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Abstract

Building on coprincipal mesoprimary decomposition [Kahle and Miller, Decompositions
of commutative monoid congruences and binomial ideals, Algebra and Number Theory
8 (2014), 1297–1364], we combinatorially construct an irreducible decomposition of any
given binomial ideal. In a parallel manner, for congruences in commutative monoids we
construct decompositions that are direct combinatorial analogues of binomial irreducible
decompositions, and for binomial ideals we construct decompositions into ideals that
are as irreducible as possible while remaining binomial. We provide an example of a
binomial ideal that is not an intersection of irreducible binomial ideals, thus answering
a question of Eisenbud and Sturmfels [Binomial ideals, Duke Math. J. 84 (1996), 1–45].

1. Introduction

An ideal in a commutative ring is irreducible if it is not expressible as an intersection of two
ideals properly containing it. Irreducible ideals are primary, and any ideal I in a Noetherian ring
is an intersection of irreducible ideals. These irreducible decompositions are thus special cases of
primary decomposition, but likewise are hard to compute in general. If I is a monomial ideal,
however, this task is much easier: any monomial ideal is an intersection of irreducible ideals
that are themselves monomial ideals (see [MS05, Theorem 5.27] for polynomial rings and [Mil02,
Theorem 2.4] for affine semigroup rings), and these monomial irreducible decompositions are
heavily governed by combinatorics. The ease of monomial irreducible decomposition plus the
existence of binomial primary decomposition in polynomial rings over algebraically closed fields
[ES96, Theorem 7.1] motivated Eisenbud and Sturmfels to ask the following question.

Question 1.1 [ES96, Problem 7.5]. Does every binomial ideal over an algebraically closed field
admit a binomial irreducible decomposition?

We answer Question 1.1 using the theory of mesoprimary decomposition [KM14]. Our
response has three stages. First, congruences in Noetherian commutative monoids admit
soccular decompositions (Theorem 4.2), which should be considered the direct combinatorial
analogues of binomial irreducible decompositions. (Soccular congruences (Definition 3.2) fail
to be irreducible for the same reason that prime congruences do; see the end of [KM14, § 2]
for details.) Second, lifting to binomial ideals the method of constructing soccular congruences
(but not lifting the construction itself; see Example 5.2) yields ideals that are, in a precise
sense, as irreducible as possible while remaining binomial (Definition 5.1). The resulting notion
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of binoccular decomposition for binomial ideals (Theorem 5.7) proceeds as far as possible

toward irreducible decomposition while remaining confined to the category of binomial ideals.

Theorem 6.4 demonstrates, by example, that the confines of binomiality can prevent reaching

all the way to irreducible decomposition by exhibiting a binomial ideal not expressible as an

intersection of binomial irreducible ideals, thus solving Eisenbud and Sturmfels’ problem in the

negative. That said, our third and final stage produces irreducible decompositions of binomial

ideals (Corollary 7.8) in a manner that is as combinatorial as mesoprimary decomposition: each

coprincipal component has a canonical irreducible closure (Definition 7.1) that, while not itself an

irreducible ideal, has a canonical primary decomposition all of whose components are irreducible

(Theorem 7.5).

All three of the decompositions in this paper—soccular, binoccular, and irreducible—descend

directly from coprincipal decomposition [KM14, Theorems 8.4 and 13.3] (see Theorems 2.6

and 2.11 for restatements of these results). This is true in two senses: (i) the components in

all three types of decomposition are cogenerated by the same witnesses that cogenerate the

corresponding coprincipal components; and (ii) the components themselves are constructed

by adding new relations to the corresponding coprincipal components. To be more precise,

soccular congruences are constructed by adding relations between all pairs of protected witnesses

(Definition 3.11) for coprincipal congruences while maintaining their cogenerators (Theorem 3.14

and Corollary 3.15). Similarly, binoccular ideals are constructed by repeatedly throwing into a

coprincipal ideal as many binomial socle elements as possible while maintaining a monomial

cogenerator in the socle (Definitions 5.3 and 5.5). In contrast, irreducible closures allow

arbitrary polynomials to be thrown in, not merely binomials. Although this concrete description

of irreducible closure is accurate, the construction of irreducible closures (Definition 7.1) is

accomplished with more abstract, general commutative algebra. Consequently, the reason why

irreducible closures have canonical irreducible decompositions is particularly general, from

the standpoint of commutative algebra, involving embeddings of rings inside of Gorenstein

localizations (Remark 7.6).

Finally, it bears mentioning that for the proofs of correctness—at least for the decompositions

in rings as opposed to monoids—we make explicit a unifying principle, in the form of equivalent

criteria involving socles and monomial localization (Lemma 5.6), for when a binomial ideal in a

monoid algebra equals a given intersection of ideals.

Note on prerequisites

Although the developments here are based on those in [KM14], the reader is not assumed to have

assimilated the results there. The exposition here assumes familiarity only with the most basic

monoid theory used in [KM14]. To make this paper self-contained, every result from [KM14] that

is applied here is stated precisely in § 2 with prerequisite definitions. In fact, § 2 serves as a handy

summary of [KM14], proceeding through most of its logical content as efficiently as possible.

2. Preliminaries

We need to briefly review some definitions and results from [KM14]. Following that paper, we

first deal with monoid congruences (the combinatorial setting) and then the respective binomial

ideal counterparts (the arithmetic setting). Throughout, let Q denote a commutative Noetherian

monoid and k a field. We assume familiarity with basic notions from monoid theory; see §§ 2 and 3

of [KM14], which contain an introduction to the salient points with binomial algebra in mind.
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Irreducible decomposition of binomial ideals

For an example of the kinds of concepts we assume, an element q ∈ Q is partly cancellative if
q+a = q+b 6=∞⇒ a = b for all cancellative a, b ∈ Q, where∞∈ Q is nil [KM14, Definition 2.9].

Definition 2.1. An equivalence relation ∼ on Q is a congruence if a ∼ b implies a+ c ∼ b+ c
for all a, b, c ∈ Q. A binomial in k[Q] is an element of the form ta − λtb where a, b ∈ Q and
λ ∈ k. An ideal I ⊂ k[Q] is binomial (respectively monomial) if it can be generated by binomials
(respectively monomials).

Remark 2.2. A binomial ideal I ⊂ k[Q] induces a congruence ∼I on Q that sets a ∼I b whenever
ta − λtb ∈ I for some nonzero λ ∈ k. The quotient algebra k[Q]/I is finely graded by the
quotient monoid Q/ ∼I . Conversely, each congruence on Q is of the form ∼I for some binomial
ideal I ⊂ k[Q], although more than one I is possible: the nil class can be zero or not [KM14,
Proposition 9.5], and the congruence forgets coefficients.

Definition 2.3 [KM14, Definitions 2.12, 3.4, 4.7, 4.10, 7.1, 7.2, 7.7, and 7.12]. Fix a congru-
ence ∼ on Q and a prime P ⊂ Q. Write QP = QP / ∼, where QP is the localization along P ,
and denote by q the image of q ∈ Q in Q = Q/ ∼.

(i) An element q ∈ Q is an aide for w ∈ Q and a generator p ∈ P if w 6= q, and w + p = q + p,
and q is maximal in the set {q, w}. The element q is a key aide for w if q is an aide for w for
each generator of P . An element w ∈ Q is a witness for P if it has an aide for each p ∈ P ,
and a key witness for P if it has a key aide. A key witness w is a cogenerator of ∼ if w+ p
is nil modulo ∼ for all p ∈ P .

(ii) The congruence ∼ is P -primary if every p ∈ P is nilpotent in Q and every f ∈ Q r P
is cancellative in Q. A P -primary congruence ∼ is mesoprimary if every element of the
quotient Q is partly cancellative. The congruence ∼ is coprincipal if it is mesoprimary and
every cogenerator for ∼ generates the same ideal in Q.

(iii) The coprincipal component ∼Pw of ∼ cogenerated by a witness w ∈Q for P is the coprincipal
congruence that relates a, b ∈ Q if one of the following is satisfied:
• both a and b generate an ideal not containing q in QP ; or
• a and b differ by a unit in QP and a+ c = b+ c = q for some c ∈ QP .

A (key) witness for P may be called a (key) ∼-witness for P to specify ∼. Congruences may
be called P -mesoprimary or P -coprincipal to specify P .

Definition 2.4 [KM14, Definitions 5.1 and 5.2]. Fix a congruence ∼ on a monoid Q, a prime
ideal P ⊂ Q, and an element q ∈ Q that is not nil modulo ∼.

(i) Let GP ⊂ QP denote the unit group of the localization QP , and write KP
q ⊂ GP for the

stabilizer of q ∈ QP under the action of GP .

(ii) If ≈ is the congruence on QP that sets a ≈ b whenever
• a and b lie in PP or
• a and b lie in GP and a− b ∈ KP

q ,
then the P -prime congruence of ∼ at q is ker(Q → QP / ≈).

(iii) The P -prime congruence at q is associated to ∼ if q is a key witness for P .

Definition 2.5 [KM14, Definition 8.1]. An expression of a congruence ∼ on Q as a common
refinement

⋂
i ≈i of mesoprimary congruences is a mesoprimary decomposition of ∼ if, for each ≈i

with associated prime Pi ⊂ Q, the Pi-prime congruences of ∼ and ≈i at each cogenerator for ≈i
coincide. This decomposition is key if every cogenerator for every ≈i is a key witness for ∼.
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Theorem 2.6 [KM14, Theorem 8.4]. Each congruence ∼ on Q is the common refinement of the
coprincipal components cogenerated by its key witnesses.

The proof of Theorem 2.6 at the source [KM14, Theorem 8.4] yields the following corollary,
which is necessary for Theorem 4.5.

Corollary 2.7. Given a congruence ∼ on Q and elements a, b ∈ Q with a 6∼ b, there exists a
monoid prime P ⊂ Q and an element u ∈ Q such that (after possibly swapping a and b) the
element a+ u is a key ∼-witness for P with key aide b+ u.

A few more definitions are required before a precise statement of the main existence result
for binomial ideals from [KM14] can be made in Theorem 2.11.

Definition 2.8 [KM14, Definitions 11.7, 11.11, and 12.1]. Let I ⊂ k[Q] be a binomial ideal. Fix
a prime P ⊂ Q and an element q ∈ Q with tq /∈ IP .

(i) Let GP ⊂ QP denote the unit group of QP , and write KP
q ⊂ GP for the subgroup of GP

that fixes the class of q modulo ∼I .
(ii) Denote by ρ : KP

q → k∗ the group homomorphism such that tu − ρ(u) lies in the kernel of
the k[GP ]-module homomorphism k[GP ] → k[QP ]/IP taking 1 7→ tq.

(iii) The P -mesoprime ideal of I at q is the preimage IPq in k[Q] of (IPq )P = Iρ + mP , where

Iρ = 〈tu − ρ(u− v)tv | u− v ∈ KP
q 〉 ⊂ k[Q]P .

(iv) An element w ∈ Q is an I-witness for a monoid prime P if w is a ∼I -witness for P or if
P = ∅ is empty and I contains no monomials. w ∈ Q is an essential I-witness if w is a
key ∼I -witness or some polynomial in k[QP ]/IP annihilated by mP has tw minimal (under
Green’s preorder) among its nonzero monomials.

(v) The mesoprime IPq is associated to I if q is an essential I-witness for P .

Definition 2.9 [KM14, Definitions 10.4, 12.14, 12.18]. Fix a binomial ideal I ⊂ k[Q] and a
prime P ⊂ Q.

(i) The ideal I is mesoprimary (respectively coprincipal) if the congruence ∼I is mesoprimary
(respectively coprincipal) and I is maximal among binomial ideals in k[Q] inducing this
congruence.

(ii) The P -coprincipal component of I at w ∈ Q is the preimage WP
w (I) ⊂ k[Q] of the ideal

IP + Iρ +MP
w (I) ⊂ k[Q]P , where MP

w (I) is the ideal generated by the monomials tu ∈ k[Q]
such that w /∈ 〈u〉 ⊂ QP .

Definition 2.10 [KM14, Definition 13.1]. An expression I =
⋂
j Ij is a mesoprimary

decomposition if each component Ij is Pj-mesoprimary and the Pj-mesoprimes of I and Ij
at each cogenerator of Ij coincide. This decomposition is combinatorial if every cogenerator
of every component is an essential I-witness. A mesoprimary decomposition is a coprincipal
decomposition if every component is coprincipal.

Theorem 2.11 [KM14, Theorem 13.3]. Every binomial ideal I ⊂ k[Q] is the intersection of the
coprincipal components cogenerated by its essential witnesses. In particular, every binomial ideal
admits a combinatorial mesoprimary decomposition.
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Theorem 2.11 produces a primary decomposition of any binomial ideal via the next result.
Precise details about the primary components here can be found at the cited locations in [KM14].

Proposition 2.12 [KM14, Corollary 15.2 and Proposition 15.4]. Fix a mesoprimary ideal
I ⊂ k[Q]. The associated primes of I are exactly the minimal primes of its associated mesoprime.
Consequently, I admits a canonical minimal primary decomposition. When k = k is algebraically
closed, every component of this decomposition is binomial.

Theorem 2.13 [KM14, Theorems 15.6 and 15.12]. Fix a binomial ideal I ⊆ k[Q]. Each
associated prime of I is minimal over some associated mesoprime of I. If k = k is algebraically
closed, then refining any mesoprimary decomposition of I by canonical primary decomposition
of its components yields a binomial primary decomposition of I.

3. Soccular congruences

Although the condition to be a coprincipal quotient is strong, it does not imply that a binomial
ideal inducing a coprincipal congruence has simple socle. Precisely, the socle of a coprincipal
quotient has only one monomial up to units locally at the associated prime. While this suffices
for irreducible decomposition of monomial ideals, modulo a binomial ideal the socle can have
binomials and general polynomials. Our first step is soccular decomposition (Theorem 4.5), which
parallels, at the level of congruences, the construction of irreducible decompositions of binomial
ideals (Theorem 7.7). While it is the optimal construction in the combinatorial setting, soccular
decomposition cannot yield irreducible decompositions of binomial ideals in general since these
need not be binomial (Example 6.1). To start, here is a simple example of a primary coprincipal
binomial ideal that is reducible, demonstrating that coprincipal decomposition of ideals is not
irreducible decomposition.

Example 3.1. The congruence on N2 induced by the ideal I = 〈x2−xy, xy−y2, x3〉 is coprincipal,
but x − y ∈ socm(I) for m = 〈x, y〉. This is because x and y are both key witnesses and each is
an aide for the other.

Definition 3.2. A congruence ∼ on Q is soccular if its key witnesses all generate the same
principal ideal in the localized quotient QP /∼.

Definition 3.3. Fix a monoid prime P ⊂ Q and a P -coprincipal congruence ∼ on Q with
cogenerator w ∈ Q. The (first) soccular collapse of ∼ is the congruence ≈ that sets a ≈ b if
a, b /∈ 〈w〉 and a+ p ∼ b+ p for all p ∈ P . The ith soccular collapse of ∼ is the soccular collapse
of the (i− 1)st soccular collapse of ∼.

Soccular collapses remove key witness pairs that are not Green’s equivalent to the cogenerator
of a coprincipal congruence. It is routine to check that the soccular collapse of a coprincipal
congruence is a coprincipal congruence (see the following lemmas). The construction stabilizes
since Q is a Noetherian monoid and consequently the iterated soccular collapse of a coprincipal
congruence is a soccular congruence.

In general, to form a congruence from a set of relations, one takes monoid closure and then
transitive closure. Lemma 3.4 says that for a soccular collapse of a coprincipal congruence, both
of these operations are trivial.
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Lemma 3.4. The soccular collapse of a P -coprincipal congruence ∼ is a congruence on Q that
coarsens ∼.

Proof. The soccular collapse ≈ is symmetric and transitive since ∼ is symmetric and transitive.
Suppose a, b /∈ 〈w〉 with a+ p ∼ b+ p for all p ∈ P . Then for all q ∈ Q, a+ q + p ∼ b+ q + p for
all p ∈ P since q + p ∈ P , so a + q ≈ b + q. Therefore ≈ is a congruence on Q. Lastly, if a ∼ b,
then a+ p ∼ b+ p for all p ∈ P , so ∼ refines ≈. 2

Lemma 3.5. Resuming the notation from Definition 3.3, if a ≈ b and a 6∼ b, then neither a nor
b is maximal in Q modulo Green’s relation.

Proof. Given Lemma 3.4, the definition of ≈ ensures that a and b both precede w modulo Green’s
relation, which ensures a and b are not maximal. 2

Lemma 3.6 shows that taking the soccular collapse of a coprincipal congruence does not
modify Green’s classes.

Lemma 3.6. Resuming the notation from Definition 3.3, if a, b ∈Q differ by a cancellative modulo
∼, then soccular collapse does not join them.

Proof. Suppose a ≈ b and a = b+f for some cancellative element f . For each p ∈ P , a+p = b+p
by Lemma 3.4, and each is non-nil by Lemma 3.5. Thus b+ f + p ∼ b+ p, so f = 0 by the partly
cancellative property of b+ p in Definition 2.3(ii). 2

Proposition 3.7. Fix a P -coprincipal congruence ∼ on Q with cogenerator w. The soccular
collapse ≈ of ∼ is coprincipal with cogenerator w, and ≈ coarsens ∼. Moreover, the elements
a, b ∈ Q distinct under ∼ but identified under ≈ are precisely the key witnesses of ∼ lying outside
the Green’s class of w.

Proof. The congruence ≈ coarsens ∼ by Lemma 3.4. As ∼ is mesoprimary, Lemma 3.6 ensures
that ≈ is also mesoprimary, and by Lemma 3.5≈ agrees with ∼ on the Green’s class of w. The
final claim follows upon observing that a and b are by definition key witnesses for ∼. 2

Definition 3.8. Fix a P -coprincipal congruence ∼ on Q. Two distinct key witnesses a, b ∈ Q
for ∼ form a key witness pair if each is a key aide for the other.

Remark 3.9. If a, b ∈ Q form a key witness pair under a coprincipal congruence ∼ and neither
of them is Green’s equivalent to the cogenerator w, then they are no longer a key witness pair
under the soccular collapse ≈ of ∼ by Proposition 3.7. However, ≈ may still have key witnesses,
as shown in Example 3.10.

Example 3.10. Let I = 〈x3 − x2y, x2y − xy2, xy3 − y4, x5〉 ⊂ k[x, y]. The congruence ∼I and its
soccular collapse are shown in Figure 1. The monoid element xy is a key witness for ∼I , where
it is paired with y2, as well as for the soccular collapse of ∼I , where it is paired with x2.

Definition 3.11. Fix a coprincipal congruence ∼ on Q with cogenerator w. An element a ∈ Q
is a protected witness for ∼ if it is a key witness for the ith soccular collapse of ∼ for some
i > 1. Elements a, b ∈ Q form a protected witnesses pair if they form a key witness pair for some
iterated soccular collapse of ∼.

Definition 3.12. Fix a coprincipal congruence ∼ on Q. The soccular closure ∼ of ∼ is the
congruence refined by ∼ that additionally joins any a and b related under some soccular collapse
of ∼.
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Figure 1. (Colour online) For I = 〈x3 − x2y, x2y − xy2, xy3 − y4, x5〉 ⊂ k[x, y], the congruence
induced by I on N2 (left), and its soccular collapse (right). The monomial xy is a key witness
for both ∼I and its soccular collapse.

Lemma 3.13. Fix a coprincipal congruence ∼ on Q with cogenerator w. The soccular closure ∼
of ∼ is a soccular congruence, and its set of key witnesses is exactly the Green’s class of w.

Proof. By construction, the soccular closure has no key witnesses outside the Green’s class
of w. 2

We now characterize protected witnesses and give a non-iterative way to specify the soccular
closure. To this end, let

(w :∼ q) = {p ∈ Q | q + p = w in QP /∼}.

Theorem 3.14. Fix a P -coprincipal congruence ∼ on Q with cogenerator w, and write Q =
Q/ ∼. Then q, q′ ∈ Q with distinct classes in Q are a protected witnesses pair for ∼ if and only
if (w :∼ q) = (w :∼ q

′).

Proof. Let ∼ denote the soccular closure of ∼. Since passing to ∼ leaves the class of w under ∼
unchanged, (w :∼ q) = (w :∼ q) for all q ∈ Q. Therefore, if q and q′ are merged under ∼, the sets
(w :∼ q) and (w :∼ q

′) coincide.
Now assume q and q′ are not related under ∼. Pick an element p ∈ P such that q + p and

q′+ p are distinct under ∼ and such that the image p ∈ Q is maximal among images of elements
in P with this property. Existence of p is guaranteed because ∼ is primary, whence QP has only
finitely many Green’s classes. Maximality of p implies that q + p and q′ + p become merged
in Q/∼ under the action of any element of P . Since ∼ has no key witness pairs, one of q + p
and q′ + p must be nil, and maximality of p implies the other is Green’s equivalent to w. After
possibly switching q and q′, this gives p ∈ (w :∼ q) but p /∈ (w :∼ q

′). 2

Corollary 3.15. Fix a coprincipal congruence ∼ on Q cogenerated by w. The soccular closure
∼ of ∼ relates a and b if and only if (w :∼ a) = (w :∼ b). 2

4. Soccular decomposition of congruences

Every congruence can be expressed as a common refinement of soccular congruences. Our
constructive proof first produces the decomposition in Corollary 4.3, which might not be a
mesoprimary decomposition; see Remark 4.4. Theorem 4.5 removes unnecessary components
and shows that the resulting decomposition is mesoprimary.
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Definition 4.1. Fix a P -coprincipal congruence ∼ on Q and a key witness w ∈ Q. The soccular
component ∼Pw of ∼ cogenerated by w along P is the soccular closure of the coprincipal

component ∼Pw cogenerated by w along P .

Theorem 4.2. Any coprincipal congruence ∼ on Q is the common refinement of the soccular
components cogenerated by its protected witnesses.

Proof. Each soccular component coarsens ∼ by Lemma 3.4, so it suffices to show that their
common refinement is ∼. Let w ∈ Q denote a cogenerator of ∼ and fix distinct a, b ∈ Q. If the
soccular component of ∼ at w (that is, the soccular closure of ∼) leaves a and b distinct, we are
done. Otherwise, both a and b are protected witnesses, and the soccular component of ∼ at a
joins b with the nil class. 2

Corollary 4.3. Any congruence ∼ on Q can be expressed as a common refinement of soccular
congruences.

Proof. Apply Theorem 2.6 to ∼, then Theorem 4.2 to each component. 2

Remark 4.4. The decomposition in Corollary 4.3 is not necessarily a mesoprimary decomposition
in the sense of Definition 2.5, since the associated prime congruence of a component ≈
cogenerated at a protected witness q ∈ Q need not coincide with the prime congruence at q
under ∼. The next theorem shows that the components in this decomposition cogenerated at
protected witnesses that are not key ∼-witnesses are redundant, and the resulting decomposition
is indeed a mesoprimary decomposition.

Theorem 4.5. Any congruence ∼ is the common refinement of the soccular components
cogenerated by its key witnesses.

Proof. For elements a, b ∈ Q with a 6∼ b, Corollary 2.7 produces, after possibly swapping a and
b, a prime P ⊂ Q and u ∈ Q such that a 6∼Pw b for a key witness w = a+ u with key aide b+ u.
Since ∼Pw has the same cogenerator and nil class as ∼Pw , Corollary 3.15 ensures that ∼Pw does not
relate a and b as well. 2

5. Binoccular decomposition of binomial ideals

The binomial ideal analogue (Theorem 5.7) of soccular decomposition (Theorem 4.5) yields a
decomposition into binoccular ideals (Definition 5.1), each of whose socles contains a monomial
cogenerator and no two-term binomials other than linear combinations of monomial cogenerators.
Due to the possibility of non-binomials in the socle, binoccular decomposition is not irreducible
decomposition, but it is the best approximation that does not exit the class of binomial ideals.
As with coprincipal decomposition, the relevant witnesses are essential witnesses rather than key
witnesses.

For any monoid prime ideal P ⊂ Q, let mP = 〈tp : p ∈ P 〉. In general, a monoid prime ideal P
in a subscript denotes monomial localization, which arises from inverting all monomials outside
of mP . (This notation was used in [KM14, § 11].)

Definition 5.1. Fix a binomial ideal I ⊂ k[Q] and a prime monoid ideal P ⊂ Q. The P -socle
of I is the ideal

socP (I) = {f ∈ k[Q]P /IP | mP f = 0} ⊂ k[Q]P /IP .
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A binomial ideal I ⊂ k[Q] is binoccular if it is P -coprincipal and every monomial appearing in
each binomial in socP (I) is a monomial cogenerator of k[Q]P /IP .

Example 5.2. Binoccular ideals need not induce soccular congruences. The ideal I = 〈x2 − xy,
xy+ y2〉 is 〈x, y〉-coprincipal since it contains all monomials of degree 3. The monomials x and y
form a key witness pair for ∼I , but I is irreducible, so these monomials do not form a binomial
socle element.

Example 5.2 implies that the witness protection program in § 3 cannot be expected to lift
directly to the arithmetic setting, in the sense that collapsing the congruence ∼I combinatorially
need not reflect an operation on I itself. Nonetheless, the analogous arithmetic collapse is easily
defined and has the desired effect.

Definition 5.3. Fix a P -coprincipal binomial ideal I ⊂ k[Q] cogenerated by w ∈ Q. The (first)
binoccular collapse of I is the ideal

I1 = 〈ta − λtb | tp(ta − λtb) ∈ I for all p ∈ P 〉

and the ith binoccular collapse Ii of I is the binoccular collapse of Ii−1. The binoccular closure
of I is the smallest ideal I containing all binoccular collapses of I.

Proposition 5.4. Fix a P -coprincipal binomial ideal I ⊂ k[Q] cogenerated by w ∈ Q. The
binoccular collapse I1 of I is also a coprincipal ideal cogenerated by w, and for any binomial
ta − λtb ∈ I1 outside of I, the elements a and b form a key witness pair for ∼I .

Proof. This follows from Definition 5.3 and Proposition 3.7 since ∼J coarsens ∼I and
refines ∼I . 2

Definition 5.5. Fix a binomial ideal I ⊂ k[Q], a prime P ⊂ Q, and w ∈ Q. The binoccular

component of I cogenerated by w is the binoccular closure W
P
w(I) of the coprincipal component

WP
w (I) of I cogenerated by w along P .

Lemma 5.6 is the core of the original proof of Theorem 2.11, but it was not stated
explicitly in these terms. This unifying principle is also important as we construct binoccular
decompositions of binomial ideals (Theorem 5.7) and irreducible decompositions of binomial
ideals (Theorem 7.7).

Lemma 5.6. Fix a binomial ideal I ⊂ R = k[Q] and (not necessarily binomial) ideals W1, . . . ,Wr

containing I. The following are equivalent.

(i) We have I = W1 ∩ · · · ∩Wr.

(ii) The natural map R/I → R/W1 ⊕ · · · ⊕R/Wr is injective.

(iii) The natural map socP (I) → RP /(W1)P ⊕ · · · ⊕ RP /(Wr)P is injective for every monoid
prime P ⊂ Q associated to ∼I .

(iv) The natural map socp(I) → Rp/(W1)p ⊕ · · · ⊕ Rp/(Wr)p is injective for every prime
p ∈ Ass (I).

Proof. The containments I ⊆W1, . . . , I ⊆Wr induce a well-defined homomorphism

R/I → R/W1 ⊕ · · · ⊕R/Wr,
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whose kernel is W1 ∩ · · · ∩Wr modulo I. Thus I = W1 ∩ · · · ∩Wr holds if and only if this map
is injective and therefore (i) ⇐⇒ (ii). Assume the homomorphism just constructed is injective.
Exactness of localization produces an injective map

RP /IP ↪→ RP /(W1)P ⊕ · · · ⊕RP /(Wr)P

for each monoid prime P ⊂ Q. This proves (ii) ⇒ (iii). Now assume (iii) holds and fix a prime
p ∈ Ass (I). By Theorem 2.13, p is minimal over some associated mesoprime of I. Since P is
associated to ∼I , the map

socP (I) → RP /(W1)P ⊕ · · · ⊕RP /(Wr)P

is injective. Every monomial outside of mP also lies outside of p, so by inverting the remaining
elements outside of p, we obtain the injection

socP (I)p → Rp/(W1)p ⊕ · · · ⊕Rp/(Wr)p.

Any element in socP (I)p is annihilated by mP , so socp(I)⊂ socP (I)p, yielding (iii)⇒ (iv). Finally,
suppose (iv) holds. Fix a nonzero f ∈ R/I and a prime p minimal over the annihilator of f . The
image f ∈ Rp/Ip of f is nonzero since p contains the annihilator of f . Minimality of p implies some
power of p annihilates f , so af is annihilated by p for some a ∈ p. By assumption, af has nonzero
image in some (R/Wi)p, meaning af has nonzero image in R/Wi. This proves (iv) ⇒ (ii). 2

Theorem 5.7. For any binomial ideal I ⊂ k[Q], the intersection of the binoccular components
cogenerated by its essential I-witnesses is a mesoprimary decomposition of I.

Proof. Fix a monoid prime P ⊂ Q associated to ∼I and a nonzero f ∈ socP (I). By Lemma 5.6, it
suffices to show that f is nonzero modulo the localization along P of some binoccular component.
By Definition 2.8.4, some nonzero monomial λtw of f is an essential IP -witness for P . This means
every monomial of f other than λtw that is nonzero modulo WP

w (I)P is Green’s equivalent to

w, so f has nonzero image in the binoccular closure W
P
w(I)P . 2

6. Nonexistence of binomial irreducible decomposition

The only binomials in the socle of a binoccular binomial ideal are binomials where both terms
are monomial cogenerators. When the monomial ideal mP for the associated monoid prime P
is a maximal ideal in k[Q], this means that in fact the socle has exactly one binomial, up to
scale, namely the unique monomial cogenerator. However, even in that case the socle can contain
non-binomial elements, too.

Example 6.1. Let I = 〈x2y − xy2, x3, y3〉 ⊂ k[x, y]. This ideal is binoccular, and its congruence
is depicted in Figure 2. The binomial generator forces x2y2 ∈ I, so I is cogenerated by x2y. The
monomials x2, xy and y2 are all non-key witnesses, and x2 + y2 − xy ∈ socP (I) for mP = 〈x, y〉.
The expression I = 〈x2 + y2 − xy, x3, y3〉 ∩ 〈x3, y〉 is an irreducible decomposition of I, and as
we shall see in Theorem 6.4, every irreducible decomposition of I contains some non-binomial
irreducible component.

Theorem 6.4 shows that the ideal in Example 6.1 cannot be written as the intersection of
irreducible binomial ideals, answering Question 1.1 in the negative. Its proof uses an alternative
characterization of irreducible ideals in terms of their socles (Lemma 6.3).
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Figure 2. (Colour online) The congruence induced by 〈x2y − xy2, x3, y3〉 ⊂ k[x, y] on N2. The
non-binomial element x2+y2−xy lies in the socle of I, and, as such, I does not admit a binomial
irreducible decomposition.

Definition 6.2. Fix an ideal I in a Noetherian ring R and a prime ideal p ⊂ R. The p-socle
of I is

socp(I) = {f ∈ Rp/Ip | pf = 0} ⊆ Rp/Ip.

The ideal I has simple socle if dimk(p)(socp(I)) = 1, where k(p) = Rp/pp is the residue field at p.
Lemma 6.3 [Vas98, Proposition 3.1.7]. The number of components in any irredundant irreducible
decomposition of a p-primary ideal I in a Noetherian ring R equals dimk(p) socp(I).

Theorem 6.4. The ideal I = 〈x2y−xy2, x3, y3〉 ⊂ k[x, y] cannot be expressed as an intersection
of irreducible binomial ideals.

Proof. Let mP = 〈x, y〉. The k-vector space socP (I) is spanned by α = x2 + y2 − xy and β =
x2y. Since dimk(socP (I)) = 2 and k = k(mP ), any irredundant irreducible decomposition of I
has exactly two components by Lemma 6.3. Suppose I = I1 ∩ I2 with I1 and I2 irreducible.
The equivalence of Lemma 5.6(i) and 5.6(ii) implies that the natural map k[x, y]/I → k[x,
y]/I1⊕k[x, y]/I2 induces an injection socmP (I) ↪→ socmP (I1)⊕ socmP (I2) which is an isomorphism
for dimension reasons. Possibly exchanging I1 and I2, assume f = α + λβ spans socmP (I1) for
some λ ∈ k. This implies f ∈ I2 and socmP (I + 〈f〉) = socmP (I2), the latter by an explicit,
elementary calculation. Lemma 5.6 yields I2 = I + 〈f〉. 2

Example 6.1 is the first example of a binomial ideal that does not admit a binomial irreducible
decomposition. However, it is still possible to construct a (not necessarily binomial) irreducible
decomposition from essentially combinatorial data, as Corollary 7.8 demonstrates.

Example 6.5 exhibits the difficulties in determining whether or not a given binomial
ideal admits a binomial irreducible decomposition. This question is closely connected with
understanding which components in a coprincipal decomposition are redundant.

Example 6.5. Consider the two ideals I = 〈x2y−xy2, x4−x3y, xy3−y4, x5〉 and J = 〈x4y−x3y2,
x2y3 − xy4, x6 − x5y, xy5 − y6, x7〉, whose respective congruences are depicted in Figure 3.

The ideal I has three key witnesses aside from its cogenerator, and the binoccular
decomposition produced in Theorem 5.7 has a component at each of these key witnesses. Any one
of these three can be omitted, and omitting the component cogenerated by x2y yields a binomial
irreducible decomposition of I. In contrast, J has four non-maximal key witnesses, two of which
cogenerate binoccular components that fail to admit binomial irreducible decompositions. Since
only one can be omitted, J does not admit a binomial irreducible decomposition.
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Figure 3. (Colour online) The congruences induced by I = 〈x2y − xy2, x4 − x3y, xy3 − y4, x5〉
(left) and J = 〈x4y − x3y2, x2y3 − xy4, x6 − x5y, xy5 − y6, x7〉 (right) on N2. The ideal I admits
a binomial irreducible decomposition, but the ideal J does not.

Problem 6.6. Determine when all of the binoccular components without simple socle can be
omitted from the decomposition in Theorem 5.7.

Question 6.7. Which binomial ideals admit binomial irreducible decompositions?

Question 6.7 is more general than Problem 6.6 but may involve primary decompositions that
do not arise from mesoprimary decomposition.

7. Irreducible decomposition of binomial ideals

This section produces an irreducible decomposition of any given binomial ideal. We first define
the irreducible closure of a coprincipal binomial ideal (Definition 7.1). Unlike a binoccular
closure (Definition 5.3), which may have non-binomial elements in its socle, the cogenerators
of coprincipal binomial ideals are the only socle elements that survive irreducible closure.

Definition 7.1. For a P -coprincipal binomial ideal I ⊂ k[Q] cogenerated by w ∈ Q, set
RP = k[QP ]/IP and let GP ⊂ QP denote the group of units. Write w⊥ for the unique graded
k-vector subspace of RP such that RP = (k[GP ] · tw) ⊕ w⊥. Let w⊥∞ denote the largest k[QP ]-
submodule of RP that lies entirely in w⊥ and set RP = RP /w

⊥
∞. The irreducible closure of I is

the ideal Irr (I) = ker(k[Q] → RP ).

Example 7.2. Let I = 〈x2y − xy2, x3, y3, z3〉 and mP = 〈x, y, z〉. Then z2(x2 + y2 − xy) lies in
socP (I) and thus generates a k[x, y, z]-submodule of (x2yz2)⊥. On the other hand, the element
z(x2 + y2−xy) lies in socP (〈z2(x2 + y2−xy)〉+ I) but outside of socP (I). Continuing yields the
irreducible closure Irr (I) = 〈x2 + y2 − xy〉+ I of I.

Recall the usual notion of essentiality from commutative algebra: a submodule N of a module
M is essential if N intersects every nonzero submodule of M nontrivially.

Lemma 7.3. If I ⊂ k[Q] is a P -coprincipal binomial ideal with monomial cogenerator tw, then
〈tw〉 = k[GP ] · tw is an essential k[QP ]-submodule of RP that is isomorphic to a Gorenstein
quotient of k[GP ].
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Proof. The equality 〈tw〉 = k[GP ] · tw follows because tw is annihilated by mP . The Gorenstein

condition [Vas98, Appendix A.7] holds because the kernel of the surjection k[GP ] → 〈tw〉 is,

after faithfully flat extension to an algebraically closed coefficient field, generated by a binomial

regular sequence [ES96, Theorem 2.1(b)]. To prove essentiality, first note that socP (RP ) is an

essential submodule of RP because mP is nilpotent on RP , and then note that 〈tw〉 = socP (RP )

by construction of RP .

Proposition 7.4. Fix a P -coprincipal binomial ideal I ⊂ k[Q] with monomial cogenerator tw.

The associated primes of RP , RP , and RP /mP coincide and are all minimal.

Proof. The associated primes of RP and RP /mP coincide by Proposition 2.12. However,

RP /mP
∼= 〈tw〉 ⊆ RP maps isomorphically to an essential submodule of RP by Lemma 7.3,

so all three sets of associated primes coincide. 2

Compare the next result to the coprincipal special case of Proposition 2.12.

Theorem 7.5. The irreducible closure Irr (I) of any coprincipal ideal I has a unique minimal

primary decomposition. Every primary component therein is irreducible.

Proof. Minimality of all associated primes in Proposition 7.4 implies the first statement. Since

localization preserves essentiality [Bass62, Corollary 1.3], the ordinary localization 〈tw〉p at the

prime k[Q]-ideal p is an essential submodule of (RP )p for every p ∈ Ass (Irr (I)) by Lemma 7.3.

The same lemma implies that 〈tw〉p is Gorenstein of dimension 0, so 〈tw〉p has simple socle. Thus

the quotient by Irr (I)p has simple socle, whence Irr (I)p is irreducible by Lemma 6.3. 2

Remark 7.6. The proof of Theorem 7.5 via Lemma 7.3 and Proposition 7.4 shows, quite generally,

that if a Noetherian ring is contained in a localization that has an essential submodule isomorphic

to a Gorenstein ring, then the original ring has a unique minimal primary decomposition all of

whose components are quotients modulo irreducible ideals.

We now extend Theorem 5.7 to irreducible closures before stating Corollary 7.8, our main

result for this section.

Theorem 7.7. Every binomial ideal I ⊂ k[Q] equals the intersection of the irreducible closures

of the coprincipal components cogenerated by its essential witnesses.

Proof. Fix a monoid prime P ⊂ Q and nonzero f ∈ socP (I). By Definition 2.8.4, some nonzero

monomial λtw of f is an essential IP -witness for P . Every monomial of f that is nonzero

modulo Irr (WP
w (I))P lies in the submodule 〈tw〉 of k[Q]P /Irr (WP

w (I))P , so f is nonzero modulo

Irr (WP
w (I))P . Lemma 5.6 completes the proof. 2

Corollary 7.8. Fix a binomial ideal I ⊂ k[Q]. An irreducible decomposition of I results by

intersecting the canonical primary components of the irreducible closures of the coprincipal

components cogenerated by the essential I-witnesses.

Proof. Apply Theorem 7.7, then Theorem 7.5. 2
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