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On Suslinian Continua

D. Daniel, J. Nikiel, L. B. Treybig, H. M. Tuncali and E. D. Tymchatyn

Abstract. A continuum is said to be Suslinian if it does not contain uncountably many mutually exclu-
sive nondegenerate subcontinua. We prove that Suslinian continua are perfectly normal and rim-met-
rizable. Locally connected Suslinian continua have weight at most w; and under appropriate set-theor-
etic conditions are metrizable. Non-separable locally connected Suslinian continua are rim-finite on
some open set.

Suslinian continua were introduced by A. Lelek in [7]. There he also gave an ex-
ample of a (non-locally connected) metrizable Suslinian continuum that is not rim-
countable (see e.g,,[1]). Some other papers in this area are by Daniel and Treybig [4],
Simone [12, 13], Tymchatyn [18] and van Mill and Wattel [19]. It is the purpose of
this paper to study further the structure of Suslinian continua, give some interesting
examples, and raise problems.

Example 1 Note that each metrizable Suslinian continuum X can be “locally con-
nectified” by adding to it a “null-family” of arcs. Let us sketch some details of this
reasonably well-known method for the sake of completeness.

Let X be a compact metrizable space. Then there is a continuous map f: C — X
of the Cantor set C onto X (see e.g., [5]). We assume that 0,1 € C C [0,1]. Let
G denote the decomposition of [0, 1] into the sets f~!(x), x € X, and singletons.
The quotient space Y = [0, 1]/G is Hausdorff (see e.g., [5]), and so is metrizable
and locally connected. It contains a homeomorphic copy A of X so that Y — A is the
union of countably many pairwise disjoint open arcs whose diameters converge to 0.
It is easy to see that if X is a Suslinian continuum, then so must be Y. Moreover, if X
is not rim-countable, Y is not rim-countable either.

Example 2 A Souslin line is a linearly ordered continuum X such that X is not
separable, and each family of pairwise disjoint open subsets of X is countable (some
definitions require Souslin lines to have no separable open subset; this really does not
matter much). Under appropriate set-theoretic assumptions (like the Constructibil-
ity Axiom) Souslin lines are plentiful, while under other set-theoretic assumptions
(such as the Martin Axiom with the negation of the Continuum Hypothesis) Souslin
lines do not exist at all (see e.g., [15]). The Souslin Hypothesis is the statement/axiom
that “Souslin lines do not exist”.
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Obviously, each Souslin line is a locally connected Suslinian continuum. More-
over, each Souslin line is perfectly normal (in particular, first countable) and has
weight w;.

Example 3  The following non-locally connected Suslinian continuum Y is ob-
tained as a part of [3, Theorem 4.4]. Let X be a Souslin line. Then there is a compact-
ification Y of the half-line [0, o) whose remainder is homeomorphic to X. Thus, Y
is the disjoint union of [0, c0) and a copy of X. Roughly speaking, Y looks like the
sin 1 curve condensing on X. Of course, Y is a Suslinian continuum that is not locally
connected.

A slightly more complicated Suslinian continuum Z can be obtained as follows.
Let xq be an end-point of X. Then X—{xp } has a compactification Z whose remainder
is homeomorphic to X. Of course, Z is not locally connected and it contains no
nondegenerate metric subcontinuum.

Theorem 1  Each Suslinian continuum is perfectly normal.

Proof Let X be a Suslinian continuum. First, we shall prove that if x € X, then {x}
is a Gg-set in X. Choose any x and form collections {V,, : & < g} of open subsets
of X and {C, : @ < ay} of subcontinua of X, both labeled by ordinal numbers «, as
follows.

Select a nondegenerate continuum Cy such that x ¢ C, and let V;; be an open set
containing x so that Cy C X — V,. Suppose that open sets V,, and nondegenerate
continua C, have been chosen for all & < -, where « is an ordinal number, so that
C, is contained in X — V,, and C, meets no Cg for 3 < «. For ordinal +, select
nondegenerate continuum C, so that x ¢ C, and C, N (|, - C,) = &, and let
V., be an open set containing x so that C, C X — V.. Since X is Suslinian and
the continua C,, are nondegenerate and pairwise disjoint, this process may only be
continued for countably many steps, say until some oy < w;, and then must cease.

Take a one-to-one correspondence f from {« : a < «p} onto the set N of natural
numbers. This arranges the sets V,, into a sequence V-1(), Vy-1(1), . ... For each
neNletU, = m?:o V¢-1(;) and select an open set W, so that x € W, C W, C U,
and W,_; D W,.

Theset Q = 2y Wy = [\,=y W is O-dimensional. If y € Q \ {x}, then there
exists n > 0 so that x is not in the component of y in W,,. Note that this component
is nondegenerate and there are only countably many such components. Hence the
set {W, \ K : K is a component of W, missing x, n = 0, 1,2, ... } is countable and

{x} = (W{W,1 \ K : K is a component of W, missing x,n = 0,1,2,... }.

Now, suppose that A is a non-empty closed subset of X. Let G denote the decom-
position of X into singletons and the set A. Let X’ = X/G and q: X — X’ denote the
quotient map of X onto the quotient space X’. It is easy to see that X’ is a Suslinian
continuum. By the previous paragraph the singleton q(A) is a Gs-set in X’. Hence, A
is a Gs-set in X. |
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Theorem 2  Let X be a continuum and A a closed 0-dimensional Gg-subset such that
for each neighbourhood U of A, at most countably many components of U meet A. Then
A is metrizable.

Proof LetA = ()2, U, bea 0-dimensional subset of X such that each U, is open
and U,4+; C U,,. If x and y are two points in A, then for some #, x and y lie in distinct
components of U ,, and U, can be separated between x and y. The components of x
and y in U, are nondegenerate. By the hypothesis, countably many open sets suffice
to separate points of A, and therefore A has a countable base. ]

As a result of this theorem, we have the following corollaries.

Corollary 1  If X is a continuum such that each open subset of X has at most countably
many components, then each 0-dimensional, closed Gs-subset of X is metrizable.

Corollary 2 (Mardesi¢ [10]) If X is a locally connected continuum, then each closed,
0-dimensional, Gs-subset of X is metrizable.

Corollary 3 If X is a Suslinian continuum then each 0-dimensional closed set in X is
metrizable.

Theorem 3  Each Suslinian continuum is rim-metrizable. In fact, it has a basis of open
sets with metrizable and zero-dimensional boundaries.

Proof Let X be a Suslinian continuum and x, € X. By Theorem 1, there is a con-
tinuous surjection f: X — [0, 1] such that f~!(0) = x,. Since X is a continuum, all
fibers f~1(t), t € ]0, 1[ are non-empty. Since X is Suslinian, only countably many of
those fibers of f can have a nondegenerate component. Each fiber of f is a Gs-set. So
for all but countably many ¢t > 0, f~!([0,t)) is a neighbourhood of x, with metriz-
able and 0-dimensional boundary. By choosing t small enough, the neighbourhood
£71([0,1)) can be made arbitrarily small. [}

Daniel and Treybig [4] have shown that if there is an example of a locally con-
nected Suslinian continuum which is not an IOK (the continuous image of an or-
dered compactum), then there is such a continuum X which is separable. In this
connection we prove Theorems 4, 5 and 6.

Theorem 4  Let X denote a nondegenerate, separable, Suslinian continuum which con-
tains no nondegenerate metric subcontinuum. Then, there is a collection G of mutually
exclusive nondegenerate subcontinua of X such that

(1) G'=U{g:g€ G}isdenseinX,
(2) X fails to be locally rim-finite at each point of G', and
(3) G is maximal with respect to having properties (1) and (2).
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Proof Let U be a nonempty open subset of X. Then K = U/Bd(U) is a separable
continuum which is not an IOK, otherwise by [16] K would be metrizable and by the
boundary bumping theorem U would contain a metrizable nondegenerate subcon-
tinuum. By [11], K is not hereditarily locally connected. Thus by [14, Theorem 3] K
and therefore U contains a continuum of convergence C. Clearly X is not rim-finite
at each point of C.

Now consider the collection T of all sets g such that g is a collection of mutually
exclusive nondegenerate subcontinua of X, where g contains C, and where each con-
tinuum C’ in g has the property that X is not rim-finite at any point of C’. We now
partially order T by set inclusion and let G denote a maximal element of T.

If G = |J{g : ¢ € G} is not dense in X, then there is a open set W so that
W NG = @. Asabove we may find a continuum like C in W. Thus G is not
maximal, a contradiction. u

Theorem 5  Suppose that X is a locally connected Suslinian continuum containing no
nondegenerate metrizable continuum. The following are equivalent:

(1) X is the continuous image of an ordered continuum,
(2) X is rim-finite,
(3) X contains no nondegenerate continuum that lies in the closure of a countable set.

Proof By Theorem 3, X is rim-metrizable. Then by Theorem 1 of [2] X is rim-
finite if and only if X contains no nondegenerate continuum that lies in the closure
of a countable set. By Theorems 6 and 10 of [13] and by [17], X is the continuous
image of an ordered continuum if and only if X is rim-finite. ]

Remark There is an example of a metric Suslinian continuum which is nowhere
locally connected. Fitzpatrick and Lelek [6] have constructed a nondegenerate ratio-
nal dendroid X in the plane such that each nonempty connected open subset of X
is dense in X and is therefore nowhere locally connected. As described in Example
1, it can be embedded in a rim-countable, locally connected, metric continuum of
rim-type w. Therefore, the assumption that X does not contain any nondegenerate
metrizable continuum in the hypothesis of Theorem 5 is necessary.

Theorem 6  Let X denote a locally connected Suslinian continuum which is not sepa-
rable. Then there is a hereditarily locally connected subcontinuum 'Y with nondegenerate
interior in X such that X is rim-finite at each point of Y.

Proof Case 1: There is a nondegenerate connected open set U in X such that no
nondegenerate subcontinuum of X lying in U lies in the closure of a countable set.
Let U, denote a nondegenerate connected open subset of U such that U; C U, and
Bd(U,) is a totally disconnected metric set.

We find from the proof of Theorem 1 of [2] that if U, fails to be connected im
kleinen at some point, then U, fails to be connected im kleinen at each point of a
nondegenerate subcontinuum L of U;. Since L would be a subcontinuum of BdU |,
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which is totally disconnected, we have a contradiction. Since no nondegenerate sub-
continuum of U lies in the closure of a countable set, then U, contains no nondegen-
erate metric continuum. By Theorem 5, U is rim-finite. Let U, denote a connected
open set such that U, C U;. Then X is rim-finite at each point of U>.

Case 2: If U is any nondegenerate connected open subset of X, then U contains a
nondegenerate subcontinuum g of X such that g lies in the closure of a countable set
C(g).

Let g; denote a nondegenerate subcontinuum of X which lies in the closure of a
countable set C(g;), and let T denote the set of all collections Q of nondegenerate
continua such that
(1) ;1 €Q
(2) each element g of Q lies in the closure of a countable set, C(g) and
(3) ifg, g’ are distinct elements of Q, theng N g’ = @.

Partially order T by set inclusion and pick a maximal element Q" of T. If Q" =
U{g : ¢ € Q'} is not dense in X, then there is a connected open set W such that
W N Q" = @. There is a nondegenerate subcontinuum g of X lying in W such
that g lies in the closure of a countable set C(g). Thus Q’ is not maximal. Since X
is Suslinian Q' is countable, and | J{C(g’) : g’ € Q’} is dense in X, and so X is
separable, a contradiction. Thus Case 1 must hold. |

The proofs of the following two results are substantially different in nature from
the arguments we have used above. They require the use of transfinite inverse se-
quences and then exploit a certain tree structure of subsets of the space under inves-
tigation that is introduced using an inverse limit description of the space. They use
and extend some methods of reasoning that were already employed in [3].

Theorem 7  The weight of a non-metrizable locally connected Suslinian continuum
is wy.

Proof Let X be a locally connected Suslinian continuum. Suppose that X is not
metrizable, i.e., w(X) > w. Combining two results of S. Mardesi¢ [8, 9], one obtains
an inverse system § = (X,,, 7, k) such that X = lim inv 8, each X,, is a locally con-
nected continuum with w(X,) < w(X), each ff is a monotone and surjective map
and k is a cardinal number so that k < w(X) (as usual,  is treated as the first ordinal
number of the given cardinality). Because of the properties of the bonding maps £,
all projections f,: X — X, are monotone and surjective, too. Therefore, each X,
is a (locally connected) Suslinian continuum. We may assume that for each ordinal
number @ < K, f*': X,41 — X, has a nondegenerate fiber, that is, it is not a home-
omorphism. It follows that for each o < r there is x, € X,, so that (f**1)"!(x,) isa
nondegenerate subcontinuum of X,+1. Then £, !(x,) is a nondegenerate continuum
in X. When o < 3 < & then either f[;l (x3) C fo '(x,) or the two fibers are disjoint.

Now, assume that £ > w; and consider the family A = {f, '(x,) : a < k}.
When ordered by reverse inclusion, A becomes a tree (in the set-theoretic sense,
see e.g., [15]). Each level (even more: each antichain) of the tree A is a family of
pairwise disjoint nondegenerate subcontinua of X and, therefore, is countable. By
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[15, Theorem 2.7], A has an uncountable chain C. We may assume that C consists
of wy sets and label them as € = {C, : @ < w;} so that C3 C C, and Cg # C,
whenever a < 3 < wy. Since all sets C,, are continua, for each o < w;, C, —Cpy1isa
nondegenerate subset of C,,. Hence, C,, — C,4; contains a nondegenerate continuum
B,. It follows that {B, : o < wi} is a family of pairwise disjoint nondegenerate
continua in X. This contradiction shows that Kk < w;.

Now, suppose that X was chosen so that w(X) > w; and there is no locally con-
nected Suslinian continuum Y with w; < w(Y) < w(X). Then w(X,,) < w; for each
a < k. Since k < wy, it follows that w(X) < w; which contradicts the assumption
that w(X) > w;. Thus, we must have that w(X) = w;. [ |

Theorem 8  If the Souslin Hypothesis holds, then each locally connected Suslinian con-
tinuum is metrizable.

Proof Let X be a locally Suslinian continuum. Suppose that X is non-metrizable.
By Theorem 7, w(X) = w;. As already used in the proof of Theorem 7, there exists
a transfinite inverse sequence § = (X,, ff, wy) such that X = lim inv §, each X, is
metrizable and each f is monotone and surjective. Then, moreover, each projection
fo : X — X, is monotone and surjective, and each X,, is a locally connected Suslinian
continuum.

LetT = {f,'(x) : @ < wy,x € X, and f, '(x) is nondegenerate }. It was no-
ticed in [3] that T ordered by reverse inclusion is a tree. The elements of J are non-
degenerate subcontinua of X. Since X is non-metrizable and each X, is metrizable,
7 is uncountable. The argument used in the proof of Theorem 7 for A works for T
as well, showing that T can not have an uncountable antichain and it can not have an
uncountable chain. This means that T is a Souslin tree. However, existence of Souslin
trees is equivalent to existence of Souslin lines (see e.g., [15]). We have obtained a
contradiction with the assumption that the Souslin Hypothesis holds. Hence, X can
not be non-metrizable. [ |

Several nice-looking open problems remain to be settled (preferably) without us-
ing extra set-theoretic assumptions.

Problem 1 Islocal connectivity essential in Theorems 7, 8?

Problem 2 s it true that a (hereditarily) separable locally connected Suslinian con-
tinuum must be metrizable?

Problem 3 s it true that a separable locally connected Suslinian continuum must
be hereditarily separable?
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In particular:

Problem 4 s it possible to embed the space Y of Example 3 in a locally connected
Suslinian continuum?

Problem 5 Let X be a locally connected Suslinian continuum. Is it true that X is
connected by ordered continua (that is, generalized arcs)?

Problem 6 Given a locally connected Suslinian continuum X, is it true that X is
either rim-finite or contains a nondegenerate metrizable continuum?

References

[1]  D. Daniel, J. Nikiel, L. B. Treybig, H. M. Tuncali and E. D. Tymchatyn, On rim-properties of
continua. Questions Answers Gen. Topology 19(2001), 187-193.

[2] , Concerning continua that contain no metric subcontinua. preprint, 2002 (to appear in
Houston J. Math.).

[3] , On perfectly normal compacta, preprint, 2002, Submitted for publication.

[4]  D.Daniel and L. B. Treybig, A decomposition theorem for locally connected Suslinian continua,
Topology Proc. 23(1998), 93-105.

[5]  R.Engelking, General topology. Heldermann Verlag, Berlin, 1989.

[6]  B.Fitzpatrick, Jr. and A. Lelek, Some local properties of Suslinian compacta. Colloq. Math. 31(1974),
189-197.

[7]  A.Lelek, On the topology of curves, II. Fund. Math. 70(1971), 131-138.

[8]  S.Mardesi¢, On covering dimension and inverse limits of compact spaces. Illinois J. Math. 4(1960),
278-291.

[9] , Locally connected, ordered and chainable continua. Rad Jugoslav. Akad. Znan. Umjet. Odjel
Mat. Fiz. Tehn. Nauke 319(1961), 147-166.

[10] , Images of ordered compacta are locally peripherally metric. Pacific ]. Math. 23(1967),
557-568.

[11] J. Nikiel, The Hahn-Mazurkiewicz theorem for hereditarily locally connected continua. Topology
Appl. 32(1989), 307-323.

[12] J.N. Simone, Metric components of continuous image of ordered compacta. Pacific J. Math. 69(1977),
269-274.

[13] , Continuous images of ordered compacta and hereditarily locally connected continua. Coll.
Math. 40(1978), 77—84.

[14] , Concerning hereditarily locally connected continua. Coll. Math. 39(1978), 243-251.

[15] S.Todor¢evi¢, Trees and linearly ordered sets. In: Handbook of set-theoretic topology, (K. Kunen
and J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 235-293.

[16] L. B. Treybig, Concerning continua which are continuous images of compact ordered spaces. Duke
Math. J. 32(1965), 417-422.

[17] , Arcwise connectivity in continuous images of ordered compacta. Glas. Mat. Ser. I1I
21(41)(1986), 201-211.

[18] E.D. Tymchatyn, The Hahn-Mazurkiewicz theorem for finitely Suslinian continua. General
Topology Appl. 7(1977), 1123-127.

[19] J. van Mill and E. Wattel, Souslin dendrons. Proc. Amer. Math. Soc. 72(1978), 545-555.

https://doi.org/10.4153/CMB-2005-017-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2005-017-4

202 D. Daniel, J. Nikiel, L. B. Treybig, H. M. Tuncali and E. D. Tymchatyn

Lamar University American University of Beirut
Department of Mathematics Department of Mathematics
Beaumont, TX 77710 Beirut, Lebanon

U.S.A. e-mail: nikiel@aub.edu.lb

e-mail: daniel@math.lamar.edu

Texas A&M University Nipissing University

Department of Mathematics Faculty of Arts and Sciences

College Station, TX 77843 North Bay, ON

U.S.A. PIB8L7

e-mail: treybig@math.tamu.edu e-mail: muratt@topology.nipissingu.ca

University of Saskatchewan
Department of Mathematics
Saskatoon, SK

S7N 0OWO0

e-mail: tymchat@snoopy.usask.ca

https://doi.org/10.4153/CMB-2005-017-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2005-017-4

