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Abstract
The algebraic mapping torus M� of a group G with an automorphism � is the HNN-extension of G in which
conjugation by the stable letter performs �. We classify the Dehn functions of M� in terms of � for a number of
right-angled Artin groups (RAAGs) G, including all 3-generator RAAGs and Fk × Fl for all k, l ≥ 2.

1. Our results

When studying mapping tori, a natural question is how the maps used to define them determine their
geometry. The paradigm is the Nielsen–Thurston classification. If S is a compact orientable surface of
genus at least 2 and f : S → S is a homeomorphism, then the mapping torus Mf is (S × [0, 1])/∼ where
(x, 1) ∼ (f (x), 0) for all x ∈ S. The classification states that up to isotopy f is exactly one of reducible, peri-
odic, or pseudo-Anosov and, accordingly, contains an incompressible torus, admits an H

2 ×R structure,
or admits a hyperbolic structure.

Algebraic mapping tori are fundamental groups of topological mapping tori of surfaces or complexes.
For a finitely presented group G = 〈X|R〉 and an injective endomorphism � : G → G, the algebraic
mapping torus is the group:

M� := 〈X, t | R, t−1xt =�(x), ∀x ∈ X〉.

In this article, � will always be an automorphism, so M� = G �� Z, and G will always be a right-
angled Artin group (“RAAG”)—that is, G is encoded by a finite graph � with vertex set X in that G is
presented by:

〈X | uv = vu when (u, v) is an edge in �〉.

We will study M� via their Dehn functions (which we will always consider qualitatively—that is,
up to an equivalence relation 	: for f , g : N→N, write f 
 g when there exists C> 0 such that f (n) ≤
Cg(Cn + C) + Cn + C for all n ∈N, and write f 	 g when f 
 g and g 
 f ). The Dehn function is an
invariant of finitely presentable groups. It can be viewed either as an algorithmic complexity measure
for the word problem or as an isoperimetric function recording the minimal area of disks spanning loops
as a function of the lengths of the loops. More details are in Section 3.1.

Our study is motivated by the following two classifications. The first concerns G =Z
k, the RAAG

associated with the complete graph with k vertices.
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Theorem (Bridson–Gersten, Main Theorem [7], Bridson–Pittet, Theorem 5.1 [10]). If � ∈ Aut(Zk) =
GL(k, Z) has an eigenvalue λ with |λ| = 1, then the Dehn function of the mapping torus M� is exponen-
tial. Else, the Dehn function of M� is polynomial of degree c + 1, where c × c is the size of the largest
Jordan block in the Jordan Canonical form of the matrix associated with �.

The second classification concerns G = Fk, the rank-k free group, that is, the RAAG associated with
the graph with k vertices and no edges. An automorphism� of Fk is atoroidal when there are no periodic
conjugacy classes—equivalently, for all w ∈ Fk and n ∈Z, if w and �n(w) are conjugate, then w = 1 or
n = 0.

Theorem (Bestvina–Handel [3], Brinkmann [11], Bridson–Groves [8]). Suppose � ∈ Aut(Fk). The
mapping torus M� is hyperbolic (i.e. has linear Dehn function) if and only if � is atoroidal. All other
M� have quadratic Dehn functions.

RAAGs interpolate between free abelian groups and free groups, so it is natural to look to extend the
above theorems to other RAAGs. We thank Karen Vogtmann for suggesting this problem to us.

A classification of the Dehn functions of all RAAGs remains out of reach. Here, we complete the
classification for three-generator RAAGs and all groups Fk × Fl where k, l ≥ 2.

For Z3 and F3 and for all RAAGs on fewer than 3 generators, the theorems above classify the Dehn
functions of M�. Here are our results on the remaining three-generator RAAGs, namely F2 ×Z and
Z

2 ∗Z.
If � ∈ Aut(F2 ×Z), then � =ψ × ρ where ψ ∈ Aut(F2) and ρ : Z→Z is the identity or the map

r �→ −r.

Theorem A. Suppose � ∈ Aut(F2 ×Z) induces ψ ∈ Aut(F2). Let ψab ∈ Aut(Z2) be the map induced by
ψ via the abelianization map F2 →Z

2, g �→ gab.
Let p : F2 ×Z→Z be the projection map p(g, r) = r. Exactly one of the following holds:

1. There exists g ∈ F2 and m ∈N such thatψm
ab(gab) = gab and p(�m(g)) = 0, in which case M� has

cubic Dehn function.
2. M� has quadratic Dehn function.

Theorem B. Suppose � ∈ Aut(Z2 ∗Z). Suppose � ∈ Aut(Z2 ∗Z) restricts to an automorphism φ on
the Z2 factor and satisfies [�] = [�] ∈ Out(Z2 ∗Z). Exactly one of the following holds:

1. φ is of finite order, in which case M� has quadratic Dehn function.
2. φ has an eigenvalue λ such that |λ| = 1, in which case M� has exponential Dehn function.
3. M� has cubic Dehn function.

Theorem B is effective in that, given a �, a� as per the statement can be produced: see Lemma 6.1.
Suppose F is a free group with a finite basis X. For x ∈ F, |x| denotes the length of the reduced

word on X±1 representing x. The growth g�,X : N→N of an automorphism � : F → F is defined by
g�,X(n) := maxx∈X{|�n(x)|}. While the growth type of g�,X does not depend on the choice of X, it is not
invariant under inner automorphisms. For example, the automorphism φ : a �→ b−1ab, b �→ b has linear
growth, whereas ψ : a �→ a, b �→ b has constant growth. The cyclic growth gcyc

� of an automorphism
accounts for this. It describes the growth of (all) conjugacy classes under iteration of automorphisms
and is invariant under inner automorphisms. Details are in Section 7.2.

We classify the Dehn functions of mapping tori of products Fk × Fl of free groups with k, l ≥ 2. This
theorem is effective: in Section 7.1, we explain how to compute φ1 and φ2 from �.
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Theorem C. If G = Fk × Fl, where k, l ≥ 2, and � ∈ Aut(Fk × Fl), then we can find φ1 ∈ Aut(Fk) and
φ2 ∈ Aut(Fl) such that �= φ1 × φ2 satisfies [�] = [�2] in Out(Fk × Fl). The Dehn functions of the
associated mapping tori satisfy δM�

	 δM�
and their asymptotics can be read off φ1 and φ2 in that:

1. If [φp
i ] = [Id] ∈ Out(Fk) for some p ∈N, and i is either 1 or 2, then δM�

(n) 	 n2.
2. If nd1 	 gcyc

φ1
(n) 
 gcyc

φ2
(n) for some d1 ≥ 1, then δM�

(n) 	 nd1+2, and likewise with the indices 1
and 2 interchanged.

3. If gcyc
φ1

(n) 	 gcyc
φ2

(n) 	 2n, then δM�
grows exponentially.

As we will explain in Section 7.2, the three cases in Theorem C are exhaustive and mutually exclusive.
Since all automorphisms of F2 are periodic or have cyclic growth, that is, linear or exponential, this

implies:

Corollary D. If G = F2 × F2, and � ∈ Aut(G), then M� has quadratic, cubic, or exponential Dehn
function.

We are also able to determine the Dehn functions of mapping tori of Fk ×Z in some cases. In
Section 8, we detail these cases, remark on the limits of our techniques, and suggest next steps in this
line of research.

2. Overview

This article is organized as follows. In Section 3, we give background on Dehn functions and on corridors
in van Kampen diagrams. In Section 4, we review the electrostatic model of Gersten and Riley from [16].
We prove Theorems A, B, and C in Sections 5, 6, and 7, respectively.

Here is an outline of our strategy. Given a RAAG G, we organize its automorphisms � into cases,
chosen so that within each case we can present M� in a manner which facilitates analysis of its Dehn
function. In some cases, we find it convenient to replace � by a power; this, in turn, replaces M� by a
finite index subgroup, which does not qualitatively change the Dehn function.

In the setting of Theorem A, our presentation expresses M� as a central extension of another mapping
torus Mφ . Then, we use what Gersten and Riley called an electrostatic model in [16] to get upper bounds
on the Dehn function of M�. The idea is that a van Kampen diagram over Mφ can be “charged” by
elements of the kernel of the extension (elements of the center of M�). The diagram is then “inflated” by
adding in suitable corridors to connect up these charges and get a van Kampen diagram over M�. This
leads to diagrams of cubic area (as a function of their boundary length) and so a cubic upper bound on
the Dehn function. For certain�, we improve this estimate to quadratic by noticing that Mφ is hyperbolic
relative to a Z2 subgroup that receives no charges. This implies that only linearly many charges appear in
the diagram, and thereby that the resulting van Kampen diagram over M� has quadratic area. For other
�, we define partial corridors in van Kampen diagrams and then use Hall’s Marriage Theorem to give
a special pattern for discharging the diagrams, which again improves the Dehn function upper bound to
quadratic.

As for obtaining the matching lower bounds, the Dehn function of M� is always at least quadratic
because M� is not hyperbolic. For certain M�, a result of Bridson and Gersten (see Lemma 3.5) improves
this to a cubic lower bound by identifying a suitable quasi-isometrically embedded abelian subgroup of
G to which the action of � restricts.

For Theorem B the main innovation is for a case where, even though the M� are not central extensions,
one generator b commutes with all other generators apart from one generator c. That c forms corridors in
van Kampen diagrams over the quotient of M� obtained by killing b, and the electrostatic model applies
to regions complementary to the c-corridors. We then define alternating corridors which string together
two types of partial corridors, and we show that these alternating corridors can intersect themselves and
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each other at most once, and that every 2-cell in the diagram is contained in some alternating corridor.
This lets us prove that the area of the van Kampen diagram in the quotient is at most quadratic in the
length of the boundary word. The electrostatic model then produces a van Kampen diagram with at most
cubic area.

For the lower bounds of Theorem C, we exhibit a family of words such that any van Kampen diagram
for one of these words has area we can bound below on account of having a belt of corridors of controlled
length. For the upper bound, we estimate the number of relators that need to be applied to convert a word
w representing the identity over the mapping torus of Fk × Fl to a word v with |v| ≤ |w| that represents
the identity in Fk �φ1 Z and then we use the fact that the Dehn function of Fk �φ1 Z is at most quadratic.
The upper and lower bounds on the Dehn function are derived from two different notions of free group
automorphism growth, which we reconcile by appealing to a number of results in the literature.

3. Preliminaries

We write |w| to denote the length of a word w. Our conventions are at := t−1at and [a, b] := a−1b−1ab.

3.1. Van Kampen diagrams, corridors, and Dehn functions

These topics feature in many surveys, for instance, Section III.H.2 in [9]. Here are the essentials.
Suppose G = 〈X|R〉 is a finitely presented group (so R is a finite set of words on a finite alphabet X

and its inverse letters). Suppose w is a word on X ∪ X−1 such that w = 1 in G. A van Kampen diagram

 for w is a simply connected planar 2-complex with edges labeled by elements of X and directed so
that the following holds. When traversing ∂
 counterclockwise from some base vertex, we read off w,
and around the boundary of each 2-cell in one direction or the other and from a suitable base vertex, we
read an element of R. (If an edge is traversed in the direction of its orientation, the positive generator
is implied, and if against its orientation, the inverse of the generator.) The 1-skeleton 
(1) of 
 has the
path metric in which every edge has length 1. The area of 
 is the number of 2-cells it has. Area(w)
denotes the minimum area among all van Kampen diagrams with boundary word w.

The Dehn function δ : N→N of 〈X|R〉 is δ(n) := max{Area(w) | |w| ≤ n and w = 1 in G}.
Up to the equivalence relation 	 defined in Section 1, the Dehn function does not depend on the

choice of finite presentation for G and, moreover, is a quasi-isometry invariant among finitely presented
groups. In particular, we will need:

Proposition 3.1. If G is finitely presented and H ≤ G is a finite index subgroup, then H is also finitely
presentable and G and H have equivalent Dehn functions.

Corridors appear in van Kampen diagrams over a presentation 〈X|R〉 when there is some a ∈ X such
that all relators r ∈ R in which a appears can be expressed as w1a±1w2a∓1w3 where w1, w2, and w3 are
words not containing a±1. Such presentations naturally arise for HNN-extensions, with a being the stable
letter. Suppose 
 is a van Kampen diagram for a word w over such a presentation. If there is an a-edge
(an edge labeled a) in 
 and there is a 2-cell in 
 with that edge in its boundary, then that 2-cell will
have exactly one other a-edge, and that a-edge will either be in the boundary or will be in the boundary
of another 2-cell. Concatenations of 2-cells in 
 across a-edges in this manner are called corridors. A
corridor either connects a pair of a-edges in the boundary of 
 or closes up to form an annulus. The a
and a−1 that label edges in the boundaries of the two-dimensional parts (Figure 1b) of 
 are paired off
and connected by corridors. The number of 2-cells involved is the length of the corridor. An a-corridor
is reduced if it contains no back-to-back canceling pair of 2-cells—that is, no two 2-cells sharing an
a-edge for which the word around the boundary of their union is freely reducible to the identity in the

https://doi.org/10.1017/S0017089523000459 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000459


256 Kristen Pueschel and Timothy Riley

(a) (b) (c)

Figure 1. Corridors.

group. If an a-corridor is the concatenation of 2-cells labeled u1av−1
1 a−1, . . ., urav−1

r a−1, then the top
(respectively, bottom) of that corridor is the path that is labeled v1 · · · vr (respectively, u1 · · · ur) and
passes through the terminal (respectively, initial) vertices of the a-edges—see Figure 1c.

Remark 3.2. Many of the presentations we will work with will have the form 〈X, a | R, xa = wx; x ∈ X〉
where X is some alphabet (not containing a), and R and {wx | x ∈ X} are sets of words on X±1. An a-
corridor in a diagram over such a presentation is reduced exactly when the word along the bottom is
reduced.

Suppose 
 is a van Kampen diagram with N a-corridors. Then N is at most half the length of the
boundary (at most half the number of a±1 in w). Since a-corridors cannot cross, removing all the a-
corridors leaves N + 1 connected subdiagrams called a-complementary regions. The words around the
perimeters of each of these regions contain no a±1. Therefore, analysis of the lengths of the a-corridors
and of the areas of the a-complementary regions can lead to estimates on the area of 
.

The dual tree to the set of a-corridors has vertices corresponding to a-complementary regions and
has an edge between two vertices when an a-corridor borders the two corresponding a-complementary
regions. (There is no vertex corresponding to the outside of the van Kampen diagram.)

Definition 3.3. A letter a forms partial corridors when all the defining relations which contain both a
and a−1 have the form of a corridor relation, a±1wa∓1 = w′ for words w and w′ without a or a−1. A partial
corridor is a maximal concatenation of 2-cells joined by common a-edges as above. We refer to such
2-cells which contain one or more a or a−1 (but not both) in their boundary words as capping faces,
since they cap off partial corridors.

An a in the boundary of a van Kampen diagram will either be connected by a full a-corridor to
another edge labeled by a in the boundary, or it begins a partial a-corridor ending at one of the capping
faces. An a-edge on a capping face is connected via a partial a-corridor (possibly of length zero) either
to the boundary or to an a-edge of another capping face.

Like standard corridors, partial corridors cannot cross. However, there is no immediate control on
the number of partial corridors in terms of |w|, since they may begin and end in capping faces within
the diagram.

3.2. General bounds on Dehn functions of mapping tori of RAAGs

RAAGs are (bi)automatic [17, 25], so have either linear or quadratic Dehn functions. A finitely presented
group is hyperbolic if and only if it has linear Dehn function. Finite-rank free groups are hyperbolic.
Non-free RAAGs have Z

2 subgroups and so are not hyperbolic (e.g. [9]). So RAAGs have either linear
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or quadratic Dehn functions, the linear case only occurring for free RAAGs. This will be useful for the
following lemma.

Lemma 3.4. If G is a non-free RAAG and � ∈ Aut(G), then the Dehn function of M� satisfies n2 

δ(n) 
 2n.

Proof. Suppose G is a non-free RAAG. So G has a finite presentation 〈X|R〉 derived from a graph
with at least one edge. Then G and hence M� will contain a Z

2 subgroup. This implies that M� is not
hyperbolic and therefore n2 
 δ(n) (again, e.g. [9]).

A word w on the generators of

M� = 〈X, t | R, t−1xt =�(x), ∀ x ∈ X〉
can be expressed as tk0 a1tk1 · · · amtkm for some a1, . . . , am ∈ X±1 and some k1, . . . , km ∈Z. Suppose w
represents the identity in M� . Then shuffling all the t∓1 to the right, replacing each ai by the freely
reduced word representing�±1(ai) does not change the element of M� represented. Eventually, we arrive
at utk0+···+km where u is a word on X±1 that represents 1 in G and k0 + · · · + km = 0. Applying �±1 to a
letter in X±1 increases its length by at most the factor C := maxa∈X |�±1(a)|. So mC|k0|+···+|km| ≤ |w| C|w|

is an upper bound for both |u| and for the number of relation applications needed to convert w to u.
The Dehn function of G is at most quadratic, so u can be reduced to the empty word using at most

a constant times |u|2 defining relations. Thus Area(w) is at most a constant times |w| C|w| + ( |w| C|w|)2,
and therefore (since αn 	 βn for all α, β > 1) we deduce δ(n) 
 2n.

Our next lemma is the special case of Theorem 4.1 of [7] in which, in the notation of [7], G = H and
K is quasi-isometrically embedded. We will call on it repeatedly to establish lower bounds on the Dehn
functions.

Lemma 3.5 (Adapted from Theorem 4.1 of Bridson–Gersten [7]). Suppose K = 〈k1, . . . , km〉 is a quasi-
isometrically embedded infinite abelian subgroup of a finitely presented group G. If � ∈ Aut(G) and
�(K) = K, then the Dehn function δ of 〈G, t | gt =�(g)〉 satisfies

n2 max
1≤i≤m

∣∣�±n(ki)
∣∣ 
 δ(n).

Equivalently, suppose φ =� |K is associated to the matrix A; then

1. If φ has an eigenvalue λ such that |λ| = 1, then M� has exponential Dehn function.
2. If φ only has eigenvalues λ such that |λ| = 1, then nc+1 
 δ(n), where the size of the largest

Jordan block for A is c × c.

The following lemma allows us to specialize to convenient � when analyzing the Dehn functions of
mapping tori. We include the proof because it is brief and the result is vital to this paper.

Lemma 3.6 (c.f. Lemma 2.1 of [4]). The following mapping tori have equivalent Dehn functions:

1. M� and M�n , for any n ∈N.
2. M� and M�−1 .
3. M�1 and M�2 when �1 and �2 are conjugate in Out(G).

Proof, based on [4]. Map M� onto 〈t〉 =Z by killing G and then onto Z/nZ by the natural quotient
map. The kernel of this composition is the index-n subgroup M�n . By Proposition 3.1, M� and M�n have
equivalent Dehn functions.

As wt =�(w) for all w ∈ G, it follows that wt−1 =�−1(w), so mapping t �→ t−1 and fixing G gives an
isomorphism M� → M�−1 . Thus, M� and M�−1 have equivalent Dehn functions.
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If �1 and �2 are conjugate in Out(G), there exists η ∈ Aut(G) and h ∈ G such that �2(g) =
η−1(�1(η(gh))) for all g ∈ G. We will show that M�1 and M�2 are isomorphic. Consider F : M�2 → M�1

given by x �→ η(x) for x ∈ G and t �→ t ĥ, where ĥ := �1(η(h)). It is a homomorphism because the rela-
tors (g−1)t�2(g) for g ∈ G are mapped to the identity in M�1 , since (w−1)t�1(w) = 1 in M�1 for w ∈ G.
Indeed,

F
(
(g−1)t�2(g)

) = F
(
(g−1)tη−1(�1(η(gh)))

) = η(g−1)tĥ�1(η(gh))

= (η(g−1))tĥ�1(η(g))ĥ = (
(w−1)t�1(w)

)ĥ = 1ĥ = 1.

where w = η(g). It is certainly onto. This homomorphism has inverse given by x �→ η−1(x) for x ∈ G and
t �→ t η−1(ĥ−1), so it is an isomorphism.

3.3. Growth and automorphisms of Z2

Let ||A|| denote the maximum of the absolute values of the entries in a matrix A ∈ GL(2, Z) = Aut(Z2).
We say A has linear growth when the function N→N mapping n �→ ||An|| is 	-equivalent to n �→ n.

The following lemmas will allow us to specialize to convenient cases of � when analyzing Dehn
functions of mapping tori M� of F2 ×Z and Z

2 ∗Z.

Lemma 3.7. If A ∈ SL(2, Z) has linear growth, then there are integers α and k such that k> 0 and Ak

is conjugate to
(

1 α

0 1

)
in SL(2, Z).

Proof. As A has linear growth, Theorem 2.1 of [7] tells us that there exists an integer k> 0 such that Ak

is I + N for some nonzero matrix N such that N2 = 0. As N2 = 0, the trace of N is zero, and N =
(

a b

c −a

)
for some integers a, b, c not all zero such that a2 = −bc. If a = c = 0, then the result holds with α = b.
So assume they are not both zero. Notice that N

(
a

c

)
=
(

0

0

)
. So there are coprime integers p and q (in

particular not both zero) with N
(

p

q

)
=
(

0

0

)
. By Bézout, there are r, s ∈Z such that ps − qr = 1, and so

B :=
(

p r

q s

)
is in SL(2, Z). And then B−1NB =

(
0 α

0 0

)
where α = 2ars + bs2 − cr2, and the result follows.

Lemma 3.8. Suppose A ∈ SL(2, Z) has a non-real eigenvalue λ= x + yi, then it has order dividing 6.

Proof. As A ∈ SL(2, Z) we can say det (A) = 1 = (x + yi)(x − yi) = x2 + y2, so |λ| = 1 and λ2 −
tr(A)λ+ 1 = 0. Since λ is not real, the discriminant tr(A)2 − 4< 0, and as A has only integer entries,
tr(A) ∈ {0, ±1}. Then, as tr(A) = 2x, we find x ∈ {0, ± 1

2
}. It follows that A is conjugate in SL(2, C) to(

eiθ 0

0 e−iθ

)
, where θ is ±π/2, ±2π/3, or ±π/3, and so A has order dividing 6.

Lemma 3.9. A ∈ SL(2, Z) has real non-unit eigenvalues if and only if A grows exponentially.

Proof. If A ∈ SL(2, Z) has real non-unit eigenvalues, then A has two eigenvalues λ and λ−1, where

|λ|> 1. It follows that A is conjugate in SL(2, C) to
(

λ 0

0 λ−1

)
. By taking powers of the diagonalization

in SL(2, C), Ak = PDkP−1 =
(

a b

c d

)(
λk 0

0 λ−k

)
1

ad−bc

(
d −b

−c a

)
, we can see that A has exponential growth.
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Figure 2. How “charges” would appear if r1 = c2 and r2 = c.

Figure 3. Constructing 
 from 
′ and θ .

For the converse, suppose A grows exponentially. By Lemma 3.8, it has real eigenvalues. Its eigen-
values cannot be both 1 or both −1 because then A2 would be conjugate in SL(2, C) to a matrix of linear
growth (as in Lemma 3.7).

4. The electrostatic model for central extensions

Gersten and Riley’s electrostatic model is a method of constructing van Kampen diagrams for central
extensions (Proposition 6.1 of [16]). We will use it and variants to obtain upper bounds on the Dehn
functions of some mapping tori.

Suppose a group � is a central extension 1 →Z→ �→ �→ 1 with kernel Z= 〈c〉. If � has
presentation

P� = 〈X|r1 = · · · = rn = 1〉,
then for some k1, . . . , kn ∈Z, � has presentation:

P� = 〈X, c | r1 = ck1 , . . . , rn = ckn , [c, x] = 1, ∀x ∈ X〉.
Suppose w ∈ F(X ∪ {c}). Since c is central, w = wcm in �, for some m ∈Z where w is w with all

c±1 removed. If w represents the identity in �, the word w ∈ F(X) represents the identity in �. We will
describe how to construct a van Kampen diagram for w over P� from a diagram 
 for w over P�.

We read a defining relator riσ clockwise or counterclockwise from an appropriate vertex ∗σ around
the boundary of each 2-cell σ in
. Now “charge” every 2-cell: insert |kiσ | loops at ∗σ each labeled with
c’s and oriented in such a way that around the interior of the 2-cell we now read riσ c−kiσ (to reflect the
relation riσ = ckiσ ), as in Figure 2. If C := maxi |ki|, then at most CArea(
) such loops labeled by c are
introduced by charging.

To discharge, pick a geodesic spanning tree T in 
(1)—that is, a maximal tree such that the distance
in the tree from any vertex to the base vertex of 
 is the same as its distance in 
(1). In [16], for each
introduced c-edge, a c-corridor is added which follows T to the root of the tree. (Figures 4–7 in [16] show
how these corridors appear.) Each c-corridor has length bounded above by Diam(
). This produces a
diagram 
′ for wcm in � with area at most CArea(
)(Diam(
) + 1).

As w = wcm in P�, there is a van Kampen diagram θ for wc−m(w)−1 over P�. Since the arrangement of
generators other than c is the same in w and in wcm, θ can be filled with c-corridors and Area(wc−mw−1) ≤
|w|2. To get a diagram 
 for w, we wrap the diagram θ around 
′ as in Figure 3.

For example, G = 〈a, b, c | [b, a] = c2, [c, a] = [c, b] = 1〉 is a central extension of
Q = 〈a, b | [a, b] = 1〉.
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Figure 4. An example of the electrostatic model in action.

Figure 4 shows how a van Kampen diagram over G for the word w = c−6b−3a−3bc−1b2c−1a3c−10,
beginning with a van Kampen diagram 
 over Q for w = b−3a−3b3a3.

We begin by charging the diagram, that is, adding in c-edges (the yellow loops) to all 2-cells to
recover the relations of G. Then we “discharge” the new edges to the boundary, that is, we push the
one-sided edges to the boundary by adding in c-corridors along a geodesic spanning tree T . For each
unconnected c-edge, we duplicate the path from its vertex to the base point, in T , and expand these paths
to c-corridors. For example, a path with label abbb will be duplicated to a c-corridor with sides abbb,
as c is central. Finally, we add an annular diagram around the outside of the diagram to rearrange the
c-edges to the appropriate order, converting the van Kampen diagram 
′ for c−6b−3a−3b3a3c12 to a van
Kampen diagram 
 for w.

In this example, the area of 
 is 9, and the diameter of the 1-skeleton of 
 is 6. Each of the 2 × 9
new c-edges can be pushed to the boundary with the addition of a c-corridor of length at most 6, along a
path in the spanning tree, so the van Kampen diagram 
′ has area at most 9 + 6 · 2 · 9, and rearranging
the boundary comes at a further cost to area of at most |w|2.

This construction leads to the following theorem.
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Theorem 4.1 (Gersten–Riley [16], Theorem 6.3). Suppose we have a central extension 1 →Z→ �→
�→ 1 of a finitely presented group �, and f , g : N→N are functions such that for every word w rep-
resenting the identity in �, there exists a van Kampen diagram 
 such that Area(
) ≤ f (|w|) and the
diameter Diam(
) of the 1-skeleton of
 is at most g(|w|). Then, the Dehn function of�, δG(n) is bounded
above by a constant times f (n)(g(n) + 1) + n2.

To use Theorem 4.1, we need simultaneous control on both area and diameter of diagrams. This is
available in the setting we will be concerned with thanks to the following theorem of Papasoglu. The
radius r(
) of a van Kampen diagram
 is the minimal N such that for every vertex in
, there is a path
of length at most N in the 1-skeleton of
 from that vertex to ∂
. Since one can travel between any two
vertices by concatenating shortest paths to the boundary with a path part way around the boundary:

Diam(
) ≤ 2r(
) + |∂
|. (4.1)

Theorem 4.2 (Papasoglu, Section 3 of [22]). For a group G given by a finite presentation in which every
relator has length at most three, if 
 is a minimal area van Kampen diagram such that |∂
| = n and
Area(
) ≤ Mn2, then r(
) ≤ 12Mn.

Every finitely presentable group has such a presentation, and changing between two finite presenta-
tions of a group alters diameter and area by at most a multiplicative constant, so, in the light of (4.1),
Theorem 4.2 gives us:

Corollary 4.3. If a finitely presented group G has Dehn function bounded above by a quadratic function,
then there exists K > 0 such that for every word of length n representing the identity, there is a van
Kampen diagram whose area is at most Kn2 and whose diameter is at most Kn.

5. Mapping tori of G = F2 ×Z= 〈a, b〉 × 〈c〉
5.1. Automorphisms of F2 ×Z

Recall the notation of Theorem A: � ∈ Aut(F2 ×Z) induces ψ ∈ Aut(F2), ψ induces ψab ∈ GL(2, Z)
via the abelianization map F2 →Z

2, g �→ gab, and p : F2 ×Z→Z= 〈c〉 is projection onto the second
factor. Let λ±1 be the (complex) eigenvalues of ψab. We will prove Theorem A by separately addressing
three comprehensive and mutually exclusive cases.

1. |λ| = 1,
2. |λ| = 1 and there exists g ∈ F2 and m ∈N such that ψm

ab(gab) = gab and p(�m(g)) = 0—
equivalently, gab = [ψm(g)]ab and �m(g) =ψm(g)ck for some k = 0.

3. all other cases—that is, |λ| = 1 and for all g ∈ F2 and all m ∈N, if p(�m(g)) = 0 thenψm
ab(gab) =

gab.

In Section 5.2, we will prove that the Dehn function of the mapping torus M� of F2 ×Z= 〈a, b〉 × 〈c〉
is quadratic in case 1. In Section 5.3, we will prove that it is cubic in case 2 and is quadratic in case 3.
First, we narrow the family of automorphisms � that must be explored.

Lemma 5.1 ([20, Proposition 4.1, due to Nielsen]). For all θ ∈ Aut(F(a, b)), there is h ∈ F(a, b) such
that θ 2([a, b]) = [a, b]h.

Proof. Aut(F(a, b)) is generated by the following five elementary Nielsen transformations: (a, b) maps
to (a−1, b), (a, b−1), (b, a), (ab, b), or (a, ba). Each sends [a, b] to a conjugate of [a, b]±1.
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To prove Theorem A, it will suffice to focus only on the mapping tori of the form M� described in
the next lemma.

Lemma 5.2. Let G = F2 ×Z= 〈a, b〉 × 〈c〉. Given � ∈ Aut(G), there exists � ∈ Aut(G) such that

• there is k ≥ 0 such that [�] = [�k] in Out(F2 ×Z),
• the Dehn functions of M� and M� are equivalent,
• φ([a, b]) = [a, b],
• M� is a central extension of Mφ = 〈a, b, t | at = φ(a), bt = φ(b)〉 by Z= 〈c〉,

where φ ∈ Aut(F(a, b)) is the map induced from� by killing c. Thus, there exist ka, kb ∈Z such that

M� = 〈a, b, c, t | at = φ(a)cka , bt = φ(b)ckb , ct = c, [a, c] = 1, [b, c] = 1〉.

Additionally, by replacing � by �l for a suitable l, we can further achieve that the map φab induced by
φ via abelianizing F(a, b) to Z

2 has determinant 1 and its eigenvalues are real and positive.
Finally, each of conditions 1, 2, and 3 from the start of this section hold for� exactly when they hold

for �.

Proof. The center 〈c〉 of G, being characteristic, is preserved by�, so�(c) = c±1, and�2(c) = c. On
killing c, � induces some ψ ∈ Aut(F(a, b)), whereby the mapping torus M�2 = G ��2 Z is

〈a, b, c, t | at =ψ 2(a) cka , bt =ψ 2(b) ckb , ct = c, [a, c] = 1, [b, c] = 1〉

for some ka, kb ∈Z. By Lemma 5.1, ψ 2([a, b]) = [a, b]h for some h ∈ F(a, b).
How we will define � will depend on which of the cases 1, 2, and 3 from the start of this section, �

falls into, as well as whether ψab is finite order or has linear growth.
In case 1, define �= ιh−1 ◦�2 where ιh−1 denotes conjugation by h−1. Then φab has determinant 1 as

(ψab)2 has determinant 1, and� satisfies the properties above by definition and by Lemma 3.6. Because
the eigenvalues of ψab were real, the eigenvalues of φab are real and positive.

In cases 2 and 3, ψab has unit eigenvalues. If these eigenvalues are not real, Lemma 3.8 tells us that
ψab has order dividing 6. Define � to be �6 composed with an appropriate inner automorphism so
that φ = id. Otherwise, φab has real eigenvalues of ±1. Define � to be �2, composed with the inner
automorphism guaranteed by Lemma 5.1 so that φ([a, b]) = [a, b]. In both cases, φ and� satisfy all the
required properties (again using Lemma 3.6).

Here is why conditions 1, 2, and 3 hold for� exactly when they hold for �. Suppose that � satisfies
condition 1, that ψab has a non-unit eigenvalue. Then �= ιh−1 ◦�2 for some h ∈ F(a, b), and ψab has a
non-unit eigenvalue if and only if φab =ψ 2

ab does. Suppose that � satisfies condition 2 or 3, and ψab has
complex eigenvalues. Then �= ιh−1 ◦�6 for some h ∈ F(a, b). If for some g ∈ F(a, b), we have that gab

is a fixed point of ψm
ab, then it is also a fixed point of φm

ab =ψ 6m
ab . If there is m ∈N so that φm

ab has a fixed
point, then ψ6m

ab will also have a fixed point. Moreover, p(�m(g)) = 6p(�m(g)), so p(�m(g)) = 0 if and
only if p(�m(g)) = 0. Thus, � and � either both satisfy 2 or both satisfy 3. The real case follows by a
similar argument.

We are now ready to deduce:

Corollary 5.3. All mapping tori M� of F2 ×Z have at most a cubic Dehn function.

Proof. Bridson and Groves [8] prove that for all φ ∈ Aut(F2), F2 �φ Z has a quadratic Dehn function,
so Corollary 4.3 applies and allows us to use Theorem 4.1 to deduce that every central extension of
F2 �φ Z has at most cubic Dehn function. Lemma 5.2 then tells us that M� has at most a cubic Dehn
function.
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In Sections 5.2 and 5.3, we will refine this method to improve the upper bound from cubic to quadratic
in special cases. In Section 6, we will adapt the arguments to certain examples which fall short of being
central extensions.

5.2. Theorem A when ψab has non-unit eigenvalues

The primary tool for this section is relative hyperbolicity, a concept introduced by Gromov, and then
developed by Bowditch, Farb, Osin, and others [5, 14, 21].

Suppose Mφ is a group presented by:

P1 := 〈a, b, t | at = φ(a), bt = φ(b)〉
where φ ∈ Aut(F(a, b)) such that φ([a, b]) = [a, b].

Lemma 5.4. If φab has non-unit eigenvalues, Mφ is strongly hyperbolic relative to the subgroup:

H := 〈[a, b], t〉 ∼= Z
2.

Proof. Mφ is the fundamental group of a finite-volume hyperbolic once-punctured torus bundle. In
Theorem 4.11 of [14], Farb showed that such groups are strongly hyperbolic relative to their cusp sub-
groups. In our case, that is the subgroup 〈[a, b], t〉 (see also Section 4 of [12] for a survey of when
mapping tori of free groups are relatively hyperbolic and acylindrically hyperbolic).

Consider the presentation:

P2 := 〈a, b, z, t | at = φ(a), bt = φ(b), z = [a, b], zt = z〉
for Mφ obtained from P1 by adding an extra generator z, an extra relation which declares that z equals
[a, b] in the group, and a further extra relation which declares that [a, b] commutes with t (which is
a consequence of the other defining relations since φ([a, b]) = [a, b], but we include it nevertheless).
Then, 〈t, z〉 ∼=Z

2 is the subgroup H of Lemma 5.4. Refer to faces of a van Kampen diagram over P2 as
Z

2-faces when they correspond to the relation zt = z, and refer to the remaining faces as R-faces.

Lemma 5.5. There exists C> 0 such that every word w on {a, b, t}±1 of length n that represents the
identity has a van Kampen diagram 
 over P2 with the following properties.

1. The number of R-faces is at most Cn.
2. The number of Z2-faces in 
 is at most Cn2.
3. From every vertex of 
 on the perimeter of an R-face, there is a path to ∂
 of length at most

Cn in the 1-skeleton of the union of the R-faces.

Proof. Let AH = {t, z} ∪ {hij | i, j ∈Z, (i, j) = (0, 0), (1, 0), (0, 1)} be an alphabet, with a letter for each
non-identity element of the subgroup 〈t, z〉 ∼=Z

2 of Mφ . Here, hij corresponds to the element represented
by tizj. Let S denote the set of words in A∗

H that represent the identity in Mφ . For example, S includes the
word [z, t] and hijz−jt−i for all (i, j) = (0, 0), (1, 0), (0, 1).

The presentation

P3 := 〈a, b, AH | at = φ(a), bt = φ(b), z = [a, b], S〉
again gives Mφ . Note that the elements t and z appear in AH , and the defining relation zt = z appears in
S. Again, we will refer to van Kampen diagram faces that correspond to elements of S as Z2-faces.

Then P3 is a finite relative presentation for Mφ with respect to the subgroup H, as per
Definitions 2.2 and 2.3 of Osin in [21]. Theorem 1.5 in [21] says (in particular) that a finitely generated
group which is hyperbolic relative to a subgroup in the sense of Farb, as is the case for Mφ relative to H by
Lemma 5.4, has a linear relative Dehn function. What this means (as unpacked per Definitions 2.26,
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2.31, and 2.32 of [21]) is that there exists C> 0 such that for every word w on {a, b, t}±1 representing
the identity, there is a van Kampen diagram 
̂ over P3 whose number of R-faces is at most C|w|.

Osin proves further facts that we will need concerning the geometry of 
̂. A diagram for the word w
is of minimal type over all diagrams for w if under lexicographic ordering it minimizes

(NR = # of R− faces, NZ2 = # of Z2 − faces, E = total#of edges).

Choose 
̂ be of minimal type.
Let M be the maximum length of the relators atφ(a)−1, btφ(b)−1, z[a, b]−1, and ztz−1. Call an edge of


̂ internal to the Z2-faces when it has Z2-faces (or a Z2-face) on both sides. Osin (Lemma 2.15 of [21])
tells us that if 
̂ is of minimal type then it has no edges which are internal to the Z

2-faces and deduces
(Corollary 2.16) that the sum of the lengths of the perimeters of Z2-faces in 
̂ is at most |w| + MNR.

Suppose that w is a word on {a, b, t}±1 and take 
̂ to be a diagram of minimal type for w over P3.
The words around R-faces only include the letters t, z, a and b, so they can overlap Z

2-faces only in
edges labeled by t and z. Therefore, the word around each Z

2-face is a word on {t, z}±1 since every edge
in the boundary of a Z2-face is either in ∂
̂ or is also in the boundary of an R-face. Let
 be a diagram
obtained from 
̂ by excising all Z2-faces and replacing each Z

2-face with the appropriate minimal area
diagram over 〈t, z | zt = z〉. So
 is a van Kampen diagram over P2. By Osin’s Theorem 1.5, as discussed
above, 
 satisfies (1). As the Dehn function of 〈t, z | zt = z〉 enjoys a quadratic upper bound, and, given
the bound on the lengths of the boundaries of Z2-faces explained in the previous paragraph, 
 also
satisfies (2).

Because of the minimality assumption on the number of Z2-faces, no two Z
2-faces will have a vertex

in common in 
̂: two Z
2-faces with a vertex in common could be replaced by a single Z

2-face. Also
the boundary circuit of any Z

2-face in 
̂ will be a simple loop. This is because E(
̂) is minimal: a
Z

2-face with a non-simple loop as its boundary circuit could be excised and a Z2-face with a shorter and
simple boundary loop inserted in its place. Thus, the Z

2-faces form disjoint islands in 
̂ and there are
no R-faces enclosed within these islands. In the light of this, (3) follows from (1).

Proof of Theorem A in Case 1. We suppose � ∈ Aut(F2 ×Z). By Lemma 5.2, there exists � so that
M� and M� have equivalent Dehn function, and M� has presentation:

〈a, b, c, t | at = φ(a)cka , bt = φ(b)ckb , ct = c, [a, c] = 1, [b, c] = 1〉,
which is a central extension of

〈a, b, t | at = φ(a), bt = φ(b)〉
where φ ∈ Aut(F(a, b)) has the property that φ([a, b]) = [a, b]. If z = [a, b], then in M�

zt = [at, bt] = [�(a),�(b)] = [φ(a)cka , φ(b)ckb ] = [φ(a), φ(b)] = φ([a, b]) = [a, b] = z.

So M� also can be presented as:

Q := 〈a, b, c, t, z | at = φ(a)cka , bt = φ(b)ckb , ct = c, [a, c] = 1, [b, c] = 1, z = [a, b], zt = z〉,
which reveals it to be a central extension of

P2 = 〈a, b, t, z | at = φ(a), bt = φ(b), z = [a, b], zt = z〉
by Z= 〈c〉.

Suppose w is a word in {a, b, c, t}±1 of length n representing the identity in Q. Let w be w with all
c±1 deleted.

Let 
 be a van Kampen diagram for w as per Lemma 5.5. Given (3) of that lemma, there is a forest
F in the 1-skeleton of the union of the R-faces in 
 joining every vertex of an R-face to ∂
 by a path
of length at most Cn.

Charge 
. Given that the defining relation zt = z is unchanged on lifting to the central extension,
the Z

2-faces of Lemma 5.5 (2) are unchanged. There are Cn2 such Z
2 faces. Let m = max{|ka|, |kb|}.

The remaining Cn R-faces of Lemma 5.5 (1) each acquire at most m charges. These are discharged by
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adding partial c-corridors that follow the forest F to the boundary and then around the boundary to a
base vertex. Each partial c-corridor has length at most (C + 1)n: the length of the path to the boundary
is at most Cn by Lemma 5.5 (3) and the length of the path to the base vertex is at most n. In total then,
c-partial corridors contribute at most (C + 1)2mn2 2-cells to the new diagram. The result is a diagram
over Q of area at most ((C + 1)2m + C)n2 for a word wck, which has length less than n. By adding in an
annular region to rearrange wck to w, as per the electrostatic model of Section 4, it follows that w has a
diagram over Q of area at most ((C + 1)2m + C + 1)n2.

5.3. Theorem A in the case where all eigenvalues of ψab are unit

We begin by arguing that for the purpose of determining Dehn functions, we can further specialize the
family of presentations as follows.

Lemma 5.6. Suppose that � ∈ Aut(G) is as per Lemma 5.2, and that eigenvalues of φab are 1. Then
there exists � ∈ Aut(G) such that the eigenvalues of ξab are also 1, the Dehn functions of M� and M�

are equivalent, and

M� = 〈a, b, c, t | at = abβcka , bt = bckb , ct = c, [a, c] = 1, [b, c] = 1〉
for some β ∈Z. Moreover, conditions 2 and 3 of Section 5.1 hold for � exactly when they hold for �,
and they are characterized by kb = 0 and kb = 0, respectively.

Proof. We have� per Lemma 5.2. So�(a) = φ(a)cka
′
, �(b) = φ(b)ckb

′
, �(c) = c, for some ka

′, kb
′ ∈

Z and some φ ∈ Aut(F(a, b)) such that φab has determinant 1. Lemma 5.2 implied that the eigenvalues
of φab are 1 for automorphisms of types 2 and 3.

We will show that there is � ∈ Aut(F2 ×Z) such that for some κ ≥ 0, [�κ] and [�] are conjugate in
Out(F2 ×Z) and ξ =��F(a,b) maps b �→ b.

As φab has only eigenvalue 1, it is either the identity or it has linear growth. Lemma 3.7, implies that
for some κ , φκab is conjugate in SL(2, Z) to

(
1 β

0 1

)
for some β ∈Z. Define �′ =�κ , with restriction φ ′.

On account of the standard isomorphism between Out(F2) and GL(2, Z), [φ ′] is conjugate in Out(F2) to
[ξ ] where ξ (a) = abβ and ξ (b) = b. So ξ = f −1 ◦ φ ′ ◦ f ◦ ιg for some f ∈ Aut(F2) and some ιg ∈ Inn(F2).
We lift f , ξ , ιg ∈ Aut(F2) to F,�, ι̂g ∈ Aut(F2 ×Z) by defining F(gck) = f (g)ck for g ∈ F2 and k ∈Z, by
taking ι̂g to be conjugation by g, and by defining � := F−1 ◦�′ ◦ F ◦ ι̂g. Because c is central, ι̂g(c) = c.
In particular,

� : a �→ abβcka , b �→ bckb , c �→ c,

for some ka, kb ∈Z. (Note that p(�′(b)) and p(�(b)) = kb may not be equal, as�′(f (b)g−1
), and�′(b) will

not generally have the same index sum of c letters.)
Therefore, M� has the presentation claimed and ξab has only 1 as an eigenvalue, as required. By

Lemma 3.6, the mapping tori M� and M� have equivalent Dehn functions.
Next we will show that

1. If φ ′
ab = id, then p(�(b)) = kb = 0 if and only if there exists w ∈ F2 such that φ ′

ab(wab) = wab and
p(�′(w)) = 0.

2. If φ ′
ab = id, exactly one of the following holds:

(a) p(�′(x)) = 0 for all x ∈ 〈a, b〉, in which case �= Id,
(b) p(�′(x)) = 0 for some x, in which case p(�(a)) or p(�(b)) is nonzero.

Moreover, this implies that �, �′ and � either all satisfy condition 2 or all satisfy condition 3 of
Section 5.1.
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Proof of 1: We wish to compare p(�′(w)) and p(�(b)). Let w′ = f (b). The following calculation shows
that w′

ab is another fixed point of φ ′
ab and that p(�′(w′)) = p(�(b)) = kb:

�′(w′) = F ◦� ◦ ιg−1 ◦ F−1(f (b)) = F(�(bg−1
)) = F(bg−1

cp(�(b))) = f (b)g−1
cp(�(b)) = (w′)g−1

cp(�(b)).

If φ ′
ab = id, then since wab and w′

ab are both fixed by φ ′
ab, wab = dw′

ab for some
d = 0, and therefore p(�′(w)) = dp(�′(w′)) = dkb. So p(�(b)) = kb = 0 if and only if
p(�′(w)) = 0. In case 1, �′ and � either both satisfy condition 2 or both satisfy
condition 3, and so this holds for � and � by Lemma 5.2.

Proof of 2: φ ′ ∈ Inn(F2) since

1 → Inn(F2) → Aut(F2) → SL(2, Z) → 1

is exact and φ ′
ab = id. Therefore, � maps a �→ acka , b �→ bckb , and c �→ c for some ka, kb ∈Z, and so

ξab = id also. This suffices to show 2.
When φ ′

ab = id, condition 2 amounts to “there exists g ∈ F2 such that p(�′(g)) = 0”. This holds for
�′ if and only if it holds for �, by 2. Again �, �′ and � either all satisfy condition 2 or all satisfy
condition 3, and so this holds for � and � by Lemma 5.2.

Proof of Theorem A in Case 2. By Lemmas 5.2 and 5.6, for the purpose of calculating the Dehn
function we may work with

M� = 〈a, b, c, t | at = abβcka , bt = bckb , ct = c, [a, c] = 1, [b, c] = 1〉
where kb = 0. The subgroup K := 〈b, c | [b, c]〉 ∼=Z

2 quasi-isometrically embeds in F2 × 〈c〉 and�(K) =
〈bckb , c〉 = K. So, by Lemma 3.5, n �→ n2 max{|�n(b)|, |�n(c)|} = n2(kbn + 1) is a lower bound for
the Dehn function of M�. This lower bound is cubic (as kb = 0), matching our upper bound from
Corollary 5.3, so the claim is established.

We now turn to case 3. This time, Lemmas 5.2 and 5.6 allow us to work with M� which has the form:

M� = 〈a, b, c, t | at = abβcka , bt = b, ct = c, [a, c] = 1, [b, c] = 1〉
where, β is nonzero. (The case β = 0 and ka = 0 is covered by Theorem A in case 2—the Dehn function
of this mapping torus is cubic. If β = 0 and ka = 0, then M� = 〈a, b, c | [a, c] = 1, [b, c] = 1〉 × 〈t〉,
which has quadratic Dehn function.)

The methods of case 1 cannot be used here. Indeed, Button and R. Kropholler in Theorem 4.4 [12]
have shown that for ξ with this form, Mξ is not strongly hyperbolic relative to any finitely generated
proper subgroup, so van Kampen diagrams over Mξ do not decompose into uncharged islands with
linear-area complement. Instead will use a variant of the electrostatic model whereby the diagram will
be discharged along partial corridors (see Section 3.1) in a manner controlled by an application of Hall’s
Marriage Theorem, which we now review.

A subgraph F of a graph � is a 1-factor for � if it contains all vertices of � and each vertex meets pre-
cisely one edge of F. In other words, a 1-factor pairs every vertex with a neighbor. We will be interested
in the following special case:

Lemma 5.7. A k-regular bipartite graph � with k ≥ 1 has a 1-factor.

This is a consequence of Hall’s Marriage Theorem. See [13] for a proof.

Proof of Theorem A in Case 3. By Lemma 5.6, it suffices to prove that M�, presented by:

P = 〈a, b, t, c | at = abβcka , bt = b, ac = ca, bc = cb, ct = tc〉,
has quadratic Dehn function. If ka = 0, then M�

∼= Mφ × 〈c〉 and so the Dehn functions of M� and Mφ

agree and are quadratic. Therefore, we may restrict our attention to the case where β and ka are both
nonzero.
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Figure 5. If a partial b-corridor joins two capping faces in 
, their c-charges can be discharged by
adding partial c-corridors “following” that partial b-corridor.

Van Kampen diagrams over P have both partial b-corridors and partial c-corridors. M� is a central
extension of Mφ by 〈c〉, where Mφ is presented by:

Q = 〈a, b, t | at = abβ , bt = b〉.
Van Kampen diagrams over Q may have partial b-corridors.

Suppose w is a word of length n representing the identity in P . Let w be w with all c±1 removed.
Then w = wcm in M� for some m ∈Z and |w| ≤ |w|. Since Q is free-by-cyclic and non-hyperbolic, it has
a quadratic Dehn function. So there exists a minimal area diagram
 for w over Q such that Area(
) ≤
C|w|2. We charge
 by replacing 2-cells in
 with 2-cells labeled by the defining relators from P , as in
the first steps of the electrostatic model (see Section 4). What follows is a scheme for adding in 2-cells
to “discharge” 
 so as to create a diagram for wcm over P .

The idea is that if we can pair off oppositely oriented capping faces that are joined by partial b-
corridors, then we can add in partial c-corridors following the b-corridors, as in Figure 5, in order to
discharge the c-edges in our diagram. As c is central in P , partial c-corridors can be run alongside this
partial b-corridor, and the word one reads along both the top and bottom of the c-corridor will be the
same as that word along the top and bottom of the b-corridor, namely some power of t. We wish to find
a consistent way of partnering vertices so that we can replicate the picture in Figure 5, adding in partial
c-corridors to discharge between partners throughout the van Kampen diagram, with no leftover charges
to consider.

I. Modeling 
 with a graph. Construct a planar graph with multi-edges, �, from
 as illustrated in
Figure 6: � has a black vertex for each capping face in
; whenever two capping faces are connected by
a partial b-corridor, possibly of length zero, an edge connects the corresponding vertices (two vertices
may share multiple edges); we also add an edge and a white vertex to � for each partial b-corridor
that goes to the boundary. Every black vertex in the graph � is degree |β| and every white vertex has
degree 1.

The graph � is bipartite (but not generally black–white bipartite, as you can see in Figure 6): partition
the black vertices according to whether they correspond to capping faces with clockwise or anticlockwise
oriented b-edges and extend this partition to the white vertices.

II. Building a regular bipartite graph. We would like to apply Lemma 5.7, but � may not be
regular: black vertices have degree |β|, but white vertices have degree 1. So, as illustrated in Figure 7a,
we construct a regular graph �̂ which has � as a subgraph. Take |β| many copies of �, and identify the
white vertices in each of the copies. That is,

�̂ :=
( |β|⊔

i=1

�× {i}
)
/∼,

where (v, i) ∼ (v, j) for all i, j when v is a white vertex. White vertices are degree one, so the identification
of |β| copies of � forces �̂ to be a |β|-regular graph. If � is bipartite with respect to a partition A � B
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Figure 6. From capping faces and partial corridors in 
, construct a graph �. Black vertices corre-
spond to capping faces, white vertices correspond to 1-cells labeled b in ∂
, and the edges correspond
to partial b-corridor.

(a) (b) (c)

Figure 7. Finding neighbor partners for � via Hall’s Marriage Theorem.

of its vertices, then �̂ is bipartite with respect to( |β|⋃
i=1

A × {i}
)
/∼

⊔ ( |β|⋃
i=1

B × {i}
)
/∼ .

III. Finding pairing partners for b- and c-corridors. Lemma 5.7 tells us that �̂ has a 1-factor. This
partners each vertex v ∈ �̂ with an adjacent vertex v′. View the image of �× {1} in �̂ as �, sitting as a
subgraph in �̂. In the example of Figure 7c, � is the gray subgraph at the back. If v ∈ � is a black vertex,
its partner v′ is also a vertex of �, but this may fail for white vertices.

IV. Completing to a van Kampen diagram. If v and v′ are partnered black vertices in �, then the
corresponding capping faces are connected by at least one partial b-corridor (possibly of length zero).
In 
, the capping faces f and f ′ corresponding to v and v′ have |ka| many oppositely oriented charges.
We will connect these charges with |ka| partial c-corridors, as in Figure 5. Choose one of the partial
b-corridors joining f to f ′ (there is at least one). Run all of the partial c-corridors for one capping face
alongside the partial b-corridor. If a black vertex v is paired with a white vertex v′ in �, run all of the par-
tial c-corridors alongside the partial b-corridor to the boundary. Two white vertices will never be paired.
At the ends of partial b-corridors on capping faces, it may be necessary to insert rectangles in which the
b-and c-corridors cross, as in Figure 8, but this requires no more than |β||ka|Area(
) additional 2-cells.
The total number of 2-cells added to 
 in this process is no more than (|β| + 1)|ka|Area(
).

V. Correcting the boundary. Partial c-corridors follow partial b-corridors to the boundary in groups
of |ka|. The new diagram has boundary length between |w| and (|ka| + 1)|w| and is a van Kampen diagram
over P for some word w′ in the pre-image of w. Deleting all c±1 from w′ produces w, but the arrangement
of the c±1 letters in w′ may differ from that in w. As was described in Section 4, we glue around the outside
of this diagram an annular diagram with the word w′ along the inner boundary component and the word
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Figure 8. Partnering in � gives a consistent way to discharge c-charges.

w along the outer boundary component. Together, they form 
, a van Kampen diagram for w over P .
This annular diagram has area at most (|ka| + 1)2|w|2, and summing our area estimates, 
 has area no
more than (1 + (|β| + 1)|ka|)Area(
) + (|ka| + 1)2|w|2. Since Area(
) ≤ C|w|2, it follows that there is
constant A> 0 such that for any given word w in the generators of P that represents the identity, this
construction produces a van Kampen diagram of area at most A|w|2.

6. Mapping tori of G =Z
2 ∗Z= 〈a, b | [a, b]〉 ∗ 〈c〉

6.1. Automorphisms of Z2 ∗Z

Servatius [24] and Laurence [18] found a generating set for the automorphism group of a RAAG A(�)
based on the underlying graph � (see Lemma 7.2). For

Z
2 ∗Z = 〈a, b | [a, b]〉 ∗ 〈c〉,

it consists of the inner automorphisms, inversions, the one nontrivial graph isomorphism (a �→ b, b �→ a,
and c �→ c), and the four transvections

τa : a �→ ab, b �→ b, c �→ c,

τb : a �→ a, b �→ ba, c �→ c,

ψa : a �→ a, b �→ b, c �→ ca,

ψb : a �→ a, b �→ b, c �→ cb.

The following lemma and proposition are steps toward Theorem B in that they let us focus on partic-
ular presentations for the purposes of classifying Dehn functions of mapping tori of Z2 ∗Z. Recall that
ιh denotes the inner automorphism x �→ h−1xh.

Lemma 6.1. For all � ∈ Aut(Z2 ∗Z), there exist � ∈ Aut(Z2 ∗Z), φ ∈ Aut(Z2), and words w and x on
a and b such that

� : a �→ φ(a), b �→ φ(b), c �→ wc±1x

and [�] = [�] in Out(Z2 ∗Z). Explicitly, if �(a) = u1cε1 . . . uncεn un+1, where each εi = 0 and each ui ∈
〈a, b〉, and u2, . . . , un = 1, then n = 2m is even and for g := cεm+1 um+2 . . . u2mcε2m u2m+1, the map ιg−1 ◦�
satisfies the properties required of �.

Moreover, M� and M� have equivalent Dehn functions for any such �.
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Proof. Since Inn(Z2 ∗Z) �Aut(Z2 ∗Z), all automorphisms� ∈ Aut(Z2 ∗Z) can be written as ιh ◦�
where ιh denotes conjugation by some h ∈Z

2 ∗Z and � is some product of the inversions, transvec-
tions, and graph isomorphisms in the generating set above. These inversions, transvections, and graph
isomorphisms restrict to automorphisms of the subgroup 〈a, b | [a, b]〉 and map the subset 〈a, b〉c±1〈a, b〉
to itself. So

� : a �→ φ(a), b �→ φ(b), c �→ wc±1x,

for some φ ∈ Aut(Z2) and some words w and x on a±1 and b±1. This proves the existence of a� with the
required properties. We turn next to how to find such a � explicitly.

Suppose �(a) is as per the statement. For h ∈Z
2 ∗Z as above, we have that �(a) ∈ ιh(〈a, b〉). So

�(a) = u1cε1 . . . uncεn un+1 ∈ h−1〈a, b〉h.

But, given the free product structure of Z2 ∗Z, that implies that n = 2m is even and

h = vcεm+1 um+2cεm+2 · · · u2mcε2m u2m+1 = vg

where v is some element of 〈a, b〉 and g is as defined in the statement.
It follows then that ιg−1 ◦� = ιv ◦ ιh−1 ◦� = ιv ◦� and maps a �→ φ ′(a), b �→ φ ′(b), c �→ w′c±1x′

for some φ ′ ∈ Aut(Z2) and some words w′ and x′ on a±1 and b±1.
By Lemma 3.6, M� and M� have equivalent Dehn functions.

Proposition 6.2. Given � as per Lemma 6.1, there exist � ∈ Aut(Z2 ∗Z), ξ ∈ Aut(Z2), and z ∈ 〈a, b〉
such that

� : a �→ ξ (a), b �→ ξ (b), c �→ cz

and M� and M� have equivalent Dehn functions. Moreover, Conditions 1, 2, and 3 of Theorem B apply
to � exactly when they apply to �. Additionally,

• when ξ has finite order (Condition 1 of Theorem B), we may further assume ξ : a �→ a, b �→ b,
so that

M� = 〈a, b, c, t | [a, b] = [a, t] = [b, t] = 1, ct = cakbl〉,
• when ξ is of infinite order and has only unit eigenvalues (Condition 3 of Theorem B), we may

further assume ξ : a �→ abk, b �→ b for some k = 0, so that for some l, m ∈Z,

M� = 〈a, b, c, t | [a, b] = 1, at = abk, bt = b, ct = calbm〉.
Proof. How we will define�will depend on the form of�(c). Recall�(c) = wc±1x as per Lemma 6.1.

Define�1 := ιw ◦� and�2 := ιφ(w)x−1 ◦�2. If�(c) = wcx, then�1(c) = ιw ◦�(c) = cz where z = xw. If
�(c) = wc−1x, then �2(c) = ιφ(w)x−1 ◦�2(c) = cz where z = w−1φ(xw)x−1. For i = 1, 2, let ξi := �i

∣∣〈a,b〉 ,
the restriction of �i to the Z2 factor.

Suppose ξi has exponential growth (so has a non-unit eigenvalue as per Lemma 3.9 and Condition
2 of Theorem B). Define � := �i. Then � has the general form claimed in the proposition, and since
[�1] = [�] and [�2] = [�]2, Lemma 3.6 implies that M� and M� have equivalent Dehn functions.

Suppose ξi ∈ Aut(Z2) has finite order n (i.e. ξi has trivial growth). Define �=�n
i . This has the

promised form: its restriction to 〈a, b〉 is the identity and �(c) = cz for some z ∈ 〈a, b〉. Lemma 3.6
implies that M� and M� have equivalent Dehn functions.

Finally, suppose ξi is of infinite order and has only unit eigenvalues. Lemma 3.7 implies that for
some power n, (ξi)n is conjugate in Aut(Z2) to the automorphism ξ : a �→ abk, b �→ b, for some k = 0.
Therefore, for some f ∈ Aut(Z2), ξ = f −1 ◦ (ξi)

n ◦ f . Let F be the automorphism that restricts to f on
Z

2 and maps c �→ c. Define � := F−1 ◦ (�i)n ◦ F. By Lemma 3.6, M� and M� have equivalent Dehn
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functions. Let z′ = zξi(z) . . . (ξi)n−1(z) and z′′ = f −1(z′). Both are elements of 〈a, b〉. The map � has the
desired form:

�(c) = F−1 ◦ (�i)
n ◦ F(c) = F−1 ◦ (�i)

n(c) = F−1(cz′) = F−1(c)F−1(z′) = cf −1(z′) = cz′′.

In every case, conditions (1), (2), and (3) of Theorem B apply to � exactly when they apply to �.
After all, in each case, the restriction ξ of � to the Z2 factor is a conjugate of a power of the restriction
φ of �. Let A be the Jordan Canonical Form (JCF) of φ. For all k ∈N, A is finite order if and only if Ak

is finite order, and A has a non-unit eigenvalue if and only if Ak has one too. The JCF is invariant under
conjugation.

6.2. Corridors

In each instance of Proposition 6.2,

M� = 〈a, b, c, t | [a, b] = 1, at = ξ (a), bt = ξ (b), ct = cz〉
for some ξ ∈ Aut(Z2) and some z ∈ 〈a, b〉. In this section, we prove some preliminary results about van
Kampen diagrams over this presentation. Such diagrams can have both c- and t-corridors.

Definition 6.3. Suppose that τ is a t-corridor and η is a c-corridor. Suppose τ̂ ⊆ τ and η̂⊆ η are sub-
corridors. We say τ̂ and η̂ form a bigon when they have exactly two common 2-cells, specifically their
first and last ones.

A c- or t-corridor cannot cross itself. So, by considering an “innermost” crossing of a c- and a t-
corridor, we observe:

Lemma 6.4. Suppose τ is a t-corridor and η is a c-corridor. If τ and η intersect more than once, then
there are subcorridors τ̂ ⊆ τ and η̂⊆ η forming a bigon.

Per Section 3.1, a c-corridor is reduced if it contains no back-to-back pair of canceling 2-cells sharing
a c-edge.

Lemma 6.5. In a van Kampen diagram where c-corridors are reduced, if a t-corridor τ intersects a
c-corridor η, it will do so only once.

Proof. Since c-corridors are made up of a single kind of 2-cell (arising from the defining relation
ct = cz), all 2-cells in a reduced c-corridor have the same labels and are oriented the same way along the
corridor. Let us assume for the contradiction that η is reduced and that τ and η intersect at least twice.

By Lemma 6.4, there exist subcorridors τ̂ and η̂ that form a bigon, with precisely the first and final
2-cells, E1 and E2, in common, as in Figure 9. The orientation of the edges labeled by t in E1 fixes an
orientation for all the t-labeled 1-cells along the bottom of η̂ (see Remark 3.2) since η̂ is reduced. It
also fixes an orientation for t-labeled 1-cells in τ̂ . But these two specifications are inconsistent for the
t-labeled 1-cells in E2.

We will use the same argument for alternating corridors and c-corridors in Lemma 6.10 (1) and for
α- and t- partial corridors in Lemma 6.10 (4).

Corollary 6.6. In a van Kampen diagram with reduced c-corridors, there are no c-annuli, and t-annuli
do not intersect c-corridors.

Proof. The word around the outside of a c-annulus contains t’s, so it would have to intersect once (and
therefore intersect at least twice) with a t-corridor, which is impossible by Lemma 6.5. Similarly, if a

https://doi.org/10.1017/S0017089523000459 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000459


272 Kristen Pueschel and Timothy Riley

Figure 9. If a t-corridor and a c-corridor cross at least twice, the c-corridor cannot be reduced.

Figure 10. The t-corridors of oppositely oriented t-edges in w2 cannot cross η.

c-corridor has common 2-cells with a t-annulus, it must have at least two in common—again impossible
by Lemma 6.5.

The following corollary allows us to determine the lengths of c-corridors in a diagram
 in terms of
the word around its boundary and the way c-edges are paired up by c-corridors—the so-called c-corridor
pairing (see Definition 6.11).

Corollary 6.7. Suppose
 is a van Kampen diagram with reduced c-corridors. Suppose further that its
boundary word is w1c±1w2c∓1 for some words w1 and w2 and that η is a c-corridor beginning and ending
on the edges labeled by these distinguished c±1. Then the length of η is the absolute value of the index
sum of the t±1 in w1 (or, equivalently, in w2).

Proof. All t-corridors intersecting η have the same orientation with respect to η. In particular, the
word along one side of η is tk for some k, without any free reductions. Thus, the t-corridors starting at
t-edges in w2 that are oppositely oriented to the t’s in η cannot cross it, and so must have oppositely
oriented partners on the same side of η, as shown in Figure 10. This leaves exactly the absolute value
of the index sum of t in w1 many t-corridors which have no partners on the same side of η, and so must
cross it. By Lemma 6.5, each of these t-corridors can cross η exactly once.

Since c-corridors cannot cross, removing all the c-corridors leaves a set of connected subdiagrams
called c-complementary regions. The words around the perimeters of each of these regions contain no
c±1. See Figure 11a.

Corollary 6.8. Let R be a c-complementary region in a van Kampen diagram for the word w. If the
word around the perimeter of R is v, then |v| ≤ (1 + |z|)|w|, where z is from the defining relation ct = cz
for M�.

Proof. Suppose that after cyclic conjugation w has the form x0cε0 v0c−ε0 x1cε1 v1c−ε1 · · · xncεn vnc−εn ,
where x0, . . . , xn form part of the perimeter of the c-complementary region R and v0, . . . , vn are words
in {a±1, b±1, c±1, t±1}. Then the perimeter of R can be labeled by the word v = x0v′

0x1v′
1 · · · xnv′

n where
x0, x1, . . . , xn are part of w and v′

0, . . . , v′
n label the c-corridors, with v′

i = cεi vic−εi (see Figure 11b). By
Corollary 6.7, the length of each c-corridor is the index sum of t in the corresponding boundary word
vi. Along the top of a c-corridor of length ki, we have the word (tz−1)ki , so |v′

i| ≤ (1 + |z|)|vi|, and so
|v| ≤ (1 + |z|)|w|.
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(a)

(b)

Figure 11. c-Complementary regions.

Figure 12. An alternating corridor.

6.3. Alternating corridors

When

M� = 〈a, b, c, t | at = abk, bt = b, ct = calbm, [a, b] = 1〉
for some k, l, m ∈Z, killing b maps M� onto

Ql := 〈a, c, t | at = a, ct = cal〉.
The elements b and c do not commute in M�, so M� is not a central extension of Ql. Nevertheless, we
will use a variant of the electrostatic model to establish upper bounds on area in M�. The purpose of
this section is to provide necessary preliminaries concerning van Kampen diagrams over Ql. We begin
with the case l = 1. Setting α := ta−1, we see that

Q′ := 〈α, c, t|αt = α, tc = α〉
and Q1 are the same group.

Definition 6.9. A c-face is a 2-cell in a van Kampen diagram 
 over Q′ corresponding to the defin-
ing relation tc = α. Partial α- and t-corridors in 
 fit together in an alternating way: where a partial
α-corridor ends at a c-face in the interior of a diagram, a partial t-corridor begins, and where this
ends, another partial α-corridor begins. An alternating corridor in 
 is a maximal union of α-
partial corridors, t-partial corridors, and the c-faces between them, fitting together in this way—see
Figure 12.

Like a standard corridor, an alternating corridor either closes up or connects two boundary edges
(see Section 3.1). It is possible for alternating corridors to self-intersect, but, as we will see shortly, in a
reduced diagram, alternating corridors do not self-intersect or close up. Every face in
 is part of some
alternating corridor. Like standard and partial corridors, an alternating corridor has a top and a bottom:
the internal α- and t-edges are directed from the bottom to the top (again, see Figure 12).

Lemma 6.10. Suppose
 is a van Kampen diagram over 〈α, c, t|αt = α, tc = α〉 in which all c-corridors
and all α- and t-partial corridors are reduced (see Figures 13 and 14). Then in 
:

1. A c-corridor η and an alternating corridor τ can cross at most once.
2. Alternating corridors do not close up.
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Figure 13. Non-reduced subdiagrams that can occur in 
.

(a) (b)

Figure 14. Non-reduced subcorridors not occurring in 
.

(a)

(b)

(c)

(d)

Figure 15. Impossible behavior for alternating corridors.

3. A single alternating corridor can never cross itself.
4. Two alternating corridors cannot cross more than once.

Proof. For (1), it suffices (see Lemma 6.4) to prove that it is impossible to have a bigon of an alter-
nating corridor τ and a c-corridor η in 
. Since c-corridors in 
 are reduced, the top of the c-corridor
is labeled by a power of α without any free reduction. As in our proof of Lemma 6.5, τ and η specify
inconsistent orientations for the t edge in the second common 2-cell, as in Figure 15a.

For (2), suppose for a contradiction, that there is an alternating corridor A that closes up. It cannot
contain any c-faces, as this would force a c-corridor to cross A twice. If A contains no c-faces, then it
is either a t- or α-annulus. The word along the top of the annulus is a power of α or t, respectively. Such
an annulus would imply that t or α have finite order, but both are infinite order elements of Q′.

For (3), suppose for a contradiction that an alternating corridor η has a self-intersection. An alter-
nating corridor can only have a self-intersection at a 2-cell corresponding to the relation [α, t] = 1. Let
η̂⊂ η be a subcorridor of η that begins and ends at the self-intersection. Call this first and final 2-cell E.
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The 2-cell E is part of both t- and α- partial corridors in η̂; therefore, η̂ contains at least one c-face
(in particular, an odd number of c-faces in order to get both an α- and t-segment at the intersection).
Each c-face in η̂ is part of a c-corridor. By (1), c-corridors can only cross η̂ once, but each c-corridor
must cross η̂ at least twice, since it cannot terminate within the region enclosed by η̂, see Figure 15b.

For (4), assume for the contradiction that two alternating corridors cross at least twice. Again, we
can find a bigon of alternating corridors. There are two cases. In one, no c-corridors intersect the bigon.
In this case, one of the alternating corridors is a partial t-corridor, and the other is a partial α-corridor.
An argument like Lemma 6.5 shows that this kind of double intersection is impossible when t- and α-
partial corridors are reduced (see Figure 15c). In the other case, at least one c-corridor intersects the
bigon. We look at the triangle formed by the two bigons and the first c-corridor to cross them. Since it
is the first such c-corridor, we have an α- and t-partial corridor that both need to end on the same side
of a c-corridor. However, c-corridors always have t’s along the bottom and α’s along the top—there
cannot be both α’s and t’s on the same side of the c-corridor. Figure 15d illustrates this contradiction.
Therefore, neither case happens.

6.4. Quadratic area diagrams over Q1

Definition 6.11. A c-pairing for a word w is any pairing off of the c in w with the c−1 in w.
If w represents the identity in M�, then a van Kampen diagram 
 for w induces a c-pairing: some c

and some c−1 are paired when they are joined by a c-corridor in
. We say that a c-pairing is valid if it
is induced by a van Kampen diagram for w.

This notion of validity has content. Not all c-pairings need be valid, and valid c-pairings need not be
unique.

Because

Q := Q1 = 〈a, c, t | at = a, ct = ca〉
is a free-by-cyclic group, its Dehn function is quadratic [8]. The point of the following lemma is that
this quadratic area bound can be realized on diagrams witnessing any prescribed valid c-pairing.

Lemma 6.12. There exists A> 0 such that for any word u representing the identity in Q (not necessarily
freely reduced), and for any valid c-pairing P of u, there is a van Kampen diagram θ for u over Q that
induces P, has Area(θ ) ≤ A|u|2, and has reduced c-corridors.

Proof. Let 
 be a van Kampen diagram for u over Q that realizes the given c-pairing.
Instead of Q we will work with

Q′ := 〈α, c, t|αt = α, tc = α〉,
which, recall, we can see presents the same group by setting α := ta−1.

Two finite presentations 〈A1 | R1〉 and 〈A2 | R2〉 of the same group have 	-equivalent Dehn functions
[1, 15]. In outline, the proofs in [1, 15] go as follows. For each a ∈ A1, pick a word ua = ua(A2) represent-
ing the same group element. Suppose a word w1 = w1(A1) represents 1 in 〈A1 | R1〉. Let w2 be the word
obtained from w1 by replacing all of its letters a±1 by ua

±1. A van Kampen diagram w1 over 〈A1 | R1〉
can be converted to a van Kampen diagram for w2 over 〈A2 | R2〉 of comparable area by converting each
edge labeled a to a path labeled ua and then filling all the faces. Each relator in R1 can be rewritten as a
word representing the identity in A2, and each can then be filled with at most some constant number of
relators in R2, so the area of the diagram over 〈A2 | R2〉 will be no more than a constant multiple of the
area of the diagram over 〈A1 | R1〉.

In the instance of Q and Q′, the c-pairings induced by the two diagrams agree, and so it suffices to
prove the lemma for Q′ instead of Q.
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Given u = u(a, c, t), let u′ be the word obtained from u(α−1t, c, t) by canceling away all α±1α∓1 and
all t±1t∓1 (but not all c±1c∓1). Then |u′| ≤ 2|u|. Construct a van Kampen diagram θ ′ for u′ over Q′ as
follows. Begin with a planar polygon with edges directed and labeled so that one reads u′ around the
perimeter. Insert reduced c-corridors of 2-cells (each with perimeter tcα−1) mimicking the pattern of
c-corridors in 
. Fill the complementary regions with minimal area sub-diagrams over 〈α, t | αt = α〉.
The words around their perimeters represent the identity in 〈α, t | αt = α〉 because the words around the
corresponding loops in 
 represent the identity in 〈a, t | at = a〉. Since the complementary regions are
filled with minimal area subdiagrams, all α- and t- partial-corridors in θ ′ are reduced.

Lemma 6.10 implies that the length of any alternating corridor A in our diagram is bounded above by
the total number of c-corridors and alternating corridors that intersectA. Since there are in total no more
than |u′|/2 c-corridors and alternating corridors, the length of A is at most |u′|/2. Similarly, the length
of each c-corridor is at most |u|/2 by Corollary 6.7, and there are fewer than |u|/2 many c-corridors. So
altogether,

Area(θ ′) ≤ |u′|2 + |u|2

4
≤ 2|u|2.

6.5. Quadratic area diagrams over Ql

In the previous section, we established that given a valid c-pairing for a word representing the identity
in Q1, we can construct a quadratic area van Kampen diagram with that c-pairing. In this section, we
leverage Lemma 6.12 to the case where we have a valid c-pairing for a word representing the identity in
Ql. Our main strategy is to rewrite words representing the identity in Ql to words in Q1, where we can
apply Lemma 6.12 to build a van Kampen diagram. Then, we convert it to a diagram over Ql.

Recall that

Ql := 〈a, c, t | at = a, ct = cal〉.
Define

Qτ

1 := 〈a, c, τ |aτ = a, cτ = ca〉.
Identifying t with τ l gives an isomorphism of Ql with the index l subgroup of Qτ

1 generated by a, c,
and τ l.

Proposition 6.13. If u is a (not necessarily freely reduced) word representing the identity in Ql and P
is a valid c-pairing of u, there exists a van Kampen diagram for the corresponding word v := u(a, c, τ l)
in Qτ

1 with a corresponding c-pairing.

Proof. Suppose u(a, c, t) represents the identity in Ql and θ0 is a van Kampen diagram over Ql for u
inducing the c-pairing P. Define v := u(a, c, τ l)—that is, obtain v by substituting a (τ l)±1 for every t±1

in u. Then, v represents the identity in Qτ
1 = 〈a, c, τ |aτ = a, cτ = ca〉 and P induces a valid c-pairing for

v (which we will also call P) since θ0 can be converted to a van Kampen diagram for v over Qτ
1 with the

same pattern of c-corridors as follows. First replace each t-edge in θ0 by a concatenation of l τ -edges. The
resulting diagram has 2-cells of two types—those originating from the relation at = a and those from
the relation ct = cal. The perimeter words of these 2-cells become aτ

l
a−1 and cτ

l
(cal)−1. These words

are relators in Qτ
1: the first can be derived by l applications of aτ = a and the second by l applications

of cτ = ca and l(l − 1)/2 applications of aτ = a. Accordingly, refine the diagram by replacing the aτ
l
a−1

2-cells with an a-corridor of l 2-cells each labeled aτa−1, and the cτ
l
(cal)−1 2-cells with a c-corridor of l

2-cells labeled cτ (ca)−1 together with l(l − 1)/2 of the aτa−1 2-cells. The substitutions in the case l = 3
are shown in Figure 16. This process maintains the c-pairing during the change from Ql to Qτ

1 .
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Figure 16. Converting θ0 from Ql to Qτ
1 (illustrated with l = 3).

Figure 17. The tree T dual to the c-corridors of a diagram θ , with root r (chosen to have degree 1). The
index sum of τ around the c-complementary region dual to v is zero. By the induction hypothesis, the
length and thus index sum of τ along the child corridors Cvi are multiples of l, and along the boundary
of θ making up the complementary region dual to v are also multiples of l, so the length and thus index
sum of τ along Cv is a multiple of l.

After producing a quadratic area van Kampen diagram for v in Qτ
1 that has c-pairing P, we want to

use it to build a quadratic area van Kampen diagram for u in Ql that also has c-pairing P. The following
lemma tells us that we will be able to replace c-corridors over Qτ

1 with c-corridors over Ql, as they always
occur in multiples of l.

Lemma 6.14. Suppose θ is a van Kampen diagram for a word v = v(a, c, τ l) over Qτ
1 = 〈a, c, τ |aτ =

a, cτ = ca〉, with reduced c-corridors. Then, every c-corridor in θ has length a multiple of l.

Proof. Let T be the tree dual to the c-corridors in θ—that is, T has a vertex dual to each c-
complementary region and an edge dual to each c-corridor; the leaves of T correspond to regions which
have one single c-corridor in their perimeter (see Section 3.1). Pick any leaf r of T to serve as the root,
marked in blue in the figure. There is a bijection between vertices v = r of T and c-corridors Cv: take
Cv to be dual to the first edge of the geodesic in T from v to r. This situation is illustrated in Figure 17.
Each line represents a c-corridor, and a vertex is drawn in each c-complementary region.

We will show by reverse induction on distance in T (i.e. starting from the leaves furthest down the
tree and working toward r) that the length of Cv is a multiple of l. Indeed when v is a leaf, the argument
of Corollary 6.7 implies the length of Cv is given by the index sum of τ±1 in the boundary between the
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(a) (b)

Figure 18. In a word w on a and τ l, there is a valid τ -pairing that pairs whole τ -segments.

paired c-edges, and τ only appears in multiples of l in v, so the result holds. For the induction step,
suppose v = r. The length of Cv is the exponent sum of the lengths of Cvi (with appropriate signs) over
every child vi of v (each a multiple of l, by induction hypothesis) and of the τ l in the boundary of θ that
are also in the boundary of the subdiagram dual to v.

Next, we examine how to build a filling for a c-complementary region over Ql from a filling for a
c-complementary region over Qτ

1 when their boundaries are compatible in that the τ in the boundary of
the latter occur in powers of l.

Lemma 6.15. Suppose w = w(a, τ l) has a van Kampen diagram D over 〈a, τ | aτ = a〉 of area A. Then
w(a, t) has a van Kampen diagram D′ ′ over 〈a, t | at = a〉 of area at most A.

Proof. Define a τ -segment to be l consecutive τ -labeled edges in the boundary circuit of D. Such
segments have a natural orientation that agrees with the orientation of the constituent τ . We will find
a van Kampen diagram for w over 〈a, τ | aτ = a〉 for which the τ -segments are connected by blocks of
parallel τ -corridors. (Call this a τ l-pairing.)

The first edge in any τ -segment can only be paired with a τ -corridor in D with the first edge of
an oppositely oriented τ -segment. Indeed, suppose that an initial τ in a τ -segment is connected by a
corridor C to a τ in position i on another segment, with 1 ≤ i ≤ l. Let ŵ be the subword of w between
them, as shown in Figure 18a. Because τ corridors do not cross, the τ -index sum of ŵ must be zero.
If i = 1, the τ -index sum of ŵ will not be a multiple of l, as ŵ either includes an entire τ -segment or
entirely misses it, except for the partial segment which contains the τ in position i. In particular, the
index sum of τ in ŵ can only be 0 when i = 1.

Construct a new van Kampen diagram D′ for w over 〈a, τ | aτ = a〉 as follows. Begin with a planar
loop with edges labeled so that we read w(a, τ l) around the perimeter. Add in all initial τ corridors from
D. If an initial τ -corridor C connects τ -segments S and S′, we will pair each τ in S to the corresponding
τ in S′ using copies of C, as in Figures 18b and 19c. The remaining regions that have to be filled have
perimeters labeled by words on a±1 alone, as all τ edges have been paired. Moreover, the index sum of
a is zero, so these can be folded together to complete the construction of D′ without the addition of any
further 2-cells.

The area of D′ will be l times the sum of the initial τ -corridor contributions, and so in particular, the
area of the new diagram is at most lA. Let D′ ′ be the van Kampen diagram for w(a, t) over 〈a, t | at = a〉
of area at most A obtained by replacing each stack of l τ -corridors in D′ by a single t-corridor and each
τ -segment in the boundary by a single t-edge, as in Figure 19d.

We will promote Lemma 6.12 to the following result concerning Ql = 〈a, c, t |at = a, ct = cal〉.

Proposition 6.16. There exists Al > 0 such that if u is a (not necessarily freely reduced) word represent-
ing the identity in Ql and P is a valid c-pairing of u, then there exists a van Kampen diagram θ for u
over Ql which has reduced c-corridors, induces P, and has Area(θ ) ≤ Al|u|2.
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(a) (b) (c)

(d) (e)

Figure 19. A toy example of the procedure of Lemma 6.15 (illustrated with l = 3).

Proof. Suppose u(a, c, t) represents the identity in Ql and u has a valid c-pairing P. Proposition 6.13
implies that P is also a valid c-pairing for the corresponding word v := u(a, c, τ l) in Qτ

1 , which we get
by substituting a (τ l)±1 for every t±1 in u. Now we can use what we know about building diagrams over
Qτ

1: by Lemma 6.12, there is a constant A1 > 0 such that v admits a new van Kampen diagram θ1 over
Qτ

1 that induces P and has area at most A1|v|2 ≤ A1l2|u|2. Guided by θ1, we will construct a van Kampen
diagram θl for u over Ql which has comparable area.

By Lemma 6.14, c-corridors in θ1 all have length that is a multiple of l. To build θl, we begin
by inserting reduced c-corridors into a polygonal path labeled by u, mimicking the c-corridors in θ1.
Corresponding c-corridors in the two diagrams differ in length by exactly the factor l: where a c-corridor
in θ1 has τ nl along one side and (τa−1)nl along the other, the corresponding c-corridor in θl has tn along
one side and (ta−l)n along the other.

Next, we fill the c-complementary regions. We wish to use Lemma 6.15 to convert the filling in
c-complementary regions of θ1 to fillings in θl, but for any c-complementary region, the word along
the perimeter of the region will not generally have an appropriate form. Its perimeter has the form
x0(τaε1 )lk1 x1 · · · (τaεn )lkn xn, where εi ∈ {0, −1}, ki = 0, and xi is a subword of v and therefore is a word in
a and τ l, as in Figure 20. We add a collar of 2-cells to change the boundary of the c-complemetary region
to x0(τ laε1l)k1 x1 · · · (τ laεnl)kn xn. In particular, if L is a minimal area diagram for the word (τa−1)l(τ la−l)−1,
then ki copies of L can be glued in to rewrite (τaεi )lki to (τ laεi l)ki . The result is a region with boundary
that is a word in a and τ l.

Apply Lemma 6.15 to convert each of these diagrams, without increasing area, to diagrams over
〈a, t | at = a〉 with boundary x0(talε1 )k1 x1 . . . (talεn )kn xn (as in Figure 21d), and use them to fill the
c-complementary regions of θl. This produces a van Kampen diagram θl for u over Ql.

Finally, we come to area estimates for θl. First, observe that the total number of 2-cells in the
c-corridors in θ1 is at most the area of θ1, which we determined earlier to be at most A1l2|u|2.
Correspondingly, there are at most A1l|u|2 2-cells in the c-corridors in θl. The number of copies of L
glued on to the c-complementary regions is at most A1l|u|2, since it is the sum of the lengths of the
c-corridors, divided by l. Since L has area bounded above by l2, the total area taken by copies of L is at
most A1l3|u|2. The total area of the c-complementary regions in θ1 is also at most A1l2|u|2. They, along
with the attached copies of L, are converted to the c-complementary regions in θl without an increase in
their area, as per Lemma 6.15. Therefore, the area of θl is at most A1l|u|2 + A1l3|u|2 + A1l2|u|2 ≤ Al|u|2,
where Al := A1(l + l3 + l2).
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Figure 20. The quadratic area diagram θ1.

(a) (b) (c)

(d)

Figure 21. Converting a c-complementary region filling from θ1 over Qτ
1 to one for θl over Ql.

6.6. Completing our proof of Theorem B

Proof of Theorem B (1). This is the case where φ has finite order. By Lemma 6.1 and Proposition 6.2,
for the purposes of determining the Dehn function of M�, and thus M� , we can work with M�, which
has the form:

M0,l,m := 〈a, b, c, t | [a, b] = 1, at = ab0, bt = b, ct = calbm〉
= 〈a, b, c, t | [a, b] = [a, t] = [b, t] = 1, ct = calbm〉

for some l, m ∈Z. Let

Nl := 〈a, c, t | at = a, ct = cal〉.
These groups are not hyperbolic, so their Dehn functions grow at least quadratically. We will show
that these mapping tori have quadratic Dehn functions for all l, m ∈Z. All proofs of the quadratic upper-
bounds for these groups can be reduced to the proof for M0,l,0 = 〈a, b, c, t | [a, b] = [a, t] = [b, t] = 1, ct =
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cal〉. We begin by considering this special case, which has the property that b-corridors have the same
words along their top and their bottom sides.

Suppose w is a word representing the identity in M0,l,0. Let
 be a minimal area van Kampen diagram
for w over M0,l,0. Let w be w with all b±1 removed. Then w = 1 in Nl. Moreover, the c-pairing P induced
by 
 in turn induces a valid c-pairing P for w because collapsing each b-corridor to the path along its
bottom side gives a van Kampen diagram 
 for w over Nl.

By Proposition 6.16, there is a constant Al > 0 and a van Kampen diagram θ for w over Nl which has
reduced c-corridors, induces P, and has area at most Al|w|2.

The defining relations for Nl are also defining relations for M0,l,0 (as m = 0), so θ is a fortiori a van
Kampen diagram over M0,l,0. We aim to convert it from a van Kampen diagram for w, which contains no
letters b±1, to a van Kampen diagram θ for the original w, which may contain letters b±1. We will do this
without altering its c-corridors, only changing the diagrams in the c-complementary regions. Indeed,
in the diagram 
, there are no partial b-corridors and no b-corridor can cross a c-corridor. Since the
pairings of c-corridors in θ agrees with that in 
 (and so in 
), for each c-complementary region C in
θ , there is a corresponding c-complementary region in 
.

In 
, no b-corridor can cross a c-corridor and there are no partial b-corridors. So, in each word
around a c-complementary region the b and b−1 letters are on ∂
 and are paired off by b-corridors that
connect them. Therefore, each c-complementary region C in θ can be inflated to put the necessary b
and b−1 in place by adding b-corridors to the boundary of C, thereby adding an annular cuff about each
c-complementary region, using 2-cells for the relations [b, t] = 1, and [a, b] = 1. The total number of
such b-corridors that we must insert over all of these diagrams is at most |w|/2. The length of each
b-corridor is at most the length of the boundary circuit ∂C of the relevant c-complementary region C
in θ . By an argument equivalent to Corollary 6.8, the boundary circuit of each c-complementary region
has length at most a constant times |w|, where the constant is |l| + 1 – if the bottom of a c-corridor has
tk along it, the top will have (ta−l)k along it.

Thus, the area of the resulting diagram θ is at most the area of θ (which is at most Al|w|2) plus the
number of 2-cells in b-corridors, which is no more than a constant times |w| |w|. In total, the area of θ
is at most a constant times |w|2, as required.

Now we consider the case of M0,l,m for m = 0. If l and m are relatively prime, by Bézout’s Lemma,
there is a pair of integers (x, y) such that ly − mx = 1. So there is a generating set {A, B} of Z2 = 〈a, b〉
with A = albm and B = axby (generating since a = AyB−m and b = BlA−x), for which our group has the
presentation:

〈A, B, c, t | [A, B] = 1, At = A, Bt = B, ct = cA〉,
the same as M0,1,0. Therefore, the Dehn function is quadratic. Finally, if l and m are not relatively prime,
let n := gcd(l, m). Then, M0,l,m is a subgroup of index n in M0, l

n , m
n
. But then, M0, l

n , m
n

has a quadratic Dehn
function and hence so does M0,l,m.

Proof of Theorem B (2). This is the case where φ has a non-unit eigenvalue. As K := 〈a, b〉 ∼=Z
2

quasi-isometrically embeds in Z
2 ∗Z and � |K = φ is an automorphism of K, Lemma 3.5 implies that

the Dehn function of M� is bounded below by an exponential function. From Lemma 3.4, the Dehn
functions of mapping tori of RAAGs are always bounded above by exponential functions. Thus, M� and
so M� has exponential Dehn function.

Proof of Theorem B (3). This is the case where φ has infinite order and only unit eigenvalues. We
will show that M� and thus M� has a cubic Dehn function. By Lemma 6.1 and Proposition 6.2, for the
purposes of determining the Dehn function, we can work with M� which has the form:

Mk,l,m := 〈a, b, c, t | [a, b] = 1, at = abk, bt = b, ct = calbm〉
for some k, l, m ∈Z with k = 0. Let

Nl := 〈a, c, t | at = a, ct = cal〉.
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Suppose w is a freely reduced word representing the identity in Mk,l,m. Let 
 be a minimal area van
Kampen diagram for w over Mk,l,m. Let w be w with all b±1 removed. Then, w = 1 in Nl. As in case 1
above, the c-pairing P induced by 
 induces a valid c-pairing P for w.

By Proposition 6.16, there is a constant Al > 0 dependent only on l such that w admits a van Kampen
diagram θ over Nl which also induces P and has area at most Al|w|2. Again, as in case 1 above, by
Corollary 6.8, there exists a constant K > 0 such that the boundary circuit of any c-complementary
region C in θ has length at most K|w|. Each such C is a diagram over 〈a, t | at = a〉.

Now C has a maximal geodesic tree in its 1-skeleton—that is, a tree reaching all vertices and with the
property that there is a root vertex vC on the boundary ∂θ such that for every vertex v in C, the distance
from vC in the tree is the same as in the 1-skeleton of C.

We claim that the diameter of C is at most a constant times |w|. This is because every vertex in C is
contained in an a-corridor that extends to ∂C. The length of each a-corridor is the number of t-corridors
that cross it, and there are at most K|w|/2 many t-corridors in C, because t-corridors begin and end on
∂C and do not cross c-corridors more than once in minimal area diagrams. Therefore, every vertex in C
is within a distance of K|w|/2 from ∂C. It follows that the diameter of C is at most (K + 1)|w|, as any
two points in the boundary can be connected by a path of length at most |w|.

As the diameter of C is at most a constant times |w| and |w| ≤ |w|, any maximal geodesic tree in its
1-skeleton has diameter at most a constant times |w|.

We now apply the electrostatic model from Section 4 to inflate θ to a van Kampen diagram for
w over Mk,l,m. Since θ induces a valid c-pairing, this can be done by inserting b-corridors within the
c-complementary regions.

First, we charge the diagram with at most Al |w|2 max{k, m} many b-charges, in effect, replacing all
of the 2-cells for defining relations from Nl with the corresponding 2-cells for defining relations from
Mk,l,m. The area is unchanged at Al|w|2. Next connect each charge in C by a b-partial corridor of length no
more than (K + 1)|w| to the root vC, along the maximal tree. The total area of these b-partial corridors
is at most a constant times |w|3. Finally, insert b-corridors (each of at most a constant times |w|) along
the boundaries of the c-complementary regions to rearrange the (at most a constant times |w|2 many) b
and b−1 until the perimeter word is w.

The resulting diagram θ for w over Mk,l,m has at most the area of θ (at most quadratic in |w|), plus the
total area of the b-partial corridors (at most cubic in |w|), plus the total area of the b-corridors (at most
cubic in |w|)—in total, at most cubic in |w|. So the Dehn function of Mk,l,m grows at most cubically.

As φ has infinite order and only unit eigenvalues, it has a 2 × 2 Jordan block A and so, by
Lemma 3.5, the Dehn function of the mapping torus has a cubic lower bound.

7. Mapping tori of RAAGs of the product of two free groups

Here, we will prove Theorem C concerning Dehn functions of mapping tori of products Fk × Fl of free
groups.

7.1. Automorphisms of Fk × Fl

Suppose X and Y are disjoint finite sets with |X| = k, |Y| = l, and k, l ≥ 2. Let � be the bipartite graph
with vertex set X ∪ Y and an edge between a pair of vertices if and only if one is in X and the other is in
Y . So G = Fk × Fl is the RAAG A�.

Our first task is to explain the opening part of Theorem C, which amounts to:

Lemma 7.1. Given� ∈ Aut(G), we can find φ1 ∈ Aut(Fk) and φ2 ∈ Aut(Fl) such that�= φ1 × φ2 equals
� or �2. If k = l, then �=�.
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This lemma will allow us to work with � instead of � when finding the Dehn function of M� , since
δM�

	 δM�
by Lemma 3.6.

For a vertex x in a graph, star(x) is the subgraph consisting of all edges incident with x and link(x) is
the set of vertices adjacent to x. We will prove Lemma 7.1 with the help of:

Lemma 7.2 (Laurence [18], Servatius [24]). If A� is a RAAG, then the following is a generating set for
Aut(A�):

1. All inner automorphisms: for a vertex x of �, ιx : y �→ x−1yx for all y ∈ A�.
2. All inversions: maps that send x �→ x−1 for some vertex x of � and leave all other vertices fixed.
3. All partial conjugations: for a vertex x in � and a connected component C of � − star(x), map

y �→ x−1yx for all vertices y in C and fix all other vertices.
4. All transvections: for a pair of vertices x, y of � such that link(x) ⊆ star(y), τx,y maps x �→ xy

and fixes all other vertices.
5. All graph symmetries: automorphisms induced by the restriction of a graph symmetry to the

vertex set.

We can see how this generating set reflects the product structure in the instance of A� = Fk × Fl.

Corollary 7.3. Write Fk = F(X) and Fl = F(Y), where X = {x1, . . . , xk} and Y = {y1, . . . , yl}. When A� =
Fk × Fl, the inner automorphisms, inversions, partial conjugations, and transvections of the Laurence–
Servatius generators of Aut(A�) are in Aut(Fk) × Aut(Fl). The same is true of the graph symmetries,
except when k = l, where we get additional graph symmetries by composing with the graph symmetry
R ∈ Aut(A�) that exchanges X and Y by mapping xi �→ yi and yi �→ xi for all i.

Proof. This is immediate for the inversions. It is true of the inner automorophisms because [xi, yj] = 1
for all i, j, so conjugation by a word w = xy where x ∈ Fk and y ∈ Fl can be expressed as ιw = ιx × ιy. It is
true of the partial conjugations similarly. As for the transvections, suppose y ∈ Y , and so star(y) = {y} ∪
X. If w ∈ Y , then link(w) = X, and so link(w) ⊆ star(y). So τw,y : w �→ wy (and fixes all other elements
of X ∪ Y), and τw,y restricts to automorphisms of Fk = F(X) and Fl = F(Y), as claimed. If, on the other
hand, w ∈ X, then since link(w) = Y , link(w) ⊆ star(y) if and only if Y = {y}, and so, as l ≥ 2, there are
no transvections τw,y. Likewise, the result holds for transvections τw,x with x ∈ X. The result for graph
symmetries is straightforward.

Proof of Lemma 7.1. Every automorphism � of Fk × Fl can be expressed as a product � of the
Laurence–Servatius generators. (This can be done effectively: search through an enumerated list of all
such products until a suitable � is found.)

Suppose that k = l and that � ∈ Aut(G). Then by Corollary 7.3, we have that �= φ1 × φ2 for some
φ1 ∈ Aut(Fk) and φ2 ∈ Aut(Fl).

Next, consider the case k = l. Any � ∈ Aut(G) can be expressed as a product of the Laurence–
Servatius generators. Per Corollary 7.3, each of these generators is in Aut(Fk) × Aut(Fk), except for
some of the graph automorphisms—the latter can take the form ρR where ρ ∈ Aut(Fk) × Aut(Fk) and
R is the factor-exchanging automorphism of Corollary 7.3. Accordingly, �2 can be expressed as such
a product in which there is an even number of R terms. So �2 is a product of the Laurence–Servatius
generators that are in Aut(Fk) × Aut(Fk), because R2 = id, and if τ is a Laurence–Servatius generator in
Aut(Fk) × Aut(Fk), then so is R−1 ◦ τ ◦ R. Then, �=�2 satisfies the requirements of the lemma.

Here is a further lemma we will use to adapt a RAAG automorphism to one better suited to calculation
of the Dehn function of the mapping torus.

Lemma 7.4. Suppose φ1,ψ1 ∈ Aut(Fk) and φ2,ψ2 ∈ Aut(Fl) are such that [φ1] = [ψ1] in Out(Fk) and
[φ2] = [ψ2] in Out(Fl). Then, δMφ1×φ2

	 δMψ1×ψ2
.
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Proof. Suppose φ1 = ιa ◦ψ1 for a ∈ Fk and φ2 = ιb ◦ψ2 for b ∈ Fl. Then viewing a and b as elements of
Fk × Fl via the natural embeddings Fk → Fk × Fl and Fl → Fk × Fl, we have that φ1 × φ2 = ιab ◦ (ψ1 ×
ψ2), as b commutes with all elements of Fk and a commutes with all elements of Fl. So [φ1 × φ2] =
[ψ1 ×ψ2] in Out(Fk × Fl) and it follows from Lemma 3.6 that δMφ1×φ2

	 δMψ1×ψ2
.

7.2. Growth of free group automorphisms

Suppose F is a finite-rank free group. The growth gφ,X : N→N of an automorphism φ : F → F with
respect to a free basis X is defined by:

gφ,X(n) := max
x∈X

{|φn(x)|},
where |φn(x)| denotes the length of a shortest word on X representing φn(x). We write f 	� g when
f , g : N→N are Lipschitz equivalent; that is, when there exist C1, C2 > 0 such that C1g(n)< f (n)<
C2g(n) for all n. Up to 	�, free group growth gφ,X does not depend on the choice of finite basis X, and
so we will write gφ without ambiguity. We write f 
� g when there exists C> 0 such that f (n) < Cg(n)
for all n.

Recall that we write f 
 g when there exists C> 0 such that f (n)<Cg(Cn + C) + Cn + C for all n,
and we write f 	 g when f 
 g and g 
 f . Note that f 
� g implies f 
 g, and so f 	� g implies f 	 g.

We say that φ ∈ Aut(F) is periodic when there is l> 0 such that φl is an inner automorphism. We say
that φ is polynomially growing when there is d ≥ 0 such that gφ(n) 	� nd, and φ is exponentially growing
otherwise.

To build van Kampen diagrams which demonstrate the lower bound on the Dehn function of Mφ1×φ2 ,
we will use a family of words xm (m ∈N) and constants C and d such that for all m,

Cnd|xm| ≤ |φn(xm)|.
One approach to finding these words is to consider xm = xm for some word x. However, this approach
requires care in understanding cancelation, leading us to consider the growth of cyclically reduced words.
Accordingly, for g ∈ F, let ||g|| denote the length of the shortest word representing a conjugate of g
(cyclically reduced length).

Levitt [19, Theorem 3] implies that when φ is polynomially growing, for every x ∈ F, there exists
dx ≥ 0 such that |φn(x)| 	� ndx , and when it is exponentially growing, there exists x ∈ F and λ> 1 such
that |φn(x)|>λn for all n ∈N. By [19, Theorem 6.2], the corresponding result holds for || · || in place
of | · |, though possibly with different powers and exponential functions.

Definition 7.5. If φ is polynomially growing, let d be the maximum degree so that for some g ∈ F(X),
||φn(g)|| 	� nd. In this case, define gcyc

φ (n) := nd. Otherwise, ||φn(g)|| 	� λ
n for some λ> 1, and we define

gcyc
φ (n) := 2n.

In general, gcyc
φ (n) 	� maxx∈X{||φn(x)||}. That is, what happens to generators does not fully determine

growth rate measured in terms of cyclically reduced length. Indeed, [19, Lemma 5.2] gives a family of
automorphisms φL and bases XL (L ∈N) such that for all x ∈ XL, ||φn(x)|| 	l ndx , where dx ∈ {0, 1}, but
there exists g ∈ F(XL) such that ||φn(g)|| 	l nL.

To establish lower bounds for the Dehn function of Mφ1×φ2 , we will use cyclically reduced growth to
find lower bounds for the growth of a family of words under repeated application of our automorphism.
To establish upper bounds for the Dehn function of Mφ1×φ2 , we will use growth (without cyclic reduction)
to provide upper bounds for the growth of words under our automorphism. Results of Levitt bridge
the gap between the two types of growth: when the cyclically reduced growth and traditional growth
disagree, it is possible to exchange φ1 × φ2 with a related automorphism ξ̂1 × ξ̂2 for which gξ̂i 	 gcyc

ξ̂i
for

i ∈ {1, 2}, and the mapping tori Mφ1×φ2 and Mξ̂1×ξ̂2 will have equivalent Dehn functions. We expand on
this below.

https://doi.org/10.1017/S0017089523000459 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000459


Glasgow Mathematical Journal 285

Here is a summary of results of Levitt [19] and Piggot [23] on properties of growth and cyclically
reduced growth in finite-rank free groups F:

Lemma 7.6. Suppose φ ∈ Aut(F).

1. gcyc
φ = gcyc

ψ if [φ] = [ψ] ∈ Out(F).
2. If φ is polynomially growing, gcyc

φ 	� gcyc
φk for all k ∈N.

3. (Theorem 0.4 of [23]) gφ 	 gφ−1 .
4. (By Theorem 3 of [19], using that αn 	 βn 	 nγ βn for α, β > 1 and γ ≥ 0; cf. Bestvina–Feighn–

Handel [2]). Either gφ(n) 	 2n, or gφ(n) 	� nd for some d ∈ {0} ∪N.
5. (Per the discussion at the start of Section 2 of [19]) If n �→ ||φn(g)|| grows polynomially, gcyc

φ 	�

gcyc
φ−1 .

6. (By Corollary 1.6 of [19]) If n �→ ||φn(g)|| grows polynomially, then there exists p ≥ 1 and
ξ ∈ Aut(F) such that [φp] = [ξ ] in Out(F) and ξ admits a nontrivial fixed point.

7. (By Lemma 2.3 of [19]) Suppose ξ ∈ Aut(F) is polynomially growing and satisfies gcyc
ξ (n) 	� nd

with d ≥ 1 and ξ has a nontrivial fixed point set. Then gξ (n) 	� nd 	� gcyc
ξ (n).

Proof. We will explain (7), which is the one case that is not immediate from the sources. Corollary 1.6
of [19] guarantees that for any polynomially growing� ∈ Aut(F) that is not periodic, there exists p such
that there is a representative α in the outer automorphism class of �p, such that α has a nontrivial fixed
point. Lemma 2.3 of [19] describes necessary conditions on a polynomially growing automorphism ξ

under which gξ 	 gcyc
ξ . In particular, he shows that when the fixed point set is nontrivial, they are only

inequivalent when gcyc
ξ (n) is bounded above by a constant. A hypothesis of (7) is that gcyc

ξ (n) grows at
least linearly, hence the conclusion.

In building van Kampen diagrams and shuffling relators, we will use both forward and backward
iterates of our automorphism. Lemma 7.6 (3) and (5) imply that we can use the same functions to
estimate both. (1) implies that cyclic growth can be defined for outer automorphisms. This can fail for
growth. However, the next results imply that we can nevertheless find automorphisms with equivalent
growth and cyclic growth.

Lemma 7.7. Suppose φ ∈ Aut(F) has polynomial growth and is not periodic. Then there exists ξ ∈
Aut(F) and p ≥ 0 with [ξ ] = [φp] ∈ Out(F) and gcyc

φ 	 gcyc
ξ 	 gξ . Moreover, for any q ≥ 1, gcyc

φ 	 gcyc
ξq 	 gξq .

Proof. We use Lemma 7.6: take ξ as per (6) and then apply (7), (1), and (2) to get that gcyc
φ 	� gcyc

ξq 	�

gξq , and therefore gcyc
φ 	 gcyc

ξq 	 gξq .

Lemma 7.8. Suppose φ1 ∈ Aut(Fk) and φ2 ∈ Aut(Fl). For i = 1, 2, suppose pi ≥ 0 is such that [φpi
i ] = [ξi]

as in Lemma 7.7. Define ξ̂1 = ξ
p2
1 , ξ̂2 = ξ

p1
2 . Then, Mφ1×φ2 and Mξ̂1×ξ̂2 have equivalent Dehn functions and

gcyc
φi

	 gcyc

ξ̂i
	 gξ̂i .

Proof. By Lemma 3.6, the Dehn functions of Mφ1×φ2 and M(φ1×φ2)p1p2 = M(φ
p1
1 )p2 ×(φ

p2
2 )p1 are equivalent.

By Lemma 7.4, we may also pick convenient representatives of the outer automorphism classes without
changing the Dehn function. So Mξ

p2
1 ×ξp1

2
= Mξ̂1×ξ̂2 also has equivalent Dehn function to Mφ1×φ2 .

7.3. Dehn function lower bounds

A result similar to Lemma 7.9 was proved by Brady and Soroko in Proposition 3.4 in [6] in the context
of Bieri doubles. The notation 	�, 
�, and 
 is from the start of Section 7.2 above.
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(a) (b)

Figure 22. Van Kampen diagrams for wn in the mapping torus with base Fk × Fl and automorphism
φ1 × φ2.

Lemma 7.9. Suppose that � ∈ Aut(Fk × Fl) has the form �= φ1 × φ2 where φ1 ∈ Aut(Fk) and φ2 ∈
Aut(Fl). Suppose that gcyc

φ1

� gcyc

φ2
. We can bound the Dehn function δM�

of M� as follows.

1. If gcyc
φ1

(n) 	� nd1 , for some d1 ≥ 0, then nd1+2 
 δM�
(n).

2. If gφ1 (n) � 2n, then δM�
(n) � 2n.

Proof. If gcyc
φ1

(n) 	� nd1 then by Lemma 7.6 (5), gcyc

φ−1
1

(n) 	� nd1 . Let x ∈ Fk and C1 > 0 be such that
||φ−n

1 (x)|| ≥ C1nd1 for all n ∈N. If φ2 is polynomially growing, there is y ∈ Fl and C2 > 0 such that
||φn

2 (y)|| ≥ C2nd2 , and if φ2 is exponentially growing, choose y such that for some by > 1, ||φn
2 (y)|| � by

n.
We will present the proof for 1. The algebraic mapping torus M� has presentation:

〈 a1, . . . , ak, b1, . . . , bl, t | t−1ait = φ1(ai), t−1bjt = φ2(bj), [ai, bj] = 1 ∀i, j〉.
Consider the word wn = t−4nynt4nxnt−4ny−nt4nx−n.
Suppose
 is any van Kampen diagram for wn. As indicated in Figure 22a, a t-corridor beginning on

side 1 can only end on sides 2 or 4. Since t-corridors cannot cross, there is some value h ∈ {0, . . . , 4n}
so that the first h t-corridors emanating from side 1 end on side 2 and the remainder end on side 4. This
switching point h determines the diagram, as shown in Figure 22b. If h ≥ 2n, then a stack of at least
2n t-corridors C1, C2, . . . (emanating from the 1st, 2nd etc., edge of side 1) start on side 1 and end on
side 2. If h< 2n, then a stack of at least 2n t-corridors start on side 1 and end on side 4: in this case take
C1 to be that emanating from the final edge of side 1, C2 to be that emanating from the penultimate edge,
etc. Let |Ci| be the area of corridor Ci, that is, the number of 2-cells in the corridor.

The area of each corridor can be bounded from below by the length of its shortest side, and that can be
bounded below by the cyclically reduced length of the shortest side. For g ∈ F and n ∈N, ||gn|| = n||g||,
so we get

|Ci| ≥ min{||φ−i
1 (xn)||, ||φi

2(y
n)||} = min{n||φ−i

1 (x)||, n||φi
2(y)||} ≥ n min{C1i

d1 , C2id2}.
Summing the areas of corridors Cn, . . . , C2n−1, we find that

Area(
) ≥
2n−1∑
i=n

|Ci| ≥ n2 min{C1n
d1 , C2nd2}. (7.1)

Now |wn| ≤ 16n + 2n|x| + 2n|y|. This gives the first of the following inequalities and, as 
 was any
van Kampen diagram for wn, (7.1) gives the second:

Area(16n + 2n|x| + 2n|y|) ≥ Area(wn) ≥ n2 min{C1n
d1 , C2nd2} � nd1+2.

It then follows that Area(n) � nd1+2, completing our proof of claim 1.
By hypothesis, gφ1 (n) � 2n and gcyc

φ1

� gcyc

φ2
. Lemma 7.6 (5) tells us that gcyc

φ1
	� gcyc

φ−1
1

.
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Theorem 3 of [19] bounds growth of elements under an automorphism: for all φ ∈ Aut(Fk) and
all x ∈ Fk, there exist C1, C2 > 0, λ≥ 1, and m ∈N such that C1λ

ppm ≤ |φp(x)| ≤ C2λ
ppm for all p ≥ 1.

(Polynomially growing automorphisms are those with λ= 1 for all x and exponentially growing auto-
morphisms are those with λ> 1 for some x.) Thus, there exist x ∈ Fk and y ∈ Fl such that for some
b1, b2 > 1 we have that ||φ−n

1 (x)|| � b1
n and ||φn

2 (y)|| � b2
n for all n ≥ 1. Then, wn = t−4nyt4nxt−4nyt4nx sat-

isfies Area(wn) � min{b1
n, b2

n} as any van Kampen diagram for wn must have a stack of n corridors whose
lengths grow either at least like b1

n or b2
n. So, as min{b1

n, b2
n} 	 2n, we conclude that Area(n) � 2n.

7.4. Dehn function upper bounds

Lemma 7.10. Suppose � ∈ Aut(Fk × Fl) has the form �= φ1 × φ2, where φ1 ∈ Aut(Fk) and φ2 ∈
Aut(Fl). If nd1 	 gφ1 (n) 
 gφ2 (n), then δM�

(n) 
 nd1+2. In the case that φ1 is periodic, δM�
(n) 
 n2.

Proof. Suppose w = w1tc1 w2tc2 · · · wmtcm is a length-n word whose subwords wi are in
〈a1, . . . , ak, b1, . . . bl〉. Suppose that w = 1 in

M� = 〈a1, . . . , ak, b1, . . . , bl, t | [ai, bj] = 1, t−1ait = φ1(ai), t−1bjt = φ2(bj), ∀i, j〉.

To bound δM�
(n) from above, we will estimate how many defining relators need to be applied to w to

reduce it to the empty word. (We may insert or remove inverse pairs of generators such as a−1
i ai or aia−1

i

at no cost. Only applications of defining relators will count toward the estimate.)
By applying fewer than n2 commutators, convert each wi to uivi for some reduced ui ∈ 〈a1, . . . , ak〉

and vi ∈ 〈b1, . . . , bl〉, thereby rewriting w as a word w′ = u1v1tc1 . . . umvmtcm , which has length at most n.
Next convert w′ to a product vu of the word v = v1tc1 · · · vmtcm with a word u in 〈a1, · · · , ak〉, by

applying defining relators to shuffle all the a±1
1 , . . . , a±1

k in w′ to the right. The word v represents the
identity in Fl �φ2 〈t〉 and u represents the identity in Fk. Indeed, the index sum of t in w is zero, so
gathering all powers of t together on the left would produce a word of the form vu with u ∈ Fk and v ∈ Fl

which represents the identity in Fk × Fl, and so u and v freely reduce to the identity—in particular,
v = v = 1 in Fl �φ2 〈t〉.

This shuffling of w′ into vu results in the growth of slower growth elements (the Fk factor), but not
in growth of faster growth elements (the Fl factor). We can (crudely) estimate cost by giving an upper
bound on the length to which a letter a±1

i can grow in the process: it passes at most n letters t or t−1,
each time with the effect of applying φ1 or φ−1

1 . We are given that nd1 	 gφ1 (n), so nd1 	 gφ−1
1

(n), by
Lemma 7.6 (3). Thus, there is a constant K > 0 such that a±1

i can grow to length at most Knd1 . The cost
to shuffle (and in the process transform) all the (at most n) letters a±1

i of the u1, . . . , um to the right past
the letters of v (of which there are at most n) is at most Knd1+2.

Next freely reduce u to the empty word (at no cost to area), leaving the word v, which represents the
identity in Fl �φ2 Z and has length at most n. By Bridson–Groves [8], v can be reduced to the empty
word using no more than a constant c times n2 defining relations.

In conclusion, we have an upper bound of n2 + Knd1+2 + cn2, which gives that δM�
(n) 
 nd1+2 as

required.
Finally, we address the periodic case: suppose l is such that φl

1 is an inner automorphism. By
Lemmas 3.6 and 7.4, δM�

	 δM
φl

1×φl
2

	 δMId×φl
2

	 δMId×φ2
. We can estimate δMId×φ2

by the above argument
in the special case that φ1 = Id. In this case, the cost of shuffling the a±1

i through the word is at most n2

(rather than Knd1+2) since they do not grow in the process, and so δM�
(n) 	 δMId×φ2

(n) 
 n2.

Proof of Theorem C. We have G = Fk × Fl, where k, l ≥ 2, and � ∈ Aut(Fk × Fl). Lemma 7.1
identified a �= φ1 × φ2 with φ1 ∈ Aut(Fk) and φ2 ∈ Aut(Fl) which (by Lemma 3.6) has δM�

	 δM�
.

Provided φi is not periodic, Lemmas 7.7 and 7.8 imply that even if gφi 	 gcyc
φi

, there is ξ̂i such that
gcyc
φi

	 gξ̂i 	 gcyc
ξ̂i

with Mξ̂1×ξ̂2 	 M�.
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The theorem claims that

(1) If [φp
1 ] = [Id] ∈ Out(Fk) for some p ∈N (i.e. φ1 is periodic), then δM�

(n) 	 n2.
(2) If nd1 	 gcyc

φ1
(n) 
 gcyc

φ2
(n), then δM�

(n) 	 nd1+2, and likewise with the indices 1 and 2 inter-
changed.

(3) If gcyc
φ1

(n) 	 gcyc
φ2

(n) 	 2n, then δM�
grows exponentially.

For (1), Lemma 7.10 gives δM�
(n) 
 n2, and we have δM�

(n) � n2 by Lemma 3.4. For (2), Lemma 7.9
gives the required lower bound on the Dehn function and (since gξ̂1 	 gcyc

φ1
) Lemma 7.10 gives the upper

bound. For (3), Lemma 7.9 again gives the lower bound, and Lemma 3.4 gives the upper bound.

8. Concluding remarks

We finish with some remarks on the limits of our techniques and suggestions for which mapping tori to
explore next.

The case G = Fk ×Z, when k ≥ 3, stands in the way of a full classification of Dehn functions of
mapping tori over Fk × Fl. It differs from Fk × Fl with k, l ≥ 2 because Fk ×Z has nontrivial center,
which results in additional transvections, making its automorphism group more complicated. What we
can say about Dehn functions δ of mapping tori of Fk ×Z is that they satisfy n2 
 δ(n) 
 n3. The cubic
upper bound comes by recognizing M� as a central extension of Mψ and then applying Corollary 5.3.
The quadratic lower bound comes from the presence of a Z

2-subgroup: the square of the stable letter
commutes with the Z-factor. In special cases, we can determine the Dehn function.

For all � ∈ Aut(Fk ×Z), there exists � ∈ Aut(Fk ×Z) with the form � : xi �→ φ(xi)cki , c �→ c, such
that [�2] = [�] in Out(Fk ×Z).

1. If φ is atoroidal, then M� has quadratic Dehn function by Corollary 5.3, because the base of
the central extension is hyperbolic and maximal trees have linear diameter.

2. If there is w ∈ Fk such that �(w) = wck, then M� has cubic Dehn function by Lemma 3.5.

Our techniques in Section 5 for F2 ×Z do not apply to Fk ×Z for k ≥ 3. We heavily use that Out(F2) ∼=
GL(2, Z) and that for any given φ ∈ Aut(F2) some iterate [φ]m fixes the conjugacy class

[
a−1b−1ab

]
, both

of which fail in higher rank.
The RAAGs on four generators that are not covered by our theorems are another natural place to con-

tinue these investigations—for instance, the RAAG whose defining graph is the path with four vertices
and three edges.
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