SERUM LEVELS AND α_1 -ANTITRYPSIN PHENOTYPES IN ACTIVE PULMONARY TUBERCULOSIS

A. FERTAKIS, A. ARCHIMANDRITIS, A. TSOURAPAS, D. DOURATSOS, B. ANGELOPOULOS Department of Pathologic Physiology, Medical School, Athens University, Greece

 a_1 -at phenotypes and serum levels were studied in 100 Greek patients of pulmonary TBC by starch-gel electrophoresis and radial immunodiffusion. The mean value of a_1 -at (315 \pm 77) was significantly lower (p < 0.005) than in the control group. An attempt is made to explain this finding based on the a_1 -at phenotypes distribution in the TBC patients.

INTRODUCTION

The various alpha₁-antitrypsin (α_1 -at) phenotypes constituting the Pi system (Fagerhol and Laurell 1967) are inherited as autosomal codominant characters through at least 23 alleles (Weisser et al. 1975). Some of them (Pi^P, Pi^S, Pi^W, Pi^Z) are thought to be responsible for low α_1 -at levels in the serum. Subjects of ZZ phenotype who have very low serum levels of α_1 -at are thought to be especially vulnerable to several diseases, i.e., chronic obstructive pneumonopathy (Eriksson 1964, 1965), juvenile hepatic cirrhosis

(Sharp et al. 1969, Brunt 1974), and perhaps adult hepatic cirrhosis (Berg and Eriksson 1972, Sherlock 1974).

Whether the heterozygous Pi^z gene predisposes to these diseases, is as yet a matter of much controversy (Campra et al. 1973, Kanner et al. 1973, Morse et al. 1975, Duncan and Griffin 1975, Theodoropoulos et al. 1976). Several quantitative studies concerning α_1 -at have been carried out among patients suffering from pulmonary TBC, with contradictory results.

In the present work, α_1 -at serum levels and Pi phenotypes, as well as α_1 -at serum levels,

Table. a_1 -at phenotypes and gene frequencies in TBC patients and in healthy Greeks

Phenotypes

	MM	MS	FM	MZ	MV	FS	ZZ	FF	SS
Controls (N = 504)	468	26	3	1	2	1	1	1	1
Patients (N = 100)	85	12	0	0	0	1	1	1	0

Gene frequencies

	Pi ^M	Pis	Pi ^F	Pi ^z	Piv
Controls (N = 504)	0.960	0.029	0.006	0.003	0.002
Patients (N = 100)	0.910	0.065	0.015	0.010	0

Acta Genet. Med. Gemellol. (1977), 26: 97-99

have been studied in Greek patients suffering from active pulmonary TBC, in order to investigate the relationship, if any, of the Pi system with pulmonary TBC.

MATERIAL AND METHODS

Venous blood specimens were drawn from 100 hospitalized patients of both sexes originating from various areas all over Greece, suffering from active pulmonary TBC. The specimens were allowed to clot at 37°C and the sera were separated and stored at -20°C until used. Sera from 20 apparently healthy medical students of both sexes served as controls for the a1-at serum level, while 504 healthy Greeks, previously examined by the same method (Fertakis et al. 1974), served as a control population of the Pi system phenotypes and gene frequencies. α_1 -at phenotypes were studied by the vertical starch-gel electrophoresis with a discontinuous system of buffers (Kueppers and Bearn 1966). The α_1 -at phenotypes were recorded according to widely accepted criteria (Fagerhol 1967, 1968). Antigen-antibody crossed electrophoresis (Kueppers and Bearn 1966, Fagerhol and Laurell 1967) was carried out when a serum gave MM zones and reduced staining intensity of zones in the Z region. α_1 -at serum levels were estimated by the radial immunodiffusion method (Mancini et al. 1965) on suitable agarose plates, containing α_1 -at antibody. (Partigen-Behringwerke, Marburg). Statistical analysis was performed by conventional procedures.

RESULTS

The mean α_1 -at level was found to be 315 \pm 77 mg% and 370 \pm 65 mg% among patients and controls, respectively. The mean value is significantly lower in patients than controls (t = 3.444, p < 0.005).

A total of five Pi phenotypes were found among the patients (MM, MS, FS, ZZ, FF). The ZZ phenotype was observed only once.

DISCUSSION

Since the original reports of Eriksson (1964, 1965) concerning the association of α_1 -at deficiency with a very distinctive type of chronic obstructive pulmonary disease, several studies have been carried out to inve-

stigate the relationship, if any, between other pneumonopathies, i.e., pulmonary TBC, and α_1 -at.

Hunter et al. (1968) have studied the serum trypsin inhibitory capacity in 22 patients with pulmonary TBC. Their mean value was in close agreement with that found in healthy controls as well as in chronic obstructive pneumonopathy patients. On the contrary, Clarke et al. (1970), after having studied 16 TBC patients, concluded that their α_1 -at serum level was significantly higher than in controls.

Similar results were reported from the study of 42 patients with active pulmonary TBC (Geisler et al. 1972).

Our results are quite different from those of the other studies. The mean α_1 -at level among our patients was significantly lower than in the healthy controls. It should be noted that we found 14 phenotypically MS, FS, and ZZ patients, in whom the α_1 -at serum levels were expected to be low. Indeed, their mean α_1 -at value was of only 227 mg%. This finding could explain the observed low α_1 -at serum levels in our patients.

Concerning the phenotypic distribution of Pi system in our material, the following observations should be made. The ZZ phenotype, responsible for α_1 -at deficiency, was found in only one patient. Nevertheless, 13 patients had the Pi^s gene. This gene has also been incriminated for low levels of α_1 -at.

Kellermann and Walter (1970) had studied the α_1 -at polymorphism in 400 Greeks who "were not from a particular geographic area" of the country. Their results differ significantly from our own ones in the control group. Although this discrepancy may possibly arise from differences in the sample populations, their MS phenotype and Pis gene frequencies (0.005 and 0.0025) differ considerably from our own ones (0.12 and 0.065).

On the contrary the Pi^z gene frequency has not been found to be high in our pulmonary TBC patients.

We have no plausible explanation for these

findings at present. However, the sample for pulmonary TBC is too small to be representative and unbiased estimates of gene frequencies cannot be obtained from this sample. Therefore, we cannot substantiate our results with any statistical analysis. Nevertheless one could postulate that other genes of the Pi system, giving low levels of α_1 -at, might participate in the pathogenesis of various diseases including pulmonary TBC.

REFERENCES

- Berg N.O., Eriksson S. 1972. Liver disease in adult with a alpha₁ antitrypsin deficiency. N. Engl. J. Med., 287: 1264-1268.
- Brunt P.W. 1974. Antitrypsin and the liver. Progress report. Gut, 15, 573-580.
- Campra J.L., Craig J.R., Peters R.L., Reynolds T.B. 1973. Cirrhosis associated with partial deficiency of alpha₁ antitrypsin in an adult. Ann. Int. Med., 78: 233-238.
- Clarke H.G.M., Freeman T., Hickman R. and Pryse-Philips W.G.M. (1970): Quantitative immuno-electrophoretic analysis in patients with tuber-culosis and sarcoidosis. Thorax, 25: 423-426.
- Duncan P.E., Griffin J.P. 1975. Physiological studies in a large sibship with antitrypsin deficiency. Br.
 J. Dis. Chest, 69, 107-116.
- Eriksson S. 1964. Pulmonary emphysema and alpha₁-antitrypsin deficiency. Acta Med. Scand., 175: 197-205.
- Eriksson S. 1965. Studies in α_1 -antitrypsin deficiency. Acta Med. Scand., 177 (Suppl. 432): 1-85.
- Fagerhol M.K. 1967. Serum Pi types in Norwegians. Acta Pathol. Microbiol. Scand., 70: 421-428.
- Fagerhol M.K. 1968. The Pi system. Genetic variants of serum alpha₁ antitrypsin. Sem. Haematol., 1: 153-161.
- Fagerhol M.K., Laurell C.B. 1967. The polymor-

- phism of "prealbumins" and α_1 -antitrypsin in human sera. Clin. Chim. Acta, 16: 199-203.
- Fertakis A., Tsourapas A., Douratsos D., Angelopoulos B. 1974. Pi phenotypes in Greeks. Hum. Hered., 24: 313-316.
- Geisler L.S., Bachmann G.W., Laumen F., Nolte D., Wentzel H., Rost J.D. 1972. α₁-Antitrypsin und Immunoglobuline bei chronish unspezifischen Lungerkrankungen und Lungentuberkulose. Dtsch. Med. Wochenschr., 97: 329-335.
- Hunter C.C., Pierce J.A., Laborde J.B. 1968, α₁antitrypsin deficiency. A family study. JAMA, 205: 93-96.
- Kanner R.E., Klauber M.R., Watanabe S., Renzetti A.D., Bigler A. 1973. Pathologic patterns of chronic obstructive pulmonary disease in patients with normal and deficient levels of alpha₁ antitrypsin. Am. J. Med., 54: 706-712.
- Kellerman G., Walter H. 1970. Investigations on the population genetics of the α₁-antitrypsin polymorphism. Hum. Genet., 10: 145-150.
- Kueppers F., Bearn A.G. 1966. A possible experimental approach to the association of heretitary α₁-antitrypsin deficiency and pulmonary emphysema. Proc. Soc. Exp. Biol. Med., 121: 1207-1209.
- Mancini G., Carbonara A.O., Heremans J.F. 1965. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry, 2: 235-254.
- Morse J.C., Lebowitz M.D., Knudson R.L., Burrows B. 1975. Alpha₁-antitrypsin and obstructive disease. A community study. N. Engl. J. Med., 292: 276-281.
- Sharp H.L., Bridges R.A., Krivit W., Freier E.F. 1969. Cirrhosis associated with alpha₁-antitrypsin deficiency A previously unrecognised inherited disorder. J. Lab. Clin. Med., 73: 934-939.
- Sherlock S. 1974. Chronic hepatitis. Progres report. Gut, 15: 581-597.
- Theodoropoulos G., Fertakis A., Archimandritis A., Kapordelis C., Angelopoulos B. 1976. Alpha₁-antitrypsin phenotypes in cirrhosis and hepatoma. Acta Hepato-Gastroenterol., 23: 114-117.
- Weisser M.M., Lamont J.T., Walker W.A. 1975. α₁-antitrypsin deficiency. A defect of secretion. N. Engl. J. Med., 292: 205-206.

Prof. A. Fertakis, 18 Papadiamantopoulou Street, Athens (611), Greece.