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Abstract

We provide a wedge decomposition of the homotopy type of the p-subgroup complex in the case of a
finite solvable group G. In particular, this includes a new proof of the result of Quillen which says that
this complex is contractible if and only if there is a non-trivial normal p-subgroup in G. We also provide
reduction formulas for the G-module structure of the homology groups. Our results are obtained with
diagram-methods by gluing the p-subgroup complex of G along the p-subgroup complex of G =G/N
for a normal p’-subgroup of G.
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1. Introduction

For a finite group G and a prime p, we denote by S,(G) ={P < G | |P| = p' # 1}
the partially ordered set (poset for short) of all non-trivial p-subgroups of G, ordered
by inclusion. For a poset P the order complex A(P) is the set of all chains of P, that
is, the set of linearly ordered subsets. In particular, A(P) is a simplicial complex.
In his influential paper [15] Quillen conjectured that A(S,(G)) is contractible if and
only if there is a non-trivial (that is, 7 1) normal p-subgroup in G. Quillen [15]
himself verified this conjecture for several classes of groups, among them the class
of solvable groups. We provide in Theorem 1.1 an extension of Quillen’s result to a
partial analysis of the homotopy type of the complex. The methods of the proof can
also be used to provide information about the representation of G on the homology
groups of A(S,(G)). Recall that a result of Quillen [15, Proposition 2.1] shows that
A(S,(G)) and the complex A(A,(G)) are homotopic for all finite groups G. The
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basic idea of our approach, already employed by Quillen, is to study a covering of the
order complex of the poset A, (G) of all non-trivial elementary abelian p-subgroups by
order complexes of posets of type A, (N A), where N is a normal solvable p’-subgroup
N and A € A,(G). We transform this covering by homotopy co-limit methods (see
Bousfield and Kan [6], Vogt [23] and Ziegler and Zivaljevié [26]) until we reach
structurally nice formulas for homotopy type and Euler-characteristic (Theorem 1.1
and Theorem 1.2). In case G = NA, a semidirect product of a solvable p’-group
N and an elementary abelian p-group A, Quillen [15, Theorem 11.2] showed that
S, (G) is homotopically Cohen-Macaulay. We use the methods applied in the proof of
Theorem 1.1 in order to retrieve Quillen’s result in this case and additionally provide
in Theorem 1.2 numerical information on the Euler-characteristic of the complex. In
particular, we deduce in Theorem 1.2 that A(A,(NA)) is not contractible if A acts
faithfully on N.

Further motivation for the study of S,(G) is provided in the papers of Brown
[7, 8], which initiated the investigation S, (G), and more recently in connection with
modular representation theory, in the work of Knorr and Robinson [11] and Thévenaz
and Webb (see [20, 21, 25]). The, so far, most general result on Quillen’s conjecture
can be found in the work of Aschbacher and Smith [2].

Before we state our main result we introduce some basic notation. In general,
for a poset P and an element r € P we write P., for the poset {g € P | g < r}.
Analogously defined are the posets Pe,, P.,and P.,. If f : P — (Qis a map between
posets then we will always implicitly assume that f is a map in the category of posets,
whichmeans x <y = f (x) < f (y). We write A, x A, for the join of the simplicial
complexes A, and A,. In contrast to the usual definition [13], we define the join of a
simplicial complex A, and the empty space to be the complex A;. By A; v A; we
denote the wedge of simplicial complexes A, and A,. Note that for spaces which are
not path-connected the wedge is only well defined if additionally wedge points c; are
specified. This will become crucial in our situation. In our wedge decompositions of
the homotopy type of A(S,(G)) in Theorem 1.1 the wedge of spaces is not formed by
using a single wedge point. Instead, we have to specify for each space in the wedge
to where it is wedged to. This is just for technical reasons, since we also have to deal
with the case of disconnected spaces. For Theorem 1.2 this problem does not arise.
We write ¥'(A) to denote the reduced Euler-characteristic of the simplicial complex
A. Via the functor A(-) we are able to speak about homological and topological
properties of posets. We write ﬁ,-(P) to denote the ith reduced homology group of
A(P) and X (P) to denote the reduced Euler-characteristic of A(P). For a subgroup
H of a group G we use Ng(H) for the normalizer of H in G and Cs(H) for the
centralizer. Now we are in position to state our main results.

The first result provides a partial analysis of the homotopy type of A(S,(G)) for
general finite solvable groups G. Note that by Quillen’s Theorem 11.2 [15] the
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spaces A(A,(NA)) occurring in the description of the homotopy type are known to
be homotopic to a wedge of spheres.

THEOREM 1.1. Let G be a finite group with a solvable normal p'-subgroup N. For
A <GsetA=AN/N. Then A,(G) is homotopically equivalent to the wedge

AAGNV \/ DA NAY) * AA,(G).4),

Aea, (G)

where for each Ae A,,((_;) an arbitrary point c; € A(A,(NA)) is identified with
A€ AA,(G)).

Note that by the way the wedge is formed in Theorem 1.1 the space is disconnected
if A(A,(G)) is disconnected.

Our second theorem replaces Quillen’s Theorem 11.2 [15] and adds numerical
information on A(S,(G)) for finite solvable groups G that are split extensions of
p’-groups by elementary abelian p-groups. We mention that a proof of Quillen’s
conjecture for p-solvable groups with abelian p-Sylow subgroups, which relies purely
on combinatorial information about the numerical value of X (S, (G)), can be found
in the work of Hawkes and Isaacs [10]. Our formula has the advantage of providing
more structural insight, since only positive terms occur and all terms in our formula
can—up to homotopy—be interpreted as certain parts of the space. On the other hand,
for computational purposes the alternating sum given by Hawkes and Isaacs [10] may
be much more efficient.

THEOREM 1.2. Let G = KA be a semidirect product of a normal solvable p’-
group K and an elementary abelian p-group A. Then A,(KA) is homotopically
Cohen-Macaulay. If N is a G-invariant subgroup of K, then the number of spheres
in the wedge-decomposition of A,(KA) equals the absolute value of its reduced
Euler-characteristic which equals

X(4,@) = 3 |X(4,WB) X (4,(CaB)/B).

BeA, (G0}

Here we set B = BN /N for B < A. Moreover, this number is O if and only if
A(A,(G)) is contractible, which happens if and only if A does not act faithfully on K.

In Proposition 4.2 we provide results similar to Theorem 1.1 and Theorem 1.2 for
the G-module structure of the homology groups of A(A,(G)), These formulas are
not direct consequences of Theorem 1.1 and Theorem 1.2, but are obtained by similar
methods.

We mention that in recent work of Segev and Webb [17] a wedge decomposition
of the complex A(A,(G)) is given in a situation ‘dual’ to the situations treated
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in Theorem 1.1 and Theorem 1.2. Their reduction formulas work best for normal
subgroups ‘close’ to Of '(G) (that is, the minimal normal subgroup N of G such
that G is a p’-group); whereas our formulas work only for normal subgroups that
are p’-groups. Our Theorem 1.1 reduces the study of the Quillen complex of G to
the study of upper intervals in the poset A p(G). Thévenaz has raised the question
whether A(A,(G)) is always homotopic to a wedge of spheres (of possibly different
dimensions). We already know by Quillen’s result [15] that A(A,(NA))—in the
situation of Theorem 1.2—is homotopic to a wedge of spheres. It is also well known
that the join of a wedge of spheres with a wedge of spheres is homotopic to a wedge
of spheres. Thus if one would know by induction that the order complex of an upper
intervals in A ,,(G) is homotopic to a wedge of spheres, the question of Thévenaz
would have a positive answer for the group G. Finally we give two examples which
show that even in cases where it is possible to verify that A(A,(G)) is homotopic to
a wedge of spheres, it is not so easy to guess which dimensions these spheres will
have. In particular, there are solvable groups G such that A(A,(G)) is homotopic to a
wedge of spheres, but not all their dimensions reflect the ranks of maximal elementary
abelian p-subgroups.

2. Topological tools

Our basic methods are some lemmata from [6, 16, 22, 26] in the theory of diagrams
of spaces and homotopy co-limits. Since these methods are not standard in the
combinatorial theory of order complexes, we recall the basic constructions here (see
[6] and [23] for more details). A diagram of spaces 2 is a poset P together with
spaces D, for r € P and maps d,, : D, —» D, forq < r suchthatd,,  od,, =d,,
and d,, = idp for r" < r' < r in P. The setting of Bousfield and Kan [6] and
Vogt [23] is more general, they consider instead of a poset an arbitrary small category,
but for our applications the restriction to posets is just the right setting. Some of the
lemmata listed below are formulated in [6] or [23] for small categories, therefore we
always add the reference to the work of Ziegler and Zivaljevi¢ [26], where the results
are formulated in the poset situation.

Our basic example for a diagram of spaces will be the following. Let  : X =
\UJ.; X: be acovering of a space X by a finite number of subspaces. The intersection
poset of the covering % is the partially ordered set P% on the set of intersections
(ic; Xi for J C I with the reversed inclusion as the order relation. We write X,
to denote the intersection [),_, X;. In particular the space X, is the unique maximal
element of P%. Note that for different subsets J, J' C I we may have X; = X,; in
this case X; and X represent that same element of P%. If X, = @, then @ is the
unique maximal element of P%. There is a natural diagram D% on the poset P¥.
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For X € P% we set D, = X and for r > r’ let d,, be the the natural inclusion.
The homotopy co-limit hocolim & of an arbitrary diagram 2 over a poset P is
constructed from the space | | ., D, x A(P«,) by identifying points according to the

reP
equivalence relation ‘=’. The equivalence relation ‘=’ is generated by a(u, v) =
B(u, v), where

o : D, x A(Ps) — D, x A(P,),

for ¢ < r, is induced by the identity in the first and by the inclusion in the second
component, and

B:D, x A(Py) — D, x A(Psy),

for g < r, is induced by d,, in the first and by the identity in the second component.
Now if a covering Z : X = |J,., X is sufficiently nice the space X and the homotopy

iel
co-limit of the diagram 2% have the same homotopy type.

PROPOSITION 2.1 (Projection Lemma, see [6,16,26]). Let % : X = Ui€ ; Xibea
covering of the CW-complex X by a finite number of closed subcomplexes X ;, then

hocolim 2% ~ X.

In a next step we would like to modify the maps d,, and the spaces D, of a given
diagram in a way that preserves the homotopy type of the homotopy co-limit.

PROPOSITION 2.2 (Homotopy Lemma, see [6,22,26]). Let 2 and 2’ be diagrams
of spaces on the poset P. Assume that there are maps f, : D, — D, such that
d,,of, =fg0dyforq <rin P and f, induces a homotopy equivalence between
D, and D!. Then hocolim 2 =~ hocolim Z'.

Note that we must have d, o f, = f, o d,, in the formulation of the Homotopy
Lemma but no commutativity condition is imposed on the homotopies induced by the
maps f,.

Finally the following lemma allows the computation of the homotopy type if some
strong assumptions are satisfied.

PROPOSITION 2.3 (Wedge Lemma, see [26]). Let 29 be a diagram of spaces over
the poset P with maximal element 1 such that for each q € P, q + 1, there is a
point ¢, € D, such that d,,(x) = ¢, forall r > q and x € D,. Then hocolim 9 is

homotopy equivalent to
\/ D, = A(P.,),
reP

where the wedge is formed by identifying for every r < 1 the point ¢, € D, x A(P.,)
with r € D; x A(P_7).
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Combining the preceding three propositions we obtain the following corollary.

COROLLARY 2.4. Let f : P — Q be a map of (finite) posets. Assume:

(i) Q is a meet-semilattice, that is all infima exist in Q. In particular, Q contains
a least element 0.
(ii) All elements q € Q with the possible exception ofa are in the image of f .
(ili) For q € Q.5 there exists an element c, € f ~'(Q<,) such that the inclusion
map t; : A(f 7' (Q)) > A(f ~'(Q<,)) is homotopic to the constant map sending
A(f Q<)) to ¢,

Then A(P) is homotopy equivalent to the wedge

V AU (Q<0)) * A(Q.,),

q€Q
where for q € Q.5 the point c; € A(f Q<) € A1 (Q<)) * A(Qs,) is
identified with q € A(f ~'{0}) * A(Q.5)-

REMARK. Condition (ii) avoids that arbitrary points can be adjoined to Q. It can
be replaced by the somewhat weaker condition:

(i) If A(f ~'(Q<,)) is not contractible, then g € f (P).

PROOF. % := (A(f ~'(Q<4)))4e0 is a finite covering of A(P) by closed subcom-
plexes, hence hocolim 2% ~ A(P) by the Projection Lemma, Proposition 2.1. By
(i) and (ii) the intersection poset P% of % can be identified with the dual poset Q* of
Q, this means Q* is the poset on the ground set Q ordered by ‘<*’, which is defined
by ¢ <* ¢’ if and only if ¢’ < g. This can be seen as follows. By definition for each
g € Q there is an element in P¥. Since Q is a meet-semilattice we have

f_l(qu)nf_l(QSq’) =f_l(Q5qu’)~

We define a second diagram 2’ of spaces over Q" by setting D, := A(f Q<)) for
q € Q"and d;, = ¢, for ¢’ <* g. By (iii) there is homotopy f, : Dy — D, such
that f, (d,y(Dg)) = ¢, for all ¢’ <* g. This defines a map of diagrams from 2 to
2’ satisfying the conditions of the Homotopy Lemma, Proposition 2.2. We conclude
hocolim 2’ =~ hocolim 2% (=~ A(P)). Finally, the application of the Wedge Lemma,
Proposition 2.3, to diagram 2’ shows the claimed homotopy equivalence. a

It would be interesting to generalize Corollary 2.4 to G-homotopy types, but the
authors see no way how to do this. Therefore, we can state and prove the main result
of Section 3 only for homotopy, not for G-homotopy equivalence.

In the situation of Corollary 2.4 let us replace (iii) by the stronger condition that
A(f 7'(Q4,)) is contractible for each g > 0. Then the corollary yields A(P) ~
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-~

A(f ~H{0}) * A(Q.5) (note that the join of two spaces is contractible if at least one
of the spaces is contractible). If additionally A(f “{6}) = ), or equivalently if f
is a map into Q.3, then A(P) >~ A(Q.3). But this is well-known by the Fiber
Lemma of Quillen which we state below in the equivariant version due to Thévenaz
and Webb [21], since we will need some facts about G-homotopy equivalence for our
results on Steinberg-Modules in Section 4.

By a G-poset P we understand a poset P on which the group G acts order-
preserving, which means x < y ifand only if x4 < y4, Amap f : P — Q between
the G-sets P and Q is called equivariant if f (x8) = f (x)¢ forallg € Gandx € P.

PROPOSITION 2.5 (Fiber Lemma [15, Proposition 1.6] and [21, Theorem 1]). Let
f 1 P — Q be an equivariant map of G-posets. If for all ¢ € Q the order complex
A(f ~'(Q<,)) is Stabg(q)-contractible then f induces a G-homotopy equivalence
between A(P) and A(Q).

In the lemma Stabs(g) denotes the stabilizer of g in G. Recall that a G-homotopy
equivalence is a homotopy equivalence between G-spaces which is equivariant.

3. Applications of the topological tools on the poset A, (G)

In this section let G always denote a finite group and N a normal p’'-subgroup of
G. Recall that we use the bar-notation, that is, we write H for the image HN /N of
a subgroup H of G under the homomorphism 7 : G - G = G/N. Further if a
subgroup H of G is given, we write HN for its preimage 7 ~'(H).

The image A under 7 of an elementary abelian p-subgroup A of G is isomorphic
to A. Therefore 7 induces amap f : A,(G) = A,,((_}), A +— A. We want to apply
Corollary 2.4 in this situation, but before doing this we first observe the following
simple, but crucial facts:

LEMMA 3.1. Let G be a finite group with a normal p’-subgroup N. Then:

(@ A,(GHU {A}, where 0 serves as a minimal element, is a meet-semilattice.

) A,(G)sa = A,(C5(A))s4 for elementary abelian p-subgroups A of G.

(c) Ifthe p-Sylow subgroups of G are elementary abelian, then the poset A,(G); 4
is Ng(A)-isomorphic to A,(Cc(A)/A) for each elementary abelian p-subgroup of G
(via the map B +— B/A).

(d) If A is not the intersection of maximal elementary abelian p-subgroups, then
A, (G). 4 is Ng(A)-contractible.

€ f:A,(G)— Ap(f}), A Aisan surjective map.

(f) Ifwewrite AN := n~'(A) for an elementary abelian A < G, then

F 7 (A(B) ) = £ 1A, (A) = A,(AN).
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PROOF. Each statement except (d) is immediately clear by the definitions (respec-
tively, the surjectivity of f is clear by Sylow’s Theorems).

For part (d)let g : A,(G)>a = A,(G). 4 be the map that assigns to each subgroup
C the intersection of all maximal elementary abelian p-subgroups that contain C.
Since A is not the intersection of all maximal elements of A,(G).,, the image
g(A,(G)4) is a poset with a unique minimal element f)A which corresponds to the
intersection of all maximal elements of A,(G).4. Thus A(g(A,(G).4)) is a cone
with apex 0 4 and therefore N (A)-contractible. The map g is a poset map and Ng(A)-
equivariant. Let C € A,(G). 4. If Cis the intersection of maximal elementary abelian
p-subgroups, then g~! (Ap(G)>c) = Ap(G)sc. Thus A(g™"(A,(G)>c)) isacone over
C and hence Ng(C)-contractible. If C is not the intersection of maximal elementary
abelian p-subgroups, then g~!(A »(G)sc) is contractible by induction. Thus the Fiber
Lemma, Proposition 2.5, applies and shows that A(A,(G).,) and A(g(A,(G)-4))
are Ns(A)-homotopy equivalent. O

By (a) and (e) of the preceding lemma, we know that for an application of Corol-
lary 2.4 tothe map f : A,(G) = A, ( G) U {6} it remains to verify condition (iii) of
Corollary 2.4. We claim that this is done, once we know that A(A,(NA)) is homo-
topic to a wedge of spheres of dimension rank A — 1, if N X A is a semidirect product
of a normal p’-group N and an elementary abelian p-group A. By f ‘I(AP(C_;)< QD)=
Usif A (G<p) = Us_zA,(BN) it follows that A(f ~'(4,(G).;)) is a
(rank A — 2)-dimensional space. Now a wedge of (rank A — 1)-spheres is (rank A —2)-
connected. This implies by standard topology the following lemma.

LEMMA 3.2. If A(A,(NA)) is_ homotopic to a wedge of (rank A — 1)-spheres,
then the embedding A(f ~"(A,(G) ;) — A(f"(Ap(G)f,;)) = A(A,(NA)) is
homotopic to a constant map.

The fact that A(A,(NA)) is homotopic to a wedge of (rank A — 1)-spheres in
the case of a solvable group N is due to Quillen [15, Theorem 11.2]. Indeed he
proves the stronger conclusion that A(A,(N A)) is homotopically Cohen-Macaulay
(see Question 3.6 below). Whether the same is true for non-solvable N is a problem
[15, Problem 12.3] raised by Quillen. But—as far the authors know—for rank A > 3
even the weaker conjecture [1] of Aschbacher that A,(NA) is simply-connected
remains unproved until now.

Later we will show how to obtain the Cohen-Macaulayness in the solvable case by
our methods, but first we prove the following weak version of the result.

LEMMA 3.3. For semidirect products G = K X A where K is a solvable p'-group

and A is an elementary abelian p-group, A(A,(KA)) is homotopic to a wedge of
(rank A — 1)-spheres.
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PROOF. The proof is by induction on the order of KA.

If A does not act faithfully on K, then the kernel B < A of this action is in the
center of KA. The maximal elementary abelian p-subgroups of G are the Sylow
p-subgroups which intersect in O, (G) > B (indeed ‘=" B). Hence by Lemma 3.1 (d)
A,(KA) is contractible and therefore the wedge of O spheres (of arbitrary dimension).

So assume that A acts faithfully on K. If K contains a proper A-invariant normal
subgroup N then we can apply Corollary 2.4tothemap f : A,(KA) - A,(KA/N)U
{6}, B — K B/N. The assumptions (i) and (ii) of Corollary 2.4 are true by Lemma 3.1
(a) and (e), and (iii) is proved by Lemma 3.2 and the induction hypothesis. As usual
we will denote for a subgroup B of G by B the image N B/N of B under the projection
G — G = G/N. Hence Corollary 2.4 yields

A4 KA~ [ ACTNA,KA)p) * A4, (KA). 5)

Bea,(KA)U(0)
O\ A4 (B)) * AA, (Cra(B)/B))
BeA,(KA)U(0}
= \/ AWM, (NB)xA(A,(Ck(B)A/B)).
Bea, (RA)L(0}

By the induction hypothesis the simplicial complexes A(A,(NB)) and
A(A,(Cg (B)xA / B)) are homotopic to a wedge of (rank B —1)-spheres and (rank A —
rank B — 1)-spheres. As the join between a wedge of m spheres of dimensions n with
a wedge of m’ spheres of dimension n’ is homotopic to a wedge of mm’ spheres of
dimension (n + n’ + 1), we conclude the claim in this case.

Finally assume that K does not possess a proper K X A-invariant subgroup. Then
K is characteristically simple, hence (as a solvable group) an elementary abelian g-
group where g is a prime # p, or equivalently X is a [,-vector space on which A
acts faithfully and irreducibly. Hence A is cyclic by [9, Theorem 3.2.2] and A, (K A)
is an antichain, which as a topological space is the wedge of (|Syl,(KA)| — 1)
O-spheres. 0

Now we are in the position to prove our main result:

THEOREM 1.1. Let G be a finite group with a solvable normal p’-subgroup N. Then
A, (G) is homotopically equivalent to the wedge

A(A,(G)) vV \/ A(A,(NA)) * A(A,(G),4),
AeA,(G)
where for each A € A p(G) an arbitrary chosen point c; € A(A,(NA)) is identified
with A € A(A,(G)).
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PROOF. We apply Corollary 2.4 to the mapping f : A,(G) — A, (G)u {6}. By the
Lemmata 3.1 (a) and (e), 3.2 and 3.3, the assumptions of Corollary 2.4 are fulfilled,
hence

4,6 =\ AUTA(B)) * A4, (G). 0.

AeA,(GUD)

Then Lemma 3.1 (f) and our convention X * & = X show the claimed homotopy
formula. O

REMARK 3.4. (a) In the homotopy formula of Theorem 1.1 many summands in the
wedge may be identical and some may be contractible. Therefore, it is sometimes
possible to write the wedge with a much smaller number of summands.

The poset A, (N A) is contractible if (and only if) A does not act faithfully on N by
the first part of the proof of Lemma 3.3 (respectively, Corollary 3.6 below). Further
Ap( G). ; is contractible if A is not the intersection of maximal elementary abelian
p-subgroups by Lemma 3.1 (d). As the join of any space with a contractible space is
contractible, we have only to sum up over A which are such intersections of maximal
elementary abelian p-subgroups of G such that A acts faithfully on N.

There is a second way to reduce the number of summands. It is given by the fact
that for A and A’ which are conjugated by a g € G the spaces A,(NA) and A,(NA")
(respectively, A ,,(C-})> iand A, (G). ;) are homeomorphic via the conjugation by g.
Writing short n - X instead of \//_, X we obtain the formula

A (G) = A, (G v\ ni- (A, (NA)*A,(G).z),
AeR

where n; is the number of conjugates of A in G and Z denotes a set of representatives
of the orbits of the action of G on the setof all A € A » (G) which are intersections of
maximal elementary abelian p-subgroups and which act faithfully on N.

(b) Our formula suggests that the homotopy-type of A, (G) can be calculated recur-
sively for solvable groups if one knows the structure of upper intervals in A, (G). Itis
possible to generalize the formula for upper intervals (by Lemma 3.1 (c) upper inter-
vals in A, (K A) are again homotopic to a wedge of spheres in the proper dimension),
but for the sake of simplicity we state only the global version.

Note however that our decomposition is only non-trivial if N is non-trivial. In
particular, we will not be able to say anything about upper intervals A,(G).4 for
groups where C;(A) has no non-trivial normal p’-subgroup.

Now we want to show which additional informations can be derived by our methods
for the special case of semidirect products. For doing this we need some definitions.
A poset P is called ranked if all maximal chains in P are of like length, its rank
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rank(P) is the cardinality of a maximal chain in P. A ranked poset P is called
homotopically Cohen-Macaulay, if for all r < q € P the order complexes of the
posets P,, P.,N P_,, P,, and P are homotopic to a wedge of spheres of dimensions
rank(P.,) — 1, rank(P.,) —rank(P,) — 1, rank(P) —rank(P_,) — 1 and rank(P) — 1.
The far reaching implications of being homotopically Cohen-Macaulay will not be
needed here. We refer the reader to [4] for an excellent survey. The non-enumerative
part of the following Theorem 1.2 is due to Quillen [15, Theorem 11.2].

THEOREM 1.2. Let G = KA be a semidirect product of a normal solvable p'-
group K and an elementary abelian p-group A. Then A,(KA) is homotopically
Cohen-Macaulay. If N is a G-invariant subgroup of K, the number of spheres in
the wedge-decomposition of A,(K A) equals the absolute value of its reduced Euler-
characteristic which equals

X(4,@) = > [X(4,WOB)-X(A,(Cs(B)/B).

BeA, (GU(0)

Moreover, this number is O if and only if A(A,(G)) is contractible, which happens if
and only if A does not act faithfully on K.

PROOF. Let B < C be two elementary abelian p-subgroups of G. Then A,(G).5
and A,(G).p N A,(G).c are of rank rank(B) — 1 and rank(C) — rank(B) — 1 (here
we denote for B € A,(G) by rank(B) the rank of A,(G).s) and proper parts of a
geometric modular lattice. It is well known that in this case the order complexes
are homotopic to a wedge of spheres of rank(B) — 1 and rank(C) — rank(B) — 1.
By Lemmata 3.1 (¢) and 3.3 the complex A(A,(G).c) (respectively, A(A,(G))) is
homotopic to a wedge of spheres of rank rank(A,(G)) — rank(C) — 1 (respectively,
rank(A,(G)) — 1). Thus A,(G) is homotopically Cohen-Macaulay (see also [15,
Proposition 10.1]).

The formula for the reduced Euler-characteristic is immediately clear by Theo-
rem 1.1 and the fact that all occurring spaces in the wedge are spheres of the same
dimension (Lemma 3.3).

For the last part of the claim we have already seen that if A acts not faithfully on K
then O, (G) # 1, which implies that A, (G) is contractible. If A acts faithfully on K,
let N be a minimal G-invariant subgroup of K. If N = K, then the A-module K (K
is an elementary abelian p’-group, since K is solvable and characteristically simple)
is irreducible. Therefore, by [9, Theorem 3.3.2] A is cyclic and the result follows. If
N < K, define B := C,(K). Since A acts faithfully on K, and K and A have coprime
order, by [9, Theorem 5.3.2] the group B acts faithfully on N. By construction,
B = 0,(Cz(B)A). Hence Cgx(B)A/B is the semidirect product of the p’-group
C¢(B) and an elementary abelian p-group C which acts faithfully on Cz(B). The
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induction hypothesis yields, X(A,(N B)) # 0 and X(A,(Cgx(B)A/B)) # 0. Thus,
the term corresponding to B does not vanish. In particular, X¥(A,(NA)) # 0. O

Actually a strong form of the first part of the preceding corollary is true. If G = KA
with K = O,(G) solvable and A an elementary abelian p-Sylow-subgroup, then
A, (G) is indeed shellable (see the paper of Bjorner [3] for an introduction of this
concept). For abelian normal subgroups K this was first discovered by Ozaydin and
Kutin in [12] and later a different reasoning led to the general statement [14].

Concerning the Euler-characteristic formula we mention that it is possible to
combine—as in Remark 3.4 (a) for the homotopy formula—many of the summands.
But contrary to the general case, here the formula can be used recursively to calcu-
late the Euler-characteristic completely since the Sylow p-subgroups are elementary
abelian (and so Lemma 3.1 (c) applies).

Our formula has the advantage that all the summands are positive, but for compu-
tational reason the formula [10, Lemma 1.4] might be easier. Another way of proving
our formula is to apply Corollary 3.2 in [24] together with Lemma 3.3.

Finally we want to draw a conclusion of Theorem 1.1 for solvable groups.

COROLLARY 3.5. Let G be a finite solvable group with no non-trivial normal p-
subgroup. Then A,(G) can be decomposed as a wedge of spaces, where for each
maximal elementary abelian p -subgroup A of A, (G) there occurs (at least) one sphere
of dimensionrank A — 1. In particular, Quillen’s conjecture is true for solvable groups.

PROOF. As O,(G) = 1 the Fitting subgroup N := F(G) of G has order prime to
p. As G is solvable, N has the property C;(N) € N ([9, Theorem 6.1.3]). Therefore,
any p-subgroup acts faithfully on N. Let A be a maximal (with respect to inclusion)
element of A, (G), that is, A is maximal in A » (G). Then the summand corresponding
to A in the wedge-decomposition of Theorem 1.1is A, (NA) A4, (G)> i=A,(NA)«
# = A,(NA). By the last corollary this summand is a non-trivial wedge of spheres
of dimension rank A — 1. O

The preceding corollary is not true for general groups. For example for G =
Gl,(F,), g = p', the space A,(G) is homotopic the building of G. In particular, it
is homotopic to a wedge of spheres of dimension » — 1. On the other hand, in all
examples the authors know of, the space A, (G) is homotopic to a wedge of spheres (of
possibly different dimension). So we want to mention a question raised by Thévenaz.

QUESTION 3.6. Is A,(G) always homotopic to a wedge of spheres (of possibly
different dimension)?

In the case of a solvable group G, Theorem 1.1 reduces a positive answer to the
_question to the structure of upper intervals A ,(C5(A)). 4, where C;(A) has no normal
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p’-subgroup (compare Remark 3.4 (b)). But even for p-groups it is not clear, how
those spaces look like.

In the second example of Section 5.2 we disprove the stronger conjecture that for
solvable groups G only spheres of dimension rank A — 1 occur where A runs over the
maximal (with respect to inclusion) elements of A,(G). This shows that for solvable
groups G the set A,(G) cannot be non-pure shellable in the sense of Bjorner and
Wachs (see [5]) in general.

4. Formulas for the Steinberg module

We see no way to strengthen our results of the last to G-homotopy types. But via
the standard spectral sequence for homotopy co-limits [6, 16] we obtain the following
result on the homology modules. Here H (-) denotes reduced simplicial homology
with coefficients in the ring of integers Z. An application of Segal’s arguments in
the given situation yields the following proposition, which is a reformulation of [18,
Proposition 2.3] for our purposes. The result can also be obtained by a Mayer- Vietoris
spectral sequence.

PROPOSITION 4.1. Let % : X = | Ji_, X; be a covering of a CW-complex X by a
finite number of closed subcomplexes X;. Assume that the finite group G acts on X
as a group of homeomorphisms, such that X¥ = X, forall1 <i <t g € G and
some 1 < i(g) <t. Let J, C J, be arbitrary subsets of J. Assume:

D U e, Xi # (jes, X then the inclusion map (; ., X; < [V, X; Is
homologically trivial, that is it induces the constant map in homology.

(ii) All homology groups of e, Xj are free.

Let D% be the diagram associated to % . Then there is an isomorphism of G-modules
HX) = @ O indd,,, (H(D,)® H(PZ)),
reP% /G k+l=i—1
where P% | G is a set of representatives of the G-orbits on P¥% and Stabg(r) is the
stabilizer of r in G.

From the preceding proposition and facts from Theorem 1.1, Lemma 3.1, Lemma 3.3
we infer the following result. From Section 3 we adopt the notation A for the image
NA/N of the subgroup A of the group G under the map f : G — G = G/N,
f(A) = A, for a normal subgroup N of G.

PROPOSITION 4.2.  (A) Let G be a finite group and let N be a solvable normal
p’-subgroup. Then H;(A,(G)) is as a G-module isomorphic to

HA,G)® P ind s, (Hanksr-1(A,(NB)) ® Hican5 (A, ()1 5)) ,

BeA,(G)/G
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where A, (G)/ G denotes a set of representatives of G-orbits on A »( G).

(B) Let G = KA be the semidirect product of a solvable p'-group K and an
elementary abelian p-group A. Let N be a G-invariant subgroup of K. Then
ﬁi(A,,(G)) is trivial for i # rank(A) — 1. For i = rank(A) — 1 the G-module
ﬁi (A,(G)) is isomorphic to

@mdN (NB) rank(B) 1(A, (NB)) ® Hi_ ank(8) (A, (Cz(B)A/B))) .

B<A

PROOF. In either case we consider the covermg % of A,(G) given by the preimages
of A (A) for the maximal abelian subgroups A of G. Lemma 3.2 shows that conditions
@) and (ii) of Proposition 4.1 are fulfilled (note that homology groups of wedges
of spheres are free). By the fact that £ ~'(4,((A)) = (\f '(4,(A;)) and by
Lemma 3.1 (d) and (f) we can replace P% by the dual poset of A p(f}) U {6}. The
assertion follows. For part (B) we additionally use Lemma 3.1 (c).

Note that we can omit the sum over k¥ + / = i — 1 from Proposition 4.1, since
by Lemma 3.3 the reduced homology of A,(N B) is concentrated in dimension
rank(B) — 1. O

Again we can reduce the number of summands by the observations stated in Re-
mark 3.4. A second proof of part (A) of the proposition can be given by Lemma 3.3
together with Corollary 3.4 in [19].

5. Examples

In this section we provide some examples where we apply our formulas. The first
example shows that there are solvable groups for which A,(G) is homotopic to a
wedge of spheres of more than one dimension—for homology this was already known
from the work of Segev and Webb [17]; we use the same example, but our methods
go beyond their results. The construction of this example goes back to Alperin who
used it as a counterexample to a conjecture of Webb [25].

EXAMPLE 5.1. Let G = (Z, X Z,,) wr Z, be a wreath product of a Frobenius group
F = Z, X Z, with a cyclic group Z, of prime order p dividing g — 1.

Then A,(G) is homotopic to the wedge of (¢ — 1)? spheres of dimension p — 1
with p?~!(g? — g”~!) spheres of dimension 1.

PROOF. Let N be Z? the direct product of the p copies of the cyclic groups of order
g coming from Z, 4 Z Then G = Z, wr Z, has two conjugacy classes of maximal
elementary abehan subgroups. The first conjugacy class consists of one group of
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order pP—the base group of G—and the second of p?~2? groups of order p?>—the
centralizers of the elements of order p not lying in the base group.

Every two distinct maximal elementary abelian subgroups intersect in the center
ZG)=Z » of G which is the diagonal subgroup of the base group.

Hence by Theorem 1.1 (respectively, Remark 3.4) we conclude

Ay (G) ZA,(N X ZPYV PP Ap(N X Z2) V Ap(G) oy *x Ap(N X Z,).
For the first summand we have (see also Quillen [15, Proposition 2.6])

Ap(ZP X ZP) = A, ((Zy X Z,)P) = Ap(Z, % Z,)
~((g—=1)- 8" ~(g—1)- 5.

The homotopy type of the second summand A, (N % Zﬁ), where Z‘f acts as diagonal
multiplication (respectively, by permuting the vectors of the standard basis) can be
calculated as (p - (g* — qP ') — q” + 1) - S'. For this one observes that N is the direct
sum of the one-dimensional subspaces which are the centralizers of the p subgroups
of Z,f of order p which are not generated by the diagonal multiplication. The diagonal
multiplication centralizes only the 0 € N = ZF, but stabilizes every one-dimensional
subspace. Hence each of the direct summands is normal in N % Z; and by an induction
using Theorem 1.1 one obtains the result (the induction is best done by taking normal
subgroups of codimension 1 in O,).

In the third summand the second factor A, (N x Z,) = Syl, (Z2 % Z,) is aset of g*
points, which is as a topological space a wedge of g” —1 spheres S°. This fact is implied
by diagonal multiplication acting fixpointfree on N \ {0} and Cy(Z,) = Ny(Z,). As
the intersection of two different maximal elementary abelian subgroups is Z(G), every
A € A,(G), 7, is contained in a unique maximal elementary abelian subgroup. Thus
by the Fiber Lemma, Proposition 2.5, A, ( (—;)>Z(C) is homotopic to a set of pP~2 + 1
points, that is, homotopic to a wedge of p”~? spheres S°. Hence the third summand
is ((gF — 1) - 8% % (pP~2. 8% =~ (¢ — 1) - p»~2 . S' and the claimed formula is
proved. O

Using Proposition 4.2 one also recovers the formula for the Steinberg module for
the preceding example given in [17]. For p = 2 one additionally obtains that the short
exact sequence used by Segev and Webb [17] splits.

The second example serves as a counterexample to the assumption that if A,(G)
is homotopic to a wedge of spheres of dimensions i}, ..., then foreach1 <j <
there is a maximal elementary abelian p-subgroup of order p%*'.

EXAMPLE 5.2. Let P be the group of all upper triangular 3 x 3 matrices over a
finite field [, of characteristic p 3 2, that is P is a Sylow p-subgroup of GL;(F,»).
Suppose that P acts faithfully (as a group of automorphisms) on a solvable p’-group N.
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Then A, (G) is homotopic to the wedge of spheres of dimensions » and 2n — 1 and,
for n > 1, in both dimensions there is at least one sphere.

PROOF. Since p > 2 all elements of G = P have order p. The center Z of P
is the set of all matrices (a;) with a); = 0 = a,. It is contained in every maximal
elementary abelian subgroup. P/Z is isomorphic to ﬂ:f,,. and the maximal elementary
abelian subgroups of P correspond to the one-dimensional F,.-subspaces of P/Z;
each two of them intersect in Z. Hence Theorem 1.1 and Remark 3.4 yield

Ap(G) = A, (G)oziy * A,(N x 2) v \[ A,(NA),
AeP

where & denotes the set of 1-dimensional [F,.-subspaces of P/Z. By Lemma 3.3
the second summand has the homotopy type of a wedge of (2n — 1)-spheres. Again
by the Fiber Lemma, Proposition 2.5, A ,,(C_;)>Z((-;) is homotopic to the wedge of p”
spheres S°. As Lemma 3.3 implies that A,(N x Z) is homotopic to a wedge of
(n — 1)-spheres, the claim is showed. O
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