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Abstract

Relying upon an original (country-sector-year) measure of robotic capital (RK), we investigate the degree
of complementarity/substitutability between robots and workers at different skill levels. We employ non-
parametric methods to estimate elasticity of substitution patterns between RK and skilled/unskilled labor
over the period 1995-2009. We show that: i) on average, RK exhibits less substitutability with skilled
workers compared to unskilled workers, indicating a phenomenon of “RK-Skill complementarity”. This
pattern holds in a global context characterized by significant heterogeneity; ii) the dynamic of “RK-Skill
complementarity” has increased since the early 2000s; iii) the observed strengthening is more prominent
in OECD countries, as opposed to non-OECD countries, and in the Manufacturing sector, compared to
non-Manufacturing industries.
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1. Introduction

The rapid proliferation of robotization and automation over the past two decades is considered
one of the most pressing challenges for the future of workers and their societal integration (e.g.,
Ford, 2015; West, 2018; Susskind, 2020). Among the major concerns voiced at academic, policy,
and political levels is the potential escalation of income inequality among various types of workers.

While this concern echoes the computerization process of the late twentieth century, the
advent of artificial intelligence, digital technologies, and robotics in the labor market introduces
unique features. This has prompted expressions such as “Is this time different?” (e.g., Mokyr et al.
2015; Furman, 2016; Estlund, 2021). Some scholars even advocate for robot taxation (Costinot &
Werning, 2020; Guerreiro et al. 2022).!

In general, the widespread increase in the utilization of skilled labor/workers (hereinafter
referred to as S), relative to unskilled labor/workers (hereinafter referred to as U), is well doc-
umented. For instance, the average hours worked by S increased by 6% in OECD countries during
the 1995-2005 period, while hours worked by U in the same period dropped by 7%. Moreover,
the skilled-to-unskilled labor ratio has been growing in the World Input-Output Database, WIOD,
(Timmer et al. 2015) countries according to Battisti et al. (2022).

From a theoretical perspective, various frameworks have addressed this phenomenon. The
“race between technology and education” framework, pioneered by Tinbergen, (1974) and further
explored by Goldin & Katz (2009), Acemoglu & Autor (2011), Autor et al. (2020), among many
others, highlights the natural replacement of routine and repetitive tasks by technology, while
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more abstract duties requiring higher education are inherently more complementary. Griliches
(1969) discusses how the introduction of new technologies in production could lead to adjust-
ments in the relative demand for different labor skills, which, in turn, are reflected in their relative
wages. In a dynamic general equilibrium model incorporating investments in both robots and tra-
ditional capital, Berg et al. (2018) state that automation can have positive effects on growth while
increasing income inequality. Similarly, Moll et al. (2021) argue that automation may exacerbate
inequality in a model linking technology to personal income and wealth distribution. In the same
vein, the growth model of “directed technical change”? proposed by Hémous & Olsen (2022) sug-
gests that machines complement S and replace U, thereby intensifying wage disparities through
stagnating wages for U.

The contributions to understanding the divergent impact of technological progress on different
types of workers have been primarily focused on two strands of literature, driven by the well-
known challenge of jointly identifying technological progress and the elasticity of substitution
(EoS) in production functions with both technical progress and possibility of substitution among
inputs, like the generalized constant elasticity of substitution (CES) of David & Van de Klundert
(1965) — a problem pioneered by Diamond et al. (1978).

A substantial body of work centers on skill-biased technical change, SBTC, (Katz & Murphy,
1992) and the more recent routine-biased technical change, RBTC, (Autor et al. 2003). In the
latter framework, the “hollowing out” effect of automation leads to the disappearance of jobs
requiring a well-defined set of repetitive tasks, typically assigned to middle-skilled workers.> A
documented “polarization process” from the 1980s reveals employment gradually clustering at
the tails of the occupational skill distribution (see, for instance, Acemoglu & Autor, 2011). For
instance, Jaimovich et al. (2021) illustrate how the likelihood of working in routine occupations
decreased by roughly 16% between the pre-polarization and post-polarization eras.

Within the broader literature on the asymmetric effects of technological progress, this
paper hones in on the specific aspect of robotization, examining the extent of complementar-
ity/substitutability between an original measure of robotic capital (hereinafter referred to as RK),
derived from data on installed industrial robots, and workers at different skill levels.

The alternative approach investigates varying degrees of substitutability of skills with (general)
capital, as seen in works such as Griliches (1969), Fallon & Layard (1975), Duffy et al. (2004),
and Henderson (2009).* In this respect, empirical analysis generally supports the “capital-skill
complementarity” hypothesis (i.e., between capital and S).

However, a further body of literature has emerged investigating the complementarity hypoth-
esis with specific types of capital. For instance, Krusell et al. (2000) disaggregate capital into
structures and equipment, finding the latter to be less substitutable with S. In a similar vein, focus-
ing on developing economies, Raveh & Reshef (2016) find that only R&D capital is complementary
to S, while less innovative capital is complementary to U. Likewise, Taniguchi & Yamada (2022)
and Eden & Gaggl (2018) report similar results for ICT capital in a panel of OECD countries and
the US, respectively. Moreover, Caselli & Manning (2019) demonstrate how, under the assump-
tion of a reduction in the relative price of investment goods driven by technological progress,
capital return can drop, thereby generating higher returns for labor.

Our study aligns with the aforementioned literature strand by focusing on industrial roboti-
zation. While the extant contributions typically emphasize “robot density” (often measured as
the ratio of the number of robots to hours worked or employment) and its differential impact
on various workers, our paper engages in a formal analysis of the EoS. Specifically, this study
represents the first attempt, to the best of our knowledge, to measure the extent of complementar-
ity/substitutability between an original measure of RK and workers at different skill levels. By
focusing on this aspect, we contribute to understanding how different types of labor interact
with advanced forms of capital in the production process. Consequently, our work falls within
the strand of literature that examines the substitutability between production factors, specifically
robotic capital versus skilled and unskilled workers.
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Macroeconomic Dynamics 3

Our empirical approach enables us to estimate EoS patterns between RK and S on one hand
(denoted as org,s), and between RK and U on the other (denoted as ogk,u). This provides us with
the capacity to draw conclusions regarding the impact of the robotization process on the % In
addition, it sheds light on whether the sign of such impact aligns with the previously documented
country-sector tendency of increasing the % or deviates from it.

The primary analysis leverages information on installed industrial robots, sourced from the
International Federation of Robotics (IFR), which is integrated with WIOD data. This integra-
tion allows us to construct a country-sector-year measure of RK covering 35 countries and 17
industries over the period 1995-2009. According to this measure, the share of RK has increased
by approximately 40% during the years under investigation.

The country-sector-year measure of RK is then utilized, in conjunction with corresponding
WIOD information on labor skills, to estimate the dynamics of the country-sector patterns of
ork,s and org,y from 1995 to 2009. While this would be a challenging task in a parametric setup,
we rely on recent advances in nonparametric analysis, particularly using local polynomial esti-
mation. Such an approach allows for direct pairwise comparison between the two elasticities at
the country-sector level throughout the entire period under consideration. This provides us with
the ability to study the extent to which the “RK-Skill complementarity” hypothesis, positing that
robotization is more complementary (less substitutive) to S (i.e., ork,u > Ork,s) is supported by
the data. In so doing, we add to the ongoing debate on whether robotization contributes to or
opposes the documented upward dynamics in % over the last decades.

Overall, our results support the “RK-Skill complementarity” hypothesis.” Specifically, we
demonstrate that: i) robotic capital exhibits orx s < ork,u on average; ii) this tendency strength-
ened over the first decade of the 2000s; iii) the increase has been more pronounced in OECD than
in Non-OECD countries (where the increase mainly occurred through a reduction in org.s), and
in Manufacturing compared to Non-Manufacturing industries. In general, the dynamics of com-
plementarity appears heterogeneous throughout the period under consideration. At the end of the
’00s, evidence against “RK-Skill complementarity” is still found in 28% of cases (down from 50%
in the second half of the *90s). This indicates a consistent pattern of greater relative substitutability
of U with respect to RK.

The exposition unfolds as follows. Section 2 briefly illustrates the data and our RK measure.
Section 3 sets up the empirical framework. Section 4 reports our analysis and discusses the main
results. Section 5 presents robustness checks and a broad validation exercise, mainly focused on
comparisons with parametric estimates, also addressing the role played by price and productivity
dimensions in determining the estimated EoS patterns. Finally, Section 6 concludes.

2. Data

Our analysis builds upon an integration of data on robots, sourced from International Federation
of Robotics (2005, 2019), with information on worker types, capital assets and value-added, pro-
vided by WIOD (2015).% The IFR-WIOD merged dataset is used to obtain a measure of RK (total
capital is decomposed into its robotic and non-robotic components) covering 35 countries and 17
industries spanning the period 1995-2009 (8,217 observations), due to the missing information
and/or coverage at 2-digit level on skill groups in the new WIOD releases, as well as the unavail-
ability of original industrial robot prices for a number of economies (i.e., different from the US).

For data consistency, we also merge International Federation of Robotics (2019) with infor-
mation collected from EU KLEMS (2009), obtaining a smaller dataset of 2,843 observations (15
countries, 17 industries, 1994-2005) which, however, allows us to decompose capital accumu-
lation into four, instead of two, components: robotic, non-robotic, ICT, and other capital (the
detailed coverage is reported in Section C of the Appendix).

Differently from the past automation/robotization literature that uses a “robot density” vari-
able, relying on crude stocks of robots (weighted by workers), our main indicator of interest is
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a novel RK value, which is specifically designed to be used within the framework of produc-
tion function estimations, and built upon two main elements: the prices and stock of industrial
robots. It is obtained as follows (see Graetz & Michaels (2018), for a similar methodology). As for
the industrial robots, information on the number of operating robots and deliveries (i.e., newly
installed robots in the year) is retrieved from “World Robotics: Industrial Robots and Service
Robots” (International Federation of Robotics, 2019), and used to compute the robot stock at
time f, for each country-sector pair, through the perpetual inventory method assuming a depre-
ciation rate of 10 percent.” Specifically, we calculate Rfi)t = Rg’, +(1-4 )Rfi,tq’ where ¢, i, and ¢
represent country, industry, and year, respectively; RS and RP denote, respectively, the stock and
deliveries of robots, whereas § is the depreciation rate. Consequently, RK, is obtained as:

ci,t
K
ci,t
where DX is the (total) capital deflator, drawn from WIOD (2015) or EU KLEMS (2009), and R”
represents the (country-specific) average unit price of industrial robots, which has been manually
collected from several annual IFR reports.® It is worth noting that IFR provides robot prices (in
current thousand dollars) only for Japan, US, Germany, Italy, Republic of Korea, United Kingdom
and France for a limited number of years. The procedure to define and assign the most appropriate
robot price for the other economies in our samples follows a criterion of geographical and eco-
nomic proximity. Specifically, robot prices for economies with missing data are imputed relying
on the average available price of countries within the same continent. The detailed description of
this procedure is reported in Section A of the Appendix. While this approach may be more suitable
for OECD countries, it is important to acknowledge that: i) these countries constitute the majority
of our sample, and ii) the nonparametric estimation framework employs the ratio of production
function derivatives, effectively smoothing the potential measurement errors by weighting the EoS
numerator (i.e., the S set) in relation to the denominator (i.e., the U set).

Furthermore, from WIOD (2015), we draw data on: Total capital (TotK), allowing us to obtain
non-RK as NRK;; = TotK, s — RK_;, as well as information on high- (i.e., S), medium- and low-
skilled workers (i.e., U), expressed in terms of hours worked, hourly wages, hours and income
shares, depending on the specific estimated models.” Ultimately, from EU KLEMS (2009), we
also collect information on ICT capital, IK, which allows us to calculate the “other” capital stock
as OK.js = TotKiy — RK;is — IK;i¢. RK and all variables used throughout the empirical analysis
are expressed in real terms, as PPP-adjusted 2005 international dollars, using the PPP conversion
factor from Inklaar & Timmer (2014). Detailed descriptive statistics are reported in Section D of
the Appendix.

RP %« RS
RK,; = T

2.1 Robotic capital penetration

Similarly to what happened for the diffusion of computers in the ’80s and early "90s (see, for
instance, Brynjolfsson, 1993), the spread of robots occurs through increasing quantities and
decreasing prices. This is evident in Figure 1, which reports the evolution of number of robots
(panel (a)) and robot prices (panel (b)) in the US (the only country for which IFR provides a longer
time-series on prices), also in relative terms with respect to employees (panel (c)) and wages (panel
(d)), respectively. In particular, the measure reported in panel (b) of Figure 1, basically an indica-
tor of “robot density,” points to a 90% increase, alongside with a decrease of approximately 80%
in the unit price of robots, relative to the price of labor (i.e., average wages, in panel (d)), during
the years 1995-2009.

In Figure 2, we compare the time evolution of our RK variable with that of other forms of
capital (including IK, OK and TotK), provided by EU KLEMS (2009) for a subset of countries
and up to year 2005. With the exception of ICT capital (IK, which does not include robots),! the
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Figure 1. Robot diffusion, 1995-2009 and 1995-2018, USA.
Elaboration on IFR and WIOD data.

trend of RK has been much more pronounced than OK and TotK.'! This provides a clear picture
about the strength of penetration of automation and digital technologies within the production
process. However, Figure 3 shows how the average share of RK (with respect to total capital) in the
period is in general quite low: about 2.5-3% in Japan, Spain, Italy and Germany, and particularly
in wood products, electronics, and transport equipment industries (labeled as Wo, El and Tr,
respectively).!? In any case, this does not diminish the relevance our analysis, whose focus is on
the type of patterns followed by the extent of complementarity/substitutability between robots and
different types of labor over the period under consideration, in order to shed light on the expected
sign of the labor impact of robotization, in perspective.

In this respect, it is noteworthy that, despite a lower reported RK share for the US compared to
many other developed countries over the 1994-2005 period, a dramatic expansion in this indicator
(growing by more than four times) is observed in the US economy from 2006 to 2018. This was
presumably due to a halving of the average unit price of robots (see panel (c) in Figure 1). Since
the share of RK has recorded an average value of about 1% (with peaks of 3% in the computer,
electronics, and optical industry, and 5% in the transport equipment sector), while for IK (whose
price level declined by about 40%) an average share of approximately 8% is documented, data
(available upon request) point to a 8:1 proportion between IK and RK growth in the US. This is
also evident in Figure E1 in the Appendix, reporting the evolution of our RK measure for a subset
of countries and sectors.

3. Estimation strategy

To assess the skill complementarity of RK, we estimate the (country-sector-year) ork,s on the one
hand, and ogk,u, on the other hand; this allows us to compare the dynamics of the two elasticities
from the second half of 90s to the end of ’00s, relying on our IFR-WIOD dataset. As a measure of
the “degree of curvature” of the isoquant, the EoS between two factors embodies information on
how technically easy is to substitute a factor by another. In carrying out the empirical analysis, we
use the recently developed local polynomial estimation (Li & Racine, 2007; Hall & Racine, 2015),
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in the spirit of Henderson (2009), who applied these techniques in the evaluation of capital-skill
complementarity from a cross-country perspective. Particularly, we consider the following frame-
work (see Battisti et al., (2022), for an application to two factors production function estimation):

Yir= m(NRKci,b RK.it5 Scits Ucips dei» dy), (D

where discrete variables d; and d; represent, respectively, a country-sector effect and a time effect.
The advantage of following this approach is twofold. First, incorporating these effects within a
parametric setting would quickly reduce degrees of freedom. Conversely, in a nonparametric
framework, we can employ smoothing techniques across both time and sectors to leverage
neighboring cells for localized information (see Li & Racine, 2007). Second, it enables us to avoid
making any assumptions in terms of the functional specification of the production technology.!®

Equation (1) is estimated using local polynomial least squares (LPLS). Common examples
include local constant and local linear. However, our primary focus in this context is less on
directly estimating m( - ) and more on the estimation of various orders of derivatives of the func-
tion (i.e., the first and second order). Therefore, we employ a higher-order polynomial to directly
estimate the derivatives of interest. Specifically, we make use of a local quadratic estimation with
data-driven bandwidth selection. Considering that we are estimating derivatives of an unknown
smooth function, the data-driven bandwidths are adjusted to account for the optimal rate differ-
ence, as suggested by Henderson et al. (2015) (see Section B of the Appendix for methodological
details).

Among possible EoS specifications, we rely on the “Morishima EoS,” which can be viewed as
a multifactor extension of the Hicks EoS (Blackorby & Russell, 1981). In a two-input context,
the Hicks EoS measures the percentage change in the factor ratio associated with a 1% change
in the marginal rate of technical substitution (i.e., the marginal productivity ratio) between the
two inputs. The Morishima multifactor extension is defined, for any two inputs, at given values of
output and keeping constant the EoS with respect to all the other production factors. The higher
the value, the higher is the substitutability between the two inputs. While two inputs are said to
be substitutes when the estimated values are positive and complements when values are negative
(i-e., if o’V < 0, the amount of U will grow more than proportionally to RK as a consequence
of an increase in the marginal productivity of RK), we are mainly concerned with the inequality
between 0’55 and o RKU: whenever ORK,S < Ork,U> we conclude that RK is more likely to substi-
tute for U than for S or, alternatively, more likely to complement with S than with U, depending
on whether the estimated elasticities are positive or negative — i.e., “RK-Skill complementarity.”
This circumstance results in an increasing % ratio, but, not necessarily a decreasing amount of U,
at given levels of Sand Y.

Formally, the EoS between input g and [ for the multiple-input production technology in
equation (1) is defined as

m; H m; H
ol — M Tal )

xg |H  x |H]

where x; and x; denote the used quantities of inputs g and I; m; and m, are the first partial deriva-
tives of m with respect to q and [; |[H| represents the determinant of the bordered Hessian matrix;
Hy is the cofactor of the element m, in H, with m,; indicating the cross-partial derivative of m.

A well-known problem in a parametric equivalent of a production function estimation like
Equation (1), dating back to Marschak & Andrews (1944), is the “simultaneity” between the choice
concerning the amount of inputs and the (unknown to the econometrician but known to the firm
when the decision is made) productivity (or technological) component of the production function.
While simultaneity poses a challenge in firm-level estimation, its nature at an aggregate level (i.e.,
country-sector) is less straightforward to discern — in terms of how firm knowledge of produc-
tivity affecting input choices may be analogously applied to the behavior of the entire industry
to which it belongs. This is tantamount to stating that the diverse fixed effects in nonparametric
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Figure 4. Kernel distribution of the estimated median Morishima EoS, 1995-2009.

estimation entirely capture productivity heterogeneity at the sector level. Equivalently, it assumes
that any productivity innovations are observed subsequent to input decisions (at the sector level),
thereby ensuring no correlation with input decisions.!* Moreover, within this setup, the EoS is
derived through estimating “relative” gradients. Any potential simultaneity bias, if present, would
impact both the numerator and denominator, effectively canceling out when ratios are taken.
However, we also recognize that the presence of endogeneity bias is serious and so we must inter-
pret our results with caution. Future research in this area could assess the impact of endogeneity
bias through productivity shocks and the adoption of robotic capital, similar to the large literature
on firm-level productivity (Olley and Pakes, 1996; Ackerberg, Caves and Frazier, 2015; Gandhi,
Navarro and Rivers, 2020, etc.).

4. Results

In Figure 4, we show the kernel densities of estimated median ork,s and ork,u, by country and
by industry. We cut 10 percent of observations on the tails of the overall distribution to exclude
potential outliers (subsequent analysis is based on such distribution).!> As can be observed, in
both panels, the distribution of ork,s — the solid line — is located to the left, with respect to that
of opk,u, pointing to (relative) overall higher complementarity (or lower substitutability) between
RK and S. Ultimately, we find that in approximately 60% of cases, ork,s is lower than org, 7 In this
regard, Figure E2 in the Appendix reports the distribution of both ork s and ork,u values over the
entire sample.

Ideally, we would like to test that ogk,s is lower than ork v for all observations. This entails the
hypothesis:

Ho:ork,s <orku VX,
against the alternative that
Hi:ogrk,s > ork,y for some X,

where X here is the complete vector of inputs. This is a difficult testing problem as it requires a
comparison of each pair of estimates of EoS of a rather complex nonparametric object. To our
knowledge, a general one-sided test of nonparametrically estimated objects does not yet exist.
It is common in tests of, say, statistical significance or correct functional form that a weighted
test statistic is deployed to eliminate the random denominator that arises with nonparametrically
constructed obejcts. However, our situation here is much more difficult as the ‘denominator’ of
ork,s (or its difference with org,7) is not obvious or known.
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To address this testing challenge, we employ a two-pronged approach: a Kolmogorov-Smirnov
(KS) test of first-order stochastic dominance and a graphical analysis of the EoS dynamics over
time. The KS test examines whether the probability of observing a given level of ork,s is higher
than an equally sized value of org,y. While not ideal, it provides a step toward establishing
that RK is more substitutable with U than with S labor. We apply such a test to the entire
period and three distinct sub-periods (1995-1999, 2000-2004, 2005-2009). The results reveal
an evolving pattern: for the full period and the latter two sub-periods, we fail to reject the null
hypothesis that opg,u first-order stochastically dominates org,s (p-values of 0.4212, 0.6603, and
1, respectively). However, for the initial sub-period (1995-1999), we reject the null hypothesis
(p-value of 1.649¢-06).

To complement the statistical analysis, we exploit our nonparametric estimates to visually
examine the EoS dynamics. Figure 5 presents the (normalized) cumulative distribution functions
(CDFs) of the two EoS for the three aforementioned sub-periods: at the beginning (1995-1999),
in the middle (2000-2004), and at the end of the period (2005-2009). Additionally, the last panel
displays the distribution of the difference between ork,s and ork i across these three periods.'®
The graphical analysis corroborates and extends the insights from the KS test. In fact, the overall
trend suggests that the relationship between the two distributions has evolved substantially over
time: initially, they intersected, indicating a lack of clear dominance. However, toward the end
of the period, the distribution of ork,u exhibits a higher mean and lower variance compared to
ORK,s> consistent with the failure to reject stochastic dominance in later periods.

To sum up, this dual approach offers evidence of an increasing tendency for RK to be more
substitutable with U than with S labor over the studied period, particularly after 2000.

This trend is confirmed by the evolution of the share of cases in which ork,u > Ork,s: 50% in
the period 1995-1999, 60% over the years 2000-2004, and 72% in the period 2005-2009%.”

Global trends are reported in Figure 6.!® Quite interestingly, we observe that the two EoS
exhibit a tendency to cross at the end of the 1990s and diverge in the early 2000s, with an inversion
at the end of the period.

To delve more into the country-sector dimension of this aspect, Figures 7 and 8 report some
disaggregated patterns. Namely, Figure 7 shows how the overall tendency in Figure 6 differ-
ently mirrors OECD and Non-OECD evolutions. In particular, while in the OECD countries the
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Figure 6. EoS estimated patterns, 1995-2009, normalized median values.
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Figure 7. EoS estimated patterns in selected (groups of) countries, 1995-2009, normalized median values.

widening gap between ork,u and opk,s is driven by a substantial increase in the former, we doc-
ument an important reduction in org,s in Non-OECD countries, with a higher complementarity
between RK and S detected (i.e., ork,s < 0), especially at the end of the period. Within the OECD
group, European countries’ patterns look very similar to the US, in terms of timing of sign change
of the difference between ogrk,y and oggk.s.

At the sectoral level (see Figure 8), the divergence in Manufacturing started before and seems to
last longer, compared to Non-Manufacturing. The two sectors more interested by the robotization
process (transport equipment and electrical and optical equipment industries, according to our
RK measure) display different trajectories: unskilled are less complementary than skilled since the
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Figure 8. EoS estimated patterns in selected (groups of) sectors, 1995-2009, normalized median values.

beginning of the period (i.e., ork,u always stands above ogk,s), with an increasing trend in the
whole first decade of 2000 (without reversal) in electrical and optical equipment sector; the initial
situation was opposite in the transport equipment industry.

The above dynamics are not surprising. In fact, as pointed out by Autor (2015), the years at
the turn of the new millennium coincided with a dramatic drop for those workers employed in
“production” and occupied as “operators/laborers” — the most vulnerable to robotization and
included, throughout our empirical analysis, within the U category. Moreover, such a pattern
retraces the evidence uncovered by Koch et al. (2021) in Spain, where robot adoption increased
rapidly after 1998. Finally, Acemoglu and Restrepo (2020) argue that the distinct impact of robots
from other technologies started to appear after the 1990s. By and large, this phenomenon may be
interpreted as a hint of an increasingly higher relative complementarity of S during the process of
development (and of robotization).

4.1 Statistical Inference

Given the highly nonlinear nature of our estimated EoS, an asymptotic variance is unlikely to
be of empirical value. Rather, we rely on a nonparametric bootstrap to construct standard errors
for each of our EoS estimates. To do this, we use a two-point wild bootstrap procedure with 500
replications (see, Battisti et al. (2022), for details on bootstrapping in this framework). We keep
the bandwidths fixed across the replications to reduce noise stemming from the estimation of the
smoothing parameters.

In our benchmark analysis, conducted over 7, 504!° country-sector pairs, we find:

« about 37% of estimates for ok s are statistically significant at least at the 10% level;
« about 45% of estimates for ok, v are statistically significant at least at the 10% level.20
Although these values may appear prima-facie low, the nonparametric point estimates cannot

be simply compared with the statistical significance of coefficients estimated via OLS (a mean
estimator). A more proper comparison within similar works (such as, Henderson (2009), who
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Table 1. Estimated EoS: different depreciation rates and different types of capital. Median values

RK TotK

§=10% §=5% §=15% §=10%
ORK,S ORK,U ORK,S ORK,U ORK,S ORK,U OTotk,S  OTotK,U
All 0.000 0.163 0.000 0.167 —0.003 0.187 —0.002 0.015
Groupochuntnes
© Anglo-saxons  —0.011  0.039 —0.024  0.065 —0.012  0.0583 —0.014  0.000
]
e Europe S
‘Non-Europe  —0.028  0.001 —0.035  0.015 —0.054  0.006 —0.001  0.003
]
Ma]or/ndusmes OO S eSS e o
B .E.[é.c.t‘rbi.célu&.b.pfiéa.[ ]
e TransportEqu|pment ]
ByYear o siutsosb B bctood bt ot sbutuior st e B sdssutomm ettt

Notes: Time and country-by-sector fixed effects included. The cases in which the “RK-Skill complementarity” and capital-skill comple-
mentarity hypotheses holds true are reported in bold.

Anglo-saxons: Australia, United Kingdom, USA. Asian: Indonesia, India, Japan, Republic of Korea, Turkey.

Europe: Austria, Belgium, Bulgaria, Czech Republic, Germany, Denmark, Spain, Estonia, Finland, France, Greece, Hungary, Ireland, Italy,
Lithuania, Latvia, Malta, Netherlands, Poland, Portugal, Romania, Russia, Slovak Republic, Slovenia, Sweden.

Non-Europe: Australia, Brazil, Indonesia, India, Japan, Republic of Korea, Turkey, USA.

OECD: Belgium, Denmark, Germany, France, Netherlands, Sweden, Finland, Austria, Greece, Spain, Italy, Portugal, Ireland, United
Kingdom, Czech Republic, Estonia, Hungary, Lithuania, Latvia, Poland, Slovak Republic, Slovenia, Turkey, Australia, Japan, Republic of
Korea, USA. Non-OECD: Bulgaria, Brazil, Indonesia, India, Malta, Romania, Russia.

examined the capital-skill complementarity from a cross-country perspective, with a single type
of capital and no sector controls), reveals a much higher share of statistically significant nonpara-
metric EoS estimates in our case. In fact, the present analysis relies on a sample mainly containing
OECD and/or developed economies, observed over a shorter time span, and is broken down by
sector. Further, we detect that the proportion of statistically and economically significant EoS esti-
mates increases when we consider observations with nonzero RK. Specifically, this share peaks to
nearly 70% when focusing on these observations, implying a higher confidence in estimations for
developed countries as opposed to emerging economies, which utilize a much lower stock of RK.

5. Robustness and broad validation

5.1 Different depreciation rates and different types of capital

The robustness of our results is first of all checked by changing the depreciation rate used in the
construction of our RK stock. As a further investigation, we repeat our analysis replacing our RK
measure with total capital in order to understand to what extent our findings can be thought of
to be driven by the estimation methodology.?! Table 1 synthesizes all the above checks focusing
on some country classifications, the two major industries in terms of RK intensity, as well as years
at the beginning, in the middle and at the end of the period. Benchmark results (i.e., when RK is
calculated assuming § = 10%) are reported in the first two columns to ease comparison. In the vast
majority of cases, the hypothesis of a relatively lower (higher) substitutability (complementarity)
between RK and S, as well as between TotK and S, seems consistent with the data.

Downloaded from https://www.cambridge.org/core. IP address: 3.139.88.57, on 25 Nov 2024 at 06:12:53, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51365100524000567


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1365100524000567
https://www.cambridge.org/core

Macroeconomic Dynamics 13

OECD

0 \_’_’/

95% Clo IK,S
— olKS
-3 95% Cl o IK,U
— olKU
1995 2000 2005
Year

Figure 9. Estimated patterns of oycs and oyx,y, OECD, 1994-2005.

Finally, a key result of our analysis is the unraveling of a diverging pattern driven by increasing
ork,u in the first decade of 2000 in the OECD country-group (see Figure 7). One might wonder
whether such tendency can be a some mechanical consequence of RK accumulation. To check
whether this is the case, we re-estimate the OECD trend using IK, relying on the EU KLEMS
(2009) sample, in place of RK (that is estimating ox,s and ok, instead of org,s and ork,v).
In so doing, we exploit the remarkable growth of ICT capital displayed in Figure 2. Since this
type of capital does not include robots, a different dynamics can be expected. Indeed, Figure 9
reports decreasing substitutability with respect to both S and U, with the former steadily and
steeply decreasing over the whole period, with an acceleration in the first decade of the cen-
tury. This seems to be in line with previous “ICT capital-skill complementarity” studies such as
Eden & Gaggl (2018) and Taniguchi & Yamada (2022), providing a further broad validation of our
nonparametric framework with respect to more traditional parametric settings.

5.2 Price and productivity effects

In principle, the above patterns can be driven by two order of forces. First, decreasing robot
prices, coupled with non-decreasing skill premia, might induce a more intense use of robots —
that is, robot prices might have fallen, relative to U’s wage, more than S’s wage did (i.e., a price
effect). Second, the relative increase in robots usage might be pushed by robots’ increased ability
to perform manual and/or routine tasks (i.e., a productivity effect).

The first force relies on the assumption that U (and their manual tasks) are easier to replace and
can be linked to the directed technical change hypothesis (Acemoglu, 2002). The second effect can
be intended as an equivalent of Moore’s Law applied to RK, so that even without an increasing
diffusion, new robots could be able to perform more tasks than previous ones.??

Graphical inspection seems to suggest that both effects have been at work. As for the price
effect, the declining medium-run trend of robot prices, relative to the (un)skill premium (the U/S
wage gap) in Figure 10 provides a first, strong incentive to replace U with robots.

Additionally, the marginal product of RK sharply increased over the same years, as we doc-
ument in Figure 11; thus, also the productivity effect might have triggered the substitutability
process.
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Figure 11. Evolution of marginal product of robotic capital, 1995-2009.

To more formally inquire into these relationships, we regress the (nonparametrically) esti-
mated EoS on two proxies for the price and productivity effects.??

a,i;=ﬂ1(

1% —
—U) + B MPY + o+ i+ T+ € (3)
WS j)t
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where x ={(RK, S) or (RK, U)}; Ws and Wy are the wage of S and U, respectively; MPRK =
denotes the estimated marginal product of RK; j is the country-sector index. Estimation of this
regression is straighforward, however, we have nonparametrically generated regressors on both
sides of the equation (see Mammen, Rothe and Scheinle, 2012, Chu, 2023). This necessitates use
of bootstrapping to construct appropriate standard errors.

It is worth noting that we interpret this relationship as a simple correlation, due to the lack of
exogenous sources of variation. Therefore, we cannot claim any causal effect in this exercise, given
the presence of reverse causality between EoS and prices/productivity.’* A statistically significant
negative (positive) /§ , when Grg.s (Ork,u) is used as dependent variable, would suggest the price
(i.e., B1) and/or the productivity (i.e., 82) to play a role.

Results in Table 2 show that the estimated partial correlations have the expected signs, that is,
negative (positive) in the left (right) panels, implying higher complementarity of S (substitutabil-
ity of U), with increasing relative costs of U and higher marginal product of RK. By including
country—, industry— and time-controls, the magnitude is reinforced and the statistical signifi-
cance of the estimated coefficients is unaltered. These findings turn out to be robust when RK is
computed using different depreciation rates.

6. Conclusions

The growing concerns stemming from the extensive use of automation in production are prompt-
ing scholars to seek a better understanding of its implications for the labor market. Additionally,
the pressure from international shocks necessitating a complete rethinking of the production pro-
cess is fueling a heated debate on whether robots and other forms of automation will favor skilled
workers (S) at the expense of unskilled labor (U).

In this paper, we contribute to the debate by investigating the extent of complementarity and
substitutability in the productive processes between robotic capital (RK) and workers of different
skill levels (high-skilled versus medium-low-skilled).

We estimate country-sector Elasticity of Substitution (EoS) patterns between RK and labor
inputs. The main results of the analysis can be summarized as follows:

« Overall evidence of “RK-skill complementarity,” with ork s < ork,u, suggesting that RK
deepening proceeds hand in hand with increasing labor ratios (i.e., % ). However, it is not
always the case that robotization results in shrinking U and/or S.

A certain degree of heterogeneity at the country-sector level.

o The dynamic pattern of elasticities shows as the difference between orgk,y and ogk,s has
grown substantially over the first decade of 2000 (indeed, while often lower than ogk s at
the beginning, ork,u ends up being much higher in 2009).

« Both the difference and its increase over the period have been more pronounced in OECD
than in non-OECD countries (where the increase is mainly driven by shrinking ork s) and
in Manufacturing with respect to Non-Manufacturing.

A possible explanation for the existence of a turning point at the end of the 90s, in which the
two estimated EoS cross each other with the ork,y growing more than the ok s, can be associated
with the fact that robots have increased their ability to reproduce complex tasks.

By and large, the contribution to increasing the % ratio raises issues linked to unemployment
and/or wage pressures for vulnerable segments of the labor market. In this respect, policymak-
ers face numerous challenges. By shedding light on understanding the labor market asymmetries
associated with the ongoing process of technological change, especially in manufacturing indus-
tries of advanced and transition economies, our study highlights how, if, on the one hand,
industrial robots, as a subset of the broader category of automation technologies, turn out to be a
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Table 2. Price and productivity effects (Eq. 3)

Benchmark RK 8§ =5% RK 8 =15%
Dep.Var.:  opk,s ORK,S ORK,U ORK,U ORK,S ORK,S ORK,U ORK,U ORK,S ORK,S ORK,U ORK,U
wo/we  —3070% 13554 8910 16918"* 4520 —0903"*  G5LI™*  6536* 73237 7763  14648"° 10174
T v T T T v
MPRK  —33094" 5051 4760 7900  —2796" —2654°  2047° 443" 281" 3957 4562  8099"*
T T R T I T I T T T
Constant  7.351**  24511** 17766 —31438"" 8671 18281"* —11971"* —14824"* 15108«"  0458' —26951"* —31058"
(5100 (a916)  (2777)  (8384)  (1479)  (4683)  (L992)  (5400) (2731  (5.003)  (3292)  (10346)
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Notes: *p < 0.10, **p < 0.05, ***p < 0.01. Bootstrapped standard errors in parentheses.
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powerful engine of economic growth, on the other hand, they appear to be associated with intensi-
fying inequalities that, far from being trivial in terms of sign and intensity, follow strongly different
patterns across countries and sectors.

We end here by noting there are many directions in which we could extend our analysis further.
First, developing a formal test for size of skill bias through the EoS holds great empirical promise.
Second, investigating the price of RK and its impact on the analysis would provide an excel-
lent robustness check. We have only investigated country-sector pairs with available information,
including those completed through an imputation process, which obviously limits our cover-
age. Collecting and obtaining data for more countries-sectors (and years) would be an important
upgrade. Third, our approach here effectively dealt with human capital stocks by moving middle-
skilled workers into the U group. This made our analysis much easier but also blurs the lines of
the skill level of many workers. It would be worthwhile to consider a three skill level model and
determine how robust our results are.
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Notes

1 A challenging aspect of the current technological progress is its occurrence amidst a series of aggregate shocks: the
2007-2008 economic crisis, the US-China trade war, the Covid-19 pandemic, as well as the recent Russia-Ukraine and Israel-
Palestinian conflicts. In fact, Muro et al. (2020) highlight how “Robots’ infiltration of the workforce doesn’t occur at a steady,
gradual pace” but is “concentrated especially in bad times such as in the wake of economic shocks when humans become
relatively expensive as firms’ revenues rapidly decline.” Generally, these international shocks are thought to amplify the asym-
metric effects of the adoption of new technologies. See, for example, Okyere et al. (2020) and Prettner and Bloom (2020) for
the pandemics, with Leduc and Liu (2020) discussing how pandemic-induced uncertainty about labor productivity may fur-
ther trigger automation adoption. Additionally, Singer (2009) and Fajgelbaum and Khandelwal (2022) explore the case of
armed conflicts. Other authors emphasize the indirect dimension of the relationship, showing, for example, how robotization
can induce re-shoring of economic activity (Bonfiglioli et al. 2022), adversely impacting employment (Faber, 2020).

2 On this point, see, inter alia, Acemoglu (1998, 2002).

3 Additional empirical evidence supporting this trend is provided, among others, by Autor and Dorn (2013), Michaels et al.
(2014), Jaimovich and Siu (2020), and vom Lehn (2020).

4 While causality typically moves from technology to factor accumulation, the complementarity/substitutability argument is
crucial in the discussion of the reverse causality of technology adoption. Originally proposed by Krugman (1979), this argu-
ment suggests that if a productive factor, such as U, becomes less complementary to capital, and there is a higher capitalization
of productive processes, then this is equivalent to a higher opportunity cost for the less complementary factor. In productive
factor markets, this implies greater demand for U-saving technologies aimed at replacing it, as discussed in Alesina et al.
(2018).

5 It is worth noting that, given the focus on the relative use of %, the presence of “RK-Skill complementarity” does not
necessarily imply an absolute decrease in the use of U.

6 Data on operational stock and deliveries of robots are provided by International Federation of Robotics (2019) according
to the ISIC Rev. 4 Industry classification, contrary to ISIC Rev. 3.1 characterizing both the WIOD (2015) and EU KLEMS
(2009) datasets. In order to merge the different coded sources, we make use of a correspondence table to convert IFR data
from ISIC Rev. 4 to ISIC Rev. 3.1 industry classification.

7 As in Graetz and Michaels (2018), to check the robustness of our findings, the RK variable is also constructed using
depreciation rates of 5 and 15 percent.

8 The use of the country-sector-year specific total capital deflator from WIOD (2015) stems from the lack of specific details
on the price level of robots that can be tailored to our sample. On this point, as well as for further information on the IFR
database, see Jurkat et al. (2022).
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9 From a comparative perspective, medium-skilled workers can also be grouped with high-skilled workers. In the literature,
it is quite common to consider high-skilled workers as those with tertiary education, especially in samples like this one,
where most countries are OECD members (e.g. Alesina et al. 2018, Kunst et al. 2022). Empirical works such as Battisti et al.
(2022) show that qualitative results remain largely unchanged regardless of whether medium-skilled workers are grouped
with high-skilled workers.

10 A similar trend is highlighted by Schivardi and Schmitz (2018) for ICT capital in a sample of OECD economies. In our
EU KLEMS sample, the share of ICT capital in total capital recorded an average of about 8.2%, with maxima exceeding 25%
in industries of Austria, Australia, Denmark, Finland, United Kingdom, Slovenia and United States.

11 Inaccordance with the International Standard Industrial Classification of all Economic Activities (ISIC Rev. 4), robots are
grouped under “general-purpose machinery,” specifically under “lifting and handling equipment” and “other special-purpose
machinery.” As these are reported within the broader heading of machinery (i.e., non-ICT capital), robots are not part of ICT
capital, which covers computers and telecommunication equipment. We are grateful to Robert Inklaar for bringing this point
to our attention.

12 Code descriptions of the ISIC Rev. 3.1 industries are reported in Table C2 of the Appendix.

13 See Section F in the Appendix for a parametric estimation.

14 For example, Battisti et al. (2022) find only minor differences between controlling for simultaneity or not in an aggregate
context, by implementing a correction procedure based on a Markov process assumption for the idiosyncratic productivity
shock.

15 It is essential to emphasize that, in contrast to parametric generalized method of moments (GMM) estimation (as dis-
cussed in Section F in the Appendix), this framework does not constrain the EoS to fall within upper and lower bounds.
Consequently, extreme values may influence the average value, leading to either extremely large or small numbers. Therefore,
the interpretation of the results are in relative rather than absolute terms, aligning with the approach in Henderson (2009).
Additionally, the use of medians to convey our results is aimed at ensuring consistency and comparability with other studies
in the literature (e.g., Henderson, 2009; Redding & Weinstein, 2020; Gechert et al. 2022).

16 The first three graphs in Figure 5 are obtained after trimming the distribution of each period of the first and last percentile
in terms of ogk,s and ogk,y; the first and last decile of the distribution of the difference between ork,y and ork,s are instead
dropped in the last graph.

17 These shares change to 50%, 61%, and 65% when the depreciation rate § is set to 5%, and to 49%, 60%, and 63%, when
8 = 15%, thereby confirming the validity of the analysis.

18 To facilitate visual consistency across Figures 6-8, we applied a min-max normalization to the variables. This transforma-
tion scales the data to a common range, while preserving relative relationships among data points.

19 Nonparametric regressions require non-missing values for both the dependent and independent variables, in each
country-industry-year observation, leading to a drop from the original 8,217 observations.

20 With § = 5%, about 33% of the estimates for ork,s and 36% of the estimates for opk,u are statistically significant at least
at the 10% level. With § = 15%, about 39% of the estimates for org,s and 37% of the estimates for ork,u are statistically
significant at least at the 10% level.

21 When using TotK, we find, in the benchmark case with § = 10%: about 45% of the estimates for oryx,s are statistically
significant at least at the 10% level by considering observations with not nil RK (30% if you calculate over the 7,504 total
observations); about 70% of the estimates for ook, u are statistically significant at least at the 10% level (50% if you calculate
over the 7,504 total observations). When RK § = 5%, we obtain about 47% (30% over 7,504 observations) of ogk,s estimates
and about 84% (54% over 7,504 observations) of opk,y estimates that are statistically significant at least at the 10% level.
When RK § = 15%, we obtain about 41% (27% over 7,471 observations) of ogk s estimates and about 71% (45% over 7,471
observations) of ork,u estimates that are statistically significant at least at the 10% level.

22 Moore observed an exponential growth of semiconductor capacity (i.e., the number of components per integrated circuit)
in 1965, with a good regularity, at least until the end of 90s, followed by a slight decline in *00s (Mack, 2011; Schaller, 1997).
For an economic application, see Jovanovic and Rousseau (2002).

23 The problem of additional variance implied by generated regressors back 40 years ago to Adrian Pagan (see, Oxley &
McAleer (1993) for a survey). We use bootstrapped standard errors as a common solution to deal with this issue.

24 As pointed out by Knoblach and Stéckl (2020), the determinants of EoS between capital and labor include, among others,
institutional characteristics (e.g., labor market regulations and unions), monetary policy, and financial system. In terms of
data, these are mostly available at a country level. To absorb such characteristics, we use country and/or sector controls.

25 The specification in (F.1) implies the crucial assumption of treating NRK as completely neutral with respect to different
skill groups. Nonetheless, due to data availability — especially from a macro perspective — and constraints imposed by the
functional forms, there are not many ways to overcome this issue, and such a formulation turns out to be suitable in our case
to test our “RK-Skill complementarity hypothesis.

26 As an extended analysis, we also test the total capital-skill complementarity hypothesis, from a country-industry per-
spective, in the spirit of Duffy et al. (2004). Estimations performed on both the WIOD and EU KLEMS samples generally
confirm the hypothesis of a lower EoS between capital stock and S. Additionally, we also find evidence of the robotic (and
ICT) capital-skill complementarity hypothesis according to a six-factor production function. Results of these specifications
are not presented here for reasons of space, but are available upon request.
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Appendix
A. RK construction: retrieving the unit price of robots

Information on average unit price of robots, needed to obtain our RK measure, is retrieved from
different IFR reports. In particular, prices are computed as the ratio of the turnover of total robot
systems to the number of robots delivered in a specific country. Unfortunately, IFR provides series
of industrial robot prices (in current, thousand dollars) for a few countries only (see, for instance,
International Federation of Robotics (2005). Specifically, unit prices are available for: Japan, US,
Germany, Republic of Korea, United Kingdom and France, from 1995 to 2008. For Italy, robot
prices are available from 1995 to 2006.

To define the average unit price of robots in the remaining countries, we proceed as follows.
For Italy, the 2007 and 2008 prices are computed using the average growth rate of the countries for
which we have original data. For all the other countries, we relied upon geographical proximity,
economic proximity and trade relationships. In particular:

» European countries are assigned the average robot prices of Germany, United Kingdom,
France and Italy;

« American countries are assigned US robot prices;
Asian countries (plus Australia) are assigned the average robot prices of Japan and Republic
of Korea.

In order to obtain the 1995 and 2009 prices, data are smoothed using uniformly weighted
moving averages, with 1 lagged term, 1 forward term and the current observation in the filter.

B. The empirical methodology in details

Local polynomial least squares estimation. Nonparametric kernel methods have the ability to
alleviate many of the restrictive assumptions made in classical parametric frameworks (the use of
CES for example). Consider the canonical nonparametric regression model:

yi=m(x)+u, i=L2...,n (B.1)

where y; is our response (in this case output growth), x; is a vector of g regressors, ¢; is the addi-
tive (mean zero) random disturbance and m (-) is an unknown smooth function. Here, m (-) is
interpreted as the conditional mean of y given x; in a traditional linear in parameters setting it is
implicitly assumed that E (yi|x;) = o + Bx;.

Popular estimation approaches for estimating the conditional mean in (B.1) are local-constant
and local-linear least-squares (LCLS and LLLS, respectively) regression. The intuition behind
these estimators is that they construct a weighted average of y; based on the location of the
covariates. These weights are dictated by kernels. The “local” determination is controlled through

a user defined parameter known as the bandwidth.
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One benefit of LLLS over LCLS is that the slope of the conditional mean is also estimated
directly. This is important for our setting as we are not interested directly in the conditional mean
of growth, but in the slope of the relationship in various dimensions that will allow us to measure
“RK-skill complementarity.” In fact, because we are interested in second derivatives and cross
partials, we need more advanced local smoothing methods to recover these gradients. For this, we
turn to LPLS.

To describe LPLS, we note that we can approximate m around x as:

1 . .
mx)~ Y =(DVm)(xo)(xi — x0)), (B2)
0<ljl<p1 *°
where
d
j=(ts--da)>  =itxeoxgah =Y e
(xi — xo) =(x1; — x10)" X ... X (Xgi — x40 )4,
ok k
0<ljl<p k=0 j1=0 ja=0
jitHia=lil
and
]
DV my(xg) = —2E0)
3. ax’d

Notice that in this formulation, we can allow for an arbitrary order of polynomial for each
different component in x. From here we are interested in the solution to the weighted least squares
problem

nlh |:y1 Z,Béxfz st)]:| ( ;x) (B.3)

in which (- ) is a product kernel function and £ is a bandwidth vector. In this setup, 8¢ denotes
the partial derivative of order j for coefficient k with respect to component s. ~
Define X;; = ((xs, x)b, (i — x5)2, .., (xsi — xs)PS) andZ (X1i» %2 . . . » Xsi). Then, for X; =

X.
(~ ®l )’, we seek the (L + 1) X (Y ps + 1) estimator B given by
Xi Xi

5=XKXX) X KxY (B.4)

Note that our estimates of the functions B,(z) are recovered by ,@(z) = 61;3\ for e; being a (L +
1) X (D ps + 1)-dimensioned vector with the first L 4+ 1 elements being unity and the remaining
(L+1) x Y ps elements being zero.

To make our estimator operational in a mixed data setting, we follow Racine & Li (2004) and
deploy the generalized product kernel function for K( - ).

Sc C __ +C Su Sa
K()=T]* (x" - - ) [Tk Ge = xsha) T TR0 — x%3h,) (B.5)
c=1 ¢ u=1 o=1

e x; —x° 1 1 x; — x° 2 (B.6)
( he ) Vb < he ) ‘
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is a univariate Gaussian kernel function used for each of the S, continuous variables in x;,
1 ifx) —x*=0

(B.7)
hy if xi! — x* #0.

ku(x? —x"hy) =

is a univariate discrete kernel function used for each of the S,, unordered discrete variables in x;,
and

1 lfx;) —xo =0
o]

ko(x? —x%ho) =
ho if x) — x° #0.

(B.8)

is a univariate discrete kernel function used for each of the S, ordered discrete variables in x; (Li &
Racine, 2007). In the above product kernel setup, . is a S.-dimensioned vector of bandwidths
for the continuous variables and h,, and h, are S,- and S,-dimensioned vectors of unordered and
ordered discrete variable bandwidths.

Since we are concerned with the class of second derivatives, we engage in local-cubic (p = 3)
estimation. We deploy least-squares cross-validation (LSCV) to estimate the respective band-
widths. Specifically, LSCV selects bandwidths which minimize

n

LSCV (k) =Y [yi — m—i(x)]’, (B.9)
i=1
where 7i_;(x;) is the leave-one-out estimator of m( - ). The idea of the leave-one-out estimator is
that the conditional mean of y; is estimated without using the observation with the most infor-
mation, x;. In this way, the bandwidths are selected so that the surrounding observations are
providing as much information as possible to assist with smoothing.

C. Countries and industries covered

Table C1. List of WIOD and EU KLEMS countries

Code Country WIOD EU KLEMS
AUS Australia Vi i
AUTAustr|a¢ J
. Belg|um o J YA
e vBuvlgvaﬂrié' s J e
[ \/ :
[ J

e CzechRepubhc s J e . \/
. Germany B \/ : . J _—
[ J - \/ .
e ,.Sp,ain., B J e . \/ .
ESTEston|a¢
e J - \/ .
s J
. Umtedegdom e \/ :
[ J

S Hungary R J e
[ \/ :
[ J

Downloaded from https://www.cambridge.org/core. IP address: 3.139.88.57, on 25 Nov 2024 at 06:12:53, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/51365100524000567


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1365100524000567
https://www.cambridge.org/core

24 M. Battisti et al.

Table C1. (Continued)

Code Country WIOD EU KLEMS

IRL Ireland
m v Italy v
JPN e ...Japan. e
| KOR e e v..Korea Repubhc o e
LTU L|thuan|a
| |_VA e m|_atv|a e
M|_T e mMalta e e e
T Nederlands e e
| Po|_ e mpo[and e
| PRT e mPortugal
ROU v - v Romama

v

S o Federauonu e
I B
SVN Slovenia
I
P mTurkey e
USA United States

Y N P T N P T Y

Table C2. List of industries

Code Label Description

AtB Ag Agriculture, hunting, forestry, and fishing

c ST M| e .Mmmgand quarrymg R EIRIENS
| 15t16 e FO e e ”Food beverages and tobacco S
17t19 TX ”Texnles tethleprOducts’ leatherandfootwear
20 e Wo e .Wood and pmducts ofwood and cork —
21t22 e PP e Pulp, oaper, paper products prmtmg and pubnshmg
23 Fu ”che, refmed petmleum and nuclearfuel

24 e ch e .chem|ca|s and chem|ca|products e
25 e RP e Rubberand p[ast|cs S
25 o|v| [ HOthernon metau.cmmera[

27t28 e Me e .Bas|c metals and fabncated meta[ e
29 e Ma e ”Machmeryy . S
30t33 El S Electnca[andobf|ca[equ|pment

34t35 e Tr e .Transport equ|pment

| E FNOT Ut e S, gasand Waté},.supply (R
F cO ”cOnstrucnon
M e Ed e .Educatmn e e

Notes: Industries codes are ISIC Rev. 3.1.
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D. Descriptive statistics (tables)

Table D1a. IFR-WIOD dataset: main variables’ average by country

Country RS* RK/L NRK/L ws /wY Value added (th$) # obs

AUS 46.293 .03 302.022 1.491 10,509.93 255
BEL 211.233 .268 284‘293 1 243 5785.329 255
CHN 413 073 .003 32.716 2.154 202000 176
| CZE s 49 487 [ 04 e .. 914 R ..1 084 P 2269 901 s 221
| DEU s 3533 96.. R 349 P ,159 498” R ”1 086 R m43 120 33 PR 221 |
DNK 67.447 .238 508.95 91 2956.056 221
FIN 92 983 .159 206‘993 1 Ol 3847.649 221
GRC 2 538 .006 131 87 2. ll 2927 796 255
| HUN [ 13 179 R 016 e 56 833 R ..1 552 P i 541 s 221
| |DN s 4 567 [ 0 [ 23 395 R 155 909 R m9550 066 R 253 |
IND 25.997 .002 46.724 2.504 47,121.29 255
JPN 15,316.05 157 614.343 .85 113000 136
LVA .05 0 26 134 1 08 184 874 251
POL 32.308 011 46.532 1.114 5621.846 221

ROU 1.737 0 4.364 9.646 431.732 255
RUS 502.529 .027 13.309 1.228 7647.916 255

SWE 256 437 224 234 57 1.035 7393.451 221

Source: Authors’ calculations based on International Federation of Robotics (2019) and WIOD (2015). *RS (i.e., the robot stock) is
obtained through Perpetual Inventory method and expressed in quantity (number of robots); this explains the presence of non-
integer values.
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Table D1b. IFR-WIOD dataset: main variables’ average by industry

Indust RS* RK/L NRK/L ws /wY Value added (th$) # obs
ry

Fo 310424 053 85.367 2571 20,659.5 485
P
Wp 167245 0% 59604 253 4150200 485
S T T
R
E—— 2 e 2
PR
i S o i D i S i O
Me 963.747 141 75.124 2.442 24,972.12 485
e
R
T st3m 79 80,099 24 1984987 485
P
[ R
L e s e meer 2
P
e e e S e o

Source: Authors’ calculations based on International Federation of Robotics (2019) and WIOD (2015). *RS (i.e., the robot stock) is obtained through
Perpetual Inventory method and expressed in quantity (number of robots); this explains the presence of non-integer values.

Table D2a. IFR-EU KLEMS dataset: main variables’ average by country

Country RS* RK/L NRK/L ws /wY Value added (th$) #obs

AUS 33.525 .019 260.077 1.501 9456 825 192
DEU 3258.643 31 150 146 1.294 45 400.91 204
FIN 80.883 137 190 975 1 171 3359.581 204
JPN 14 931 87 .788 435 317 .909 102000 187
SWE 290 93 .24 215.718 1.125 6730 833 168

Source: Authors’ calculations based on International Federation of Robotics (2019) and EU KLEMS (2009). *RS (i.e., the robot stock)
is obtained through Perpetual Inventory method and expressed in quantity (number of robots); this explains the presence of non-
integer values.
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Table D2b. IFR-EU KLEMS dataset: main variables’ average by industry
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Industry

RS*

RK/L

NRK/L

ws /wY

Value added (th$)

# obs

Fo

Tx

Wo

Fu
Ch

RP
oM
Me

Ma

El
21,106.19
18.332

Tr

Mo

Ut

Co

643.016

80.12
750.922

2.569
124.42

303234
2429.709

1539.644

9556.847

5.155

27.586

114.551

500.475

10.398

.08

.067
294

.014

.015

217

.298
.541

.003

.044

.002

.001
.006

2313

103.547

103.166.”. s
80.596

90.668

218.475

90.864

108.637
.159

87.917

154.337

182.642

916.473

59.239

1245.522
24.575

1.403

1.519
1.105

1.146

1.173

1.209

1.071

1.073

1.926

.961

.959

1.219

1.144

1.176
1.079

1.247

17,470.11
25,216.76
31,984.63

14,964.87
40,231.81

1 90,054.86
38,032.15
32,416.68

41,514.68

oaes
ez
TEEE
1302724
;Booag2
380095
1523669

66,625.78

166
166

166

166

142

142
142
166

166

166
166
83
166

.”.166

166
166
166

Source: Authors’ calculations based on International Federation of Robotics (2019) and EU KLEMS (2009). *RS (i.e., the robot stock) is obtained
through Perpetual Inventory method and expressed in quantity (number of robots); this explains the presence of non-integer values.

E. Additional figures
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Growth Rate of Robotic Capital in Selected Countries (1995 = 1)

1995 1997 1999 2001 2003 2005 2007 2009

year
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Growth Rate of Robotic Capital in Selected Industries (1995 = 1)
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———-=

— RP - = Me

— Tr

Figure E1. Robotic capital evolution in selected WIOD countries and industries 1995-2009.
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—— DRKS
——— pRKU

Density

Figure E2. Kernel distribution of the estimated morishima EoS, 1995-2009.

F. Comparison with parametric estimates

For the sake of completeness, we carry out an EoS analysis adopting a parametric approach in
order to highlight key differences with our nonparametric setup, on the one hand, and to contrast
results (to the extent it is possible), on the other. Indeed, the type of analysis that we can per-
form in a parametric setting is limited from a number of perspectives. First, being our benchmark
approach observation-specific, we are not able to have an equivalent direct estimate of EoS in a
parametric setup. Second, since marginal productivity can hardly be estimated at the country-
sector-year level using parametric methods, the EoS analysis usually proceeds by proxying the
marginal rate of technical substitution with the factor price ratio under the implicit assumption
that input markets are perfectly competitive. Our nonparametric approach allows us to completely
avoid this, being based on marginal productivity comparison. Third, a functional specification of
the production technology is required under the parametric approach; estimation usually relies on
a CES nested in Cobb-Douglas specification (e.g., (Krusell et al. 2000; Duffy et al. 2004; Eden &
Gaggl, 2018)).

In light of this, a standard formulation incorporating distinct kinds of capital and derive dif-
ferent substitutability degrees among factor inputs is offered by the Cobb-Douglas production
function (removing subscripts for countries, industry and time to ease notation) over NRK,
assumed as neutral, with respect to skill types, and a CES technology over non-neutral RK, S
and U:

1—a
o

Y=NRK*[BQ7 +(1—B)U’] (E.1)

with Q= [y RK” + (1 —y) sf’)]% ,

where Y represents aggregate output; § and y are distribution parameters; p and o govern the
elasticity of substitution between RK and S, and between the composite input (Q, encompassing
RK and S) and U, respectively.?> Throughout the empirical analysis, U includes medium- and
low-skilled workers.

As can be observed, direct pairwise comparison between ork,s and org,u is not possible in the
parametric setup, which can only focus on comparing ork s with the EoS, with respect to U, of the
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Table F1. EoS, parametric estimates

Production functions 1/(1—p) 1/(1-o0)
) o B y RK&S {RK,S}&U  Obs.
Egs. (F.2)-(F.3) 0.631%*  0.711™*  0.415%*  0.231%* 2.711 3.464 4501
WIOD (1995-2009) (0.012) (0 013) (0.013) .

967***

S (1994-2005) (0.014) (0 019)

Notes: *p < 0.10, **p < 0.05, ***p < 0.01. Standard errors in parentheses. All the models are simultaneously estimated using GMM estimation
techniques, with lagged values of input factors as instrumental variables and HAC robust standard errors.

Table F2. Robustness checks: EoS, parametric estimates. Different RK depreciation rates

RK 8§ =5%
Production functions 1/1-p) 1/(1-0)
0 o B % RK&S  {RK,S}&U Obs.
Eqs (F 2) (F 3) O 638*** O 697*** O 416*** O 248*** 2.764 3.310 4501
wIoD (1995 2009) (o 011) (o 012) (o 006) (o 006)
Eqs (F 2) (F 3) 0 897*** 0 935*** 0 319*** 0 308*** 9.776 15.557 1449
EU KLEMS (1994 2005) (o 014) (o 020) (o 009) (o 011)
RK § =15%
Production functions 1/1-p) 1/(1-0)
0 o B v RK&S  {RK,S}&U Obs.
Eqs (F 2) (F 3) O 623*** 0 729*** 0 4117%%* 0 215”‘** 2.657 3.696 4501
WIOD (1995 2009) (o 012) (o 013) (o 006) (o 006)
Eqs (F 2) (F.3) O 881*** O 985*** O 299*** O 295+ 8.455 67.369 1255
EU KLEMS (1994-2005) (0.015) (0.018) (0.008) (0.012)

Notes: *p < 0.10, **p < 0.05, ***p < 0.01. Standard errors in parentheses. All the models are simultaneously estimated using GMM
estimation techniques, with lagged values of input factors as instrumental variables and HAC robust standard errors.

inputs bundle Q (i.e., og,u). Indeed, assuming that the markets for inputs are competitive, the first-
order conditions of profit-maximizing and price-taking firms imply (simultaneously) estimating
the following system of equations:

GRK RK

In CS” =ln< Y )—l—pln( at)—{—ec,t (F.2)
cht 11— 14 SCZ,t
ol B Uy

In | St :ln( )—(—aln( ‘”)+w (F.3)
03, 1-8 Qut)

where ¢, i and t represent country, industry and time, respectively; oR, 65, U and 92 denote the

income shares of RK, S, U and Q, respectively, while € and u are the error terms, allowed to be

correlated across equations. EoS between RK and S, 1/ (1 — p), is derived by equation (F.2), while

EoS between the composite factor and U, 1 / (1 — 0), is identified from equation (F.3).
Complementarity between RK and S can be said to exist iff:

1/1-p<1/(Q-0)=0>p
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Estimation is conducted using GMM, treating all the input factors as endogenous and exploit-
ing their second and third lagged values as instruments. Table F1 reports the results of our
benchmark parametric estimates.2® In this respect, our findings provide broad evidence in favor
of complementarity between RK and S. Specifically, the procedure points to this direction when
applied to both the IFR-WIOD and the IFR-EU KLEMS datasets, where the EoS between the
RK and S, 1/ (1 — p), is lower than between the [RK — S] composite and U, 1/ (1 — o), which
implies o > p.

The sensitivity of the estimates presented in Table F1 is assessed, in line with suggestions by
Graetz & Michaels (2018), to different constructions of the RK stock, using both 5 and 15 per-
cent depreciation rates. The corresponding results are presented in Table F2. In both cases, our
main findings remain unchanged, thus providing substantial confirmation of the presence higher
complementarity between RK and S.

Cite this article: Battisti M, Del Gatto M, Gravina AF and Parmeter CF (2024). “Robotic capital - skill complementarity.”
Macroeconomic Dynamics. https://doi.org/10.1017/S1365100524000567
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