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Abstract

We consider a stochastic control model for a queueing system driven by a two-dimensional
fractional Brownian motion with Hurst parameter 0 < H < 1. In particular, when
H > 1

2 , this model serves to approximate a controlled two-station tandem queueing model
with heavy-tailed ON/OFF sources in heavy traffic. We establish the weak convergence
results for the distribution of the state process and construct an explicit stationary state
process associated with given controls. Based on suitable coupling arguments, we show
that each state process couples with its stationary counterpart and we use it to represent the
long-run average cost functional in terms of the stationary process. Finally, we establish
the existence result of an optimal control, which turns out to be independent of the initial
data.
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1. Introduction

Empirical evidence of long-range dependence and self-similarity of the underlying data in
several queueing systems has been observed and analyzed [11], [30], [32], [33]. One simple
concrete explanation for this kind of phenomena is the behavior of superposition of many
ON/OFF sources (also known as ‘packet trains’ [18]) with strictly alternating ON and OFF
periods. It has been shown that long-range dependence and self-similarity signatures of network
traffic are successfully described by stochastic models associated with fractional Brownian
motion, abbreviated as FBM hereafter, with the Hurst parameter H greater than 1

2 (see [15],
[20], [26], [29], and [30, Chapters 7.2 and 8.7]). It is well known that such models exhibit
both of these statistical features and, therefore, understanding the behavior and control of these
stochastic models are of significant interest. However, the highly non-Markovian nature of
FBM makes it more difficult to analyze the control problems related to such models.

In this paper we focus on a controlled queueing system driven by a two-dimensional FBM
with Hurst parameter 0 < H < 1, and it serves to approximate a controlled two-station tandem
queueing model with ON/OFF sources (when H > 1

2 ). Tandem systems can be seen in many
applications, such as storage systems and high-speed communication networks, from router
architectures to protocol stacks [14], [24]. Our work is motivated by the recent article of
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Delgado [6], which obtained a reflected FBM model as a limiting process for fluid models with
heavy-tailed ON/OFF sources in heavy traffic. We are interested in the optimal control of such
reflected FBM models (we describe our connection to the work of [6] in detail in Section 3). To
this end, we introduce the notion of ‘thin control’ related to such models with ON/OFF sources
in heavy traffic and obtain a limiting controlled fluid queue driven by a two-dimensional FBM.
For ordinary Brownian networks, this notion was used in [1]. This leads us to consider a
drift rate control problem of a tandem fluid queueing network fed by an FBM at each station.
Our analysis allows these FBMs to be correlated with a constant correlation coefficient. For a
related one-dimensional controlled queue with FBM input, we refer the reader to [10]; our work
extends that of [10] to the two-dimensional situation. The probability estimates for maximum
workload of a one-dimensional queue fed by FBM were obtained in [9] and [35].

Our contributions are two-fold. We consider a state process represented by a two-dimensional
reflected FBM model with Hurst parameter 0 < H < 1. First, we show that, under suitable
moment conditions on initial data, any state process couples with an explicitly described
stationary state process and this coupling time has finite moments. Second, we establish the
existence of an optimal control for a related long-term average cost minimization problem.
Despite the non-Markovian behavior of the FBM, this optimal control is independent of the
initial data. These results are meant as a first step towards the further analysis of networks
with general topology, where the nodes are operating under advanced scheduling and routeing
disciplines in a heavy traffic environment.

There are only a few stochastic control problems for models driven by FBM that are
addressed in the literature. The linear quadratic regulator problem is addressed in [16] and [19].
A stochastic maximum principle was developed and applied to several stochastic control
problems in [3]. We refer the reader to [16] and Chapter 9 of [4] for further examples of such
control problems. In contrast with the models considered in the aforementioned references,
the model described here is motivated by queueing applications in heavy traffic and involves
processes with state constraints. In Section 3 we discuss a concrete example of a queueing
network which leads to our model.

We begin with the definitions of multidimensional FBM and reflected FBM. We closely fol-
low the notation of [6]. Let (�, F , (Ft )t≥0, P) be a given filtered probability space. A stochastic
process BH = {BH (t) = (B1(t), . . . , BJ (t))�, t ≥ 0} defined on (�, F , (Ft )t≥0, P) is called
a J -dimensional FBM of Hurst parameter H ∈ (0, 1), starting from the origin in RJ , with drift
vector ϑ ∈ RJ and associated matrix �, if it is a continuous Gaussian process with BH (0) = 0,
P-almost surely (P-a.s.) with E[BH (t)] = ϑ t for all t ≥ 0, and its covariance function is given
by

cov(BH (t), BH (s)) = E[(BH (t) − ϑ t)(BH (s) − ϑs)�] = ϒH (s, t)�

for all s, t ≥ 0. Here � is a J × J nonnegative definite matrix and

ϒH (s, t) = 1
2 (t2H + s2H − |t − s|2H ). (1.1)

Also, it is assumed that BH is adapted to the filtration (Ft )t≥0. We will say that BH is a
J -dimensional FBM with associated data (0, H, ϑ, �).

Next, let X0 be an F0-measurable, RJ -valued random vector with E|X0| < ∞, defined on
the filtered probability space (�, F , (Ft )t≥0, P). We introduce the process {XH (t) : t ≥ 0} by

XH (t) = X0 + BH (t) for all t ≥ 0,

where BH is a J -dimensional FBM with associated data (0, H, ϑ, �). Note that the process
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(XH (t))t≥0 is adapted to the filtration (Ft )t≥0, XH (0) = X0 with E[XH (t)−XH (0)] = ϑt for
all t ≥ 0, and its covariance matrix cov(XH (t), XH (s)) is given by ϒH (s, t)� for all s, t ≥ 0.
We will say that XH is a J -dimensional FBM with associated data (X0, H, ϑ, �).

The following definition of a reflected FBM slightly generalizes that of [6] to allow random
initial data. The stationary process (Z∗(t))t≥0 we obtain in Theorem 4.2 below turns out to be
a reflected FBM (RFBM) with random initial data Z∗(0).

Definition 1.1. An RFBM on S = RJ+ associated with the data (Z0, H, ϑ, �, R) that starts
from Z0 ∈ S is a continuous J -dimensional process Z, defined on some filtered probability
space (�, F , (Ft )t≥0, P) such that

(i) Z0 is an F0-measurable, S-valued random vector with E|Z0| < ∞,

(ii) XH is a J -dimensional FBM adapted to (Ft )t≥0 with associated data (Z0, H, ϑ, �),

(iii) Z(t) = XH (t) + RL(t) ∈ S for all t ≥ 0, P-a.s., where RJ×J is the ‘reflection matrix’,
and the process (Z, L) is adapted to (Ft )t≥0,

(iv) L is a J -dimensional process satisfying Lj (0) = 0 for j = 1, . . . , J , P-a.s. For each
j = 1, . . . , J , Lj is continuous and nondecreasing, and Lj can increase only when Z(·)
is on the face Fj = {x ∈ S : xj = 0}, i.e.

∫ t

0 1{Zj (s)�=0} dLj (s) = 0 for all t ≥ 0.

For our model of the tandem queueing network with two stations, the reflection matrix is
given by

R =
(

1 0
−1 1

)
.

In this case, given a filtration (Ft )t≥0 and a two-dimensional FBM XH adapted to (Ft )t≥0
with associated data (Z0, H, ϑ, �), an explicit construction of the process (Z, L) adapted to
(Ft )t≥0 is carefully described in (2.3)–(2.6). The pathwise uniqueness of (Z, L) also follows
from these equations and the uniqueness property of the one-dimensional reflection map. For
a general reflection matrix R associated with a J -dimensional FBM, suitable assumptions on
R to guarantee the strong existence and pathwise uniqueness of such a reflected process Z

satisfying Definition 1.1(i)–(iv) are carefully described in Section 2 of [6]. We also refer the
reader to Theorem 2 of [2] and Proposition 4.2 of [31] for related results on existence and
pathwise uniqueness of Z.

To get an idea of RFBM introduced in the above definition, we note that it behaves like an
FBM in the interior of the orthant S and it is confined to the orthant by instantaneous ‘reflection’
at the boundary ∂S. For each j , the j th column of the reflection matrix R gives the direction
of the reflection on the j th face Fj .

Here, we consider a tandem fluid queueing network with two stations j = 1, 2 (see Figure 1).
At each station, an FBM input with Hurst parameter 0 < H < 1 is added and these FBMs are
allowed to be correlated. The constant drift rates u1 and u2 at these two stations are considered
as control terms. Our interest here is to establish the existence of optimal controls which
guarantee the minimization of an appropriate long-term average cost functional.

In our analysis, the key ingredient in the proof is a coupling method. It helps us to analyze the
behavior of a controlled state process represented by an RFBM with data (Z0, H, −u, �, R),
where u = (u1, u2)

�, R is a given 2 × 2 reflection matrix (see Section 2 for more details),
and the Hurst parameter 0 < H < 1. We show that the two-dimensional RFBM with initial
data Z0 eventually couples with the RFBM with initial data 0. Typically, such a coupling
argument works with Markov processes. In our case, the main reason for validity of the
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Figure 1: Two queues in tandem with FBM input to each station and controllable static drift rates.

coupling arguments is based on the uniqueness results related to the reflection map (also known
as the Skorokhod map or the regulator map [13, Chapter 2.2], [30, Chapter 13.5]). A similar
coupling method was used in the one-dimensional problem addressed in [10]. Our (coupling)
techniques are different from those employed in [3], [8], [12], and [16].

This coupling argument leads us to establish the existence and uniqueness of a stationary
state process for a given control (u1, u2). The construction of our stationary state process is
explicit (see Theorem 4.2). For a tandem fluid queueing network with a general input (with
stationary increments) fed only at the first station, the existence of a stationary state process was
established in [5]. In our model, there is a noisy input modeled by FBM at each station and our
results complement the work of [5]. We also obtain the estimates for the tail distribution of a two-
dimensional stationary process. In the discrete setting, when the interarrival time and service
time sequences are stationary, the stability of a system of queues in series was investigated
in [21] and [22]. Our stability arguments in Theorem 4.1(a) complement the results in [21]
and [22]. We refer the reader to [7], [9], and [25] for tail asymptotics of a one-dimensional
queue length process with FBM input. We use the existence and uniqueness of this stationary
process to show that the pay-off from the long-run average cost functional depends only on the
control (u1, u2) and is independent of the initial data. Further analysis of the cost functional
I (u1, u2) enables us to establish the existence of an optimal control (u∗

1, u
∗
2), which minimizes

the cost functional over all available strategies.
The organization of the paper is as follows. In Section 2 we carefully describe our model

in (2.3)–(2.6) and introduce the long-run average cost functional in (2.7). In Section 3 we
provide a description of a sequence of ON/OFF network models whose limit of suitably scaled
workload processes satisfies our model. This example is based on Delgado’s work [6]. To
obtain the controlled model of Section 2 as the limiting model, we also introduce the notion of
‘thin control’ for the ON/OFF queueing network in heavy traffic. Section 4 is devoted to the
weak convergence results in Theorem 4.1 for the distribution of the state process with initial
data (0, 0). We also construct an explicit stationary state process associated with given control
(u1, u2) in Theorem 4.2. In Section 5 we introduce the above described coupling method and
show that the arbitrary state process Z coalesces with the stationary state process Z∗. We
also obtain finite moment bounds for this coalescing time. The main result of this section is
given in Theorem 5.1. In Section 6, by combining the results of Sections 4 and 5 we represent
the long-run average cost functional in terms of the stationary state process and establish the
existence of an optimal control (u∗

1, u
∗
2) in Theorem 6.1. Furthermore, it turns out that this

optimal control (u∗
1, u

∗
2) is independent of the initial data. We indicate the generalization of our

results to a tandem queueing network that consists of n stations in Section 7. In particular, we
describe the distribution of the stationary process.

The following notation is used. Denote the set of real numbers by R and nonnegative
real numbers by R+. Let Rd be the d-dimensional Euclidean space endowed with the usual
Euclidean norm. For a given matrix M , denote by M� its transpose and by Mi the ith row
of M . Let I = IK×K denote the identity matrix for some K . When it is clear from the
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context, we will omit the subscript. For a set A ⊆ Rd , denote its boundary by ∂A. When
sup0≤s≤t |fn(s) − f (s)| → 0 as n → ∞ for all t ≥ 0, we say that fn → f uniformly on

compact sets. By ‘
d=’and ‘

d−→’we denote equality and convergence in distribution, respectively.
The class of continuous functions f : X → Y is denoted by C(X, Y ). Inequalities for vectors
are interpreted componentwise. We will denote generic constants by K1, K2, . . . , and their
values may change from one proof to another.

2. Model

Let WH = (W1, W2)
� be a two-dimensional FBM with data (0, H, 0, �), where

� =
(

1 ρ

ρ 1

)
with |ρ| < 1 and Hurst parameter 0 < H < 1. It is assumed that there exists a complete
right-continuous filtration (Ft )t≥0 such that WH is adapted to this filtration. We begin with
a two-dimensional controlled state process {Q(t) = (Q1(t), Q2(t))

�}t≥0 which is an RFBM.
Such a state process satisfying (2.1) below will be obtained as a heavy traffic limit of a controlled
ON/OFF network in Section 3. The process {Q(t)}t≥0 takes values in the state space S =
[0, ∞) × [0, ∞) and it can be written as

Q(t) = Q(0) +
(

σ1 0
0 σ2

)
WH (t) −

(
θ1
θ2

)
t +

(
ν1 0

−ν2 ν3

)
Y (t) (2.1)

for all t ≥ 0, where the initial dataQ(0) = (Q1(0), Q2(0))� ∈ S andQ(0) is anF0-measurable
random vector such that E|Q(0)| < ∞. The constant control vector is given by θ = (θ1, θ2)

�,
where θ1 > 0 and θ2 > 0 are constants. Also, σi > 0 and νj > 0 are constants for i = 1, 2
and j = 1, 2, 3. The two-dimensional process {Y (t) = (Y1(t), Y2(t))

�}t≥0 satisfies Y (0) = 0,
Yi(·) is nondecreasing with continuous paths and

∫∞
0 Qi(t) dYi(t) = 0 for i = 1, 2. Next, we

reduce (2.1) to a simpler model given by (2.3) and (2.4) below for further analysis. Consider
the constant matrix

K = 1

σ1

⎛⎝1 0

0
ν1

ν2

⎞⎠
and multiply (2.1) by K to obtain

KQ(t) = KQ(0) + K

(
σ1 0
0 σ2

)
WH (t) − K

(
θ1
θ2

)
t + K

(
ν1 0

−ν2 ν3

)
Y (t). (2.2)

We define

Z(t) = KQ(t), Z(0) = KQ(0), L1(t) = ν1

σ1
Y1(t), L2(t) = ν1ν3

ν2σ1
Y2(t),

and the new constant control vector u = Kθ . Then our model (2.2) can be written in the form

Z1(t) = Z1(0) + W1(t) − u1t + L1(t), (2.3)

Z2(t) = Z2(0) + σW2(t) − u2t − L1(t) + L2(t), (2.4)

where σ = ν1σ2/ν2σ1 > 0. Thus, the process {Z(t) = (Z1(t), Z2(t))
�}t≥0 also takes values

in the two-dimensional orthant S. The process Z is adapted to the filtration (Ft )t≥0. Note
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Figure 2: A reflected FBM in the first quadrant with drift vector u = (u1, u2)
� and reflection matrix

R = [r1, r2], r1 = (1, 0)�, r2 = (1, −1)�.

that, for i = 1, 2, Li(0) = 0, and Li(·) is nondecreasing with continuous paths and satisfies∫∞
0 Zi(t) dLi(t) = 0. The picture depicted in Figure 2 is useful for a visualization of the two-

dimensional state process Z = (Z1, Z2)
� in (2.3) and (2.4). Since Z(0) = KQ(0), the random

vector Z(0) is F0-measurable, Z(0) ∈ S, and E |Z(0)| < ∞. Hence, the process Z is an RFBM
with associated data (KQ(0), H, −u, �, R), where

� =
(

1 ρσ

ρσ σ 2

)
and R =

(
1 0

−1 1

)
.

In the later sections, we will assume a suitable moment condition on Z(0). Using the properties
of the Skorokhod map (see, e.g. [30, p. 439]), we can write

L1(t) = max
{

0, max
s∈[0,t](u1s − W1(s) − Z1(0))

}
, (2.5)

L2(t) = max
{

0, max
s∈[0,t](u2s − σW2(s) + L1(s) − Z2(0))

}
. (2.6)

Note that, for each j = 1, 2, Lj (t) represents the cumulative idle time in the station j during
[0, t].

The process Z = (Z1, Z2)
� can be considered as the workload process of a two-station

tandem queueing system, where the controlled queue is fed by a fractional Brownian motion
to each station. In Section 3 we provide a concrete example based on the recent work
of Delgado [6]. For a chosen constant control u = (u1, u2)

� with u1 > 0, u2 > 0, and
F0-measurable initial data Z(0) = KQ(0) ∈ S, with E |Z(0)| < ∞, the corresponding state
process Z is an RFBM with associated data (Z(0), H, −u, �, R), where � and R are as given
in the previous paragraph. Associated with this controlled state process Z, the controller is
faced with a cost structure consisting of the following three additive components during a time
interval [t, t + dt]:

(i) a control cost h(u) dt ,

(ii) a state dependent holding cost C(Z(t)) dt , and

(iii) a penalty of p1 dL1(t) + p2 dL2(t) for the idle times at two stations.

Here p1 ≥ 0 and p2 ≥ 0 are constants, and h and C are nonnegative continuous functions
satisfying some basic assumptions. In the long-run average cost minimization problem (also
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known as the ergodic control problem), the controller’s goal is to minimize the cost functional

I (u, Z(0)) ≡ lim sup
T →∞

1

T
E

[∫ T

0
[h(u) + C(Z(t))] dt +

∫ T

0
[p1 dL1(t) + p2 dL2(t)]

]
= h(u) + lim sup

T →∞
1

T
E

[∫ T

0
C(Z(t)) dt + p1L1(T ) + p2L2(T )

]
. (2.7)

The functions h and C satisfy the following standing assumptions.

(H1) The function h : S → [0, ∞) is continuous, with h(0, 0) = 0 and is increasing to +∞
in each variable as the variable tends to ∞.

(H2) The function C : S → [0, ∞) is also continuous with C(0, 0) = 0 and nondecreasing in
each variable, and limx+y→∞ C(x, y) = ∞.

(H3) The function C satisfies the following polynomial growth condition:

0 ≤ C(x, y) ≤ K(1 + |x|m + |y|m)

for some constants K > 0 and m ≥ 1. These constants are independent of x and y.

The polynomial growth condition in (H3) for the running cost function is quite common in the
stochastic control problem related to Brownian networks.

3. Controlled two-station fluid models with ON/OFF sources

Here we provide a brief description of a sequence of concrete network models in which the
limit of suitably scaled workload processes satisfies a controlled RFBM model. This example
is based on Delgado’s work [6], whose notation we use throughout this section. It should be
noted that in [6] a more general model is considered, whereas our example in this section is
related to a tandem queue with two service stations. The novel feature here is the introduction
of a ‘thin control’ using the heavy traffic condition.

Consider a sequence of controlled queueing networks indexed by (N, r), where N ≥ 1 is an
integer-valued parameter and r > 0 is a real-valued parameter. Each network consists of two
stations (j = 1, 2) and there is a single server at each station (recall Figure 1). In the (N, r)th
network, there are N input sources for each station (e.g. N users connected to the server) and
each user stays connected to the server for a random ON period with distribution function F1,
and stays off during a random OFF period of time with distribution function F2. It is assumed
that, for each user, these ‘ON’ periods and ‘OFF’ periods are independent of each other. For
each i = 1, 2, assume that 1 − Fi(x) ∼ cix

−βi for large x, where 1 < βi < 2, and ci and βi are
positive constants. Hence, each Fi has finite mean µ̃i and infinite variance. In the j th station,
ON and OFF periods of the nth user are described by

U
(n)
j (t) =

{
1 if the nth source is ‘ON’ at time t,

0 if the nth source is ‘OFF’ at time t.

Assume that if all the sources are ‘ON’ then fluid would arrive at station j at a deterministic
rate αN

j for j = 1, 2.
Next, let P = (pk�)2×2 represent the ‘routeing matrix’ of the network. Here pk� is the

proportion of fluid that leaves station k and goes next to station �, and 1 −∑2
k=1 pk� ≥ 0 is the
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proportion of fluid that leaves the network after being served at station k. In our tandem queue
example,

P =
(

0 1
0 0

)
.

The quantities µ̃1, µ̃2, α
N
1 , αN

2 , and P are considered as system primitives. We let c =
µ̃1/(µ̃1 + µ̃2), α

N = (αN
1 , αN

2 )� and Q = (I − P �)−1. First, we assume that

lim
N→∞ αN = α,

where α = (α1, α2)
� for some α1 > 0 and α2 > 0.

Then, following [6], we can compute the long-run fluid rate vector λN which satisfies
the traffic equation λN = cQαN . Then λN is given by λN

1 = cαN
1 and λN

2 = c(αN
1 + αN

2 ).
Furthermore,

lim
N→∞ λN =

(
λ1
λ2

)
=
(

cα1
c(α1 + α2)

)
. (3.1)

For the (N, r)th system, it is assumed that the controlled deterministic service rate at station j

is given by

µN
j (r) = λN

j

(
1 + 1√

N
θj (r)

)
for j = 1, 2, (3.2)

where the control variables θj (r) are positive bounded continuous functions and

lim
r→∞ θj (r) = 0.

More precisely, we assume that

lim
r→∞ r1−H θ(r) = lim

r→∞

(
r1−H θ1(r)

r1−H θ2(r)

)
=
(

θ1
θ2

)
, (3.3)

where θ1 > 0 and θ2 > 0 are constants and H = 1
2 (3 − min{β1, β2}) ∈ ( 1

2 , 1). The mean
service time at station j is given by mN

j (r) = 1/µN
j (r) for j = 1, 2, and the corresponding

mean service time matrix MN(r) is given by MN(r) = diag(mN
1 (r), mN

2 (r)). Note that
limN→∞ µN

j (r) = λj and limN→∞ MN(r) = M , where M = diag(λ−1
1 , λ−1

2 ) and those limits
are uniform on compact sets (in r).

Next, we introduce the fluid-traffic intensity vector of the (N, r)th network by

ρN(r) = MN(r)λN. (3.4)

It is easy to see that

lim
N→∞ ρN(r) = e ≡

(
1
1

)
.

Then we observe the ‘heavy traffic’ condition

lim
N→∞

√
N(ρN(r) − e) = −θ(r), (3.5)

which readily follows from (3.1), (3.2), and (3.4). We remark that the effect of the control θ(r)

in the service rate is of order 1/
√

N and also (3.3) holds. Such controls are called ‘thin controls’
(see [1]). In comparison, the heavy traffic condition in [6] assumes that θ(r) is identically zero
and their network is not controlled.
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To compute the workload process (i.e. the amount of time required for the server to com-
plete processing of all fluids in the queue (or being served)), next we compute the matrix
RN(r) = I − MN(r)P �MN(r)−1 as in Lemma 1 of [6]. It can be easily seen that

lim
N→∞ RN(r) = R ≡

⎛⎝ 1 0

−λ1

λ2
1

⎞⎠ ,

which is independent of r . Then, we define the cumulative external fluid that arrives at station
j during [0, t] by

EN
j (t) = αN

j

∫ t

0

1

N

( N∑
n=1

U
(n)
j (s)

)
ds for j = 1, 2.

The aggregated cumulative external fluid-traffic process is given by

{EN(t) = (EN
1 (t), EN

2 (t))�}t≥0.

The two-dimensional workload process {ZN
r (t)}t≥0 and the cumulative idle time process

{LN
r (t)}t≥0 of the (N, r)th network satisfy

ZN
r (t) = RN(r)MN(r)QEN(t) − RN(r)et + RN(r)LN

r (t)

for t ≥ 0. Next, we introduce the scaled processes associated with the (N, r)th network. Let

ẐN
r (t) ≡ √

N
ZN(rt)

rH L1/2(r)
, ÊN

r (t) ≡ √
N

EN(rt) − crtαN

rH L1/2(r)
,

L̂N
r (t) ≡ √

N
LN(rt)

rH L1/2(r)
,

where L(r) is a positive, slowly varying function at ∞, as defined in Section 3.3 of [6]. Then,
following the discussions in [6], these scaled processes are related by

ẐN
r (t) = X̂N

r (t) + RN(r)L̂N
r (t), (3.6a)

where

X̂N
r (t) = RN(r)MN(r)QÊN

r (t) +
√

N

rH
RN(r)(ρN(r) − e)rt (3.6b)

and, for each j ,

L̂N
r,j (0) = 0,

∫ ∞

0
ẐN

r,j (s) dL̂N
r,j (s) = 0. (3.6c)

Associated with the scaled processes of the (N, r)th network, we consider a long-run average
cost minimization problem with linear control costs and the corresponding cost functional

IN
r (θ(r), ẐN

r (0)) = h(r1−H θ(r)) + lim sup
T →∞

1

T
E

[∫ T

0
C(ẐN

r (t)) dt + p · L̂N
r (T )

]
, (3.7)

where p = (p1, p2)
� is a constant vector. The function h is linear and C satisfies the

assumptions in Section 2. Using Theorem 1 of [6], we can approximate the scaled system

https://doi.org/10.1239/aap/1316792672 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1316792672


856 C. LEE AND A. WEERASINGHE

in (3.6) by RFBM and we can minimize the associated cost functional of the limiting RFBM
system. To obtain the limiting workload process, we introduce different types of convergence
and their notation as described in [6]. We denote the convergence in distribution in C[0, ∞) by
‘D-lim’ and the convergence of finite-dimensional distributions by ‘l̃im’. Following the proof
of Theorem 1 of [6] together with (3.3), (3.5), and (3.6), we obtain

D-lim
r→∞ l̃im

N→∞X̂N
r (·) = X(·), where X(t) = RMQB̃H (t) − Rθ t for all t ≥ 0,

where B̃H is a two-dimensional FBM with H = (3 − min{β1, β2})/2 and covariance matrix
� = diag(σ 2

limα2
1, σ 2

limα2
2), and σ 2

lim > 0 is as in [6, p. 196]. Note that 1
2 < H < 1. An easy

computation shows that RMQ = diag(λ−1
1 , λ−1

2 ). Therefore, using the continuous mapping
theorem, as in [6], we obtain the limiting system as an RFBM given by

Z(t) =
(

σ 2α2
1/λ1 0
0 σ 2α2

2/λ2

)
BH (t) −

(
u1t

u2t

)
+
(

1 0
−λ1/λ2 1

)
L(t), (3.8)

where BH (·) is a standard two-dimensional FBM, u1 = θ1, u2 = θ2 − λ1θ1/λ2, L(·) rep-
resents the idle time process, and, for each j , Lj (·) is nondecreasing, Lj (0) = 0, and∫ t

0 Zj (t) dLj (t) = 0. Hence, we see that, with a superimposed ON–OFF input source and
controllable services times for the queueing system, a suitably scaled workload process in
the limit satisfies the model in (3.8), which is essentially (2.1). With cost structure (3.7) for
the queueing network problem in mind, we intend to study in this paper a formal fractional
Brownian control problem by imposing the cost functional for the limiting model (3.8) as

I (u, Z(0)) = h(u) + lim sup
T →∞

1

T
E

[∫ T

0
C(Z(t)) dt + p · L(T )

]
, (3.9)

where p = (p1, p2)
� is a constant vector. Note that h(u) = u1 + u2 = α2θ1/(α1 + α2) +

θ2 > 0. However, we do not attempt to solve the underlying queueing control problem in this
paper. A solution to the limiting control problem with cost functional (3.9) provides useful
insights into the queueing network control problem with associated cost functional (3.7).

4. Weak convergence and stationarity

Recall the model described by (2.3)–(2.6). If the initial data (Z1(0), Z2(0)) = (0, 0) then
the corresponding processes Z0

1 and Z0
2 can be written as

Z0
1(t) = W1(t) − u1t + L0

1(t) (4.1)

and

Z0
2(t) = σW2(t) − u2t − L0

1(t) + L0
2(t) for t ≥ 0, (4.2)

where σ > 0 is a constant, W1 and W2 are correlated FBMs with constant correlation coefficient
ρ ∈ [−1, 1] and Hurst parameter 0 < H < 1. Furthermore, we have

L0
1(t) = max

s∈[0,t](u1s − W1(s)) (4.3)

and

L0
2(t) = max

s∈[0,t](u2s − σW2(s) + L0
1(s)) for t ≥ 0. (4.4)

We define the vector-valued process Z0 by (Z0(t) = (Z0
1(t), Z0

2(t))�)t≥0, and next we establish
the weak convergence of Z0 and identify its limiting distribution Z0(∞).
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Theorem 4.1. The following results hold.

(a) Assume that u1 > 0 and u1 + u2 > 0. The process (Z0(t))t≥0 converges weakly to
the random vector Z0(∞) = (Z0

1(∞), Z0
2(∞))� as t → ∞, where Z0

1(∞) and Z0
2(∞)

satisfy

Z0
1(∞) = sup

0≤s<∞
{W1(s) − u1s} (4.5)

and

Z0
1(∞) + Z0

2(∞) = sup
0≤r≤s<∞

{(W1(s) − u1s) + (σW2(r) − u2r)}. (4.6)

The random vector Z0(∞) has a proper distribution function. (More precisely, Z0
1(∞) <

∞ a.s. if u1 > 0 and Z0
2(∞) < ∞ a.s. when u1 > 0 and u1 + u2 > 0.)

(b) When u1 > 0 and u2 > 0, the tail distribution of Z0(∞) satisfies

lim
z→∞ z2H−2 log P[Z0

1(∞) ≥ z] = −θ∗(u1) (4.7)

and

lim sup
z→∞

z2H−2 log P[Z0
2(∞) ≥ z] ≤ − 1

σ 2 θ∗(u2), (4.8)

where

θ∗(u) = u2H

2H 2H (1 − H)2−2H
> 0 for u > 0.

Proof. (a) First we consider the case in which u1 > 0 and u2 > 0. Consider W1 and W2,
which are correlated FBMs with constant correlation coefficient ρ ∈ [−1, 1]. To construct such
a process, we begin with two independent FBMs Y1 and Y2, and let, for all t ≥ 0,

W1(t) = Y1(t), W2(t) = ρY1(t) + ρ̄Y2(t), (4.9)

where ρ̄ = √
1 − ρ2. To prove part (a), our first step is to show that

(Z0
1(T ), Z0

1(T ) + Z0
2(T ))

d=
(

max
0≤s≤T

{W1(s) − u1(s)}, max
0≤r≤s≤T

{W1(s) − u1s + σW2(r) − u2r}
)

(4.10)

for each T > 0, where Z0
1 and Z0

2 satisfy (4.1) and (4.2), respectively. We keep T > 0 fixed
and define (B1(s), B2(s))0≤s≤T by

B1(s) = W1(T ) − W1(T − s), B2(s) = W2(T ) − W2(T − s), (4.11)

for each 0 ≤ s ≤ T . Then, it is easy to verify that each (Bi(s))0≤s≤T is a one-dimensional
FBM for i = 1, 2 (see Exercise 5.1.1 of [28, p. 286]). Using (4.9) in (4.11), we also have

E[B1(t)B2(s)] = E[W1(t)W2(s)] = ρϒH (s, t),

where ϒH (s, t) is as in (1.1). Since both (B1(s), B2(s))0≤s≤T and (W1(s), W2(s))0≤s≤T are
Gaussian processes with the same mean and covariance function, they induce the same measure
µW on C[0, T ]. The point here is that even though (B1(s), B2(s)) depends on T in (4.11), the
measure induced on C[0, T ] is the same as that of (W1(s), W2(s))0≤s≤T .
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Using (4.1)–(4.4), we can write Z0
1(T ) and Z0

2(T ) in the form

Z0
1(T ) = max

0≤r≤T
{B1(T − r) − u1(T − r)}

and

Z0
1(T ) + Z0

2(T ) = max
0≤r≤s≤T

{B1(T − r) − u1(T − r) + σB2(T − s) − u2(T − s)}
= max

0≤v≤t≤T
{B1(t) − u1t + σB2(v) − u2v}.

We have used the time substitutions t = T − r and v = T − s in the last equality. Since
(B1, B2)

d= (W1, W2) on C[0, T ] for each T > 0, the desired equality (4.10) follows. We let

M1(T ) = max
0≤s≤T

{W1(s) − u1s}
and

M2(T ) = max
0≤r≤s≤T

{W1(s) − u1s + σW2(r) − u2r}.

Since Wi has stationary and ergodic increments, we have limT →∞ Wi(T )/T = 0 a.s. for
i = 1, 2 (see, e.g. [23] and [28, Chapter 5.1] for additional properties and a more detailed
description of FBM). Thus, M1(T ) < ∞ and M2(T ) < ∞ a.s. Clearly, (M1(T ), M2(T )) →
(M1(∞), M2(∞)) as T → ∞ a.s. and Mi(∞) < ∞ for i = 1, 2. Hence, we can conclude
that

(Z0
1(T ), Z0

1(T ) + Z0
2(T ))

d−→ (M1(∞), M2(∞)) as T → ∞,

and, as a consequence, we have

(Z0
1(T ), Z0

2(T ))
d−→ (M1(∞), M2(∞) − M1(∞)) as T → ∞.

This completes the proof of part (a) for the case in which u1 > 0 and u2 > 0. For the case in
which u1 > 0 and u1 +u2 > 0, we pick an ε > 0 so that min{u1, u1 +u2} > ε > 0. We intend
to show that the right-hand side of (4.6) is finite. Using (4.6), we obtain

sup
0≤r≤s

{(W1(s) − u1s) + (σW2(r) − u2r)}

≤ sup
0≤r≤s

{(W1(s) − εs) + (σW2(r) − (u1 + u2 − ε)r)}

≤ sup
s≥0

(W1(s) − εs) + sup
s≥0

(σW2(s) − (u1 + u2 − ε)s).

From the above proof for the case in which u1 > 0 and u2 > 0, the right-hand side of the last
inequality is finite a.s. Hence, it follows that Z0

1(∞) + Z0
2(∞) < ∞ a.s. and this completes

the proof of part (a).
(b) The result in (4.7) was shown in [7], [9], and [25]. To prove (4.8), we begin with Z0

2(t)

as in (4.2). Using (4.4), we note that

L0
2(t) ≤ L0

1(t) + max
s∈[0,t](u2s − σW2(s))
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and, hence, by (4.2) we have

Z0
2(t) ≤ σW2(t) − u2t + max

s∈[0,t](u2s − σW2(s))

= max
s∈[0,t]{σ(W2(t) − W2(s)) − u2(t − s)}

= max
s∈[0,t]{σB2(s) − u2s} (using (4.11))

d= max
s∈[0,t]{σW2(s) − u2s}.

Thus,
P[Z0

2(T ) ≥ z] ≤ P[Y (∞) ≥ z],
where Y (∞) = sup0≤s{σWH (s) − u2s} = σ sup0≤s{WH (s) − u2s/σ } and WH is a one-
dimensional FBM with Hurst parameter H . Using (4.7), we can estimate P[Y (∞) ≥ z].
Hence, result (4.8) follows.

When the drift rates u1 and u2 satisfy the condition u1 > 0 > u2 with u1 + u2 > 0 (i.e.
u1 > u1 + u2 > 0), we can replace (4.8) with a weaker upper bound as described below.

Corollary 4.1. Assume that u1 > u1 + u2 > 0. Then (4.7) holds and instead of (4.8) the
following estimate holds for Z0

2(∞):

lim sup
z→∞

z2H−2 log P[Z0
2(∞) ≥ z] ≤ − 1

22(1−H)
θ∗
(

u1 + u2

1 + σ 1/H

)
, (4.12)

where θ∗(·) is given in Theorem 4.1(b).

Proof. The estimate (4.7) remains valid since u1 > 0. It remains to estimate P[Z0
2(∞) ≥ z].

Since Z0
2(∞) ≤ Z0

1(∞) + Z0
2(∞), we estimate P[Z0

1(∞) + Z0
2(∞) ≥ z]. We pick 0 < � <

u1 + u2 and introduce ς = u1 + u2 − �/σ > 0. Then, using (4.6), we obtain

Z0
1(∞) + Z0

2(∞) ≤ sup
t≥0

(W1(t) − �t) + σ sup
t≥0

(W2(t) − ςt).

Hence,

P[Z0
1(∞) + Z0

2(∞) ≥ z] ≤ P

[
sup
t≥0

(W1(t) − �t) ≥ z

2

]
+ P

[
sup
t≥0

(W2(t) − ςt) ≥ z

2σ

]
.

Since � > 0 and ς > 0, we can use (4.7) and a straightforward calculation using the above
estimate to obtain

lim sup
z→∞

z2H−2 log P[Z0
1(∞) + Z0

2(∞) ≥ z] ≤ − 1

22(1−H)
θ̄(�, σ ), (4.13)

where

θ̄ (�, σ ) = min

{
θ∗(�),

1

σ 2(1−H)
θ∗
(

u1 + u2 − �

σ

)}
.

Using the expression for θ∗(·) in Theorem 4.1(b), we observe that

θ̄ (�, σ ) = 1

2H 2H (1 − H)2(1−H)
min

{
�2H ,

(
u1 + u2 − �

σ 1/H

)2H}
,

where 0 < � < u1 + u2. It is straightforward to compute the maximum value of θ̄ (�, σ )
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when 0 < � < u1 + u2, and it is achieved at � = �∗ = (u1 + u2)/(1 + σ 1/H ). Moreover,
θ̄ (�∗, σ ) = θ∗((u1 + u2)/(1 + σ 1/H )). Since P[Z0

2(∞) ≥ z] ≤ P[Z0
1(∞) + Z0

2(∞) ≥ z],
then, as a consequence of the above estimates, we obtain (4.12).

Next, we intend to establish the existence of a stationary process on the same probability
space on which Z0 is defined. The coupling arguments in the next section will establish the
uniqueness in law for this stationary process (see Corollary 5.1 below). For a tandem network
with two stations and only one random input process with stationary ergodic increments at
the first station, the existence of a unique stationary process was established in [5]. In our
situation, there are two input noise processes, which are correlated and have stationary ergodic
increments. The following result complements the work of [5] and provides a more explicit
description of the stationary process.

Theorem 4.2. Let u1 > 0 and u1 + u2 > 0. Then there is a probability space (�, F , P)

supporting Z0 as described in (4.1)–(4.4) and a stationary process Z∗ = (Z∗
1 , Z∗

2), which
satisfies the following equations with respect to the same FBMs W1 and W2 with correlation
coefficient ρ ∈ [−1, 1]. For all t ≥ 0,

Z∗
1(t) = Z∗

1(0) + W1(t) − u1t + L∗
1(t), (4.14)

Z∗
2(t) = Z∗

2(0) + σW2(t) − u2t − L∗
1(t) + L∗

2(t). (4.15)

Here
L∗

1(0) = L∗
2(0) = 0,

and L∗
1(t) and L∗

2(t) are nondecreasing, continuous processes adapted to the filtration
of {WH = (W1, W2)

�}, which also satisfy∫ ∞

0
Z∗

i (t) dL∗
i (t) = 0 for i = 1, 2. (4.16)

Let g(x) = exα
, where 0 < α < 2(1 − H). Then E[g(Z∗(t))] < ∞ and, consequently,

E |Z∗(t)|N < ∞ for every N ≥ 1.

Proof. We begin with two independent two-sided FBMs, Y1 and Y2, defined on some
probability space (�, F , P) (cf. [23]). Thus, Y1 and Y2 are defined for all −∞ < t < +∞.
We let W1 = Y1 and W2 = ρY1 + ρ̄Y2, where ρ̄ = √

1 − ρ2. Then WH (t) = (W1(t), W2(t))
�

is defined for all −∞ < t < +∞ and WH (0) = 0.
Next, we consider the two-dimensional ‘free process’

(W1(t) − u1t, (W1(t) − u1t) + (σW2(t) − u2t))
�

for all −∞ < t < +∞. Introduce the two-dimensional process (X(t), Y (t))� using the
reflection map described below. We write

X(t) = W1(t) − u1t − inf−∞<s≤t
{W1(s) − u1s},

Y (t) = W1(t) − u1t + σW2(t) − u2t − inf−∞<s≤r≤t
{W1(s) − u1s + σW2(r) − u2r},

for all −∞ < t < +∞. Using the fact that lim|t |→∞ |Wi(t)|/|t | = 0 a.s., it is easy to check
that X(t) and Y (t) are finite for every −∞ < t < +∞.
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We intend to show that (X(t), Y (t))
d= (X(0), Y (0)) for all t ≥ 0. Fix t > 0, and note that

we can write

X(t) = sup
−∞<s≤t

[W1(t) − W1(s) − u1(t − s)], (4.17)

Y (t) = sup
−∞<s≤r≤t

[W1(t) − W1(s) − u1(t − s) + σ(W2(t) − W2(r)) − u2(t − r)]. (4.18)

For i = 1, 2, let Bi(s) = Wi(t) − Wi(t − s) for all s ≥ 0. Then it is straightforward to check
that B1 and B2 are also one-dimensional FBMs with the same correlation coefficient ρ. It is
important to note that B1 and B2 depend on t by their definitions. Substituting B1 and B2
into (4.17) and (4.18), and then using the time substitutions s̃ = t − s ≥ 0 and r̃ = t − r ≥ 0,
we obtain

X(t) = max
0≤s̃≤t

(B1(s̃) − u1s̃) and Y (t) = max
0≤r̃≤s̃≤t

[(B1(s̃) − u1s̃) + (σB2(r̃) − u2r̃)].

We observe that Y (t) ≥ X(t) for all t , by letting r̃ = 0. We recall that

{(B1(s), B2(s)) : s ≥ 0} d= {(W1(s), W2(s)) : s ≥ 0},
and, therefore, we conclude that(

X(t)

Y (t)

)
d=
(

sup0≤s<∞(W1(s) − u1s)

sup0≤r≤s<∞[(W1(s) − u1s) + (σW2(r) − u2r)]

)
. (4.19)

Note that the right-hand side of (4.19) is independent of t and, hence, (X(t), Y (t)) is a stationary
process. In particular, (X(t), Y (t))

d= (Z0
1(∞), Z0

1(∞) + Z0
2(∞)) for all t ≥ 0, where Z0

1(∞)

and Z0
2(∞) are given in (4.5) and (4.6). Next, we define(

Z∗
1(t)

Z∗
2(t)

)
=
(

1 0
−1 1

)(
X(t)

Y (t)

)
for all t ≥ 0.

Then, clearly, Z∗ = (Z∗
1 , Z∗

2)� is also a stationary process. Since Y (t) ≥ X(t) ≥ 0 for all t ,
we have Z∗

1(t) ≥ 0 and Z∗
2(t) ≥ 0 for all t ≥ 0. We let

L̃∗
1(t) = sup

−∞<s≤t
(u1s − W1(s)),

L̃∗
2(t) = sup

−∞<s≤r≤t
(u1s − W1(s) + u2r − σW2(r)).

Note that Z∗
1(0) = L̃∗

1(0) and Z∗
2(0) = L̃∗

2(0) − L̃∗
1(0). Define the processes L∗

1(·) and L∗
2(·)

by

L∗
1(t) = max

{
0, max

s∈[0,t](u1s − W1(s) − Z∗
1(0))

}
,

L∗
2(t) = max

{
0, max

s∈[0,t](u2s − σW2(s) + L∗
1(s) − Z∗

2(0))
}
,

for all t ≥ 0. Then, clearly,

L∗
1(t) = L̃∗

1(t) − Z∗
1(0) and L∗

2(t) = L̃∗
2(t) − Z∗

1(0) − Z∗
2(0)

hold for all t ≥ 0. Now, it is straightforward to check that the above defined processes
(Z∗

i (t), L∗
i (t)) for i = 1, 2 satisfy (4.14)–(4.16).
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Let g(x) = exα
, where 0 < α < 2(1−H). To show that E[g(Z∗(t))] < ∞, we observe that

|Z∗(t)| ≤ Z∗
1(t) + Z∗

2(t) = Y (t) for all t ≥ 0. Using (4.6) and (4.19), Y (t)
d= Z0

1(∞)+Z0
2(∞)

for all t ≥ 0. When u1 > 0 and u2 > 0, we can employ the tail distribution bounds (4.7)
and (4.8) in Theorem 4.1 to conclude that E[g(Z∗(t))] < ∞. If u1 > u1 + u2 > 0, we
can use (4.7) and the tail estimate in Corollary 4.1 to obtain E[g(Z∗(t))] < ∞. Hence, as a
consequence, E[Z0

1(∞) + Z0
2(∞)]N < ∞ for each N ≥ 1. This completes the proof.

Remark 4.1. Consider the two-sided filtration (Ft : −∞ < t < ∞) defined by

Ft = σ({WH (s) : −∞ < s ≤ t})
for each −∞ < t < ∞ and allow each Ft to have all the null sets. Here WH is the two-sided,
two-dimensional FBM introduced in the above proof. Then it is evident that the stationary
process Z∗ is adapted to the filtration (Ft )t≥0.

5. A coupling time result

Consider the probability space (�, F , P) described in Theorem 4.2. Let (Ft )t≥0 be the
filtration described in Remark 4.1. Then WH = (W1, W2)

� is adapted to (Ft )t≥0 and Z∗(0) is
F0-measurable, where Z∗ is the stationary process defined on (�, F , P). Henceforth, all our
processes are defined on (�, F , P) and adapted to the filtration (Ft )t≥0. The one-dimensional
FBMs W1 and W2 are correlated with a constant correlation coefficient ρ. Next, recall that our
model Z = (Z1, Z2)

� is described by

Z1(t) = Z1(0) + W1(t) − u1t + L1(t) (5.1)

and

Z2(t) = Z2(0) + σW2(t) − u2t − L1(t) + L2(t) for t ≥ 0. (5.2)

Here σ > 0 is a constant, and Z1(0) and Z2(0) are nonnegative, F0-random variables which
satisfy the condition

E[Z1(0) + Z2(0)] < ∞. (5.3)

Recall that the nondecreasing processes L1(·) and L2(·) are given by

L1(t) = max
{

0, max
s∈[0,t](u1s − W1(s) − Z1(0))

}
, (5.4)

L2(t) = max
{

0, max
s∈[0,t](u2s − σW2(s) + L1(s) − Z2(0))

}
, (5.5)

for all t ≥ 0. Also, we define the processes L̃1(·) and L̃2(·) by

L̃1(t) = Z1(0) + L1(t) = max
{
Z1(0), max

s∈[0,t](u1s − W1(s))
}
, (5.6)

L̃2(t) = Z1(0) + Z2(0) + L2(t)

= max
{
Z1(0) + Z2(0), max

s∈[0,t](u2s − σW2(s) + L̃1(s))
}
. (5.7)

Then (5.1) and (5.2) can be written as

Z1(t) = W1(t) − u1t + L̃1(t),

Z2(t) = σW2(t) − u2t − L̃1(t) + L̃2(t) for all t ≥ 0.
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It is evident that L̃1(0) = Z1(0), L̃2(0) = Z1(0) + Z2(0), L̃j (·) is nondecreasing with contin-
uous paths, and

∫∞
0 Zj (t) dL̃j (t) = 0 for j = 1, 2.

Our aim in this section is to show the existence of a stopping time τ ≥ 0 such that Z(t) =
Z0(t) for all t ≥ τ and E[τ ] < ∞. Here, {Z0(t)}t≥0 is the process described in (4.1) and (4.2).
Furthermore, we show that if E[Z1(0) + Z2(0)]N < ∞ for some N ≥ 1 then E[τN ] < ∞.
From these results, it also follows that the stationary process Z∗ in (4.14) and (4.15) is unique
in law. Our first lemma is a variant of Proposition 4.1 of [10], and the difference here is that
we allow Z1(0) to be a random variable.

Lemma 5.1. Assume that (5.3) holds. Let the processes L0
1 and L̃1 be as in (4.3) and (5.6),

respectively. Then there is a stopping time τ1 such that L̃1(t) = L0
1(t) for all t ≥ τ1 and

E[τ1 ] < ∞. In addition, if we assume that E[Z1(0)]N < ∞ for some N ≥ 1 then E[τN
1 ] < ∞.

Proof. We begin by introducing the stopping time τ1 and then showing that E[τN
1 ] < ∞ if

E[Z1(0)]N < ∞ for some N ≥ 1. This establishes both parts of the lemma. Let

τ1 = inf{t ≥ 0 : L0
1(t) ≥ Z1(0)}, (5.8)

where the infimum over an empty set is defined to be ∞. Note that

E[τN
1 ] = N

∫ ∞

0
tN−1 P[τ1 > t] dt = N

∫ ∞

0
tN−1 P[L0

1(t) < Z1(0)] dt, (5.9)

and

(5.10)P[L0
1(t) < Z1(0)] = P

[
max

s∈[0,t](u1s − W1(s)) < Z1(0)
]

≤ P[W1(t) + Z1(0) > u1t]
≤ P

[
W1(t) >

u1

2
t

]
+ P

[
Z1(0) >

u1

2
t

]
. (5.11)

For t > 0, Z ≡ W1(t)/t
H is a standard normal random variable. For y > 0, it is known that

P[Z > y] ≤ 1√
2π

1

y
e−y2/2

and, hence, for t > 0, we have

P

[
W1(t) >

u1

2
t

]
= P

[
Z >

u1

2
t1−H

]
≤ 1√

2π

2

u1t1−H
exp

(
−u2

1

8
t2(1−H)

)
. (5.12)

Using (5.9)–(5.12), we have

E[τN
1 ] ≤ 1 + N

∫ ∞

1
tN−1 P[L0

1(t) < Z1(0)] dt

≤ 1 + N

∫ ∞

1
tN−1

(
P

[
W1(t) >

u1

2
t

]
+ P

[
2

u1
Z1(0) > t

])
dt

≤ 1 + 2

u1

N√
2π

∫ ∞

1
tN+H−2 exp

(
−u2

1

8
t2(1−H)

)
dt +

(
2

u1

)N

E[Z1(0)]N.

The above integral is finite since H < 1 and, hence, E[τN
1 ] < ∞ by the assumption that

E[Z1(0)]N < ∞. This completes the proof.
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In the next lemma, we consider any stopping time τ with respect to the filtration (Ft )t≥0.

Lemma 5.2. Let ui > 0 for i = 1, 2, and let τ be any stopping time such that E[τN ] < ∞ for
some N ≥ 1. Then

E
[

max
s∈[0,τ ] |u1s − W1(s)|N

]
+ E

[
max

s∈[0,τ ] |u2s − σW2(s)|N
]

≤ CN [1 + E[τN ]], (5.13)

where CN > 0 is a constant which depends only on u1, u2, and N .

Proof. For simplicity, we only show that E[maxs∈[0,τ ] |u2s − σW2(s)|N ] ≤ KN [1+E[τN ]],
where KN > 0 is a constant that depends only on u2 and N . An estimate for E[maxs∈[0,τ ] |u1s−
W1(s)|N ] can be obtained along the same lines of the following proof. We begin with the fact
that

max
s∈[0,τ ] |u2s − σW2(s)| ≤ u2τ + σ max

s∈[0,τ ] |W2(s)| a.s.

Hence, for each N ≥ 1,

E
[

max
s∈[0,τ1]

|u2s − σW2(s)|N
]

≤ 2N−1
[
uN

2 E[τN ] + σN E
[

max
s∈[0,τ ] |W2(s)|N

]]
. (5.14)

For 0 < H < 1, it is known from Corollary 3.1 of [34] (see also Theorem 1.2 of [27],
Exercise 5.1.5 of [28], and the recent article [17] for the analysis of a related martingale) that

E
[

max
s∈[0,τ ] |W2(s)|N

]
≤ CN,H E[τNH ], (5.15)

where CN,H > 0 is a constant that depends only on N and H . Since 0 < NH < N ,
E[τNH ] ≤ 1 + E[τN ]. Now combining this estimate with (5.14) and (5.15) yields the desired
result.

Lemma 5.3. Assume that E[Z1(0)+Z2(0)]N < ∞ for someN ≥ 1 and thatA is anF0-random
variable such that E[AN ] < ∞ for some N ≥ 1. Let τ1 be the stopping time defined in (5.8).
Define M(t) = maxs∈[0,t](u2s − σW2(s)) for all t ≥ 0. Then there exists a stopping time
τ2 > τ1 such that

(u2τ2 − σW2(τ2)) ≥ A + M(τ1) a.s. (5.16)

and

E[τN
2 ] < ∞. (5.17)

Proof. By Lemma 5.2, M(τ1) is finite a.s. We let

τ2 = inf{t ≥ 0 : u2t − σW2(t) ≥ A + M(τ1)}, (5.18)

where we set the infimum over an empty set to be ∞. Since limt→∞(u2t − σW2(t)) = +∞
a.s., τ2 is also finite a.s. By the definition of M(τ1), it clearly follows that τ2 > τ1 a.s. Next, we
show that τ2 is indeed a stopping time. Since τ2 > τ1 a.s. and τ1 is a stopping time, we have,
for fixed s > 0, {τ2 > s} ∩ {τ1 ≥ s} = {τ1 ≥ s} ∈ Fs . On the other hand,

{τ2 > s} ∩ {τ1 < s} = {M(s) < A + M(τ1), τ1 < s}
= {M(s) < A + M(τ1)1{τ1<s}, τ1 < s}.
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Observe that M(·) is a nonnegative, continuous, nondecreasing process adapted to (Ft ). There-
fore, we find (by standard discrete approximation) that M(τ1)1{τ1<s} is an Fs-random variable.
Recall that A is an F0-random variable. Hence, {τ2 > s} ∩ {τ1 < s} ∈ Fs and, consequently,
the result in (5.16) follows.

To establish (5.17), note that

E[τN
2 ] = N

∫ ∞

0
tN−1 P[τ2 > t] dt ≤ 1 + N

∫ ∞

1
tN−1 P[τ2 > t] dt, (5.19)

and, from (5.18),

P[τ2 > t] = P[A + M(τ1) + σW2(t) ≥ u2t]
≤ P

[
A ≥ u2

3
t

]
+ P

[
M(τ1) ≥ u2

3
t

]
+ P

[
W2(t) ≥ u2

3σ
t

]
. (5.20)

Since E[AN ] < ∞, we have

N

∫ ∞

0
tN−1 P

[
A ≥ u2t

3

]
dt < ∞.

The assumption that E[Z1(0) + Z2(0)]N < ∞ implies that E[τN
1 ] < ∞ by Lemma 5.1. Next,

we can employ Lemma 5.2 with the stopping time τ1 to conclude that E[M(τ1)]N < ∞.
Therefore,

N

∫ ∞

0
tN−1 P

[
M(τ1) ≥ u2

3
t

]
dt < ∞. (5.21)

Finally,

P

[
W2(t) ≥ u2

3σ
t

]
≤ 1√

2π

3σ

u2t1−H
exp

(
− u2

2

18σ 2 t2(1−H)

)
holds for t > 0 as in (5.12) and, hence, we can conclude that

N

∫ ∞

1
tN−1 P

[
W2(t) ≥ u2

3σ
t

]
dt < ∞. (5.22)

Combining (5.19)–(5.22) it follows that E[τN
2 ] < ∞. This completes the proof.

Next, we employ the above three lemmas to prove the following proposition.

Proposition 5.1. Assume that E[Z1(0) + Z2(0)]N < ∞ for some N ≥ 1, and choose A =
1 + Z1(0) + Z2(0) > 0 in Lemma 5.3. Let the stopping times τ1 and τ2 be as defined in (5.8)
and (5.18), respectively. Then, for all t ≥ τ2,

(a) maxs∈[τ1,t](u2s − σW2(s) + L0
1(s)) ≥ max{L0

2(τ1), L̃2(τ1)} a.s., and

(b) L̃1(t) = L0
1(t), L̃2(t) = L0

2(t), and E[τ2
N ] < ∞.

Proof. By the definition of τ2 in (5.18) we have

u2τ2 − σW2(τ2) ≥ A + max
s∈[0,τ1]

(u2s − σW2(s)) ≥ Z1(0) + Z2(0) a.s.
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Since τ2 ≥ τ1, when t ≥ τ2, we obtain

max
s∈[τ1,t]

(u2s − σW2(s) + L0
1(s)) ≥ u2τ2 − σW2(τ2) + L0

1(τ2)

≥ A + max
s∈[0,τ1]

(u2s − σW2(s) + L0
1(s))

≥ Z2(0) + max
s∈[0,τ1]

(u2s − σW2(s) + L̃1(s)).

Also, we obtain

max
s∈[τ1,t]

(u2s − σW2(s) + L0
1(s)) ≥ u2τ2 − σW2(τ2) ≥ Z1(0) + Z2(0) a.s.

Hence, it follows that

max
s∈[τ1,t]

(u2s − σW2(s) + L0
1(s)) ≥ max{L0

2(τ1), L̃2(τ1)} a.s.

for all t ≥ τ2. Therefore, part (a) follows.
For part (b), by Lemma 5.1 we already know that L̃1(t) = L0

1(t) for t ≥ τ1. Using this fact,
whenever t ≥ τ2, we can write

L̃2(t) = max

{
Z1(0) + Z2(0), max

s∈[0,τ1]
(u2s − σW2(s) + L̃1(s)),

max
s∈[τ1,t]

(u2s − σW2(s) + L̃1(s))

}
= max

{
L̃2(τ1), max

s∈[τ1,t]
(u2s − σW2(s) + L̃1(s))

}
= max

s∈[τ1,t]
(u2s − σW2(s) + L̃1(s)).

Therefore, L̃2(t) ≤ L0
2(t) whenever t ≥ τ2. On the other hand,

L0
2(t) = max

{
L0

2(τ1), max
s∈[τ1,t]

(u2s − σW2(s) + L0
1(s))

}
= max

s∈[τ1,t]
(u2s − σW2(s) + L0

1(s)) for all t ≥ τ2.

This yields L̃2(t) = L0
2(t) for all t ≥ τ2. We have already established E[τ2

N ] < ∞ in
Lemma 5.3. This completes the proof.

We now state and prove the main coupling time result in this section.

Theorem 5.1. Let Z be a process that satisfies (5.1) and (5.2) with E[Z1(0) + Z2(0)]N < ∞
for some N ≥ 1. Then the following statements hold.

(a) There exists a stopping time τ such that Z(t) = Z0(t) for all t ≥ τ and E[τN ] < ∞,
where Z0 is the process that satisfies (4.1) and (4.2).

(b) There exists a stopping time τ̂ such that Z(t) = Z∗(t) = Z0(t) for all t ≥ τ̂ and
E[̂τN ] < ∞, where Z∗ is the stationary process described in Theorem 4.2.
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Proof. Part (a) clearly follows from Proposition 5.1 and the representation of the process Z

in (5.1)–(5.7). To establish part (b), note that

Z∗
1(0) + Z∗

2(0)
d= Z0

1(∞) + Z0
2(∞),

where Z0
1(∞) and Z0

2(∞) are described in (4.5) and (4.6). Using the tail estimates in (4.7)
and (4.8), it clearly follows that

E[Z∗
1(0) + Z∗

2(0)]n < ∞ for every n ≥ 1.

Consequently, we can apply part (a) and, thus, there is a stopping time τ ∗ > 0 such that
Z∗(t) = Z0(t) for all t ≥ τ ∗. Let Z be any other process, which satisfies (5.1) and (5.2) with
E[Z1(0) + Z2(0)]N < ∞ for some N ≥ 1. Then there is a stopping time τ satisfying part (a).
Let τ̂ = τ + τ ∗. Then

Z(t) = Z∗(t) = Z0(t) for all t ≥ τ̂ .

Since E[τN ] < ∞ and E[(τ ∗)N ] < ∞, it follows that E[̂τN ] < ∞. This completes the proof.

The following corollary is an immediate consequence of the above theorem.

Corollary 5.1. Let Z̃∗ be any other stationary process that satisfies (4.14)–(4.16) with the
moment condition E[Z̃∗

1(0) + Z̃∗
2(0)] < ∞. Then there is a stopping time τ̃ such that Z̃∗(t) =

Z∗(t) for all t ≥ τ̃ and E[̃τ ] < ∞. Hence, the stationary process Z∗ is unique in law.

6. Cost minimization

In this section we analyze the cost structure described in (2.7) and address the associated
cost minimization problem. Our state process Z = (Z1, Z2)

� is adapted to (Ft )t≥0, and it sat-
isfies (5.1) and (5.2). We assume that the initial data Z(0) satisfies the moment condition (5.3).
For the cost minimization problem with cost functional I (u, Z(0)) in (2.7), the running cost
function C satisfies assumptions (H1)–(H3) given in Section 2. Henceforth, we say that a state
process Z is an admissible state process if the initial data Z(0) satisfies the moment condition

E |Z1(0) + Z2(0)|m+1 < ∞, where m ≥ 1 is as in (H3). (6.1)

To address the cost minimization problem, first we show that the cost functional I (u, Z(0))

described in (2.7) is independent of the initial data Z(0), and we obtain a representation for it
using the stationary distribution Z∗ of Theorem 4.2. This representation will be used to address
the cost minimization problem. We begin with the following lemma.

Lemma 6.1. Let the process Z satisfy (5.1), (5.2), and (5.3). Then

lim
T →∞

1

T
E[L1(T )] = u1, (6.2)

lim
T →∞

1

T
E[L2(T )] = u1 + u2. (6.3)

Proof. Since E[Z1(0)] < ∞ from condition (5.3), conclusion (6.2) can be obtained by
following the proof of Lemma 3.1 of [10]. For (6.3), we begin with the definition of the standard
one-dimensional reflection mapping (Skorokhod map) � : C([0, ∞), R) → C([0, ∞), R),
which is defined as

�(f )(t) = f (t) + max
{

0, max
s∈[0,t](−f (s))

}
for f ∈ C([0, ∞), R) and t ≥ 0.
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Then we have Z2(t) = �(Z2(0) + σW2 − u2e − L1)(t), where e(t) ≡ t for all t ≥ 0. Since
u2t + L1(t) is nonnegative and nondecreasing in t , we have

Z2(0) + σW2(t) − u2t − L1(t) ≤ Z2(0) + σW2(t).

Therefore, from the basic properties of the Skorokhod map (see, for instance, [30, p. 439]), we
have

0 ≤ Z2(t) ≤ �(Z2(0) + σW2)(t) ≤ 2
(
Z2(0) + max

s∈[0,t] σ |W2(s)|
)
. (6.4)

Hence,

0 ≤ E[Z2(T )]
T

≤ 2

T

(
E[Z2(0)] + E

[
max

s∈[0,T ] σ |W2(s)|
])

≤ 2

T
(E[Z2(0)] + K1T

H )

→ 0

as T → ∞. Here K1 ∈ (0, ∞) is a generic constant independent of T (see [28, p. 296]). Since

L2(T ) = Z2(T ) − Z2(0) − σW2(T ) + u2T + L1(T ), E[W2(T )] = 0,

and using (6.2), we obtain limT →∞(1/T ) E[L2(T )] = u1 + u2.

Remark 6.1. The estimate in (6.4) also implies that limT →∞ Z2(T )/T = 0 a.s. A simi-
lar estimate in [10] can be used to show that limT →∞ Z1(T )/T = 0 a.s. Consequently,
limT →∞ L1(T )/T = u1 a.s. Using this with (6.4) also leads to limT →∞ L2(T )/T = u1 + u2
a.s.

Proposition 6.1. Let Z be an admissible state process that satisfies (5.1), (5.2), and (6.1). Then

lim
T →∞

1

T
E
∫ T

0
C(Z1(t), Z2(t)) dt = E[C(Z0

1(∞), Z0
2(∞))]. (6.5)

Proof. Since E|Z1(0) + Z2(0)|m+1 < ∞, we can use Theorem 5.1 to conclude that there
exists a stopping time τ̂ such that Z(t) = Z∗(t) for all t ≥ τ̂ and E[̂τm+1] < ∞. Furthermore,
Z∗ is a stationary process and (Z∗

1(t), Z∗
2(t))

d= (Z0
1(∞), Z0

2(∞)) for all t ≥ 0. Therefore, to
establish (6.5), it suffices to show that

lim
T →∞

1

T
E
∫ τ̂

0
C(Z1(t), Z2(t)) dt = 0. (6.6)

This will follow if E
∫ τ̂

0 C(Z1(t), Z2(t)) dt < ∞, and, hence, we establish this fact in the
argument below.

Using (H3), there is an m ≥ 1 such that 0 ≤ C(x, y) ≤ K(1 + |x + y|m) for all x ≥ 0 and
y ≥ 0, where K > 0 is a constant. Therefore,

E
∫ τ̂

0
C(Z1(t), Z2(t)) dt ≤ K E

[(
1 + max

t∈[0,̂τ ] |Z1(t) + Z2(t)|m
)
τ̂
]
.
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We have, by Theorem 5.1, E[̂τm+1] < ∞ and, thus, the right-hand side of the above inequality
is finite, if we establish that

E
[(

max
t∈[0,̂τ ] |Z1(t) + Z2(t)|m

)
τ̂
]

< ∞. (6.7)

But, using Hölder’s inequality with p = (m + 1)/m and q = m + 1, we have

E
[(

max
t∈[0,̂τ ] |Z1(t) + Z2(t)|m

)
τ̂
]

≤
(

E
[

max
t∈[0,̂τ ] |Z1(t) + Z2(t)|m+1

])m/(m+1)

(E[̂τm+1])1/(m+1).

Since E[̂τm+1] < ∞, it remains to establish that E(maxt∈[0,̂τ ] |Z1(t) + Z2(t)|m+1) < ∞ to
guarantee (6.7). Using (5.1)–(5.5), we obtain

E
[

max
t∈[0,̂τ ] |Z1(t) + Z2(t)|m+1

]
≤ K2

(
E|Z1(0) + Z2(0)|m+1 + E

[
max

t∈[0,̂τ ] |u2s − σW2(s)|m+1
]

+ E
[

max
t∈[0,̂τ ] |u1s − W1(s)|m+1

])
, (6.8)

where K2 > 0 is a generic constant which may depend on m. Following the proof of Lemma 5.2
and using the fact that E[̂τm+1] < ∞, we have

E
[

max
t∈[0,̂τ ] |u2s − σW2(s)|m+1

]
< ∞ and E

[
max

t∈[0,̂τ ] |u1s − W1(s)|m+1
]

< ∞.

Therefore, we can conclude that the left-hand side of (6.8) is finite and this establishes (6.7).
Hence, (6.6) follows. To complete the proof, we should check that E[C(Z0

1(∞), Z0
2(∞))] is

finite. But, this directly follows from the tail distribution asymptotics of Z0(∞) described
in (4.7) and (4.8). This completes the proof.

Let us introduce F(u1, u2) ≡ E[C(Z0
1(∞), Z0

2(∞))] for all u1 > 0 and u2 ≥ 0. We intend
to establish the continuity of F on the domain

D ≡ {(u1, u2) : u1 > 0 and u2 ≥ 0}.
To help the arguments in the next proposition, we introduce the following notation. Let the
random variables G(u) and H(u, v) be defined by

G(u) = sup
0≤s

(W1(s) − us), H(u, v) = sup
0≤r≤s

[(W1(s) − us) + (σW2(r) − vr)]

for all u > 0 and v ≥ 0. By Theorem 4.1, Z0
1(∞) = G(u1) and Z0

1(∞)+Z0
2(∞) = H(u1, u2).

Also, note that H(u, v) is finite if u > 0 and u + v ≥ 0, as noted in Theorem 4.1(a).
We also define the function Ĉ on the set {(x, y) : y ≥ x ≥ 0} by

Ĉ(x, y) = C(x, y − x). (6.9)

Hence, it follows that
F(u, v) = E[Ĉ(G(u), H(u, v))] (6.10)

for all u > 0 and v ≥ 0. For each u > 0 and v ≥ 0, F(u, v) is finite. If v > 0, this follows
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from the fact that
H(u, v) ≤ G(u) + sup

0≤r

(σW2(r) − vr) < ∞,

the polynomial growth condition of C in (H3), and the tail estimates (4.7) and (4.8). If v = 0, a
very similar argument using the estimate in the proof of Theorem 4.1(a) guarantees the finiteness
of F(u, v).

Proposition 6.2. Under the assumptions of Proposition 6.1, the following statements hold.

(a) The function F(u, v) is continuous on the domain D = {(u, v) : u > 0 and v ≥ 0}.
(b) The function F(u, v) is decreasing in the variable v and lim(u,v)→(0,b) F (u, v) = ∞ for

each b > 0.

Proof. Let (a, b) ∈ D . We pick δ > 0 such that 0 < 3δ < a. To show the continuity of F

at (a, b), we pick a sequence (an, bn) which converges to (a, b) as n → ∞. Without loss of
generality, we assume that an > 3δ for all n. Our first step is to show that G(an) → G(a) a.s.
and H(an, bn) → H(a, b) a.s. as n tends to ∞. Since limt→∞ W(i)(t)/t = 0 a.s. for i = 1, 2,
there exists a T1(ω) > 0 such that max{W1(t) − δt, σW2(t) − δt} < 0 for all t ≥ T1(ω). We
let

T0(ω) = max

{
T1(ω),

1

δ
max

t∈[0,T1(ω)](σW2(t) − δt)

}
,

and T0(ω) > 0 is finite. Then clearly it follows that

G(an) = max
0≤s≤T0(ω)

(W1(s) − ans) and G(a) = max
0≤s≤T0(ω)

(W1(s) − as).

From this, it is evident that |G(an) − G(a)| ≤ T0(ω)|an − a| and, thus, G(an) → G(a) as n

tends to ∞.
Next, we consider

H(an, bn) = sup
0≤r≤s

[(W1(s) − ans) + (σW2(r) − bnr)].

Since an > 3δ > 0 and bn ≥ 0, we obtain the following estimates. For any s > T0(ω) and
r ≤ s,

(W1(s) − ans) + (σW2(r) − bnr) ≤ W1(s) − 3δs + σW2(r)

≤ (W1(s) − δs) − δs + (σW2(r) − δr)

≤ −δs + max
r∈[0,T1(ω)](σW2(r) − δr)

< 0.

Therefore, we can write

H(an, bn) = max
0≤r≤s≤T0(ω)

[(W1(s) − ans) + (σW2(r) − bnr)]

and, similarly,

H(a, b) = max
0≤r≤s≤T0(ω)

[(W1(s) − as) + (σW2(r) − br)].

Hence, we obtain

|H(an, bn) − H(a, b)| ≤ T0(ω)(|an − a| + |bn − b|).
Since T0(ω) > 0 is finite, we have H(an, bn) → H(a, b) as n → ∞.
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Our second step is to obtain an integrable upper bound for C(G(an), H(an, bn) − G(an)).
Since C(x, y) is nondecreasing in each variable, we have

0 ≤ C(G(an), H(an, bn) − G(an)) ≤ C(G(an), H(an, bn)).

Since an > 3δ > 0 and bn ≥ 0, we also have

0 ≤ G(an) ≤ G(δ) and 0 ≤ H(an, bn) ≤ G(δ) + sup
0≤r

(σW2(r) − δr).

Therefore,

0 ≤ C(G(an), H(an, bn) − G(an)) ≤ C(G(δ), G(δ) + G̃(δ)), (6.11)

where G̃(δ) = sup0≤r (σW2(r) − δr). Using the tail estimates (4.7) and (4.8), and the polyno-
mial growth condition of C in (H3), it follows that

E[C(G(δ), G(δ) + G̃(δ))] < ∞. (6.12)

In our third step, we apply the dominated convergence theorem to establish the continuity of F

at (a, b). Since C(x, y) is continuous, using our first step above, we have

C(G(an), H(an, bn) − G(an)) → C(G(a), H(a, b) − G(a))

a.s. as n → ∞. Next, using (6.11), (6.12), and the aforementioned almost-sure convergence
together with the dominated convergence theorem, we conclude that

F(an, bn) = E[C(G(an), H(an, bn) − G(an))] → F(a, b) = E[C(G(a), H(a, b) − G(a))]
as n → ∞. This completes the proof of part (a).

For part (b), observe that if b1 < b2 then H(a, b2) < H(a, b1). Since C(x, y) is increasing
in the variable y, we obtain F(a, b2) ≤ F(a, b1), whenever b2 > b1. Finally, we intend
to compute the limit lim(u,v)→(0,b) F (u, v) for b > 0. Let b > 0 and (an, bn) → (0, b) as
n → ∞. We can simply assume that an is decreasing to 0 as n tends to ∞. Hence, G(an) is
increasing to ∞. Next, using assumption (H2) for the cost function C, we can conclude that

lim
(an,bn)→(0,b)

F (an, bn) = ∞.

This completes the proof.

Remark 6.2. Using (6.9) and (6.10), it can be shown that F(u, v) is decreasing in both variables
u and v under the assumption that ∂C(x, y)/∂x ≥ ∂C(x, y)/∂y for all x and y.

Our next theorem is the main result of this section.

Theorem 6.1. Let Z be an admissible process that satisfies (5.1) and (5.2) with control u =
(u1, u2) in D . Then, the following results hold.

(a) The cost functional I (u, Z(0)) described in (2.7) is independent of Z(0) and has the
representation

I (u1, u2) ≡ I (u, Z(0)) = h(u1, u2) + p1u1 + p2(u1 + u2) + F(u1, u2), (6.13)

where F(u1, u2) is as defined in (6.10).
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(b) There exists an optimal control u∗ = (u∗
1, u

∗
2) in D such that

I (u∗
1, u

∗
2) = inf

u∈D
I (u1, u2).

Moreover, the process Z∗ defined as in Theorem 4.2 with control u∗ = (u∗
1, u

∗
2) is an

optimal stationary process.

Proof. Part (a) follows directly from the definition of I (u, Z(0)) in (2.7), and the results
obtained in Lemma 6.1, Proposition 6.1, and Proposition 6.2. For part (b), with representa-
tion (6.13) for I (u1, u2) in hand, we have I (u1, u2) is finite and continuous on the domain
D ≡ {(u1, u2) : u1 > 0, u2 ≥ 0}. Also, from Proposition 6.2 and representation (6.13), we
have

lim
u1+u2→∞ I (u1, u2) = +∞, lim

(u1,u2)→(a,0)
I (u1, u2) = I (a, 0),

lim
(u1,u2)→(0,b)

I (u1, u2) = +∞,

for any a > 0 and b > 0. In the following argument we consider the stationary state process
Z∗

u associated with control u ∈ D as described in Theorem 4.2. Then it automatically satisfies
the assumed moment condition for the initial data since the tail estimates (4.7) and (4.8) imply
the finiteness of all the moments of |Z∗

u(0)|. Consequently, Z∗
u is an admissible state process.

Any state process with nonrandom initial data also satisfies the moment condition for initial
data and is hence admissible.

Next, consider a control (a0, b0) in D with a0 > 0 and b0 > 0. We keep (a0, b0) fixed. Let
M ≡ I (a0, b0), which is finite, and define the set D0 ⊂ D by

D0 ≡ {(u1, u2) ∈ D : I (u1, u2) ≤ M}.
Then infD I (u1, u2) = infD0 I (u1, u2). With the above described limits and properties of
I (u1, u2), it clearly follows that D0 is a bounded set. Now let {(an, bn) : n ≥ 1} be a sequence
in D0 such that I (an, bn) → infD0 I (u1, u2) as n → ∞. Thus, {(an, bn) : n ≥ 1} has a
convergent subsequence. Therefore, we simply assume that (an, bn) → (u∗

1, u
∗
2) as n tends

to ∞. Hence, u∗
1 ≥ 0 and u∗

2 ≥ 0. Clearly, u∗
1 > 0 since lim(u1,u2)→(0,b) I (u1, u2) = +∞.

Therefore, there exists (u∗
1, u

∗
2) in D such that I (u∗

1, u
∗
2) = infD I (u1, u2). This completes

the proof.

7. Concluding remarks

Our methods can be readily extended to the case of a tandem queueing network with
n stations, where n ≥ 2. Let W1, . . . , Wn be possibly correlated one-dimensional FBMs
with constant correlation coefficients. Then we can represent the n-dimensional state process
{Z(t) = (Z1(t), . . . , Zn(t))

�}t≥0, where Z(t) ∈ Rn+, by

Zi(t) = Zi(0) + σiWi − uit − Li−1(t) + Li(t)

for i = 1, . . . , n. Here σi > 0 and ui > 0 are constants (with σ1 ≡ 1), and the constant ui > 0
represents the controllable drift rate at the ith station. Also, L0(t) ≡ 0 for all t ≥ 0 and the local
time process Li (corresponding to Zi) is a continuous, nondecreasing process which increases
only when Zi(t) = 0. That is,

∫∞
0 Zi(t) dLi(t) = 0 a.s. and Zi(t) ≥ 0 for all t ≥ 0. In this

situation we can obtain a stationary state process Z∗ and conclude the existence of an optimal
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control vector u∗ = (u∗
1, . . . , u

∗
n)

� following our methods in the previous sections. Moreover,
the distribution of Z∗(t) can be explicitly described as follows. Let

ξi = sup
0≤s1≤···≤si

( i∑
j=1

σjWj (sj ) − uj sj

)
for i = 1, . . . , n.

Then, for all t ≥ 0,
Z∗(t) d= R(ξ1, . . . , ξn)

�,

where

R =

⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 0 0

−1 1 · · · 0 0
0 −1 1 · · · 0
... · · · −1 1 0
0 · · · 0 −1 1

⎞⎟⎟⎟⎟⎟⎠ .
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