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On Suslinian Continua

D. Daniel, J. Nikiel, L. B. Treybig, H. M. Tuncali and E. D. Tymchatyn

Abstract. A continuum is said to be Suslinian if it does not contain uncountably many mutually exclu-

sive nondegenerate subcontinua. We prove that Suslinian continua are perfectly normal and rim-met-

rizable. Locally connected Suslinian continua have weight at most ω1 and under appropriate set-theor-

etic conditions are metrizable. Non-separable locally connected Suslinian continua are rim-finite on

some open set.

Suslinian continua were introduced by A. Lelek in [7]. There he also gave an ex-

ample of a (non-locally connected) metrizable Suslinian continuum that is not rim-
countable (see e.g.,[1]). Some other papers in this area are by Daniel and Treybig [4],
Simone [12, 13], Tymchatyn [18] and van Mill and Wattel [19]. It is the purpose of
this paper to study further the structure of Suslinian continua, give some interesting

examples, and raise problems.

Example 1 Note that each metrizable Suslinian continuum X can be “locally con-
nectified” by adding to it a “null-family” of arcs. Let us sketch some details of this
reasonably well-known method for the sake of completeness.

Let X be a compact metrizable space. Then there is a continuous map f : C → X

of the Cantor set C onto X (see e.g., [5]). We assume that 0, 1 ∈ C ⊂ [0, 1]. Let
G denote the decomposition of [0, 1] into the sets f −1(x), x ∈ X, and singletons.

The quotient space Y = [0, 1]/G is Hausdorff (see e.g., [5]), and so is metrizable
and locally connected. It contains a homeomorphic copy A of X so that Y − A is the
union of countably many pairwise disjoint open arcs whose diameters converge to 0.
It is easy to see that if X is a Suslinian continuum, then so must be Y . Moreover, if X

is not rim-countable, Y is not rim-countable either.

Example 2 A Souslin line is a linearly ordered continuum X such that X is not
separable, and each family of pairwise disjoint open subsets of X is countable (some

definitions require Souslin lines to have no separable open subset; this really does not
matter much). Under appropriate set-theoretic assumptions (like the Constructibil-
ity Axiom) Souslin lines are plentiful, while under other set-theoretic assumptions
(such as the Martin Axiom with the negation of the Continuum Hypothesis) Souslin

lines do not exist at all (see e.g., [15]). The Souslin Hypothesis is the statement/axiom
that “Souslin lines do not exist”.
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Obviously, each Souslin line is a locally connected Suslinian continuum. More-
over, each Souslin line is perfectly normal (in particular, first countable) and has

weight ω1.

Example 3 The following non-locally connected Suslinian continuum Y is ob-

tained as a part of [3, Theorem 4.4]. Let X be a Souslin line. Then there is a compact-
ification Y of the half-line [0,∞) whose remainder is homeomorphic to X. Thus, Y

is the disjoint union of [0,∞) and a copy of X. Roughly speaking, Y looks like the
sin 1

x
curve condensing on X. Of course, Y is a Suslinian continuum that is not locally

connected.

A slightly more complicated Suslinian continuum Z can be obtained as follows.
Let x0 be an end-point of X. Then X−{x0} has a compactification Z whose remainder
is homeomorphic to X. Of course, Z is not locally connected and it contains no
nondegenerate metric subcontinuum.

Theorem 1 Each Suslinian continuum is perfectly normal.

Proof Let X be a Suslinian continuum. First, we shall prove that if x ∈ X, then {x}
is a Gδ-set in X. Choose any x and form collections {Vα : α < α0} of open subsets
of X and {Cα : α < α0} of subcontinua of X, both labeled by ordinal numbers α, as
follows.

Select a nondegenerate continuum C0 such that x /∈ C0 and let V0 be an open set
containing x so that C0 ⊂ X − V0. Suppose that open sets Vα and nondegenerate

continua Cα have been chosen for all α < γ, where γ is an ordinal number, so that
Cα is contained in X − Vα and Cα meets no Cβ for β < α. For ordinal γ, select
nondegenerate continuum Cγ so that x /∈ Cγ and Cγ ∩ (

⋃
α<γ Cα) = ∅, and let

Vγ be an open set containing x so that Cγ ⊂ X − Vγ . Since X is Suslinian and

the continua Cα are nondegenerate and pairwise disjoint, this process may only be
continued for countably many steps, say until some α0 < ω1, and then must cease.

Take a one-to-one correspondence f from {α : α < α0} onto the set N of natural
numbers. This arranges the sets Vα into a sequence V f −1(0),V f −1(1), . . . . For each
n ∈ N let Un =

⋂n
i=0 V f −1(i) and select an open set Wn so that x ∈ Wn ⊂ W n ⊂ Un

and Wn−1 ⊃ W n.

The set Q =

⋂
∞

n=0 Wn =

⋂
∞

n=0 W n is 0-dimensional. If y ∈ Q \ {x}, then there
exists n > 0 so that x is not in the component of y in W n. Note that this component
is nondegenerate and there are only countably many such components. Hence the
set {Wn \ K : K is a component of W n missing x, n = 0, 1, 2, . . .} is countable and

{x} =

⋂
{Wn \ K : K is a component of W n missing x, n = 0, 1, 2, . . .}.

Now, suppose that A is a non-empty closed subset of X. Let G denote the decom-
position of X into singletons and the set A. Let X ′

= X/G and q : X → X ′ denote the
quotient map of X onto the quotient space X ′. It is easy to see that X ′ is a Suslinian
continuum. By the previous paragraph the singleton q(A) is a Gδ-set in X ′. Hence, A

is a Gδ-set in X.
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Theorem 2 Let X be a continuum and A a closed 0-dimensional Gδ-subset such that

for each neighbourhood U of A, at most countably many components of U meet A. Then

A is metrizable.

Proof Let A =

⋂
∞

n=0 Un be a 0-dimensional subset of X such that each Un is open
and U n+1 ⊂ Un. If x and y are two points in A, then for some n, x and y lie in distinct

components of U n, and U n can be separated between x and y. The components of x

and y in Un are nondegenerate. By the hypothesis, countably many open sets suffice
to separate points of A, and therefore A has a countable base.

As a result of this theorem, we have the following corollaries.

Corollary 1 If X is a continuum such that each open subset of X has at most countably

many components, then each 0-dimensional, closed Gδ-subset of X is metrizable.

Corollary 2 (Mardešić [10]) If X is a locally connected continuum, then each closed,

0-dimensional, Gδ-subset of X is metrizable.

Corollary 3 If X is a Suslinian continuum then each 0-dimensional closed set in X is

metrizable.

Theorem 3 Each Suslinian continuum is rim-metrizable. In fact, it has a basis of open

sets with metrizable and zero-dimensional boundaries.

Proof Let X be a Suslinian continuum and xo ∈ X. By Theorem 1, there is a con-
tinuous surjection f : X → [0, 1] such that f −1(0) = xo. Since X is a continuum, all

fibers f −1(t), t ∈ ]0, 1[ are non-empty. Since X is Suslinian, only countably many of
those fibers of f can have a nondegenerate component. Each fiber of f is a Gδ-set. So
for all but countably many t > 0, f −1([0, t)) is a neighbourhood of xo with metriz-
able and 0-dimensional boundary. By choosing t small enough, the neighbourhood

f −1([0, t)) can be made arbitrarily small.

Daniel and Treybig [4] have shown that if there is an example of a locally con-

nected Suslinian continuum which is not an IOK (the continuous image of an or-
dered compactum), then there is such a continuum X which is separable. In this
connection we prove Theorems 4, 5 and 6.

Theorem 4 Let X denote a nondegenerate, separable, Suslinian continuum which con-

tains no nondegenerate metric subcontinuum. Then, there is a collection G of mutually

exclusive nondegenerate subcontinua of X such that

(1) G ′
=

⋃
{g : g ∈ G} is dense in X,

(2) X fails to be locally rim-finite at each point of G ′, and

(3) G is maximal with respect to having properties (1) and (2).
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Proof Let U be a nonempty open subset of X. Then K = U/Bd(U ) is a separable
continuum which is not an IOK, otherwise by [16] K would be metrizable and by the

boundary bumping theorem U would contain a metrizable nondegenerate subcon-
tinuum. By [11], K is not hereditarily locally connected. Thus by [14, Theorem 3] K

and therefore U contains a continuum of convergence C . Clearly X is not rim-finite
at each point of C .

Now consider the collection T of all sets g such that g is a collection of mutually
exclusive nondegenerate subcontinua of X, where g contains C , and where each con-
tinuum C ′ in g has the property that X is not rim-finite at any point of C ′. We now

partially order T by set inclusion and let G denote a maximal element of T.

If G ′
=

⋃
{g : g ∈ G} is not dense in X, then there is a open set W so that

W ∩ G ′
= ∅. As above we may find a continuum like C in W . Thus G is not

maximal, a contradiction.

Theorem 5 Suppose that X is a locally connected Suslinian continuum containing no

nondegenerate metrizable continuum. The following are equivalent:

(1) X is the continuous image of an ordered continuum,

(2) X is rim-finite,

(3) X contains no nondegenerate continuum that lies in the closure of a countable set.

Proof By Theorem 3, X is rim-metrizable. Then by Theorem 1 of [2] X is rim-
finite if and only if X contains no nondegenerate continuum that lies in the closure
of a countable set. By Theorems 6 and 10 of [13] and by [17], X is the continuous
image of an ordered continuum if and only if X is rim-finite.

Remark There is an example of a metric Suslinian continuum which is nowhere
locally connected. Fitzpatrick and Lelek [6] have constructed a nondegenerate ratio-

nal dendroid X in the plane such that each nonempty connected open subset of X

is dense in X and is therefore nowhere locally connected. As described in Example
1, it can be embedded in a rim-countable, locally connected, metric continuum of
rim-type ω. Therefore, the assumption that X does not contain any nondegenerate

metrizable continuum in the hypothesis of Theorem 5 is necessary.

Theorem 6 Let X denote a locally connected Suslinian continuum which is not sepa-

rable. Then there is a hereditarily locally connected subcontinuum Y with nondegenerate

interior in X such that X is rim-finite at each point of Y .

Proof Case 1: There is a nondegenerate connected open set U in X such that no
nondegenerate subcontinuum of X lying in U lies in the closure of a countable set.
Let U1 denote a nondegenerate connected open subset of U such that U 1 ⊂ U , and
Bd(U1) is a totally disconnected metric set.

We find from the proof of Theorem 1 of [2] that if U 1 fails to be connected im
kleinen at some point, then U 1 fails to be connected im kleinen at each point of a
nondegenerate subcontinuum L of U 1. Since L would be a subcontinuum of BdU 1,
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which is totally disconnected, we have a contradiction. Since no nondegenerate sub-
continuum of U 1 lies in the closure of a countable set, then U 1 contains no nondegen-

erate metric continuum. By Theorem 5, U 1 is rim-finite. Let U2 denote a connected
open set such that U 2 ⊂ U1. Then X is rim-finite at each point of U 2.

Case 2: If U is any nondegenerate connected open subset of X, then U contains a
nondegenerate subcontinuum g of X such that g lies in the closure of a countable set
C(g).

Let g1 denote a nondegenerate subcontinuum of X which lies in the closure of a

countable set C(g1), and let T denote the set of all collections Q of nondegenerate
continua such that

(1) g1 ∈ Q,
(2) each element g of Q lies in the closure of a countable set, C(g) and
(3) if g, g ′ are distinct elements of Q, then g ∩ g ′

= ∅.

Partially order T by set inclusion and pick a maximal element Q ′ of T. If Q ′′
=⋃

{g : g ∈ Q ′} is not dense in X, then there is a connected open set W such that

W ∩ Q ′′
= ∅. There is a nondegenerate subcontinuum g of X lying in W such

that g lies in the closure of a countable set C(g). Thus Q ′ is not maximal. Since X

is Suslinian Q ′ is countable, and
⋃
{C(g ′) : g ′ ∈ Q ′} is dense in X, and so X is

separable, a contradiction. Thus Case 1 must hold.

The proofs of the following two results are substantially different in nature from
the arguments we have used above. They require the use of transfinite inverse se-

quences and then exploit a certain tree structure of subsets of the space under inves-
tigation that is introduced using an inverse limit description of the space. They use
and extend some methods of reasoning that were already employed in [3].

Theorem 7 The weight of a non-metrizable locally connected Suslinian continuum

is ω1.

Proof Let X be a locally connected Suslinian continuum. Suppose that X is not

metrizable, i.e., w(X) > ω. Combining two results of S. Mardešić [8, 9], one obtains
an inverse system S = (Xα, f β

α , κ) such that X = lim inv S, each Xα is a locally con-
nected continuum with w(Xα) < w(X), each f β

α is a monotone and surjective map
and κ is a cardinal number so that κ ≤ w(X) (as usual, κ is treated as the first ordinal

number of the given cardinality). Because of the properties of the bonding maps f β
α ,

all projections fα : X → Xα are monotone and surjective, too. Therefore, each Xα

is a (locally connected) Suslinian continuum. We may assume that for each ordinal
number α < κ, f α+1

α : Xα+1 → Xα has a nondegenerate fiber, that is, it is not a home-

omorphism. It follows that for each α < κ there is xα ∈ Xα so that ( f α+1
α )−1(xα) is a

nondegenerate subcontinuum of Xα+1. Then f −1
α (xα) is a nondegenerate continuum

in X. When α < β < κ then either f −1
β (xβ) ⊂ f −1

α (xα) or the two fibers are disjoint.

Now, assume that κ > ω1 and consider the family A = { f −1
α (xα) : α < κ}.

When ordered by reverse inclusion, A becomes a tree (in the set-theoretic sense,
see e.g., [15]). Each level (even more: each antichain) of the tree A is a family of
pairwise disjoint nondegenerate subcontinua of X and, therefore, is countable. By
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[15, Theorem 2.7], A has an uncountable chain C. We may assume that C consists
of ω1 sets and label them as C = {Cα : α < ω1} so that Cβ ⊂ Cα and Cβ 6= Cα

whenever α < β < ω1. Since all sets Cα are continua, for each α < ω1, Cα−Cα+1 is a
nondegenerate subset of Cα. Hence, Cα−Cα+1 contains a nondegenerate continuum
Bα. It follows that {Bα : α < ω1} is a family of pairwise disjoint nondegenerate
continua in X. This contradiction shows that κ ≤ ω1.

Now, suppose that X was chosen so that w(X) > ω1 and there is no locally con-

nected Suslinian continuum Y with ω1 < w(Y ) < w(X). Then w(Xα) ≤ ω1 for each
α < κ. Since κ ≤ ω1, it follows that w(X) ≤ ω1 which contradicts the assumption
that w(X) > ω1. Thus, we must have that w(X) = ω1.

Theorem 8 If the Souslin Hypothesis holds, then each locally connected Suslinian con-

tinuum is metrizable.

Proof Let X be a locally Suslinian continuum. Suppose that X is non-metrizable.
By Theorem 7, w(X) = ω1. As already used in the proof of Theorem 7, there exists

a transfinite inverse sequence S = (Xα, f β
α , ω1) such that X = lim inv S, each Xα is

metrizable and each f β
α is monotone and surjective. Then, moreover, each projection

fα : X → Xα is monotone and surjective, and each Xα is a locally connected Suslinian
continuum.

Let T = { f −1
α (x) : α < ω1, x ∈ Xα and f −1

α (x) is nondegenerate }. It was no-

ticed in [3] that T ordered by reverse inclusion is a tree. The elements of T are non-
degenerate subcontinua of X. Since X is non-metrizable and each Xα is metrizable,
T is uncountable. The argument used in the proof of Theorem 7 for A works for T

as well, showing that T can not have an uncountable antichain and it can not have an

uncountable chain. This means that T is a Souslin tree. However, existence of Souslin
trees is equivalent to existence of Souslin lines (see e.g., [15]). We have obtained a
contradiction with the assumption that the Souslin Hypothesis holds. Hence, X can
not be non-metrizable.

Several nice-looking open problems remain to be settled (preferably) without us-
ing extra set-theoretic assumptions.

Problem 1 Is local connectivity essential in Theorems 7, 8?

Problem 2 Is it true that a (hereditarily) separable locally connected Suslinian con-
tinuum must be metrizable?

Problem 3 Is it true that a separable locally connected Suslinian continuum must
be hereditarily separable?
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In particular:

Problem 4 Is it possible to embed the space Y of Example 3 in a locally connected
Suslinian continuum?

Problem 5 Let X be a locally connected Suslinian continuum. Is it true that X is

connected by ordered continua (that is, generalized arcs)?

Problem 6 Given a locally connected Suslinian continuum X, is it true that X is
either rim-finite or contains a nondegenerate metrizable continuum?
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