F0 for B2a) with K3
X = 1

1170 ;

(2) δ(X) 6= 16, 17;

(3) δ(X) = 15 if and only if B(X) is among one of the cases in Table F1; one has K3
X > 1

1386 ;

(4) δ(X) = 14 if and only if B(X) is among one of the cases in Table F2; one has K3
X > 1

1680 ;

(5) δ(X) = 13 if and only if B(X) = {B41, 0, 2} (see Table F0 for B41) with K3
X = 1

252 .

Theorems 4.1 and 5.1 and [Che07, Theorem 1.4] imply the following corollary.

Corollary 5.2 (Theorem 1.6(2)). Let X be a minimal projective 3-fold of general type. Then

K3
X > 1

1680 , and equality holds if and only if χ(OX) = 2, P2 = 0 and BX = B7a or BX = B36a

(cf. Table F2).

Theorem 5.1, together with the explicit calculation, also implies the following result.

Corollary 5.3. Let X be a minimal projective 3-fold of general type. Then:

(1) if δ(X) = 13, Pm > 0 for all m > 10;

(2) if δ(X) = 14, 15, 18, Pm > 0 for all m > 20.
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6. Birationality

Theorem 6.1. Let X be a minimal projective 3-fold of general type. If δ(X) = 18, then Φm is
birational for all m > 61.

Proof. Set m0 = 18. By Theorem 5.1, we know that BX = B2a, P2 = 0, χ(OX) = 2, P19 = 0,
P24 = 3 and K3

X = 1
1170 . By [CC08, Corollary 1.2], we see q(X) = 0. Thus, |18KX | induces a

fibration f : X ′ −→ Γ ∼= P1. We have h2(OX′) = h2(OX) = 1. Pick a general fiber F . Since
P19(X) = P19(B2a) = 0, we have H0(X ′,KX′ + F ) = 0.

Claim 6.1.1. pg(F ) = 1.

Proof. Since χ(OX′) > 1, we have pg(F ) > 0 by [CC10b, Lemma 2.32]. On the other hand, we
have the long exact sequence

H0(X ′,KX′ + F ) −→ H0(F,KF ) −→ H1(X ′,KX′) −→ H1(X ′,KX′ + F )

which implies h0(KF ) 6 h1(X ′,KX′) = h2(OX′) = 1. Thus, we get pg(F ) = 1. 2

We have Pm > 0 for all m > 20 by Corollary 5.3(2). Consider the linear systems

|KX′ + dnπ∗(KX)e+ F | � |(n+ 19)KX′ |.

Clearly |(n+ 19)KX′ | distinguish different general fibers F as long as n > 19. By Kawamata and
Viehweg vanishing,

|KX′ + dnπ∗(KX)e+ F ||F = |KF + dnπ∗(KX)e|F |
� |KF + dLne|

where we set Ln := nπ∗(KX)|F .

Claim 6.1.2. L2
n > 8 whenever n > 42.

Proof. Since pg(F ) = 1, we are in Subcase 3.4.1 or Subcase 3.4.3.
Let us consider Subcase 3.4.1 (i.e. K2

F0
> 2) first. We have

(π∗(KX)|F )2 > 1

192
K2
F0

> 2

192

by Lemma 2.1(ii). Thus, L2
n > 8 whenever n > 38.

If K2
F0

= 1, we shall estimate L2
n in an alternative way. Suppose that |24KX′ | and |18KX′ | are

not composed with the same pencil. Take |G| := |M24|F |. Pick a generic irreducible element C
of |G|. Then we have ξ = (π∗(KX)|F ·C) > 2

19 by Lemma 2.4. Thus, (π∗(KX)|F )2 > 1
24ξ >

1
12·19 .

Since r(X) = 2340 and r(X)(π∗(KX)|F )2 is an integer, we see (π∗(KX)|F )2 > 11
2340 . So we have

L2
n > 8 whenever n > 42.

Assume that |24KX′ | and |18KX′ | are composed with the same pencil. Since P24 = 3, we
may set m0 = 24 and Λ = |24KX′ |. We have θ = 2. The argument in Subcase 3.4.3 implies that

(π∗(KX)|F )2 > 4θ2

(m̃0 + θ)(3m0 + 4θ)
=

1

130
.

We have L2
n > 8 whenever n > 33. 2
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For very general curves C̃ on F , one has

(Ln · C̃) > n

19
(σ∗(KF0) · C̃) > 2n

19

by Lemma 2.5. Therefore, (Ln · C̃) > 4 for n > 38. Lemma 2.3 implies that |KF + dLne| gives a

birational map for n > 42. Thus, Φm is birational for all m > 61. 2

Theorem 6.2. Let X be a minimal projective 3-fold of general type. If δ(X) 6 15, then Φm is

birational for all m > 56.

Proof. Set m0 = δ(X). By considering a sub-pencil Λ of |m0KX |, we may always assume that

we have an induced fibration f : X ′ −→ Γ onto a curve Γ. By Chen and Hacon [CH07], we may

assume q(X) = 0. Thus, Γ ∼= P1. By [CC10b, Corollary 3.13] and [CC10b, Lemma 2.32], we know

that δ(X) 6 10 as long as F is a (1, 0) surface. Therefore, it suffices to consider the following

three cases:

(1) δ(X) 6 15 and F is a (1, 2) surface;

(2) δ(X) 6 15 and F is neither a (1, 2) surface nor a (1, 0) surface;

(3) δ(X) 6 10 and F is a (1, 0) surface.

Case 1. Without losing of generality, let us assume δ(X) = 15. Take |G| to be the moving part of
|KF |. Then, by Table A3, we have ξ > 1

11 . We have m0 = 15 and β 7→ 1
16 . So αm > 2 whenever

m > 55. By Corollary 5.3, |mKX′ | separates different general fibers F as long as m > 35. On the
other hand, Kawamata and Viehweg vanishing and Lemma 2.1 imply the following, whenever
m > 49:

|mKX′ ||F � |KX′ + d(m− 16)π∗(KX)e+ F ||F
� |KF + d(m− 16)π∗(KX)|F e
� |(KF + dQme+ C) + C|

where Qm is a nef and big Q-divisor. Thus, by [CC10b, Lemma 2.17], Φm distinguishes different

generic curves C for m > 49. Finally Theorem 2.7 implies that Φm is birational for all m > 55.

Case 2. Still assume δ(X) = 15. Parallel to the respective argument in the proof of Theorem 6.1,

one knows that |mKX′ | distinguishes different general fibers F for m > 35. By the surface

theory, we see that F is either a surface with K2
F0

> 2 or a (1, 1) surface. We want to study the

linear system |KF + dLne|. In fact, by the estimation in Subcase 3.4.1 and Table A4, we have

L2
n > n2/(32 · 6) > 8 whenever n > 40. Similarly we have (Ln · C̃) > 4 for all n > 32 and for

all curves C̃ on F passing through very general points. By Lemma 2.3, we see that |KF + dLne|
gives a birational map for all n > 40. Similar to what discussed in the proof of Theorem 6.1, we

have proved that Φm is birational for all m > n+ 16 > 56.

Case 3. When δ(X) 6 10, we have much better birationality result even though F is a (1, 0)

surface. In fact, parallel argument shows that Φm is birational for all m > 39. The proof is more

or less similar to the above proofs. We leave it as an exercise to interested readers. 2

Theorems 5.1, 6.1, and 6.2 imply Theorem 1.6(2).
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7. Threefolds with δ(V ) = 2

This section is devoted to classifying minimal projective 3-folds of general type with δ(X) = 2,
that is, pg(X) 6 1 and P2(X) > 2.

Assume that P2 > 2. We first recall the following known results:

(a) if d2 = 3, then Φm is birational for all m > 7 by [CC10b, Theorem 2.20];

(b) if d2 = 2, Φm is birational for all m > 10 by [CC10b, Theorem 2.22];

(c) if q(X) > 0, then Φm is birational for all m > 7 by Chen and Hacon [CH07] and for m = 6
by Chen et al. [CCJ13].

The purpose of this section is to prove that Φm is birational for m > 11 and classify 3-folds
such that Φ10 is not birational. Therefore, we may and do assume that q(X) = 0, d2 = 1 and
b = g(Γ) = 0. Let F be the general fiber of the induced fibration f : X ′ → P1 from Φ2.

7.1 Birationality of Φm for m > 11
Lemma 7.1. The linear system |mKX′ | distinguishes different general fibers of f for all m > 9.

Proof. When pg(F ) > 0, by [CC10b, Proposition 2.15(i)], one has Pk > 0 for k > 7. Thus, for all
m > 9, mKX′ > F , hence |mKX′ | distinguishes different general fibers of f .

When pg(F ) = 0, one has χ(OX) 6 1 (cf. [CC10b, Lemma 2.32]). By [CC10b, Lemma 3.2],
one has P5 > P2 > 0. Then clearly Pk > 0 for all k > 5. Thus, for all m > 7, mKX′ > F and,
hence, |mKX′ | distinguishes different general fibers of f . 2

Proposition 7.2. Assume P2(X) > 2, q(X) = 0, d2 = 1 and F is not a (1, 2) surface. Then Φm

is birational for all m > 10.

Proof. Set Ln := nπ∗(KX)|F which is a nef and big Q-divisor on F . Kawamata and Viehweg
vanishing gives the following surjective map:

H0(X ′,KX′ + dnπ∗(KX)e+ F ) −→ H0(F,KF + dnπ∗(KX)e|F ).

Together with Lemma 7.1, it is sufficient to prove that |KF + dLne| gives a birational map
for n > 7 because

|(n+ 3)KX′ | � |KX′ + dnπ∗(KX)e+ F |.

Claim 7.2.1. If K2
F0

> 2 or F0 is of type (1, 0), then |KF + dLne| is birational for n > 7.

First of all, for any curve C̃ ⊂ F passing through very general points of F , we estimate
(Ln · C̃) for n > 7. Clearly we have g(C̃) > 2. Set m0 = 2 and Λ = |2KX′ |. By Lemmas 2.1
and 2.5, we have

(Ln · C̃) > 7(π∗(KX)|F · C̃) > 7
3(σ∗(KF0) · C̃) > 4.

If K2
F0

> 2, then we have

L2
n > 49(π∗(KX)|F )2 > 49(1

3σ
∗(KF0))2 > 98

9 > 8.

If F0 is a (1, 0) surface, we have P4 > 2P2 > 4 since χ(OX) 6 1. When d4 > 2, we set m0 = 2,
Λ = |2KX′ | and |G| = |M4|F |. Then β = 1

4 , ξ > 1
3(σ∗(KF0) · C) > 2

3 and so L2
n > 49

6 > 8.
When d4 = 1, we set m0 = 4 and Λ = |4KX′ |. Clearly |2KX′ | and |4KX′ | induce the same

fibration f . Take |G| = |2σ∗(KF0)|. Since θ > 3, we have β > 3
14 by Lemma 2.1. Thus, ξ > 6

7 and
so L2

n > 49 · 3
14 ·

6
7 > 8. By Lemma 2.3, the claim follows.
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Claim 7.2.2. If F0 is a (1, 1) surface, then |KF + dLne| is birational for n > 7.

Following the similar argument as above, it is easy to see that L2
n > 64

7 > 8 and (Ln · C̃) > 4
for all n > 8. We consider the linear system |KF + d7π∗(KX)|F e| in an alternative way. Note
that |2σ∗(KF0)| is base point free. Pick a generic irreducible element C ∈ |2σ∗(KF0)|. Since
OΓ(1) ↪→ f∗ωX′ , we have f∗ω

2
X′/Γ ↪→ f∗ω

10
X′ . The semi-positivity implies that f∗ω

2
X′/Γ is generated

by global sections, which directly implies 10KX′ |F > C. Thus, Φ10 distinguishes different C. By
Lemma 2.1, we have 6π∗(KX)|F ≡ C+H6 for an effective Q-divisor H6 on F . Thus, the vanishing
theorem implies

|KF + d7π∗(KX)|F −H6e||C = |KC +D|

with deg(D) > 2(d7π∗(KX)|F − C −H6e · σ∗(KF0)) > 2. Since C is non-hyperelliptic, |KC +D|
gives a birational map. Thus |KF + d7π∗(KX)|F e| is birational. 2

Proposition 7.3. Assume P2(X) > 2, q(X) = 0, d2 = 1 and F a (1, 2) surface. Then Φm is
birational for all m > 11.

Proof. Take |G| to be the moving part of |σ∗(KF0)|. Modulo birational modifications, we may
assume that |G| is base point free. Pick a generic irreducible element C of |G|. It is also known
that g = 2.

Claim 7.3.1. The linear system |mKX′ | distinguishes different general members of |G| for m> 9.

Proof. Clearly |G| is composed with a rational pencil since q(F ) = 0. We shall prove |mKX′ ||F �
|G| and thus the statement follows. In fact, by Lemma 2.1, we have

3π∗(KX) ≡ σ∗(KF0) +H3

for an effective Q-divisor H3 on F . Thus, for m > 10,

Qm := (m− 3)π∗(KX)|F − 2H3 − 2σ∗(KF0) ≡ (m− 9)π∗(KX)|F

is nef and big. It follows that KF + dQme+σ∗(KF0) > 0 by [CC10b, Lemma 2.14]. We thus have
the following:

|mKX′ ||F � |KX′ + F + d(m− 3)π∗(KX)e||F
= |KF + d(m− 3)π∗(KX)e|F |
� |KF + d(m− 3)π∗(KX)|F − 2H3e|
= |(KF + dQme+ σ∗(KF0)) + σ∗(KF0)|
� |σ∗(KF0)| � |G|

where the first equality follows from the Kawamata and Viehweg vanishing [Kaw82, Vie82].
Therefore, |mKX′ | distinguishes general members of |G| for m > 10. Moreover, for m = 9,

|9KX′ ||F � |5KX′ ||F � |KX′ + d2π∗(KX)e+ F ||F
= |KF + d2π∗(KX)e|F | � |G|

where the equality is again due to Kawamata and Viehweg vanishing. Hence, |9KX′ | distinguishes
general members of |G| as well, which asserts the claim. 2

From Table A3, one has ξ > 1
2 . Take m > 11, then αm > 5

2 > 2. This means that |mKX′ ||C
distinguishes points on C. Thus, by Theorem 2.7 and Claim 7.3.1, Φm is birational for all
m > 11. 2
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Now Theorem 1.8.1 follows from Propositions 7.2 and 7.3. That is, if P2 > 2, then Φm is
birational for m > 11.

If either ξ > 1
2 or β > 1

3 , then α10 > 2. Hence the following consequence is immediate.

Corollary 7.4. Let X be a minimal projective 3-fold of general type. Assume P2(X) > 2,
q(X) = 0, d2 = 1 and F0 a (1, 2) surface. If either ξ > 1

2 or β > 1
3 or P2 > 2, then Φ10 is

birational.

Propositions 7.2, 7.3 and Corollary 7.4 also imply the following result.

Corollary 7.5. Let X be a minimal projective 3-fold of general type. Assume P2 > 2 and Φ10

is not birational. Then P2 = 2, q(X) = 0 and |2KX′ | is composed with a rational pencil of (1, 2)
surfaces.

7.2 Classification
In the rest of this section, we classify minimal 3-folds X of general type which satisfy the following
assumptions:

P2(X) = 2 and Φ10 is not birational. (])

Note that Corollary 7.5 implies that |2KX | induces a fibration f : X ′ −→ P1 with the general
fiber F a (1, 2) surface.

Lemma 7.6. If X satisfies (]), then 0 6 χ(OX) 6 3.

Proof. Note that the general fiber F of f is a (1, 2) surface. Since q(F ) = 0, we have q(X) = 0,
h2(OX) = h1(P1, f∗ωX′) and pg(X) = h0(f∗ωX′). Since P2(X) = 2 implies pg(X) 6 1, we see
χ(OX) > 0. By Fujita’s semi-positivity [Fuj78], we have χ(OX) 6 3. 2

Theorem 7.7. Let X be a minimal projective 3-fold of general type. Assume P2 = 2, q(X) = 0
and F a (1, 2) surface. Then Φ10 is birational under one of the following conditions:

(1) P3 > 4;

(2) P4 > 6;

(3) P5 > 8;

(4) P6 > 14.

Proof. We set m0 = 2. Pick a general fiber F of f : X ′ −→ Γ and a generic irreducible element C
of |G| := Mov|σ∗(KF0)| on F . For m1 = 3, 4, 5 and 6, we have Pm1 > 4. Modulo further birational
modifications to π, we may assume that the moving part |Mm1 | of |m1KX′ | is base point free.
We consider the following natural maps:

H0(X ′, Sm1)
µm1−→ H0(F, Sm1|F )

νm1−→ H0(C, Sm1|C)

where Sm1 ∈ |Mm1 | denotes the general member.
Let Mov|Sm1|F | be the moving part of |Sm1|F | and let Tm1 be a general element in Mov|Sm1|F |

when h0(F, Sm1|F ) > 1. Clearly

(Sm1 · C)X′ > (Tm1 · C)F > 0.

Since F and C are general, both µm1 and νm1 are non-zero maps. In particular, h0(F, Sm1|F ) > 0
and h0(C, Sm1 |C) > 0.
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Let F(r) be a general element in Mov|Sm1 − rF | if h0(Sm1 − rF ) > 2. Let C(r) be a general
element in Mov|Tm1 − rC| if h0(Tm1 − rC) > 2. Replace X ′ by its birational modification, we
may and do assume that Mov|Sm1 − rF | is free.

Clearly, for 0 < r 6 h0(X ′, Sm1)/h0(F, Sm1|F ), we have

h0(X ′, Sm1 − rF ) > h0(X ′, Sm1)− r · h0(F, Sm1|F ). (20)

Claim 7.7.1. If (Tm1 · C) 6 1, then (Tm1 · C) = 0.

Proof. In fact, if |Tm1 | 6= ∅ and |Tm1 | is not composed of the same pencil as that of |C|, then
Φ|Tm1 |(C) is a curve and so h0(C, Tm1 |C) > 2. Note that g(C) = 2. The Riemann–Roch theorem
and the Clifford theorem imply that (Tm1 ·C) = deg(Tm1 |C) > 2, a contradiction. Hence, either
|Tm1 | is composed of the same pencil as that of |C| on F or |Tm1 |= ∅. Claim 7.7.1 now follows. 2

Claim 7.7.2. Keep the same notation as above. Then Φ10 is birational under one of the following
conditions:

(i) (Tm1 · C) > m1/2;

(ii) Tm1 · C = 0 and h0(F, Tm1) > 1 +m1/3;

(iii) Tm1 > tC for some rational number t > m1/3;

(iv) either |Tm1 | = ∅ and Pm1 > 1 +m1/2 or |Tm1 | 6= ∅ and b(Pm1 − 1)/h0(F, Tm1)c > m1/2;

(v) F(r) (respectively C(r)) is algebraically equivalent to F (respectively C) and (r + 1)/m1 >
1
2

(respectively (r + 1)/m1 >
1
3).

Proof. If (Tm1 · C) >m1/2, then ξ > (1/m1)(Sm1 · C) > (1/m1)(Tm1 · C) > 1
2 . Then Corollary 7.4

implies that Φ10 is birational, which proves condition (i).
Now we prove condition (iv). We claim that we have

m1π
∗(KX) > Sm1 > rF

for an integer r > m1/2. In fact, when |Tm1 | = ∅, |Sm1 | is composed of the same pencil as that of
|F | and we may take r := Pm1−1. When |Tm1 | 6= ∅, we may take r = b(Pm1 − 1)/h0(F, Tm1)c and
then Sm1 > rF since dim im(µm1) 6 h0(F, Tm1). Then Lemma 2.1 implies β > r/(m1 + r) > 1

3 .
So Φ10 is birational by Corollary 7.4, which asserts condition (iv).

Since m1π
∗(KX)|F > Tm1 > tC, we have β > 1

3 and Φ10 is birational by Corollary 7.4, which
proves condition (iii).

If (Tm1 · C) = 0 and h0(F, Tm1) > 1 + m1/3, then |Tm1 | is composed of the same pencil as
that of |C| and Tm1 > tC where t > h0(Tm1) − 1. Hence, Φ10 is birational by condition (iii),
which proves condition (ii).

Finally, if F(r) is algebraically equivalent to F , then Sm1 > F(r) + F ∼ (r + 1)F . Hence,

β > (r + 1)/(m1 + r + 1) > 1
3 . Thus, Φ10 is birational by Corollary 7.4. If C(r) is algebraically

equivalent to C, then we have β > (r + 1)/m1 >
1
3 as well. Hence, Φ10 is birational, which verifies

condition (v). 2

We return to the proof of Theorem 7.7.

Part I. P3 > 4. Set m1 = 3. By Claims 7.7.2(i) and (ii) and 7.7.1, we may assume (T3 · C) = 0
and h0(F, T3) 6 2. Also by Claim 7.7.2(iv), we may assume |T3| 6= ∅ and h0(F, T3) = 2.

By inequality (20), one gets h0(S3 − F ) > 2. Clearly we have that S3 > F + F(1) and that,

by assumption, F(1) is nef. Since r = 1 and (r + 1)/m1 = 2
3 >

1
2 , we may assume that F(1) is not

algebraically equivalent to F by Claim 7.7.2(v).

1065

https://doi.org/10.1112/S0010437X14007817 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007817


J. A. Chen and M. Chen

Now clearly we have h0(F, F(1)|F ) > 2. Note that we have

|10KX′ | � |KX′ + d6π∗(KX)e+ F(1) + F |.

Kawamata and Viehweg vanishing gives the surjective map

H0(X ′,KX′ + d6π∗(KX)e+ F(1) + F )

−→ H0(F,KF + d6π∗(KX)e|F + F(1)|F ).

It is sufficient to verify the birationality of the rational map defined by |KF +d6π∗(KX)|F e+Γ(1)|
where Γ(1) is a generic irreducible element in Mov|F(1)|F |.

We claim that (π∗(KX) · Γ(1)) > 1
2 . In fact, if Γ(1) is algebraically equivalent to C, then

(π∗(KX) · Γ(1)) = ξ > 1
2 by Table A3. On the other hand, if Γ(1) is not algebraically equivalent

to C, then we should have (Γ(1) · C) > 2. By Lemma 2.1, (π∗(KX)|F · Γ(1)) > 1
3(C · Γ(1)) > 2

3 .
Clearly |KF + d6π∗(KX)|F e + Γ(1)| distinguishes different generic Γ(1) since KF +

d6π∗(KX)|F e > 0. Now by the vanishing theorem again we have the following surjective map:

H0(F,KF + d6π∗(KX)|F e+ Γ(1)) −→ H0(Γ(1),KΓ(1)
+D)

where D := d6π∗(KX)|F e|Γ(1)
with deg(D) > 6(π∗(KX) · Γ(1)) > 2. So Φ10 is birational by the

ordinary birationality principle.

Part II. P4 > 6. We set m1 = 4. By Claim 7.7.2(i) and (4), we may assume (T4 · C) 6 2 and
h0(F, T4) > 2. Claim 7.7.1 implies either (T4 · C) = 0 or (T4 · C) = 2.

(II-1). If h0(F, T4) = 2, we have h0(X ′, S4−2F ) > 2 by inequality (20). We consider F(2) and may
assume that F(2) is not algebraically equivalent to F by Claim 7.7.2(v). Now h0(F, F(2)|F ) > 2
and pick a generic irreducible element Γ(2) of Mov|F(2)|F |. By Kawamata and Viehweg vanishing,
we have

|10KX′ ||F � |KX′ + d5π∗(KX)e+ F(2) + 2F ||F
= |KF + d5π∗(KX)e|F + F(2)|F |
� |KF + d5π∗(KX)|F e+ Γ(2)|.

When C is algebraically equivalent to Γ(2) (in particular, C ∼ Γ(2) due to the fact that
q(F ) = 0), since

deg(5π∗(KX)|C) = 5ξ > 5
2

and
|KF + d5π∗(KX)|F e+ Γ(2)||C = |KC + d5π∗(KX)|F e|C |

with deg(d5π∗(KX)|F e|C) > 2, we see that Φ10|C is birational by Lemma 7.1 and Claim 7.3.1.
When C is not algebraically equivalent to Γ(2), we have (Γ(2) · C) > 2 and

KF + d5π∗(KX)|F e+ Γ(2) > KF + dQ1 + Ce+ Γ(2)

for certain nef and big Q-divisor Q1 on F by Lemma 2.1. The vanishing theorem also shows that

|KF + dQ1e+ Γ(2) + C||C = |KC + (Q1 + Γ(2))|C |

gives a birational map since deg((Q1 + Γ(2))|C) > 2. Thus, we have shown that Φ10 is birational
by Lemma 7.1 and Claim 7.3.1.
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(II-2). If (T4 · C) = 0 and h0(F, T4) > 3, Φ10 is birational by Claim 7.7.2(ii).

(II-3). If (T4 ·C) = 2 and h0(F, T4) > 3, then |T4| is not composed of the same pencil as that of |C|
and h0(C, T4|C) > 2. By the Riemann–Roch and the Clifford theorem, we see deg(T4|C) = h0(C,
T4|C) = 2. Thus, dim im(ν4) = 2.

(II-3-1). If h0(F, T4) > 4, we have h0(F, T4−C) > 2. Denote by C(1) a generic irreducible element
of Mov|T4 − C|. Then we have T4 > C + C(1) and we may assume that C is not algebraically
equivalent to C(1) by Claim 7.7.2(v), which implies (C(1) ·C) > 2. By the Kawamata and Viehweg
vanishing and properties of the roundup operator, we have

|10KX′ ||F � |KX′ + d3π∗(KX)e+ S4 + F ||F
= |KF + d3π∗(KX)e|F + S4|F |
� |KF + d3π∗(KX)|F e+ C(1) + C|

and
|KF + d3π∗(KX)|F e+ C(1) + C||C = |KC +D|,

where D := (d3π∗(KX)|F e + C(1))|C with deg(D) > (C(1) · C) > 2. Thus Φ10 is birational by
Lemma 7.1 and Claim 7.3.1.

(II-3-2). If h0(F, T4) = 3, we have h0(S4 − F ) > 3. Again, we pick a general member F(1) ∈
Mov|S4 − F |. Consider the natural map

H0(X ′, F(1))
µ′4−→ H0(F, F(1)|F ) ⊂ H0(F, S4|F ).

When dim im(µ′4) = 3, we see dim ν4(im(µ′4)) = dim ν4(im(µ4)) = 2; when dim im(µ′4) = 2, we
consider the situation dim ν4(im(µ′4)) 6 1 at first. In both cases, h0(F, F(1)|F −C) > 0 and thus
F(1)|F − C > 0. By the vanishing theorem once more, we have

|10KX′ ||F � |KX′ + d5π∗(KX)e+ F(1) + F ||F
= |KF + d5π∗(KX)e|F + F(1)|F |
� |KF + d5π∗(KX)|F e+ C|.

Applying the vanishing theorem again, we see

|KF + d5π∗(KX)|F e+ C||C = |KC +D|,

where D := (d5π∗(KX)|F e)|C with deg(D) > 5ξ > 2. Thus Φ10 is birational by Lemma 7.1 and
Claim 7.3.1.

When dim im(µ′4) = dim ν4(im(µ′4)) = 2, then |F(1)|F | is not composed with the same pencil
as that of |C|. In particular, (F(1) · C) > 2. By Lemma 2.1, we have

KF + d5π∗(KX)|F e+ F(1)|F > KF + dQ2 + Ce+ F(1)|F

for certain nef and big Q-divisor Q2. Since the vanishing theorem gives

|KF + dQ2e+ F(1)|F + C||C = |KC +D′|

with deg(D′) > (F(1) · C) > 2, we see Φ10 is birational too by Lemma 7.1 and Claim 7.3.1.
Consider the last case dim im(µ′4) = 1. We see that |F(1)| is composed of the same pencil as

that of |F | and F(1) > 2F . Thus S4 > 3F and, since 3/m1 >
1
2 , Φ10 is birational by Claim 7.7.2(v).
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Part III. P5 > 8. We set m1 = 5. By Claims 7.7.1 and 7.7.2(i), (ii) and (iv), we may assume

(T5 ·C) = 2 and h0(F, T5) > 3. Clearly |T5| is not composed of the same pencil as that of |C| and so

that h0(C, T5|C) > 2. By the Riemann–Roch and the Clifford theorem, we see deg(T5|C) = h0(C,

T5|C) = 2. Thus, dim im(ν5) = 2.

(III-1). If h0(F, T5) > 4, we have h0(F, T5 −C) > 2. Let C(1) be a generic irreducible element in
Mov|T5 − C|. Thus, we have T5 > C + C(1) and we may assume that C(1) is not algebraically
equivalent to C by Claim 7.7.2(v). Hence, (C(1) ·C) > 2. By the Kawamata and Viehweg
vanishing and properties of the roundup operator, we have the following:

|10KX′ ||F � |KX′ + d2π∗(KX)e+ S5 + F ||F
= |KF + d2π∗(KX)e|F + S5|F |
� |KF + d2π∗(KX)|F e+ C(1) + C|

and |KF + d2π∗(KX)|F e+ C(1) + C||C = |KC +D|, with

deg(D) > (C(1) · C) > 2.

Thus, Φ10 is birational by Lemma 7.1 and Claim 7.3.1.

(III-2). If h0(F, T5) = 3, we have h0(S5 − F ) > 5. Let F(1) ∈ Mov|S5 − F | be a general member.

We consider the natural map

H0(X ′, F(1))
µ′5−→ H0(F, F(1)|F ) ⊂ H0(F, S5|F ).

Clearly we have dim im(µ′5) 6 h0(F, T5) = 3.
When dim im(µ′5) = 3, we see dim ν5(im(µ′5)) = dim ν5(im(µ5)) = 2. Thus, |F(1)|F | is not

composed of the same pencil as that of |C|. Pick a generic irreducible element Γ(1) in the moving
part of |F(1)|F |. Then (Γ(1) · C) > 2. By the vanishing theorem, we have

|10KX′ ||F � |KX′ + d4π∗(KX)e+ F(1) + F ||F
= |KF + d4π∗(KX)e|F + F(1)|F |
� |KF + d4π∗(KX)|F e+ Γ(1)|.

Applying Lemma 2.1, we have

|KF + d4π∗(KX)|F e+ Γ(1)| � |KF + dQ3 + Ce+ Γ(1)|

where Q3 is certain nef and big Q-divisor on F . Applying the vanishing once more, we have

|KF + dQ3e+ Γ(1) + C||C = |KC +D|

with deg(D) > (Γ(1) · C) > 2. Thus, Φ10 is birational by Lemma 7.1 and Claim 7.3.1.

When dim im(µ′5) 6 2, we have h0(X ′, F(1)− 2F ) > 1 and hence S5− 3F > 0. Therefore, Φ10

is birational by Claim 7.7.2(v).

Part IV. P6 > 14. We set m1 = 6. By Claims 7.7.1 and 7.7.2(i), (ii) and (iv), we may assume

2 6 (T6 ·C) 6 3 and h0(F, T6) > 4. Clearly |T6| is not composed of the same pencil as that of |C|.
Thus, by the Riemann–Roch theorem and the Clifford theorem, dim im(ν6) = h0(C, T6|C) = 2.
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(IV-1). If h0(F, T6) > 5, then we see h0(F, T6 − C) > 3. We pick a general member C(1) in
Mov|T6 −C|. By Claim 7.7.2(v), we may assume that |C(1)| is not composed of the same pencil
as that of |C|. We shall analyze the natural map ν ′6 : H0(F,C(1)) 7→ H0(C,C(1)|C). Clearly
2 6 dim im(ν ′6) 6 h0(C, T6|C) = 2.

Since C(1) is not algebraically equivalent to C, one has (C(1) · C) > 2. By the vanishing
theorem, we have

|10KX′ ||F � |KX′ + dπ∗(KX)e+ S6 + F ||F
� |KF + dπ∗(KX)|F e+ C(1) + C|

and |KF + dπ∗(KX)|F e + C(1) + C||C = |KC + D| with deg(D) > (C(1) · C) = 2. Thus, Φ10 is
birational by Lemma 7.1 and Claim 7.3.1.

(IV-2). If h0(F, T6) = 4, we have h0(S6−F ) > 10. We pick a general member F(1) ∈Mov|S6−F |
and consider the natural map

H0(X ′, F(1))
µ′6−→ H0(F, F(1)|F ) ⊂ H0(F, S6|F ).

Clearly we have dim im(µ′6) 6 h0(F, T6) = 4.
When dim im(µ′6) 6 3, we have F(1) − 3F > 0 and then S6 > 4F . By Claim 7.7.2(v), Φ10 is

birational.
When dim im(µ′6) = 4, we see dim ν6(im(µ′6)) = dim ν6(im(µ6)) = 2. Thus, h0(F, F(1)|F−C) =

2. Furthermore |F(1)|F | is not composed of the same pencil as that of |C|. Noting that a divisor
of degree one can not move on C, we see (F(1) · C) > 2. Denote by Γ(1) a general irreducible
element of Mov|F(1)|F −C|. Noting that S6 > F(1) + F and applying the vanishing theorem, we
have

|10KX′ | � |KX′ + d3π∗(KX)e+ F(1) + F |
� |KF + d3π∗(KX)|F e+ F(1)|F |.

If Γ(1) is not algebraically equivalent to C, we have (Γ(1) · C) > 2. The vanishing theorem gives

|KF + d3π∗(KX)|F e+ Γ(1) + C||C = |KC +D|

with deg(D) > (Γ(1) · C) > 2. Thus, Φ10 is birational by Lemma 7.1 and Claim 7.3.1. If Γ(1) is
algebraically equivalent to C, we have F(1)|F > 2C and write

F(1)|F = 2C +H6

where H6 is an effective divisor on F . Since 3π∗(KX)|F + F(1)|F − C − 1
2H6 is nef and big, the

Kawamata and Viehweg vanishing theorem implies the following surjective map

H0(F,KF + d3π∗(KX)|F + F(1)|F − 1
2H6e) −→ H0(C,D′)

where D′ := d3π∗(KX)|F + F(1)|F − 1
2H6 − Ce|C with deg(D′) > 3ξ + 1

2(F(1) · C) > 2. Thus, we
see that Φ10 is birational again by Lemma 7.1 and Claim 7.3.1. So we conclude the theorem. 2

Corollary 7.8 (Theorem 1.8(2)). Let X be a minimal projective 3-fold of general type with
δ(X) = 2. If Φ10 is not birational, then the weighted basket B(X) = (BX , P2, χ(OX)) are
dominated by an initial basket listed in Tables II1, II2 and II3 in Appendix A.
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Proof. By Lemma 7.6 and Theorem 7.7, we see 0 6 χ(OX) 6 3, P2(X) = 2, P3(X) 6 3,

P4(X) 6 5, P5(X) 6 7 and P6(X) 6 13. According to [CC10a, § 3], the total number of numerical

types of B(X) is finite. We give a list of B0(X) in Tables II1, II2 and II3. 2

8. Projective 4-folds of general type with positive geometric genus

In order to study 4-folds of general type, we need to prove a slightly general statement on 3-folds.

Theorem 8.1. Let ν : X̃ −→ X be a birational morphism from a nonsingular projective 3-fold

X̃ of general type onto a minimal model X with pg(X) > 0. Let Qλ be any Q-divisor on X̃

satisfying Qλ ≡ λν∗(KX) for some rational number λ > 16. Then |KX̃ + dQλe| gives a birational

map onto its image. In particular, Φm is birational for all m > 18.

Proof. From the proof of Corollary 4.10, we only need to consider the following two cases.

Case 1: P4 > 2.

Case 2: P4 = 1 and P5 > 3.

Set m0 = 4 (respectively 5) in case 1 (respectively case 2). Take a sub-pencil Λ ⊂ |m0KX |. We

use the same setup as in § 2.1. We may and do assume that π factors through ν, i.e. there is a

birational morphism µ : X ′ −→ X̃ so that π = ν ◦ µ and that µ∗({Qλ}) ∪ {exc. divisors of µ}
has simple normal crossing supports.

Since

µ∗OX′(KX′ + dµ∗(Qλ)e) ⊆ µ∗OX′(KX′ + µ∗dQλe) ⊆ OX̃(KX̃ + dQλe),

it is sufficient to prove the birationality of Φ|KX′+dµ∗(Qλ)e|. We write Q′λ := µ∗(Qλ) ≡ λπ∗(KX).

We have an induced fibration f : X ′ −→ Γ onto a smooth projective curve. Let F be a

general fiber of f . Recall that we have m0π
∗(KX) ∼Q θF + E′Λ for a positive integer θ and an

effective Q-divisor E′Λ on X ′.

Without loss of generality, we may assume pg(X) = 1 (the case with pg(X) > 1 is much

easier). Clearly one has pg(F ) > 0.

Claim 8.1.1. One has h0(X ′,KX′ + dQ′λe) > 0 for λ > 2m0 + 1.

By Lemma 2.1,

π∗(KX)|F ≡
1

m0 + 1
σ∗(KF0) +Hm0

for a certain effective Q-divisor Hm0 on F . Since Q′λ − F − (1/θ)E′Λ ≡ (λ−m0/θ)π
∗(KX) is nef

and big, Kawamata and Viehweg vanishing implies the surjective map

H0

(
X ′,KX′ +

⌈
Q′λ −

1

θ
E′Λ

⌉)
−→ H0

(
F,KF +

⌈
Q′λ −

1

θ
E′Λ

⌉∣∣∣∣
F

)
. (21)

Let

Qλ,F : =

(
Q′λ −

1

θ
E′Λ

)∣∣∣∣
F

− (m0 + 1)Hm0 − σ∗(KF0)

≡
(
λ− m0

θ
−m0 − 1

)
π∗(KX)

∣∣∣∣
F

,
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which is nef and big. Since pg(F ) > 0, we have

h0

(
F,KF +

⌈
Q′λ −

1

θ
E′Λ

⌉∣∣∣∣
F

)
> h0

(
F,KF +

⌈(
Q′λ −

1

θ
E′Λ

)∣∣∣∣
F

− (m0 + 1)Hm0

)⌉
= h0(F,KF + dQλ,F e+ σ∗(KF0)) > 2

by [CC10b, Lemma 2.14]. This verifies the claim.

Claim 8.1.2. The linear system |KX′ + dQ′λe| distinguishes different general fibers of f for any
λ > 3m0 + 1.

Proof. When g(Γ) = 0, we consider Q′ζ := Q′λ − F − (1/θ)E′Λ ≡ ζπ∗(KX) with ζ = λ−m0/θ. It

is clear that KX′ + dQ′λe > (KX′ + dQ′ζe) + F and hence |KX′ + dQ′λe| distinguishes different
general fibers by Claim 8.1.1 since ζ > 2m0 + 1.

When g(Γ) > 0, we have θ > 2. Pick two different general fibers F1 and F2 of f . The vanishing
theorem gives the surjective map

H0

(
X ′,KX′ +

⌈
Q′λ −

2

θ
E′Λ

⌉)
−→

2⊕
i=1

H0

(
Fi,

(
KX′ +

⌈
Q′λ − F1 − F2 −

2

θ
E′Λ

⌉
+ F1 + F2

)∣∣∣∣
Fi

)
where we note that (KX′ + dQ′λ − F1 − F2 − (2/θ)E′Λe)|Fi > 0 due to Claim 8.1.1 and the fact
(F1 + F2)|Fi = 0. Hence, |KX′ + dQ′λe| distinguishes F1 and F2. 2

Now we discuss two cases independently.

Case 1: P4 > 2.
If F is a (1, 2) surface, we take |G| := Mov|σ∗(KF0)| and a general member C ∈ |G|.
By the surjection map in (21) and Claim 8.1.2, it is sufficient to study the linear system
|KF + d(Q′λ − (1/θ)E′Λ)|F e|. For any t, let

Lλ,t :=

(
Q′λ −

1

θ
E′Λ

)∣∣∣∣
F

− tσ∗(KF0)− 5tH4 ≡
(
λ− 4

θ
− 5t

)
π∗(KX)

∣∣∣∣
F

,

which is nef and big as long as λ − (4/θ) − 5t > 0. Note also that (Q′λ − (1/θ)E′Λ)|F > Lλ,t +
tσ∗(KF0). For simplicity, Lλ,0 is denoted by Lλ. In fact, for λ > 14 and by [CC10b, Lemma 2.14],
one has

KF +

⌈
Q′λ −

1

θ
E′Λ

⌉∣∣∣∣
F

> (KF + dLλ,2e+ σ∗(KF0)) + C > C.

Thus, |KF + d(Q′λ − (1/θ)E′Λ)|F e| separates different general curves C when λ > 14. Restricting
to the curve C, one sees by the vanishing theorem that∣∣∣∣KF +

⌈(
Q′λ −

1

θ
E′Λ

)∣∣∣∣
F

⌉∣∣∣∣ ∣∣∣∣
C

> |KF + dLλ,1e+ C||C = |KC + dLλ,1e|C |.

Since deg(dLλ,1e|C) > (λ−(4/θ)−5)ξ > 2 for ξ > 2
7 (cf. Table A3 with m0 = 4). Thus, Φ|KX′+dQ′λe|

separates points on the general curve C and, hence, is birational when λ > 16.
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Assume that F is not a (1, 2) surface. We would like to study |KF + dLλe| where Lλ :=
(Q′λ − (1/θ)E′Λ)|F , making use of the relation (21). If K2

F0
> 2, inequalities (9) and (11) imply

L2
λ > 2(λ− 4)2

25
> 8

whenever λ > 14. If F is a (1, 1) surface, then we have q(X) = g(Γ) > 0 and h2(OX) = 0 as seen
in the proof of case 2 of Corollary 4.10. Hence, we have χ(OX) 6 0 and Reid’s Riemann–Roch
formula gives P5 > P4 > 2. In particular, we have P5 > 3. We omit the discussion for the situation
when |5KX′ | and |4KX′ | are composed with the same pencil since that is a comparatively much
better case. So may assume that |5KX′ ||F is moving on F . If we take |G1| := Mov|d5π∗(KX)e|F |,
we have βG1 = 1

5 . Then, by Lemmas 2.1 and 2.4, we have

L2
λ > (λ− 4)2

25
(σ∗(KF0) ·G1) > 2(λ− 4)2

25
> 8

whenever λ > 14. Finally, for both cases, (Lλ · C̃) > (2(λ− 4))/5 > 4 for λ > 14 and for any
very general curve C̃ on F . Therefore, by Lemma 2.3, |KF + dLλe| gives a birational map when
λ > 14.

Hence, when P4 > 2, Φ|KX′+dQ′λe| is birational for λ > 16.

Case 2: P4 = 1 and P5 > 3.
We set m0 = 5. If d5 = 1, we set Λ = |5KX |. Then we are in a much better situation than that
of P3 = 2 since we have θ > 2 (and noting that θ/m0 = 2

5 >
1
3). We omit the details and leave

this as an exercise to interested readers.
If d5 > 2, we take a sub-pencil Λ ⊂ |5KX | and Λ induces a fibration f : X ′ −→ Γ onto

a smooth complete curve Γ. As we have seen in case 3 of Corollary 4.10, the general fiber F
satisfies K2

F0
> 2. For the similar reason, we can take m1 = 5 and |G| := Mov|m1KX′ |F |. Pick a

generic irreducible element C in |G|. Lemma 2.1 implies ξ = (π∗(KX) ·C) > 1
6(σ∗(KF0) ·C) > 1

3 .
We may write 5π∗(KX)|F ≡ C+N5 for an effective Q-divisor N5 on F . For two different generic
irreducible curves C1 and C2 in |G|, we set

Lλ,2 :=

(
Q′λ −

1

θ
E′Λ

)∣∣∣∣
F

− C1 − C2 − 2N5,

and

Lλ,1 :=

(
Q′λ −

1

θ
E′Λ

)∣∣∣∣
F

− C −N5,

respectively. It is clear that they are both nef and big whenever λ > 15.
Thanks to the vanishing theorem, we have the surjective map

H0(F,KF + dLλ − 2N5e)−→H0(C1,KC1 + dLλ,2e|C1 + C2|C1)

⊕ H0(C2,KC2 + dLλ,2e|C2 + C1|C2)

if λ > 15. It is clear that

H0(Ci,KCi + dLλ,2e|Ci + C2−i|Ci) 6= 0

since Lλ,2 is nef and big. Hence, |KF + d(Q′λ − (1/θ)E′Λ)|F − 2N5e|= |KF + dLλ − 2N5e|
separates different general curves C in |G|. This also implies that |KF + d(Q′λ − (1/θ)E′Λ)e|

1072

https://doi.org/10.1112/S0010437X14007817 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007817


Explicit birational geometry of 3-folds and 4-folds

can distinguish C1 and C2. Now applying the vanishing theorem once more, we get the surjective
map

H0(F,KF + dLλ −N5e) −→ H0(C,KC + dLλ,1e|C)

with

deg(dLλ,1e|C) >
(
λ− 5

θ
− 5

)
ξ > 2

whenever λ > 16 for ξ > 1
3 . Thus, by Theorem 2.7, |KX′ + dQ′λe| gives a birational map for

λ > 16. So we conclude the statement of the theorem. 2

Theorem 8.2 (Theorem 1.11). Let V be a nonsingular projective 4-fold of general type. Then:

(1) when pg(V ) > 2, Φm,V is birational for all m > 35;

(2) when pg(V ) > 19, Φm,V is birational for all m > 18.

Proof. Let Z be the minimal model of V . We set m0 = 1, Λ = |KZ | and use the setup in § 2.1.
Thus, we have an induced fibration f : Z ′ −→ Γ.

First we consider the case dim Γ = 1. Recall that we have MΛ ≡ θF for a general fiber F of
f , where θ > pg(Z)−1. It is clear that, when m > 3, |mKZ′ | distinguishes different general fibers
of f . Pick a general fiber F = X ′, which is a nonsingular projective 3-fold of general type with
pg(X

′) > 0. Replace by its birational model, we may assume that there is a birational morphism
ν : X ′ −→ X onto a minimal model. By Lemma 2.1, we have

π∗(KZ)|X′ ≡
θ

θ + 1
ν∗(KX) + J1

for an effective Q-divisor J1 on X ′. When m is large, since (m− 1)π∗(KZ)−X ′− (1/θ)E′Λ is nef
and big, Kawamata and Viehweg vanishing implies∣∣∣∣KZ′ +

⌈
(m− 1)π∗(KZ)− 1

θ
E′Λ

⌉∣∣∣∣∣∣∣∣
X′

=

∣∣∣∣KX′ +

⌈
(m− 1)π∗(KZ)− 1

θ
E′Λ

⌉
X′

∣∣∣∣
� |KX′ + dRme|

where Rm := ((m− 1)π∗(KZ)−X ′ − (1/θ)E′Λ)|X′ . In fact, we have

Rm ≡
(
m− 1− 1

θ

)
π∗(KZ)

∣∣∣∣
X′

≡
(
mθ

θ + 1
− 1

)
ν∗(KX) +

(
m− 1− 1

θ

)
J1.

Since mθ/(θ + 1) − 1 > 16 whenever either m > 18 and pg(Z) > 19 or m > 35 and pg(Z) > 2,
Theorem 8.1 implies that |KX′ + dRm − (m− 1− 1/p)J1e| gives a birational map. Thus,
statements of the theorem follow in this case.

Next we consider the case dim Γ > 2. By definition, θ = 1. Clearly it is sufficient to consider
Φ|mKZ′ ||X′ for a general member X ′ ∈ |MΛ|. We consider a general X ′ and, similarly, we may
assume that there is a birational morphism ν : X ′ −→ X onto a minimal model X. Then
Kawamata’s extension theorem [Kaw99, Theorem A] still implies

π∗(KZ)|X′ > 1
2ν
∗(KX). (22)
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We consider the linear system |MΛ|X′ |, which may be assumed to be base point free modulo

further birational modifications. Pick a generic irreducible element S of this linear system. We

clearly have

π∗(KZ)|X′ >MΛ|X′ > S.

Modulo Q-linear equivalence, one has

2S 6 (π∗(KZ) +X ′)|X′ 6 KX′ .

Thus, Kawamata’s extension theorem gives

ν∗(KX)|S > 2
3σ
∗(KS0) (23)

where σ : S −→ S0 is the contraction onto the minimal model S0 of S. Both (22) and (23) imply

π∗(KZ)|S > 1
3σ
∗(KS0).

Write π∗(KZ)|X′ ≡ S + HΛ where HΛ is an effective Q-divisor on X ′. Since Rm − S − HΛ ≡
(m− 3)π∗(KZ)|X′ is nef and big, the vanishing theorem implies

|KX′ + dRm −HΛe||S = |KS + dRm − S −HΛe|S |
� |KS + dRm,Se|

where Rm,S := (Rm − S −HΛ)|S . Note that

Rm,S ≡ (m− 3)π∗(KZ)|S

≡ m− 3

3
σ∗(KS0) + Em,S

where Em,S is an effective Q-divisor on S. Now it is clear by Lemma 2.3 that |KS+dRm,S − Em,Se|
gives a birational map whenever m > 15. Again Kawamata and Viehweg vanishing shows that

|KX′ + dRme| distinguishes different elements S. Thus, we have shown that Φm,Z is birational

for all m > 15 in this case. We are done. 2

Brown and Reid kindly informed us of the following interesting canonical 4-folds.

Example 8.3. The general hypersurfaces W36 ⊂ P(1, 1, 3, 5, 7, 18) and Y36 ⊂ P(1, 1, 4, 5, 6, 18)

have canonical singularities, pg = 2. It is clear that the 17-canonical maps of these two 4-folds

are not birational.

Problem 8.4. It is a very interesting problem to find more examples of 4-folds of general type so

that Φm is not birational for large m.
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Appendix A. Tables

Table F0.

Types BX χ K3
X δ(X)

2a {4× (1, 2), (4, 9), (2, 5), (5, 13), 3× (1, 3), 2× (1, 4)} 2 1/1170 18

41 {5× (1, 2), (4, 9), 2× (3, 8), (1, 3), 2× (2, 7)} 2 1/252 13

Table F1.

Types BX χ K3
X δ(X)

2 {4× (1, 2), (4, 9), 2× (2, 5), (3, 8), 3× (1, 3), 2× (1, 4)} 2 1/360 15

3 {6× (1, 2), (5, 11), 4× (2, 5), (3, 8), 4× (1, 3), (2, 7), 2× (1, 4)} 3 23/9240 15

5.1 {7× (1, 2), (4, 9), 3× (2, 5), (5, 13), 4× (1, 3), (3, 11), (1, 4)} 3 61/25740 15

5.2 {7× (1, 2), (4, 9), 2× (2, 5), (7, 18), 4× (1, 3), (3, 11), (1, 4)} 3 1/660 15

5.3 {7× (1, 2), (4, 9), (2, 5), (9, 23), 4× (1, 3), (3, 11), (1, 4)} 3 47/45540 15

5a {7× (1, 2), (4, 9), (11, 28), 4× (1, 3), (3, 11), (1, 4)} 3 1/1386 15

5b {7× (1, 2), (4, 9), 3× (2, 5), (5, 13), 4× (1, 3), (4, 15)} 3 1/1170 15

53a {3× (1, 2), (4, 9), 2× (2, 5), (5, 13), 3× (1, 3), (1, 5)} 2 1/1170 15

Table F2.

Types BX χ K3
X δ(X)

1 {5× (1, 2), (3, 7), 3× (2, 5), 3× (1, 3), (3, 11)} 2 3/770 14

4 {7× (1, 2), (4, 9), 4× (2, 5), (4, 11), 3× (1, 3), (2, 7), 2× (1, 4)} 3 13/3465 14

4.5 {7× (1, 2), (4, 9), 4× (2, 5), (5, 14), 2× (1, 3), (2, 7), 2× (1, 4)} 3 1/630 14

5 {7× (1, 2), (4, 9), 4× (2, 5), (3, 8), 4× (1, 3), (3, 11), (1, 4)} 3 17/3960 14

5.4 {7× (1, 2), (4, 9), 4× (2, 5), (3, 8), 4× (1, 3), (4, 15)} 3 1/360 14

6 {9× (1, 2), 2× (3, 7), (2, 5), (4, 11), 4× (1, 3), 2× (2, 7), (1, 5)} 3 1/462 14

7 {5× (1, 2), (4, 9), (3, 7), 5× (1, 3), (2, 7), (1, 5)} 2 1/630 14

7a {5× (1, 2), (7, 16), 5× (1, 3), (2, 7), (1, 5)} 2 1/1680 14

10 {8× (1, 2), (4, 9), (3, 7), 2× (3, 8), 5× (1, 3), (2, 7), (1, 4), (1, 5)} 3 1/630 14

11 {9× (1, 2), 2× (3, 7), (3, 8), (4, 11), 3× (1, 3), (3, 10), (1, 4), (1, 5)} 3 3/3080 14

12 {9× (1, 2), (4, 9), (2, 5), 2× (3, 8), 4× (1, 3), 2× (2, 7), (1, 5)} 3 1/252 14

12.1 {9× (1, 2), (4, 9), (5, 13), (3, 8), 4× (1, 3), 2× (2, 7), (1, 5)} 3 67/32760 14

12a {9× (1, 2), (4, 9), (8, 21), 4× (1, 3), 2× (2, 7), (1, 5)} 3 1/630 14

14 {10× (1, 2), (3, 7), 2× (2, 5), 2× (3, 8), 6× (1, 3), 2× (2, 7),

(1, 4), (1, 5)} 4 1/770 14

15 {11× (1, 2), (4, 9), (3, 7), 2× (2, 5), (3, 8), (4, 11), 5× (1, 3), 2× (2, 7),

(1, 4), (1, 5)} 4 71/27720 14
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Table F2. Continued.

Types BX χ K3
X δ(X)

15.1 {11× (1, 2), (4, 9), (3, 7), 2× (2, 5), (7, 19), 5× (1, 3), 2× (2, 7),

(1, 4), (1, 5)} 4 47/23940 14

15.2 {11× (1, 2), (7, 16), 2× (2, 5), (3, 8), (4, 11), 5× (1, 3),

2× (2, 7), (1, 4), (1, 5)} 4 29/18480 14

16 {11× (1, 2), (4, 9), (3, 7), 2× (2, 5), 2× (3, 8), 6× (1, 3), (2, 7),

(3, 11), (1, 5)} 4 43/13860 14

16.1 {11× (1, 2), (4, 9), (3, 7), (2, 5), (5, 13), (3, 8), 6× (1, 3), (2, 7),

(3, 11), (1, 5)} 4 85/72072 14

16.2 {11× (1, 2), (7, 16), 2× (2, 5), 2× (3, 8), 6× (1, 3), (2, 7),

(3, 11), (1, 5)} 4 13/6160 14

16.4 {11× (1, 2), (7, 16), 2× (2, 5), 2× (3, 8), 6× (1, 3), (5, 18), (1, 5)} 4 1/720 14

16.5 {11× (1, 2), (4, 9), (3, 7), 2× (2, 5), 2× (3, 8), 6× (1, 3), (5, 18),

(1, 5)} 4 1/420 14

17 {9× (1, 2), 2× (3, 7), 2× (4, 11), 3× (1, 3), (2, 7), (1, 4), (1, 5)} 3 3/1540 14

18 {9× (1, 2), 2× (3, 7), (3, 8), (4, 11), 4× (1, 3), (3, 11), (1, 5)} 3 23/9240 14

18b {9× (1, 2), 2× (3, 7), (7, 19), 4× (1, 3), (3, 11), (1, 5)} 3 83/43890 14

20 {7× (1, 2), 2× (4, 9), (2, 5), (3, 8), 6× (1, 3), (2, 7), (1, 4), (1, 5)} 3 1/504 14

21 {6× (1, 2), (4, 9), (3, 8), 3× (1, 3), (3, 10), (1, 5)} 2 1/360 14

23 {8× (1, 2), (4, 9), (3, 7), (2, 5), (4, 11), 4× (1, 3), (3, 10), (1, 4),

(1, 5)} 3 19/13860 14

25 {9× (1, 2), (5, 11), (4, 9), 3× (2, 5), (3, 8), 7× (1, 3), 2× (2, 7),

(1, 4), (1, 5)} 4 47/27720 14

25a {9× (1, 2), (9, 20), 3× (2, 5), (3, 8), 7× (1, 3), 2× (2, 7), (1, 4),

(1, 5)} 4 1/840 14

26 {10× (1, 2), 2× (4, 9), 3× (2, 5), (4, 11), 6× (1, 3), 2× (2, 7),

(1, 4), (1, 5)} 4 41/13860 14

27 {10× (1, 2), 2× (4, 9), 3× (2, 5), (3, 8), 7× (1, 3), (2, 7),

(3, 11), (1, 5)} 4 97/27720 14

27.3 {10× (1, 2), 2× (4, 9), 3× (2, 5), (3, 8), 7× (1, 3), (5, 18), (1, 5)} 4 1/360 14

28 {5× (1, 2), (5, 11), (3, 8), 4× (1, 3), (2, 7), (1, 5)} 2 23/9240 14

29 {6× (1, 2), (4, 9), (4, 11), 3× (1, 3), (2, 7), (1, 5)} 2 13/3465 14

29.1 {6× (1, 2), (4, 9), (5, 14), 2× (1, 3), (2, 7), (1, 5)} 2 1/630 14

30 {7× (1, 2), (5, 11), (3, 7), (2, 5), (4, 11), 5× (1, 3), (2, 7), (1, 4), (1, 5)} 3 1/924 14

31 {7× (1, 2), (5, 11), (3, 7), (2, 5), (3, 8), 6× (1, 3), (3, 11), (1, 5)} 3 1/616 14

32 {8× (1, 2), (4, 9), (3, 7), (2, 5), (4, 11), 5× (1, 3), (3, 11), (1, 5)} 3 2/693 14

32a {8× (1, 2), (7, 16), (2, 5), (4, 11), 5× (1, 3), (3, 11), (1, 5)} 3 1/528 14
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Table F2. Continued.

Types BX χ K3
X δ(X)

33 5× (1, 2), 2× (3, 7), (3, 8), (1, 3), (3, 10), (2, 7)} 2 1/840 14

34 {7× (1, 2), (4, 9), (3, 7), 2× (2, 5), (3, 8), 3× (1, 3), 3× (2, 7)} 3 1/360 14

34a {7× (1, 2), (7, 16), 2× (2, 5), (3, 8), 3× (1, 3), 3× (2, 7)} 3 1/560 14

35 {5× (1, 2), 2× (3, 7), (4, 11), (1, 3), 2× (2, 7)} 2 1/462 14

36 {4× (1, 2), (4, 9), (3, 7), (2, 5), 2× (1, 3), (3, 10), (2, 7)} 2 1/630 14

36a {4× (1, 2), (7, 16), (2, 5), 2× (1, 3), (3, 10), (2, 7)} 2 1/1680 14

36b {4× (1, 2), (4, 9), (3, 7), (2, 5), 2× (1, 3), (5, 17)} 2 4/5355 14

37 6× (1, 2), 2× (4, 9), 3× (2, 5), 4× (1, 3), 3× (2, 7)} 3 1/315 14

38 {3× (1, 2), (5, 11), (3, 7), (2, 5), 3× (1, 3), 2× (2, 7)} 2 1/770 14

39 {7× (1, 2), (4, 9), (3, 7), (2, 5), 2× (3, 8), 2× (1, 3), (3, 10), (2, 7), (1, 4)} 3 1/630 14

40 {9× (1, 2), 2× (4, 9), 3× (2, 5), 2× (3, 8), 4× (1, 3), 3× (2, 7), (1, 4)} 4 1/315 14

42 {6× (1, 2), (5, 11), (3, 7), (2, 5), 2× (3, 8), 3× (1, 3), 2× (2, 7), (1, 4)} 3 1/770 14

43 {7× (1, 2), (4, 9), (3, 7), (2, 5), (3, 8), (4, 11), 2× (1, 3), 2× (2, 7), (1, 4)} 3 71/27720 14

43.1 {7× (1, 2), (7, 16), (2, 5), (3, 8), (4, 11), 2× (1, 3), 2× (2, 7), (1, 4)} 3 29/18480 14

43c {7× (1, 2), (7, 16), (2, 5), (7, 19), 2× (1, 3), 2× (2, 7), (1, 4)} 3 31/31920 14

43.2 {7× (1, 2), (4, 9), (3, 7), (2, 5), (7, 19), 2× (1, 3), 2× (2, 7), (1, 4)} 3 47/23940 14

44 {7× (1, 2), (4, 9), (3, 7), (2, 5), 2× (3, 8), 3× (1, 3), (2, 7), (3, 11)} 3 43/13860 14

44.1 {7× (1, 2), (4, 9), (3, 7), (5, 13), (3, 8), 3× (1, 3), (2, 7), (3, 11)} 3 85/72072 14

44.2 {7× (1, 2), (4, 9), (3, 7), (2, 5), 2× (3, 8), 3× (1, 3), (5, 18)} 3 1/420 14

44.3 {7× (1, 2), (7, 16), (2, 5), 2× (3, 8), 3× (1, 3), (2, 7), (3, 11)} 3 13/6160 14

44c {7× (1, 2), (7, 16), (2, 5), 2× (3, 8), 3× (1, 3), (5, 18)} 3 1/720 14

45 {3× (1, 2), 2× (4, 9), (3, 8), 3× (1, 3), (2, 7), (1, 4)} 2 1/504 14

46 {6× (1, 2), 2× (4, 9), 2× (2, 5), (3, 8), 3× (1, 3), (3, 10), (2, 7), (1, 4)} 3 1/504 14

46b {6× (1, 2), 2× (4, 9), 2× (2, 5), (3, 8), 3× (1, 3), (5, 17), (1, 4)} 3 7/6120 14

48 {4× (1, 2), (4, 9), (3, 7), (4, 11), (1, 3), (3, 10), (1, 4)} 2 19/13860 14

49 {5× (1, 2), (5, 11), (4, 9), 2× (2, 5), (3, 8), 4× (1, 3), 2× (2, 7), (1, 4)} 3 47/27720 14

49a {(5× (1, 2), (9, 20), 2× (2, 5), (3, 8), 4× (1, 3), 2× (2, 7), (1, 4)} 3 1/840 14

50 {6× (1, 2), 2× (2, 9), 2× (2, 5), (4, 11), 3× (1, 3), 2× (2, 7), (1, 4)} 3 41/13860 14

51 {6× (1, 2), 2× (4, 9), 2× (2, 5), (3, 8), 4× (1, 3), (2, 7), (3, 11)} 3 97/27720 14

51.1 {6× (1, 2), 2× (4, 9), (2, 5), (5, 13), 4× (1, 3), (2, 7), (3, 11)} 3 71/45045 14

52 {4× (1, 2), (3, 7), 2× (2, 5), 2× (3, 8), 2× (1, 3), (1, 5)} 2 1/420 14

53 3× (1, 2), (4, 9), 3× (2, 5), (3, 8), 3× (1, 3), (1, 5)} 2 1/360 14

54 {2× (1, 2), 2× (3, 7), 3× (2, 5), (3, 8), (1, 3), (2, 7)} 2 1/840 14

56 {(1, 2), (4, 9), (3, 7), 4× (2, 5), 2× (1, 3), (2, 7)} 2 1/630 14

58 {4× (1, 2), (4, 9), (3, 7), 4× (2, 5), 2× (3, 8), 2× (1, 3), (2, 7), (1, 4)} 3 1/630 14

59 {2× (1, 2), 2× (3, 7), 2× (2, 5), (3, 8), (4, 11), (1, 4)} 2 3/3080 14

60 3× (1, 2), 2× (4, 9), 5(2, 5), (3, 8), 3× (1, 3), (2, 7), (1, 4)} 3 1/504 14

62 {(1, 2), (4, 9), (3, 7), 3× (2, 5), (4, 11), (1, 3), (1, 4)} 2 19/13860 14
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Table II1.

No. B0(X) K3
X χ (P3, P4, P5, P6)

1 {5 ∗ (1, 2), 2 ∗ (1, 3)} 1/6 0 (3, 5, 7, 11)

2 {5 ∗ (1, 2), (1, 3), (1, 4)} 1/12 0 (3, 5, 6, 9)

3 {18 ∗ (1, 2), (1, 3), } 1/3 1 (1, 5, 6, 13)

4 {(18− 4t) ∗ (1, 2), 3t ∗ (1, 3), (1, 4)}, t = 0, 1, 2 1/4 1 (1 + t, 5, 5 + t, 11 + t)

5 {(18− 4t) ∗ (1, 2), 3t ∗ (1, 3), (1, 5)}, 5 6 r 6 12; t = 0, 1, 2 1/r 1 (1 + t, 5, 5 + t, 10 + t)

6 {(17− 4t) ∗ (1, 2), (2 + 3t) ∗ (1, 3)}, t = 0, 1, 2 1/6 1 (1 + t, 4, 4 + t, 9 + t)

7 {(14− 4t) ∗ (1, 2), (2 + 3t) ∗ (1, 3), 2 ∗ (1, 4)}, t = 0, 1 1/6 1 (2 + t, 5, 5 + t, 10 + t)

8 {(14− 4t) ∗ (1, 2), (2 + 3t) ∗ (1, 3), (1, 4), (1, 5)}, t = 0, 1 7/60 1 (2 + t, 5, 5 + t, 9 + t)

9 {(14− 4t) ∗ (1, 2), (2 + 3t) ∗ (1, 3), (1, 4), (1, 6)}, t = 0, 1 1/12 1 (2 + t, 5, 5 + t, 9 + t)

10 {(14− 4t) ∗ (1, 2), (1 + 3t) ∗ (1, 3), 3 ∗ (1, 4)}, t = 0, 1 1/12 1 (2 + t, 5, 4 + t, 8 + t)

11 {(17− 4t) ∗ (1, 2), (1 + 3t) ∗ (1, 3), (1, 4)}, t = 0, 1, 2 1/12 1 (1 + t, 4, 3 + t, 7 + t)

Table II2.

No. B0(X) K3
X χ (P3, P4, P5, P6)

1 {27 ∗ (1, 2), 2 ∗ (1, 3), (1, r)} 1
6 + 1

r 2 (0, 5, 5, 13)

2 {(27− 4t) ∗ (1, 2), (1 + 3t) ∗ (1, 3),

2 ∗ (1, 4)}, t = 0, 1 1/3 2 (t, 5, 4 + t, 12 + t)

3 {(27− 4t) ∗ (1, 2), (1 + 3t) ∗ (1, 3),

(1, 4), (1, r)}, 5 6 r; t = 0, 1, 2 1
12 + 1

r 2 (t, 5, 4 + t, 11 + t)

4 {(27− 4t) ∗ (1, 2), (1 + 3t) ∗ (1, 3),

(1, r1), (1, r2)}, (r1, r2) ∈ I4; t = 0, 1, 2, 3 1
r1

+ 1
r2
− 1

6 2 (t, 5, 4 + t, 10 + t)

5 {(26− 4t) ∗ (1, 2), (4 + 3t) ∗ (1, 3)}, t = 0, 1 1/3 2 (t, 4, 4 + t, 12 + t)

6 {(27− 4t) ∗ (1, 2), 3t ∗ (1, 3), 3 ∗ (1, 4)},
t = 0, 1, 2, 3 1/4 2 (t, 5, 3 + t, 10 + t)

7 {(27− 4t) ∗ (1, 2), 3t ∗ (1, 3), 2 ∗ (1, 4),

(1, r)}, 5 6 r 6 12; t = 0, 1, 2, 3 1/r 2 (t, 5, 3 + t, 9 + t)

8 {(27− 4t) ∗ (1, 2), 3t ∗ (1, 3), (1, 4), (1, r1),

(1, r2)}, (r1, r2) ∈ I3; t = 0, 1, 2, 3 1
r1

+ 1
r2
− 1

4 2 (t, 5, 3 + t, 8 + t)

9 {(27− 4t) ∗ (1, 2), 3t ∗ (1, 3), 3 ∗ (1, 5)},
t = 0, 1, 2, 3 1/10 2 (t, 5, 3 + t, 7 + t)

10 {(26− 4t) ∗ (1, 2), (3 + 3t) ∗ (1, 3), (1, 4)},
t = 0, 1, 2, 3 1/4 2 (0, 4, 3 + t, 10 + t)

11 {(26− 4t) ∗ (1, 2), (3 + 3t) ∗ (1, 3), (1, r)},
5 6 r 6 12; t = 0, 1, 2, 3 1/r 2 (0, 4, 3 + t, 9 + t)

12 {(25− 4t) ∗ (1, 2), (5 + 3t) ∗ (1, 3)}, t = 0, 1, 2, 3 1/6 2 (t, 3, 2 + t, 8 + t)
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Table II2. Continued.

No. B0(X) K3
X χ (P3, P4, P5, P6)

13 {(26− 4t) ∗ (1, 2), (2 + 3t) ∗ (1, 3), 2 ∗ (1, 4)},
t = 0, 1, 2, 3 1/6 2 (t, 4, 2 + t, 8 + t)

14 {(26− 4t) ∗ (1, 2), (2 + 3t) ∗ (1, 3), (1, 4), (1, 5)},
t = 0, 1, 2, 3 7/60 2 (t, 4, 2 + t, 7 + t)

15 {(26− 4t) ∗ (1, 2), (2 + 3t) ∗ (1, 3), (1, 4),

(1, 6)}, t = 0, 1, 2, 3 1/12 2 (t, 4, 2 + t, 7 + t)

16 {(25− 4t) ∗ (1, 2), (4 + 3t) ∗ (1, 3), (1, 4)},
t = 0, 1, 2, 3 1/12 2 (t, 3, 1 + t, 6 + t)

17 {(26− 4t) ∗ (1, 2), (1 + 3t) ∗ (1, 3), 3 ∗ (1, 4)},
t = 0, 1, 2, 3 1/12 2 (t, 4, 1 + t, 6 + t)

where

I4 = {(r1, r2)|1/r1 + 1/r2 > 1/4, ri > 5}
= {(5, 5), . . . , (5, 20), (6, 6), . . . , (6, 12), (7, 7), (7, 8), (7, 9), (8, 8)}

I3 = {(r1, r2)|1/r1 + 1/r2 > 1/3, ri > 5}
= {(5, 5), (5, 6), (5, 7), (6, 6)}.

Table II3.

B0(X) K3
X χ (P3, P4, P5, P6)

1 {32 ∗ (1, 2), 5 ∗ (1, 3), 2 ∗ (1, 4), (1, r)}, 5 6 r 1
6 + 1

r 3 (0, 5, 4, 13)

2 {(32− 4t) ∗ (1, 2), (5 + 3t) ∗ (1, 3), (1, 4),

(1, r1), (1, r2)}, (r1, r2) ∈ I6, t 6 1 1
r1

+ 1
r2
− 1

12 3 (t, 5, 4 + t, 12 + t)

3 {(32− 4t) ∗ (1, 2), (5 + 3t) ∗ (1, 3), (1, r1),

(1, r2), (1, r3)}, (r1, r2, r3) ∈ J, t 6 2 1
r1

+ 1
r2

+ 1
r3
− 1

3 3 (t, 5, 4 + t, 11 + t)

4 {(31− 4t) ∗ (1, 2), (7 + 3t) ∗ (1, 3),

2 ∗ (1, 4)}, t 6 1 1/3 3 (t, 4, 3 + t, 12 + t)

5 {(31− 4t) ∗ (1, 2), (7 + 3t) ∗ (1, 3),

(1, 4), (1, r)}, 5 6 r; t 6 2 1
12 + 1

r 3 (t, 4, 3 + t, 11 + t)

6 {(31− 4t) ∗ (1, 2), (7 + 3t) ∗ (1, 3),

(1, r1), (1, r2)}, (r1, r2) ∈ I4; t 6 3 1
r1

+ 1
r2
− 1

6 3 (t, 4, 3 + t, 10 + t)

7 {(30− 4t) ∗ (1, 2), (10 + 3t) ∗ (1, 3)}, t = 0, 1 1/3 3 (t, 3, 3 + t, 12 + t)

8 {(31− 4t) ∗ (1, 2), (6 + 3t) ∗ (1, 3),

3 ∗ (1, 4)}, t = 0, 1, 2, 3 1/4 3 (t, 4, 2 + t, 10 + t)

1079

https://doi.org/10.1112/S0010437X14007817 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007817


J. A. Chen and M. Chen

Table II3. Continued.

B0(X) K3
X χ (P3, P4, P5, P6)

9 {(31− 4t) ∗ (1, 2), (6 + 3t) ∗ (1, 3),

2 ∗ (1, 4), (1, r)}, 5 6 r 6 12; t = 0, 1, 2, 3 1/r 3 (t, 4, 2 + t, 9 + t)

10 {(31− 4t) ∗ (1, 2), (6 + 3t) ∗ (1, 3),

(1, 4), (1, r1), (1, r2)}, (r1, r2) ∈ I3; t 6 3 1
r1

+ 1
r2
− 1

4 3 (t, 4, 2 + t, 8 + t)

11 {(31− 4t) ∗ (1, 2), (6 + 3t) ∗ (1, 3),

3 ∗ (1, 5)}, t = 0, 1, 2, 3 1/10 3 (t, 4, 2 + t, 7 + t)

12 {(30− 4t) ∗ (1, 2), (9 + 3t) ∗ (1, 3),

(1, 4)}, t = 0, 1, 2, 3 1/4 3 (0, 3, 2 + t, 10 + t)

13 {(30− 4t) ∗ (1, 2), (9 + 3t) ∗ (1, 3),

(1, r)}, 5 6 r 6 12; t = 0, 1, 2, 3 1/r 3 (0, 3, 2 + t, 9 + t)

14 {(30− 4t) ∗ (1, 2), (8 + 3t) ∗ (1, 3),

2 ∗ (1, 4)}, t = 0, 1, 2, 3 1/6 3 (t, 3, 1 + t, 8 + t)

15 {(30− 4t) ∗ (1, 2), (8 + 3t) ∗ (1, 3),

(1, 4), (1, 5)}, t = 0, 1, 2, 3 7/60 3 (t, 3, 1 + t, 7 + t)

16 {(30− 4t) ∗ (1, 2), (8 + 3t) ∗ (1, 3),

(1, 4), (1, 6)}, t = 0, 1, 2, 3 1/12 3 (t, 3, 1 + t, 7 + t)

17 {(30− 4t) ∗ (1, 2), (7 + 3t) ∗ (1, 3),

3 ∗ (1, 4)}, t = 0, 1, 2, 3 1/12 3 (t, 3, t, 6 + t)

where

I4 = {(r1, r2)|1/r1 + 1/r2 > 1/4, ri > 5}
= {(5, 5), . . . , (5, 20), (6, 6), . . . , (6, 12), (7, 7), (7, 8), (7, 9), (8, 8)}

I3 = {(r1, r2)|1/r1 + 1/r2 > 1/3, ri > 5}
= {(5, 5), (5, 6), (5, 7), (6, 6)}.

I6 = {(r1, r2)|1/r1 + 1/r2 > 1/6, ri > 5}
= {(5, s5), (6, s6), (7, s7), (8, s8), (9, s9), (10, s10), (11, 11), (11, 12), (11, 13), (12, 12)},

5 6 s1, 6 6 s2, 7 6 s7 6 42, 8 6 s8 6 24, 9 6 s9 6 18, 10 6 s10 6 15.

J = {(r1, r2, r3)|1/r1 + 1/r2 + 1/r3 > 5/12, ri > 5}
= {(5, 5, s1), (5, 6, s2), (5, 7, s3), (5, 8, 8), (5, 8, 9), (5, 8, 10), (5, 9, 9), (6, 6, s4), (6, 7, 7), (6, 7, 8),

(6, 7, 9), (6, 8, 8), (7, 7, 7)}, 5 6 s1 6 60, 6 6 s2 6 20, 7 6 s3 6 13, 6 6 s4 6 12.
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