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Uniform Convergence of Trigonometric
Series with General Monotone Coefficients

Mikhail Dyachenko, Askhat Mukanov, and Sergey Tikhonov

Abstract. We study criteria for the uniform convergence of trigonometric serieswith general mono-
tone coeõcients. We also obtain necessary and suõcient conditions for a given rate of convergence
of partial Fourier sums of such series.

1 Introduction

In this paper, we consider the trigonometric series

∞

∑
n=1
an sin nx ,(1.1)

∞

∑
n=1
an cos nx(1.2)

with general monotone coeõcients {an}
∞
n=1.

1.1 Uniform Convergence and General Monotone Sequences

In [3], T.W. Chaundy and A. E. Jolliòe proved the following theorem on the uniform
convergence of the sine trigonometric series.

_eorem A ([3]) Let {an}
∞
n=1 be a nonnegative nonincreasing sequence. _en series

(1.1) converges uniformly on [0, 2π] if and only if nan → 0 as n →∞.

For the cosine series we highlight the following obvious fact.

_eorem B Let {an}
∞
n=1 be a nonnegative sequence. _en series (1.2) converges uni-

formly on [0, 2π] if and only if∑∞n=1 an converges.
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_e main goal of this paper is to generalize both _eorems A and B and provide
necessary and suõcient conditions for the trigonometric series

(1.3)
∞

∑
n=1

(an cos nx + bn sin nx)

to be uniformly convergent. We will assume that the coeõcients satisfy the general
monotone condition. On a heuristic level, this indicates that the local variations of a
sequence can bemajorized by the (local) sums of absolute values of coeõcients.

Very recently, several generalizations of_eoremsAandBhave beenprovedwhere
diòerent extensions ofmonotonicity conditionwere considered (see, e.g., [4, 10, 12, 17,
19] and the references therein). Many generalizations involve the consideration of
general monotone sequences. Let us recall the deûnition of the GM(β) sequences
(see [17]).

Deûnition Let a = {an}
∞
n=1 and β = {βn}

∞
n=1 be two sequences of complex and

nonnegative numbers, respectively. Wewill say that a is a general monotone sequence
with majorant β if there exists C > 0 such that, for all n ∈ N,

(1.4)
2n

∑
k=n

∣∆ak ∣ ⩽ Cβn .

In this case, we will write a ∈ GM(β).

Note that the widest class of general monotone sequences iswhen βn = ∑
2n+1
k=n ∣ak ∣,

since in this case any sequence belongs to this class with C = 2. Let us give some
examples ofmajorants β that are useful in the study of trigonometric series:
(a) β1

n = ∣an ∣;
(b) β2

n =
1
n ∑

γn
s= n

γ
∣as ∣, γ > 1;

(c) β3
n =

1
n maxk⩾ n

γ ∑
2k
s=k ∣as ∣, γ > 1.

It is known that GM(β1) ⊊ GM(β2) ⊊ GM(β3); see [4, 18]. Moreover, if {an}
∞
n=1 ∈

GM(β i), i = 1, 2, 3, and an ⩾ 0, then series (1.1) converges uniformly on [0, 2π] if
and only if nan → 0 as n → ∞; see [4, 17–19]. Recently, the authors of [8] proved
an analogue of _eorem A for {an} ∈ GM(β2) without the assumption that an is a
nonnegative sequence.

In this paper, we study uniform convergence of sine and cosine trigonometric se-
ries with general monotone coeõcients, which are not necessarily nonnegative. In
particular, following the idea from [8], we prove that for a rather general class ofma-
jorants β, the series (1.1) converges uniformly on [0, 2π] if and only if∑2n

k=n ∣ak ∣ → 0
as n → ∞. In particular, this result holds for {an}

∞
n=1 ∈ GM(β3). _e condition

∑
2n
k=n ∣ak ∣ → 0 as n → ∞ turns out to be equivalent to the condition nan → 0 as

n →∞.
We will need the following general result.

_eorem C ([5, _eorem 2.1, part (C)]) Let β = {βn}
∞
n=1 be a majorant such that

nβn → 0 as n →∞. _en series (1.1) converges uniformly on [0, 2π].
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1.2 Several Important Classes of General Monotone Sequences

In this paper, we consider the GM(β) sequences with majorants β having the form
described below. Let S be a set of numerical sequences. Denote by x = {xk}

∞
k=1 any

element of S.
We will say that a sequence of functionals on S, that is, Fn ∶ S → R+, n ∈ N, is

admissible if
(i) Fn(x)→ 0 as n →∞ for any x = {xk}

∞
k=1 vanishing at inûnity,

(ii) {Fn(x)}∞n=1 is bounded whenever x = {xk}
∞
k=1 is bounded.

Examples of such F = {Fn}
∞
n=1 are

(a) F 1
n(x) = ∣xn ∣

α , α > 0;
(b) F2

n(x) = ∑
γn
k= n

γ

∣xk ∣
k , γ > 1;

(c) F3
n(x) = maxk⩾ n

γ
∣xk ∣, γ > 1;

(d) F4
n(x) = 1

n ∑
n
k=1 ∣xk ∣;

(e) F5n(x) = ∑
∞
k=1 ank ∣xk ∣, where {ank}

∞
n , k=1 is a regular matrix (see [20, Ch. III, §1]);

(f) the composition F = G ○ H, Fn(x) ∶= Gn(Hk(x)), of admissible sequences
{Hn}

∞
n=1, {Gn}

∞
n=1 is also admissible.

A typical example of a non-admissible {Fn}
∞
n=1 is Fn(x) = ∑n+λn

k=n
∣xk ∣
k ,where a positive

sequence {λn} is such that λn/n → ∞. Note also that conditions (i) and (ii) in
the deûnition of admissible functionals are independent; take for example Fn(x) =
∣xn ∣

α + c with α, c > 0 and Fn(x) = ∑n2

k=nkxk−2.
For a given sequence a = {an}

∞
n=1, denote by ã the following sequence:

ãn ∶=
2n

∑
k=n

∣ak ∣.

We study a class of general monotone sequences GM(β) with

βn =
1
n
Fn (̃a).

In particular, the classGM(β3) coincideswith the classGM(β),where βn =
1
n F

3
n (̃a).

Moreover,GM(β2) coincideswithGM(β),where βn =
1
n F

2
n (̃a). Indeed, considering

the sum∑N
k=M

ãk
k , where N > 2M, we note that

N

∑
k=M

1
k

2k

∑
s=k

∣as ∣ =
2M

∑
s=M

∣as ∣
s

∑
k=M

1
k
+

N

∑
s=2M+1

∣as ∣
s

∑
k= s

2

1
k
+

2N

∑
s=N+1

∣as ∣
N

∑
k= s

2

1
k
,

and therefore,

C1

N

∑
s=2M

∣as ∣ ⩽
N

∑
k=M

ãk

k
⩽ C2

2N

∑
s=M

∣as ∣.

It will be a key observation in our further study that any GM(β) sequence preserves
themonotonicity properties. _is is given by the following result.

1447

https://doi.org/10.4153/CJM-2017-046-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-046-9


M. Dyachenko, A. Mukanov, and S. Tikhonov

Lemma 1.1 ([13, Lemma 3.1]) Let a ∈ GM(β); then for all n ∈ N we have

∣ak ∣ ⩽ Cβn + ∣am ∣ for all k,m = n, . . . , 2n;

∣ak ∣ ⩽ Cβn +
1
n

2n

∑
j=n+1

∣a j ∣ for all k = n, . . . , 2n;(1.5)

∣an ∣ ⩽
C
n
(

n−1

∑
k=[ n

2 ]

βk +
2n−1

∑
j=n

∣a j ∣) .

1.3 Main Results

_eorem 1.2 Let {Fn}
∞
n=1 be admissible. Also let {an}

∞
n=1 ∈ GM(β), where βn =

1
n Fn (̃a) and ã is a bounded sequence. _en the following conditions are equivalent:
(i) the series (1.1) converges uniformly on [0, 2π];
(ii) limn→∞ nan = 0;
(iii) limn→∞ ãn = 0.

Remark 1.3 (i) It is clear that the condition of boundedness of ã is needed only
to show the implication (i)⇒(ii).

(ii) Generally speaking, the statement of _eorem 1.2 is not true without assum-
ing that the sequence {ãn}

∞
n=1 is bounded. _e corresponding counterexample is con-

structed in _eorem 4.1. More precisely, there exists a uniformly converging sine se-
ries with coeõcients satisfying {an}

∞
n=1 ∈ GM(β3) such that nan ↛ 0 and ãn ↛ 0 as

n →∞.
(iii) It is easy to see that dealing with admissible {Fn}

∞
n=1 allows us to expect that

Fn (̃a) is bounded for a bounded sequence ã. In light of theprevious remark, thisprop-
erty is essential in the proof. In general, _eorem 1.2 is not valid for non-admissible
sequences. In particular, the corresponding example can be given using lacunary se-
ries. Take the non-admissible functionals Fn(x) = n∣xn ∣ and the lacunary sequence

ak =

⎧⎪⎪
⎨
⎪⎪⎩

m−2 k = 2m ,
0 k /= 2m .

_en limn→∞ ãn = 0, the series∑∞k=1 ak sin kx converges uniformly, but {kak} is not
bounded.
Another example can be given for non-admissible functionals Fn(x) = ∑n+λn

k=n
∣xk ∣
k

with λn/n →∞ using the Rudin–Shapiro construction; see Remark 4.2(ii).
(iv) Regarding the fact that GM(β2) ⊊ GM(β3), we note that there exists a se-

quence a ∈ GM(β3) ∖ GM(β2) such that ã is bounded (see Section 3). _is shows
that _eorem 1.2 extends the results from [8].

A counterpart for the cosine series reads as follows.

_eorem 1.4 Let {an}
∞
n=1 ∈ GM(β), where βn = 1

n Fn (̃a) with admissible {Fn}
∞
n=1

and bounded ã. _en series (1.2) converges uniformly on [0, 2π] if and only if the series
∑
∞
n=1 an converges.
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Remark 1.5 _e condition of boundedness of ã in _eorem 1.4 is needed only to
prove the “only if ” part.

Corollary 1.6 Let {Fn}
∞
n=1 and {Gn}

∞
n=1 be admissible. Let {an}

∞
n=1 ∈ GM(β) with

βn = 1
n Fn (̃a) and {bn}

∞
n=1 ∈ GM(β) with βn = 1

nGn(b̃). Suppose that ã and b̃ are
bounded sequences. _en for the series (1.3) the following conditions are equivalent:
(i) series (1.3) is the Fourier series of a continuous function;
(ii) series (1.3) converges uniformly on [0, 2π];
(iii) ∑∞n=1 an converges and nbn → 0 as n →∞.

1.4 Approximation by Partial Sums of Fourier Series

Here, we study the convergence rate of ∥h − Sn(h)∥C[0,2π], where Sn(h) is the n-th
partial sum of the Fourier series of h. In [11] (see also [20, Ch. II, §10]), Lebesgue
proved that for a function h from the Lipschitz space Lip α, where

Lip α = { f ∈ C[0, 2π] ∶ ω( f , δ)C = O(δα)} ,

one has

(1.6) ∥h − Sn(h)∥C[0,2π] = O(
ln n
nα

) .

Here ω( f , δ)C is themodulus of continuity of f , i.e.,

ω( f , δ)C = sup
∣h∣⩽δ

∥∆h f ( ⋅ )∥C and ∆h f (x) = f (x + h) − f (x).

Salem and Zygmund [15] showed that the logarithm cannot be suppressed even if,
in addition to the hypothesis h ∈ Lip α, we suppose that h is of bounded variation.
However, they demonstrated that if a function h ∈ Lip α is of monotonic type, then
the logarithm can be omitted in (1.6).

_eorem D ([15]) Let h be a continuous function of monotonic type; that is, there
exists a real constant K such that the function h(x) + Kx is either non-decreasing or
non-increasing on (−∞,∞). Let h ∈ Lip α, where 0 < α < 1. _en

(1.7) ∥h − Sn(h)∥C[0,2π] = O(
1
nα

) .

We will show (see Corollaries 1.10–1.11) that estimate (1.7) also holds for functions
from Lip α having a Fourier series with coeõcients from the GM(β2) class. Denote
by g(x) and f (x) the sums of series (1.1) and (1.2), respectively.

_eorem 1.7 Let {an}
∞
n=1 ∈ GM(β), where βn =

1
n ∑

γn
k= n

γ
∣ak ∣. _en, for 0 < α ⩽ 1,

∥ f − Sn( f )∥C[0,2π] = o( 1
nα

) ⇐⇒ an = o( 1
nα+1 ) .

∥g − Sn(g)∥C[0,2π] = o( 1
nα

) ⇐⇒ an = o( 1
nα+1 ) .
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_eorem 1.8 Let {an}
∞
n=1 ∈ GM(β), where βn =

1
n ∑

γn
k= n

γ
∣ak ∣. _en, for 0 < α ⩽ 1,

∥ f − Sn( f )∥C[0,2π] = O(
1
nα

) ⇐⇒ an = O(
1

nα+1 ) ,

∥g − Sn(g)∥C[0,2π] = O(
1
nα

) ⇐⇒ an = O(
1

nα+1 ) .

Remark 1.9 (i) Note that the condition ∥ f−Sn( f )∥C[0,2π] = O( 1
nα ) implies that

the sum f is a continuous function and {an}
∞
n=1 is the sequence of Fourier coeõcients

of f .
(ii) For α = 0,_eorem 1.7 also holds in the case of the sine series, which gives an

alternative proof of themain result in [8].

Moreover, _eorem 1.8 along with [6, _eorem 2.2 and Corollary 3.4] imply the
following results.

Corollary 1.10 Let {an}
∞
n=1 ∈ GM(β), where βn =

1
n ∑

γn
k= n

γ
∣ak ∣. Also let (1.2) be the

Fourier series of a continuous function f . _en for 0 < α ⩽ 1 the following conditions
are equivalent:
(i) f ∈ Lip α,
(ii) ∥ f − Sn( f )∥C = O( 1

nα ),
(iii) En( f )C = O( 1

nα ).

Here, En( f )C is the best approximation of a function f by trigonometric polyno-
mials of degree n in C[0, 2π].

Corollary 1.11 Let {an}
∞
n=1 ∈ GM(β), where βn =

1
n ∑

γn
k= n

γ
∣ak ∣. Let also (1.1) be the

Fourier series of a continuous function g. _en for 0 < α < 1 the following conditions
are equivalent:
(i) g ∈ Lip α,
(ii) ∥g − Sn(g)∥C = O( 1

nα ),
(iii) En(g)C = O( 1

nα ).
Moreover, for α = 1, conditions (i), (iii), and
(iv) an = O( 1

n2 )

are pairwise equivalent, but the condition g ∈ Lip 1 is not equivalent to any of them.

Remark 1.12 Regarding the case α = 1 in Corollaries 1.10 and 1.11, we ûrst note that
the direct and inverse theorems of trigonometric approximation; namely,

En(ψ)C ⩽ Cω(ψ, 1
n
)
C
⩽
C
n

n+1

∑
ν=1
Eν−1(ψ)C ,

immediately imply that ψ ∈ Lip α if and only if En(ψ)C = O( 1
nα ) for 0 < α < 1. We see

that dealingwith serieswith general monotone coeõcients allows one to prove a sim-
ilar result in the limiting case α = 1whenψ = f . A similar result does not hold for sine
series (ψ = g), because of the following reason. For serieswithmonotone coeõcients,
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a necessary and suõcient condition for g ∈ Lip 1 is already given by ∑k kak < ∞.
_is fact was ûrst observed by Boas [2], and in turn is related to the behavior of the
derivative of g at the origin. In particular, the function g(x) = ∑k

sin kx
k2 is such that

En(g)C ⩽ ∥g−Sn(g)∥C = O( 1
n ), but g ∉ Lip 1. See [18] for the related results regarding

series with non-negative GM coeõcients.

1.5 Organization of the Paper

In Section 2, we prove our main results, _eorems 1.2–1.8 and Corollary 1.6. Sec-
tion 3 provides some examples of sequences a ∈ GM(β3) ∖GM(β2) with diòerent
behaviour of ã and diòerent convergence properties of the series ∑∞n=1 an sin nx. In
Section 4, we give an example of a uniformly converging series (1.1) with unbounded
ã. We conclude with ûnal remarks in Section 5.

_roughout this paper, we denote by C positive constants that may be diòerent on
various occasions. In addition, F ≍ G means that 1

C F ⩽ G ⩽ CF.

2 Proofs of Main Results

Remark 2.1 Without loss of generality, we can assume in _eorems 1.2 and 1.4 that
the inequality

(2.1) ãn ⩽ Fn (̃a)

is valid for all sequences a = {an}
∞
n=1 and for all n ∈ N. Indeed, if this is not the case,

then we can consider themajorant

Gn (̃a) = max{ãn , Fn (̃a)},

which satisûes (2.1). It is clear that conditions (i)–(ii) hold for the sequence {Gn}
∞
n=1.

Moreover, instead of the class GM(β)with βn = (Fn (̃a))/n we can consider the class
GM(β∗) ⊇ GM(β), where β∗n = (Gn (̃a))/n. _roughout this paper, we will assume
that {Fn}

∞
n=1 satisûes (2.1).

Lemma 2.2 Let a ∈ GM(β), where βn =
Fn (̃a)

n . _en for all n ∈ N,

(2.2) ∣ak ∣ ⩽ C
Fn (̃a)

n
for all k = n, . . . , 2n.

Proof _e proof follows from (2.1) and inequality (1.5).

2.1 Proof of Theorem 1.2

We will prove this theorem as follows: (ii)⇒(iii)⇒(i)⇒(ii).
_e implication (ii)⇒(iii) is clear.
(iii)⇒(i). Let ãn → 0 as n →∞. _en from property (i) of Fn , we get

Fn (̃a)→ 0 as n →∞.

Finally, we use_eorem C with βn = Fn (̃a)/n.
(i)⇒(ii). From Lemma 2.2 and property (ii) on {Fn}

∞
n=1 it follows that it is suõcient

to prove limn→∞ ãn = 0. Let ε > 0; then by Cauchy’s criterion, we can choose N ∈ N
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such that for all N ⩽ k ⩽ l ,

∥
l

∑
j=k
a j sin jx∥

C[0,2π]
< ε.

Let n > N and ãn /= 0. By (2.1), note that Fn (̃a) /= 0. We put

(2.3) An ∶= { k ∶ ∣ak ∣ ⩾
ãn

4n
, n ⩽ k ⩽ 2n} .

Note that An is not the empty set. Let us obtain a lower estimate for the cardinality of
An denoted by ∣An ∣. By (2.2), we have ∣ak ∣ ⩽

C
n Fn (̃a) for n ⩽ k ⩽ 2n, and therefore,

ãn =
2n

∑
s=n

∣as ∣ = ∑
s∈[n ,2n]∖An

∣as ∣ + ∑
s∈An

∣as ∣

⩽ ∑
s∈[n ,2n]∖An

ãn

4n
+ ∑

s∈An

C
n
Fn (̃a)

⩽
2nãn

4n
+ ∣An ∣

C
n
Fn (̃a) =

ãn

2
+ ∣An ∣

C
n
Fn (̃a).

Hence,

(2.4) ∣An ∣ ⩾
n
2C

ãn

Fn (̃a)
.

Following [8], we construct disjoint subsets S1 , . . . , Sκn of [n, 2n]. Put m1 = minAn ,
and select ν1 according to the following procedure:
(a) If there exists a j0 ⩾ 1 such that for j = 0, 1, . . . , j0, n ⩽ m1 + j ⩽ 2n the numbers

am1+ j have the same sign and for j = 0, 1, . . . , j0−1, ∣am1+ j ∣ ⩾
ãn
8n and ∣am1+ j0 ∣ <

ãn
8n ,

then we set ν1 = j0.
(b) If such j0 does not exist, then let ν1 = l0 such that m1 + l0 ∈ [n, 2n] and am1+l0 is

the ûrst element to become zero or of the opposite sign to am1 .
(c) If neither (a) nor (b) happens, then simply let ν1 = l0 for which m1 + l0 is the ûrst

number greater than 2n.
Deûne a set

S1 = {m1 ,m1 + 1, . . . ,m1 + ν1 − 1}.
If the set An ∖ S1 is not empty, we put m2 = min(An ∖ S1). Using the same procedure
as above, we select ν2 and deûne

S2 = {m2 ,m2 + 1, . . . ,m2 + ν2 − 1}.

We continue this procedure until we reach an Sκn for which

An ∖ (S1 ∪ ⋅ ⋅ ⋅ ∪ Sκn) = ∅.

Nowwe obtain the upper estimate for κn . If κn > 1, we note ûrst that for all 1 ⩽ j < κn ,
we have

∑
k∈S j

∣∆ak ∣ ⩾ ∣am j − am j+ν j ∣ ⩾
ãn

8n
.
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From the deûnition of GM(β), βn =
Fn (̃a)

n we get
2n

∑
s=n

∣∆as ∣ ⩽
C
n
Fn (̃a).

Hence,
C
n
Fn (̃a) ⩾

2n

∑
s=n

∣∆as ∣ ⩾
κn−1

∑
j=1
∑
k∈S j

∣∆ak ∣ ⩾
κn−1

∑
j=1

ãn

8n
= (κn − 1) ãn

8n
.

_erefore,

(2.5) κn ⩽
8CFn (̃a)
ãn

+ 1 ⩽ 9CFn (̃a)
ãn

.

If κn = 1, then (2.5) also holds. Let x = π
4n and n ⩽ k ⩽ 2n. _en

sin kx ⩾ 2
π

πk
4n

⩾
1
2
.

Since all ak , k ∈ S j have the same sign, we get

(2.6) 1
2 ∑k∈S j

∣ak ∣ ⩽ ∣ ∑
k∈S j

ak sin πk
4n

∣ < ε

for all n > N . Hence,

∑
k∈An

∣ak ∣ ⩽
κn

∑
j=1
∑
k∈S j

∣ak ∣ < ε
18CFn (̃a)

ãn
.

From the deûnition (2.3) of the set An and estimate (2.4), we get

1
8C

ã2
n

Fn (̃a)
⩽ ε 18CFn (̃a)

ãn
.

Hence,
ã3
n

Fn (̃a)2 → 0 as n →∞.

Since {Fn (̃a)}∞n=1 is bounded, we obtain that ãn → 0 as n →∞. Hence, Fn (̃a)→ 0 as
n →∞.

2.2 Proof of Theorem 1.4

Here we will need the following result; see [5,_eorem 2.1, part (B)].

_eorem E Let a ∈ GM(β). If nβn = o(1) as n → ∞, then series (1.2) converges
uniformly on [0, 2π] if and only if the series∑n an converges.

To make the paper self-contained, we sketch the proof of this result. _e “only if ”
part is obvious. To prove the “if ” part, we ûrst note that

n
∞

∑
ν=n

∣∆aν ∣ = n
∞

∑
s=0

2s+1n−1

∑
ν=2sn

∣∆aν ∣ ⩽ Cmax
ν⩾n

(νβν) =∶ Cεn → 0.
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_erefore, {an} is of bounded variation and (1.2) converges on (0, π] to f (x). Setting
Sn( f , x) = ∑n

j=1 a j cos jx and D∗n(x) = ∑
n
j=1 cos jx, we have

f (x) − Sn−1( f , x) =
∞

∑
k=n

△akD∗k(x) − anD∗n−1(x) =∶ I1 + I2 .

_en by (2.7),

∣I2∣ = ∣anD∗n−1(x)∣ ⩽ n∣an ∣ ⩽ n
∞

∑
ν=n

∣∆aν ∣ ⩽ Cεn .

To estimate I1, for ûxed x ∈ (0, π], we deûne l ∈ N such that x ∈ ( π
l+1 ,

π
l ]. If l ⩽ n, we

obtain

(2.8) ∣I1∣ ⩽
C
x

∞

∑
k=n

∣∆ak ∣ ⩽ C l εn
n

⩽ Cεn .

If l > n, then we write I1 = ∑l−1
k=n +∑

∞
k=l . Similarly to (2.8), we derive that

∣
∞

∑
k=l

△akD∗k(x)∣ ⩽ C l
∞

∑
k=l

∣∆ak ∣ ⩽ Cε l ⩽ Cεn .

Further,

∣
l−1

∑
k=n

△akD∗k(x)∣ ⩽ ∣
l−1

∑
k=n

k△ ak ∣ +
l−1

∑
k=n

∣△ ak ∣∣D∗k(x) − k∣ =∶ K + L.

Since

l−1

∑
k=n

k△ ak =
l−1

∑
k=n

ak + (n − 1)an − (l − 1)a l ,

we have K ⩽ 2νn + Cεn , where νn is a non-increasing null-sequence satisfying
∣∑

∞
j=n a j ∣ ⩽ νn . To estimate L, we use ∣D∗k(x) − k∣ ⩽ k2x to get

L ⩽ x
l−1

∑
k=n

k2∣△ ak ∣ ⩽
C
l
(

l

∑
m=n

m
l

∑
j=m

∣△ a j ∣ + n2
l

∑
j=n

∣△ a j ∣)

⩽
C
l
(

l

∑
m=n

εm + nεn) ⩽ Cεn .

Collecting the obtained estimates, we have ∣ f (x) − Sn( f , x)∣ ⩽ C(εn + νn), which
implies the uniform convergence of (1.2).

Proof of_eorem 1.4 _e “only if ” part is clear.
To show the “if ” part, as in the proof of_eorem 1.2, it is enough to show that

(2.9) lim
n→∞

ãn = 0.

For ε > 0, we choose N ∈ N such that for all l ⩾ k ⩾ N ,

∣
l

∑
j=k
a j∣ < ε.
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Relation (2.9) is proved in the same way and with the same notation as in _eorem
1.2, using the inequality

1
2 ∑k∈S j

∣ak ∣ =
1
2
∣ ∑

k∈S j

ak ∣ < ε, S j ⊂ [n, 2n], n > N ,

instead of inequality (2.6). _en since {Fn}
∞
n=1 is admissible,we obtain that Fn (̃a)→ 0

as n →∞._us, a ∈ GM(β)with nβn = o(1) and_eoremE concludes the proof.

2.3 Proof of Corollary 1.6

We divide the proof into two parts: (i)⇔(ii) and (ii)⇔(iii).

(i)⇒(ii). Let series (1.3) be the Fourier series of a continuous function h(x). Note
that for a sequence {an}

∞
n=1 ∈ GM(β) with βn = 1

n Fn (̃a), the boundedness of the
sequence {nan}

∞
n=1 is equivalent to the boundedness of the sequence {ãn}

∞

n=1. From
the boundedness of {nan}

∞
n=1, it follows that an ⩾ − Cn for all n ⩾ 1 and some C >

0. _e last inequality with the Paley–Fekete theorem in [7, _eorem C] implies the
uniform convergence of series (1.3).

(ii)⇒(i). _is part is clear.

(ii)⇒(iii). Let series (1.3) converge uniformly. Denote by h(x) the sum of series (1.3).
Note that the series ∑∞n=1 an cos nx and ∑∞n=1 bn sin nx are the Fourier series of the
continuous functions

h(x) + h(−x)
2

and h(x) − h(−x)
2

,

respectively. Since both series converge uniformly,_eorems 1.2 and 1.4 imply (iii).

(iii)⇒(ii). _is part follows from _eorems 1.2 and 1.4.

2.4 Proof of Theorems 1.7 and 1.8

Herewe follow the proof of [6]. Without loss of generality, in the deûnition ofGM(β)
with βn = 1

n∑
γn
k=n/γ ∣ak ∣, we can assume that γ = 2ν , where ν is an integer number.

Using notation from [6] we denote for any n > 2ν,

An ∶= max
2n⩽k⩽2n+1

∣ak ∣, Bn ∶= max
2n−2ν⩽k⩽2n+2ν

∣ak ∣,

Mn ∶= { k ∈ [2n−ν , 2n+ν] ∶ ∣ak ∣ >
An

8C22ν } ,

where C and ν are constants from the deûnition of general monotone sequences. A
natural number n is called good if either n ⩽ 2ν or Bn ⩽ 24νAn . All other natural
numbers are bad.

Let
M+

n ∶= {k ∈ Mn ∶ ak > 0} and M−
n ∶= Mn ∖M+

n .

We will use the following lemma.
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Lemma 2.3 Let a vanishing sequence {an}
∞
n=1 ∈ GM(β), where βn =

1
n∑

2νn
k=n/2ν ∣ak ∣.

_en for any good n such that 2n > C3210ν+8, there exists an interval [ln ,mn] ⊆
[2n−ν , 2n+ν] such that at least one of the following conditions holds:
(i) for any k ∈ [ln ,mn], we have ak ⩾ 0 and

∣M+
n ∩ [ln ,mn]∣ ⩾

2n

C3215ν+8 ;

(ii) for any k ∈ [ln ,mn], we have ak ⩽ 0 and

∣M−
n ∩ [ln ,mn]∣ ⩾

2n

C3215ν+8 .

_e proof is given in [6, Lemma 2.2] and is based on the fact that, for any good n
such that 2n > C22ν+3, we have

∣Mn ∣ ⩾
2n

C25ν+3 .

Proof of_eorems 1.7 and 1.8 We will prove only the case of the sine series of_e-
orem 1.7. For the case of the cosine series in _eorem 1.7 and for both cases in _eo-
rem!1.8, the proof is similar.
First, we prove the part “⇒”. Let ε > 0; then there exists N ∈ N such that for all

n > N , we have
∥g − Sn(g)∥C[0,2π] ⩽

ε
nα

.

Let n be a good number and 2n > max{C3215ν+11 , 2νN}. Assume Lemma 2.3(i) is
valid and consider

Qn(t) =
mn

∑
k=ln+1

ak sin kt.

_en ∣Qn(t)∣ ⩽ 2ε/(2(n−2ν)α) for all t ∈ [0, 2π]. Setting t = 1/(2n+2ν), we obtain
2ε

2(n−2ν)α ⩾
mn

∑
k=ln+1

ak sin k
2n+2ν ⩾

2
π

1
24ν

An

8C22ν (
2n

C3215ν+8 − 1)

⩾
1
2

1
24ν

An

8C22ν
2n

C3215ν+9 =
2nAn

C4221ν+13 .

_erefore,
An ⩽

L1ε
2(α+1)n .

_en
An ⩽

L2ε
2(α+1)n

holds for all good numbers, where L2 ⩾ L1 is another constant.
Let n be a bad number. _en An < Bn2−4ν . Note that Bn = As1 , where ∣s1 −n∣ ⩽ 2ν.
Assume ûrst that s1 < n. _en either s1 is a good number or there exists s2 such

that ∣s1 − s2∣ ⩽ 2ν and As1 < As22−4ν . Also, we have

(2.10) [2s1 , 2s1+2ν] ∩Z ⊂ [2n−2ν , 2n+2ν] ∩Z.
_en there is no ak , k ∈ [2s1 , 2s1+2ν] ∩ Z, such that ∣ak ∣ > As1 . Hence, the case s2 > s1
is not possible.
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Repeating the process, since s j is a decreasing sequence, we arrive at a ûnite se-
quence n = s0 > s1 > ⋅ ⋅ ⋅ > s i−1 > s i , where numbers s0 , s1 , . . . , s i−1 are bad, and s i
is good. Moreover, s j − s j+1 ⩽ 2ν and As j < As j+12−4ν for any j. Since s i is a good
number, using the proof above, we have As i ⩽ L2ε/2(α+1)s i , which implies

(2.11) An = As0 ⩽
As1

24ν ⩽ ⋅ ⋅ ⋅ ⩽
L2ε

24νi2(α+1)s i
.

Now, since n ⩽ s i + 2iν, we have

An ⩽
L2ε

24νi2(α+1)s i
=

L2ε
2(α+1)n

2(α+1)n

2(1+α)(2νi+s i)
1

22νi(1−α) ⩽
L2ε

2(α+1)n .(2.12)

Let now s1 > n. _en either s1 is a good number or there exists s2 > s1 such that
s2 − s1 ⩽ 2ν and As1 < As22−4ν . Continuing this process and taking into account
that the sequence of the Fourier coeõcients vanishes at inûnity, we arrive at the ûnite
sequence n = s0 < s1 < ⋅ ⋅ ⋅ < s i−1 < s i , where the numbers s0 , s1 , . . . , s i−1 are bad, and
s i is good. _en As i ⩽ L2ε/2(α+1)s i implies

An < As1 < As2 < . . .As i ⩽
L2ε

2(α+1)s i
⩽

L2ε
2(α+1)n .

_en we have

An ⩽
L3ε

2(1+α)n

for any n. Let k ∈ N such that k ∈ [2l , 2l+1] and 2l ⩾ N . _en

∣ak ∣ ⩽ A l ⩽
L2ε

2(1+α)l
⩽

L2ε
2(1+α)l

⩽
L3ε
k1+α .

Wewould like to remark that for certain sequences {ak} thenumber of goodpoints
is ûnite. In this case the proof of the “⇒” part follows the same lines as above for all
n being bad numbers. We repeat the procedure for s1 < n; see (2.10)–(2.12), since the
case s1 > n is impossible.

Now we prove the “⇐” part. Let ε > 0; then the inequality

∥g − Sn(g)∥C[0,2π] ⩽
∞

∑
k=n+1

∣ak ∣ ⩽ ε
∞

∑
k=n+1

1
kα+1 ⩽ ε

C(α)
nα

holds for all n ⩾ N , where N is suõciently large integer number depending on ε.

3 Several Examples of General Monotone Sequences

To compare [8, _eorem 3.1] and _eorem 1.2, we construct several examples of se-
quences {ak}

∞
k=1 ∈ GM(β3) ∖ GM(β2). First, for convenience, we recall the deûni-

tions of GM(β2) and GM(β3) classes.
A sequence {ak}

∞
k=1 is in GM(β2) if there exist C > 0, γ > 1 such that for all n ∈ N,

(3.1)
2n

∑
k=n

∣∆ak ∣ ⩽
C
n

γn

∑
s= n

γ

∣as ∣.
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A sequence {ak}
∞
k=1 is in GM(β3) if there exist C > 0, γ > 1 such that for all n ∈ N,

(3.2)
2n

∑
k=n

∣∆ak ∣ ⩽
C
n

max
k⩾ n

γ

2k

∑
s=k

∣as ∣.

We set
N1 = 1, N j+1 = N j + 2M j ,

where M j > N j and {M j}
∞
j=1 is an increasing sequence of integers. Consider the

sequence

ak =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(−1)k

C j
, N j ⩽ k < 2N j ,

1
C j
, 2N j ⩽ k < 2N j +M j ,

0, 2N j +M j ⩽ k < N j+1 ,

where {C j}
∞
j=1 is an increasing sequence.

1. We show that a ∉ GM(β2). Let k = N j ; then on the one hand we have

2k

∑
s=k

∣∆as ∣ =
2N j

∑
s=N j

∣∆as ∣ ≍
2N j

∑
s=N j

2
C j

≍
N j

C j
.

On the other hand, we have

1
k

γk

∑
s= k

γ

∣as ∣ ⩽
1
N j

γN j

∑

s=
N j
γ

1
C j

≍
1
N j

N j
1
C j

=
1
C j

.

_erefore, condition (3.1) does not hold.
2. Now we obtain suõcient conditions on {M j}

∞
j=1 for the sequence a to belong

to the class GM(β3). It is clear that it is enough to verify condition (3.2) for k = N j .
We have

1
k
max
s⩾ k

γ

2s

∑
i=s

∣a i ∣ =
1
N j

max
s⩾

N j
γ

2s

∑
i=s

∣a i ∣ ⩾
1
N j

2N j+M j

∑
i=N j+M j/2

∣a i ∣

≍
1
N j

1
C j

(N j +M j/2) =
1 + M j

2N j

C j
.

Comparing the expressions
1+

Mj
2N j
C j

and N j
C j
, we obtain that if

N2
j = O(M j) as j →∞,

then (3.2) holds, i.e., {ak}
∞
k=1 ∈ GM(β3).

3. Now we study the uniform boundedness of the sums∑2k
s=k ∣as ∣. Let 2k = 2N j +

M j ; then
2k

∑
s=k

∣as ∣ =
2N j+M j

∑
s=N j+M j/2

∣as ∣ ≍
N j +M j

C j
.

Hence, the following hold:
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(a) _e condition
N j +M j = O(C j) as j →∞.

implies the uniform boundedness of the sums ∑2k
s=k ∣as ∣. In particular, the se-

quence a = {ak}
∞
k=1 belongs to GM(β3), where

ak =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(−1)k

2N j N j
N j ⩽ k < 2N j ,

1
2N j N j

2N j ⩽ k < 2N j + N j2N j ,

0 2N j + N j2N j ⩽ k < N j+1 .

and ∑2n
k=n ∣ak ∣ ⩽ 2, n ⩾ 1. But by _eorem 1.2, the series ∑∞k=1 ak sin kx is not

uniformly convergent, since kak ↛ 0.
(b) the condition

N j +M j = o(C j) as j →∞.

implies ∑2k
s=k ∣as ∣ → 0 as k → ∞. In particular, the series ∑∞k=1 ak sin kx with

coeõcients a = {ak}
∞
k=1 converges uniformly, where

ak =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(−1)k

jα 2N j N j
N j ⩽ k < 2N j ,

1
jα 2N j N j

2N j ⩽ k < 2N j + N j2N j ,

0 2N j + N j2N j ⩽ k < N j+1 ,

and α > 0. Notice that {ak}
∞
k=1 ∈ GM(β3) ∖GM(β2).

4. Note that if {C j}
∞
j=1 increases fast enough, then the uniform convergence of

∑
∞
k=1 ak sin kx simply follows from the absolute convergence of∑∞k=1 ak , since

∞

∑
k=1

∣ak ∣ =
∞

∑
j=1

N j+1−1

∑
k=N j

∣ak ∣ =
∞

∑
j=1

2N j+M j

∑
k=N j

∣ak ∣

=
∞

∑
j=1

1
C j

(N j +M j + 1).

In particular, the condition

jα(N j +M j) = O(C j) as j →∞,

where α > 1, implies convergence of the series∑∞k=1 ak sin kx.

4 Theorem 1.2 Does not Hold for Unbounded ã

_eorem 4.1 _ere exists a uniformly convergent sine series∑∞k=1 ak sin kx such that
(i) ∑

2n

k=2n−1 ∣ak ∣ ⩾ 2 n
2 −1dn , n ⩾ 1,

(ii) k∣ak ∣ ⩾ 2n−1∣a2n−1 ∣ = 2 n
2 −1dn , 2n−1 ⩽ k < 2n , n ⩾ 1,

where {dn}
∞
n=1 is arbitrary positive sequence such that

(a) ∑∞n=1 dn <∞;
(b) 2 n

2 dn →∞ as n →∞.

1459

https://doi.org/10.4153/CJM-2017-046-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-046-9


M. Dyachenko, A. Mukanov, and S. Tikhonov

Note that formally speaking, the constructed sequence {an}
∞
n=1 is inGM(β3). We

will use the Rudin–Shapiro sequence; see [14,_eorem 1] and [16].

Lemma A (Rudin–Shapiro) _ere exists a sequence {εk}∞k=0, εk = ±1, k ⩾ 0 such
that

∣
N

∑
k=0
εk e ik t ∣ < 5

√
N + 1

for all t ∈ [0, 2π] and N = 0, 1, . . .

Proof of_eorem 4.1 Let {dn}
∞
n=1 be a positive sequence satisfying conditions (a)

and (b). Also let {εk}∞k=0 be the Rudin–Shapiro sequence. Consider the series

(4.1)
∞

∑
n=1
cn

2n
−1

∑
k=2n−1

εk e ik t ,

with cn ∈ R such that ∣cn ∣ = 2− n
2 dn , n ∈ N. By using the Rudin–Shapiro theorem, we

obtain
∞

∑
n=1

∣ cn
2n
−1

∑
k=2n−1

εk e ik t ∣ ⩽
∞

∑
n=1

∣cn ∣( ∣
2n
−1

∑
k=0

εk e ik t ∣ + ∣
2n−1

−1

∑
k=0

εk e ik t ∣)

⩽ C
∞

∑
n=1

∣cn ∣ 2
n
2 ⩽ C

∞

∑
n=1
dn .

Hence, the convergence of the series∑∞n=1 dn implies the uniform convergence of se-
ries (4.1). _en the series

∞

∑
n=1
cn

2n
−1

∑
k=2n−1

εk sin kt

converges uniformly. Denote by f its sum and by ak( f ) the Fourier coeõcients of f .
_en

2n

∑
k=2n−1

∣ak( f )∣ ⩾
2n
−1

∑
k=2n−1

∣cn ∣ = ∣cn ∣2n−1 = 2
n
2 −1dn .

Condition (ii) is clear.

Remark 4.2 (i)Asmentioned in the introduction, thewidest class of general mono-
tone sequences satisfying condition (1.4) is when βn = ∑

2n+1
k=n ∣ak ∣. All sequences of

the form
ak = cnεk , 2n−1 ⩽ k < 2n , n ∈ N,

where cn ∈ R and {εk}∞k=1 is the Rudin–Shapiro sequence (see the example in _eo-
rem4.1), belong to this extreme class. Moreover, such sequences do not belong to any
smaller class, since we always have

2n

∑
k=n

∣∆ak ∣ ≍
2n+1

∑
k=n

∣ak ∣, n ⩾ 6.
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_is follows from the fact that for any k, the sequence εk , εk+1 , εk+2 , εk+3 , εk+4 changes
its sign at least once. _erefore, for any integer s ⩾ 6 such that 2n−1 < s ⩽ 2n , n ∈ N,

2s

∑
k=s

∣∆ak ∣ ⩾ (
2n

∑
k=s

+
2s

∑
k=2n+1

) ∣∆ak ∣

⩾
2n − s + 1

5
∣cn ∣ +

2s − 2n

5
∣cn+1∣ + ∣cn ± cn+1∣

⩾ C(
2n

∑
k=s

+
2s+1

∑
k=2n+1

) ∣ak ∣ = C
2s+1

∑
k=s

∣ak ∣.

(ii) Taking dn = 2− n
2 , n ∈ N, in _eorem 4.1 and following the construction, we see

that ∣cn ∣ = ∣ak ∣ ≍ 2−n , 2n−1 ⩽ k < 2n . In other words, there is a uniformly convergent
series∑∞k=1 ak sin kx such that

m∣am ∣ ≍
2m

∑
k=m

∣ak ∣ ≍ 1.

Moreover, in view of part (i) of this remark, {ak} satisûes the following condition
2m

∑
k=m

∣∆ak ∣ ≍ 1 ≍ C
m

m+λm

∑
k=m

∣ak ∣, λm = m2m .

In otherwords, {an}
∞
n=1 ∈ GM(β),where βn =

1
n Fn (̃a)withnon-admissible function-

als Fn(x) = ∑n+λn
k=n

∣xk ∣
k . _is shows that _eorem 1.2 does not hold for non-admissible

functionals.

5 Final Remarks

1. Regarding theLebesgue and Salem–Zygmund estimates stated in Subsection 1.4,
see (1.6) and (1.7) respectively, it is worth mentioning that if a function h belongs to
the Lipschitz space Lip α, then

∥h(x) − σn(h, x)∥C[0,2π] = O(
1
nα

) , α < 1,(5.1)

∥h(x) − σn(h, x)∥C[0,2π] = O(
ln n
nα

) , α = 1,(5.2)

where σn(h, x) is the ûrst arithmetic mean of the Fourier series of h. _ese results
were obtained by Bernstein [1]. Note that (5.1) implies that En(h)C = O( 1

nα ), which
is equivalent to Lip α for α < 1. Moreover, the function f (x) = ∑∞n=1 cos nx

n2 belongs to
Lip 1, but

∥ f (x) − σn( f , x)∥C[0,2π] ⩾ C
ln n
n

.

It is important to note that there is a crucial diòerence between the results (1.6)–
(1.7) and (5.1)–(5.2) which becomes apparent only when we consider these relations
for a particular value of x. Indeed, the relation h(x) − σn(h, x) = O( 1

nα ) depends
only on the behavior of x in the neighborhood of the particular point x concerned
but the relation h(x) − Sn(h, x) = O( 1

nα ) depends on the behavior of x in the entire
interval [0, 2π]; see the discussion in [9].
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2. _e natural extension of the Lipschitz space is

Lipω( ⋅ ) = { f ∈ C[0, 2π] ∶ ω( f , δ)C = O(ω(δ)} ,

whereω( ⋅ ) is anondecreasing continuous function on [0, 2π] such thatω(0) = 0 and
ω(δ1 + δ2) ⩽ ω(δ1) + ω(δ2). In particular, it is known that if ω satisûes the so-called
Bary–Stechkin condition

∫
π

δ
ω(t)dt

t2
= O(

ω(δ)
δ

) ,

then h ∈ Lipω( ⋅ ) implies that
∥h − Sn(h)∥C[0,2π] = O(ω(1/n)) ,

provided that h is ofmonotonic type.
It would be interesting to obtain criteria for the generalized Lipschitz classes

Lipω( ⋅ ) similar to the ones derived in Corollaries 1.10 and 1.11.
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