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Vector Fields and the Cohomology Ring of
Toric Varieties

Kiumars Kaveh

Abstract. Let X be a smooth complex projective variety with a holomorphic vector field with isolated

zero set Z. From the results of Carrell and Lieberman there exists a filtration F0 ⊂ F1 ⊂ · · · of

A(Z), the ring of C-valued functions on Z, such that Gr A(Z) ∼= H∗(X, C) as graded algebras. In this

note, for a smooth projective toric variety and a vector field generated by the action of a 1-parameter

subgroup of the torus, we work out this filtration. Our main result is an explicit connection between

this filtration and the polytope algebra of X.

1 Introduction

Let X be a smooth projective variety over C with a holomorphic vector field V such

that Zero(V) is non-trivial and isolated. In [3, 4], using the Koszul complex of the

vector field V, Carrell and Lieberman prove that the coordinate ring A(Z) of the zero

scheme Z of V admits a filtration F0 ⊂ F1 ⊂ · · · such that the associated graded

Gr A(Z) is isomorphic to H∗(X, C) as graded algebra. In this paper, for a smooth

projective toric variety, we work out this filtration. Our main result is a natural iso-

morphism between Gr A(Z) and Brion’s description of the polytope algebra (see [1]).

We also give direct proofs that the usual relations in the cohomology of a toric variety

hold in Gr A(Z).

For the vector field V, in the toric case, we take the generating vector field of a

1-parameter subgroup γ, in general position, of the torus T, so that the fixed point

set Z of γ is the same as the fixed point set of T. Any lattice polytope ∆ normal to

the fan of X, determines a line bundle L∆ on X. We show that c1(L∆), the first Chern

class of this line bundle, under the isomorphism H∗(X, C) ∼= Gr A(Z), is represented

by the the function f∆ ∈ A(Z) given by the simple formula:

f∆(z) = 〈γ, vz〉 ∀z ∈ Z,

where vz is the vertex of ∆ corresponding to a fixed point z. Multiplication by f∆ is

the Lefschetz operator in H∗(X, C) ∼= Gr A(Z). From these functions f∆ we obtain

the functions fρ in Gr A(Z) corresponding to Dρ, the cohomology classes of the orbit

closures of codimension 1. It is known that these span H2(X, C) as a vector space

and generate H∗(X, C) as an algebra. Using this, we then construct the filtration

F0 ⊂ F1 ⊂ · · · of A(Z) (Theorem 4.3).

From [1], H∗(X, C) can be realized as a quotient of the algebra of continuous

functions on the fan of X whose restriction to each cone is a polynomial. Let p be
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a continuous function on the fan whose restriction to each cone of maximal dimen-

sion is a homogeneous polynomial of degree k, representing a cohomology class in

H2k(X, C). We show that p corresponds to the function f ∈ FkA(Z) defined by

f (z) = p|σz
(γ),

where σz is the cone of maximal dimension corresponding to a fixed point z (Theo-

rem 5.2).

This paper is motivated in part by a comment of T. Oda. In [8, p. 417], Oda

briefly comments about how to explain the results of Carrell–Lieberman in the toric

case: as Khovanskii has shown in [6], composition of γ and the moment map of

the toric variety X defines a Morse function on X whose critical points are the fixed

points (see Remark 4.8). Since the number of critical points of index i is the i-th Betti

number, Oda suggests that the grading on the fixed point set induced by the Morse

index is the grading in Carrell–Lieberman and hence gives the cohomology algebra.

It is not difficult to see that this is not necessarily correct.1 (See also Example 6.1.)

The present note is closely related to the work of V. Puppe [10] which gives a

similar filtration in the topological setting.

In Section 2, we discuss Carrell–Lieberman results on the connection between

the zeros of holomorphic vector fields and cohomology. In Section 3 we discuss the

classical results on the cohomology of toric varieties. In Section 4, we work out the

Carrell–Lieberman filtration in the toric case. The main result of the paper, that is

the connection between the polytope algebra and the Carrell–Lieberman filtration, is

discussed in Section 5. In Section 6 we see two examples in dimension 2.

2 Zeros of Holomorphic Vector Fields and Cohomology

Let X be a smooth projective variety over C. The purpose of this section is to give

a brief survey of the results of Carrell and Lieberman on the connection between

the zeros of vector fields and cohomology. We start with the Koszul complex of a

holomorphic vector field V on X. Let OX be the sheaf of holomorphic functions on

X. The vector field V defines a derivation V : OX → OX , which extends to give a

contraction operator i(V) : Ωp → Ωp−1 on the sheaves of holomorphic p-forms on

X such that i(V)2 = 0. In addition, for all φ, ω ∈ Ω∗,

i(V)(φ ∧ ω) = i(V )φ ∧ ω + (−1)pφ ∧ i(V)ω

if φ ∈ Ωp. Thus we get a complex K∗ of sheaves

0 → Ω
n → Ω

n−1 → · · · → Ω
1 → OX → 0

where n = dim X, and, in turn, a spectral sequence whose first term is E
−p,q
1 =

Hq(X, Ωp) with first differential i(V). In [3] Carrell and Lieberman prove that if

1In fact, if Fi denotes the space of functions on Z consisting of the constant functions and the functions
supported on the fixed points of index less than or equal to 2i, then for i ≤ j we have Fi F j ⊂ Fi . This
means that in the corresponding graded algebra, the multiplication is zero, which is certainly not the case
in the cohomology algebra.
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V has zeros, then every differential in this spectral sequence is zero. Consequently

E1 = E∞, and we obtain a C-algebra isomorphism

⊕

s

Hq+s
(

X, Ωq
)

∼=
⊕

s

FsH
q(K∗)/Fs−1Hq(K∗),

Here Hq(K∗) denotes the hypercohomology of this Koszul complex and F• is its

canonical filtration.

They also prove that when V has isolated zeros the hypercohomology groups

Hq(K∗) vanish for q > 0 (see [3]). Zero(V) can be viewed as the scheme Z de-

fined by the sheaf of ideals i(V)Ω1 ⊂ OX , so when this scheme is finite (and non

trivial), we get the following result:

Theorem 2.1 ([2, Theorem 5.4]) Suppose X admits a holomorphic vector field V with

Zero(V) isolated but non-trivial, then H p(X, Ωq) = {0} for all p 6= q (hence

H p(X, Ωp) = H2p(X, C)). Moreover, the coordinate ring A(Z) of the zero scheme Z

of V admits an increasing filtration F• = F•A(Z) such that

(1) FiF j ⊂ Fi+ j , and

(2) H∗(X, C) =
⊕

i≥0 H2i(X, C) ∼=
⊕

i≥0 Gri(A(Z)) = Gr A(Z),

where the displayed summands are isomorphic over C. Here

Gri(A(Z)) := FiA(Z)/Fi−1A(Z).

For the rest of this section we assume that the zero set Z is isolated (but non-

empty). Let E → X be a holomorphic vector bundle and E its sheaf of holomorphic

sections. One says that E is V-equivariant if the derivation V of Ox lifts to E. That

is, there exists a C-linear sheaf homomorphism Ṽ : E → E such that if σ ∈ Ex and

f ∈ OX,x then

Ṽ( f σ) = V( f )σ + f Ṽ(σ).

Hence Ṽ defines an OZ-linear map ṼZ : EZ → EZ , where EZ = E ⊗OX
OZ .

Let us recall the Chern–Weil construction. Let

c(E) ∈ H1(X, Hom(E, E) ⊗ Ω
1)

denote the Atiyah–Chern class of E, and let p : Hom(E, E)⊗l → OX be any OX-linear

map. Then p(c(E)) is a well-defined element of Hl(X, Ωl). On the other hand, p also

defines a map pZ : Hom(EZ , EZ)⊗l → OZ . This means that pZ(Ṽ⊗l
Z ) gives a well-

defined global section of OZ , that is, pZ(Ṽ⊗l
Z ) ∈ A(Z). We have,

Theorem 2.2 ([2, Theorem 5.5]) If p has degree l, then p(Ṽ⊗l
Z ) ∈ FlA(Z), and in the

associated graded algebra, i.e., in Grl A(Z), p(Ṽ⊗l
Z ) corresponds to p(c(E)) ∈ Hl(X, Ωl)

= H2l(X, C), where c(E) denotes the Atiyah–Chern class of E.

Later, we will use the above theorem to identify a function in A(Z) corresponding to

the Chern class of a line bundle on a toric variety. As the vector field V we take the

generating vector field of a 1-parameter subgroup, in general position, of the torus.
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3 Preliminaries on the Cohomology of Toric Varieties

Let T be the algebraic torus (C
∗)d. As usual, N denotes the lattice of 1-parameter

subgroups of T, NR the real vector space N ⊗Z R, M the dual lattice of N which is

the lattice of characters of T, and MR the real vector space M ⊗Z R. A vector n =

(n1, . . . , nd) ∈ Z
d ∼= N corresponds to the 1-parameter subgroup tn = (tn1 , . . . , tnd ).

Similarly, a covector m = (m1, . . . , md) ∈ (Z
d)∗ ∼= M corresponds to the character

xm = xm1

1 · · · xmd

d . We use 〈 , 〉 : N×M → Z for the natural pairing between N and M.

Let X be a d-dimensional smooth projective toric variety. Let Σ ⊂ NR be the

simplicial fan corresponding to X. We denote by Σ(i) the set of all i-dimensional

cones in Σ. For each ρ ∈ Σ(1), let ξρ be the primitive vector along ρ, i.e., the smallest

integral vector on ρ.

There is a one-to-one correspondence between the orbits of dimension i in X and

the cones in Σ(d − i). The fixed points of T correspond to the cones in Σ(d). In a

smooth toric variety all the orbit closures are smooth; the cohomology class dual to

the closure of the orbit corresponding to ρ ∈ Σ(1) is denoted by Dρ ∈ H2(X, C). It is

well known that the cohomology algebra of a toric variety is generated by the classes

Dρ. More precisely, we have,

Theorem 3.1 (see [5, p. 106]) Let X be a smooth projective toric variety. Then

H∗(X, C) = Z[Dρ, ρ ∈ Σ(1)]/I,

where I is the ideal generated by all

(i) Dρ1
· · ·Dρk

, ∀ρ1, . . . , ρk not in a cone of Σ, and

(ii)
∑

ρ∈Σ(1)〈ξρ, u〉Dρ, ∀u ∈ M.

Now, let ∆ ⊂ MR be a simple rational polytope normal to the fan Σ. The poly-

tope ∆ defines a diagonal representation π : T → GL(V ) where dimC(V ) = the

number of lattice points in ∆. Fix a basis for V so that T acts by diagonal matrices. If

the mutual differences of the lattice points in ∆ generate M, then we get an embed-

ding of X in P(V ) as the closure of the orbit of (1 : 1 : · · · : 1). In the rest of the paper,

we assume that the above condition holds for ∆.

The set of faces of dimension i in ∆ is denoted by ∆(i). There is a one-to-one

correspondence between the faces in ∆(i) and the cones in Σ(d − i) which in turn

correspond to the orbits of dimension i in X. Hence the fixed points of T on X

correspond to the vertices of ∆.

The support function l∆ : NR → R is defined by l∆(ξ) = maxx∈∆〈ξ, x〉.
Let L∆ be the line bundle on X obtained by restricting the dual of the univer-

sal subbundle on P(V ) to X. We will need the following classical theorem which

tells us how the first Chern class c1(L∆) is represented as a linear combination of the

classes Dρ.

Theorem 3.2 With notation as above we have

c1(L∆) =

∑

ρ∈Σ(1)

l∆(ξρ)Dρ.
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4 The Filtration on A(Z) in the Toric Case

As before, let X be a smooth projective toric variety with fan Σ and a lattice poly-

tope ∆ normal to the fan which gives rise to a representation π : T → GL(V ) and a

T-equivariant embedding of X in P(V ), for a vector space V over C. Let γ ∈ N be

a 1-parameter subgroup of T. We can choose γ so that the set of fixed points of γ is

the same as the set of fixed points of T. We denote the set of fixed points by Z.

In this section, we construct a filtration F0 ⊂ F1 ⊂ · · · for A(Z) such that

H∗(X, C) ∼= Gr A(Z).

Notation In the following, z denotes a fixed point, σz the corresponding d-dimen-

sional cone in Σ and vz the corresponding vertex in ∆. A 1-dimensional cone in Σ is

denoted by ρ and the corresponding facet of ∆ by Fρ.

From Theorem 2.1 applied to the generating vector field of γ, there exists a filtra-

tion F0 ⊂ F1 ⊂ · · · of A(Z), the ring of C valued functions on Z, so that H∗(X, C) ∼=
⊕∞

i=0 Fi+1/Fi , as graded algebras. In particular, we have H2(X, C) ∼= F1/F0. The sub-

space F0A(Z) is just the set of constant functions. To determine the image of H2(X, C)

in Gr A(Z) we need to determine F1. We start by finding the representatives in F1 for

the Chern classes of the line bundles.

The 1-parameter subgroup γ : C
∗ → T acts on V via π and hence the action of γ

on X lifts to an action of γ on the line bundle L∆. Thus the generating vector field

of γ has a lift to L∆. If we view L∆ as {(x, l) ∈ X ×V | x = [l]} then the action of γ
on L∆ is given by:

γ(t) · (x, l) = (π(tγ)x, π(tγ)l).

Now, from Theorem 2.2 we have,

Proposition 4.1 Under the isomorphism F1/F0
∼= H2(X, C), the first Chern class

c1(L∆) is represented by the function f∆ defined by

f∆(z) = 〈γ, vz〉, ∀z ∈ Z,

where vz is the vertex of ∆ corresponding to the fixed point z.

Proof In Theorem 2.2, take E to be L∆ and p be the identity polynomial. The

derivation Ṽ is just the derivation given by the Gm-action of γ on L∆. Let z be a fixed

point and (z, l) ∈ (L∆)z a point in the fiber of z. We have:

γ(t) · (z, l) = (z, π(tγ)l),

= (z, 〈γ, vz〉l).

and hence f∆(z) = 〈γ, vz〉.

Next, we wish to determine the images of the classes Dρ, ρ ∈ Σ(1), in F1/F0. Fix a

1-dimensional cone ρ in Σ(1). Let Fρ be the facet of ∆ orthogonal to ρ.

Let us assume that we can move the facet Fρ of ∆ parallel to itself to obtain a new

integral polytope ∆ ′ (Figure 1). The polytope ∆ ′ is still normal to the fan Σ. If
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Figure 1: Moving a facet Fρ

the facet can not be moved, we can replace ∆ with k∆, for a big enough integer k,

to make this moving of a facet possible. Replacing ∆ with k∆ does not affect the

formula we are going to obtain for Dρ. Let F ′
ρ denote the facet of ∆ ′ obtained by

moving Fρ. The maximum of the function 〈ξρ, · 〉 on ∆ and ∆ ′ is obtained on the

facets Fρ and F ′
ρ respectively. For support functions of these polytopes we can write,

l∆(ξρ) = 〈ξρ, some point in Fρ〉,

l∆ ′(ξρ) = 〈ξρ, some point in F ′
ρ〉

l∆(ξρ ′) = l∆ ′(ξρ ′), ∀ρ ′ 6= ρ.

We also have:

c1(L∆) = l∆(ξρ)Dρ +
∑

ρ ′∈Σ(1)
ρ ′ 6=ρ

l∆(ξρ ′)Dρ ′ ,

c1(L∆ ′) = l∆ ′(ξρ)Dρ +
∑

ρ ′∈Σ(1)
ρ ′ 6=ρ

l∆ ′(ξρ ′)Dρ ′ .

Hence

c1(L∆) − c1(L∆ ′) = (l∆(ξρ) − l∆ ′(ξρ))Dρ.

So

Dρ =
c1(L∆) − c1(L∆ ′)

l∆(ξρ) − l∆ ′(ξρ)
.
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Now, let z be a torus fixed point, σz the corresponding d-dimensional cone, and

vz and v ′
z the corresponding vertices in ∆ and ∆ ′ respectively. From Proposition 4.1,

Dρ corresponds to the function fρ ∈ F1A(Z) given by,

fρ(z) =
f∆(z) − f∆ ′(z)

l∆(ξρ) − l∆ ′(ξρ)

=
〈γ, vz − v ′

z〉

l∆(ξρ) − l∆ ′(ξρ)
.

If vz /∈ Fρ then vz = v ′
z and hence fρ(z) = 0. If vz ∈ Fρ then l∆(ξρ) = 〈ξρ, vz〉 and

l∆ ′(ξρ) = 〈ξρ, v ′
z〉. We obtain that

fρ(z) =







〈γ, vz − v ′
z〉

〈ξρ, vz − v ′
z〉

if vz ∈ Fρ,

0 if vz /∈ Fρ.

Since ∆ is a simple polytope, there are d edges at the vertex vz. If vz ∈ Fρ, then

there is only one edge e at vz which does not belong to Fρ. The vector vz−v ′
z , in fact, is

along this edge. Note that the above formula for fρ(z) does not depend on the length

of the vector vz − v ′
z (i.e., how much we move the facet Fρ to obtain the new polytope

∆ ′). Let uσz ,ρ be the vector along the edge e normalized such that 〈uσz ,ρ, ξρ〉 = 1.

Then we have,

Proposition 4.2 With notation as above, the cohomology class Dρ is represented by

the function fρ in F1A(Z) defined by

fρ(z) =

{

〈γ, uσz ,ρ〉 if vz ∈ Fρ,

0 if vz /∈ Fρ.

Since H2(X, C) is spanned by the classes Dρ, ρ ∈ Σ(1) and H∗(X, C) is generated

in degree 2, from Theorem 2.2 we obtain,

Theorem 4.3 F1A(Z)/F0A(Z) = Span
C
〈 fρ, ρ ∈ Σ(1)〉. Moreover, FiA(Z) = all

polynomials of degree ≤ i in the fρ.

One can prove directly that the functions fρ, ρ ∈ Σ(1), satisfy the relations in the

statement of Theorem 3.1. More precisely,

Theorem 4.4 The functions fρ, ρ ∈ Σ(1), satisfy the following relations:

(i) fρ1
· · · fρk

= 0, ∀ρ1, . . . , ρk not in a cone of Σ, and

(ii)
∑

ρ∈Σ(1)〈ξρ, u〉 fρ = some constant function on Z, ∀u ∈ M.

Proof (i) is straightforward because every fρ is non-zero only at z such that the

corresponding vertex lies in the facet Fρ corresponding to ρ. Now, if ρ1, . . . , ρk are
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not in a cone of Σ, it means that the intersection of the corresponding facets Fρi
is

empty, i.e., the product of the fρi
is zero.

For (ii), let z be a torus fixed point and, σz and vz the corresponding d-dimensional

cone and vertex, respectively. Let A be the d × d matrix whose rows are vectors ξρ

and let B be the d × d matrix whose columns are vectors uσz ,ρ, where ρ is an edge of

σz. Since the cone at the vertex vz, which is generated by the vectors uσz ,ρ, is dual to

the cone σz, we get AB = id. Now, we have

∑

ρ∈Σ(1)

〈ξρ, u〉 fρ(z) =

∑

ρ an edge of σz

〈ξρ, u〉 fρ(z)

=

∑

ρ an edge of σz

〈ξρ, u〉〈γ, uσz,ρ〉

= (A · u)t · (γ ·B)t

= 〈γ, u〉,

where · means product of matrices and γ is regarded as a row vector and u is regarded

as a column vector. So we proved that the expression (ii) is equal to 〈γ, u〉 which is

independent of z and hence is a constant function on Z.

Remark 4.5 One can introduce a finite subset Z of the affine space A
Σ(1) such that

Z is isomorphic to Z, and the natural grading on the coordinate ring A(Z) induced

from the grading on A
Σ(1) coincides with the above filtration F• given by the fρ.

Define the function Θ : Z → R
Σ(1) ⊂ C

Σ(1) by

Θ(z)ρ = fρ(z),

and let Z = Θ(Z).

Proposition 4.6 With the grading on A(Z) as above, Gr A(Z) ∼= H∗(X, C) as graded

algebras.

Proof Immediate.

Remark 4.7 (Lefschetz operator) A lattice polytope ∆ normal to the fan of X gives

rise to an embedding of X in a projective space. The Lefschetz operator in H∗(X, C) ∼=
Gr A(Z) corresponding to this embedding is given by the multiplication by the func-

tion f∆ (see Proposition 4.1).

Remark 4.8 Let µ : X → MR be the moment map of the toric variety and, as before,

γ ∈ N a 1-parameter subgroup in general position. In [6] Khovanskii shows that

the composition of γ and µ defines a Morse function on X whose critical points are

the fixed points of X. The Morse index of a fixed point corresponding to a vertex

vz is twice the number of edges at vz on which the linear function γ is decreasing.

Returning to the definition of the functions fρ (Proposition 4.2), the linear function γ
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is decreasing on the edge e at vz if and only if fρ(z) < 0. That is, the Morse index

of a fixed point z is equal to twice the number of negative coordinates of the point

Θ(z) ∈ R
Σ(1). Since the number of critical points of index 2i is the 2i-th Betti number

of X, we conclude the non-trivial relation that the number of points in Z exactly i of

their coordinates are negative is equal to dim Gri A(Z).

5 Relation with the Polytope Algebra

Consider the abelian group generated by all the convex polytopes in a vector space

subject to the relation

[P ∪ Q] + [P ∩ Q] − [P] − [Q] = 0,

whenever P, Q and P ∪ Q are convex polytopes. This group can be equipped with

a ring structure, product of two polytopes being their Minkowski sum. The ring we

obtain is McMullen’s polytope algebra (see [7, p. 86]). The polytope algebra plays an

important role in the study of finitely additive measures on the convex polytopes. To

each simplicial polytope ∆, one can associate a subalgebra of the polytope algebra

generated by all the polytopes whose facets are parallel to the facets of ∆. It is called

the polytope algebra of ∆. For an integrally simple polytope ∆, its polytope algebra

coincides with the cohomology algebra of the corresponding toric variety X. There is

a description of the polytope algebra of ∆ as a quotient of the algebra of differential

operators (see [9], and for more details [11]).

In [1], Brion gives a description of the polytope algebra of a polytope as a quo-

tient of the algebra of continuous conewise polynomial functions. Let Σ ⊂ NR be the

normal fan of the polytope ∆. Let R be the algebra of all continuous functions on

NR which restricted to each cone of Σ are given by a polynomial. Let I be the ideal

of R generated by all the linear functions on NR. Then the polytope algebra of ∆ is

isomorphic to R/I.

There is a good set of generators for R parameterized by the set of 1-dimensional

cones Σ(1). For each ρ ∈ Σ(1), define gρ : NR → R as a conewise linear function,

supported on the cones containing ρ, as follows:

(i) gρ = 0 on any cone not containing ρ, and

(ii) for a d-dimensional cone σ containing ρ, the function gρ restricted to σ is the

unique linear function defined by gρ(x) = 0 for x ∈ ρ ′ 6= ρ, ρ ′ ∈ Σ(1) and

gρ(ξρ) = 1.

One can show that the gρ are a set of generators for R. Moreover, by sending gρ to

Dρ, we get an isomorphism between R/I and H∗(X, C). In particular, the images of

the gρ in R/I satisfy the relations in Theorem 3.1.

In what follows, we show how this description of the cohomology is related to

the Gr A(Z) description. Let γ be a 1-parameter subgroup in general position. Take

p ∈ R. For a cone σ of maximum dimension, let pσ denote the restriction of p to σ.

Then pσ is a polynomial on σ. Since the vector space spanned by σ is all of NR, the

function pσ can be considered as a polynomial on all of NR. Thus it makes sense to

evaluate pσ at γ. We define a homomorphism Φ : R → A(Z) by Φ(p) = f where the
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function f is defined by

f (z) = pσz
(γ) z ∈ Z,

here σz is the cone corresponding to the fixed point z.

Proposition 5.1 We can write R =
⊕∞

k=0 Rk where Rk is the subspace of all conewise

polynomial functions on NR whose restriction to each cone is a homogeneous polynomial

of degree k.

Proof Let p ∈ R and let pk denote the function on NR whose restriction to each

cone σ is the degree k part of pσ . We need to prove that pk belongs to R, that is,

pk is continuous. Let σ and τ be two adjacent cones and let v ∈ σ ∩ τ . Since p is

continuous, we have

(∗) pσ(tv) = pτ (tv), ∀t ∈ R.

Let pσ,k(v) (respectively pτ ,k(v)) denote the coefficient of tk in pσ(tv) (respectively

pτ (tv)). From (∗), we have

pσ,k(v) = pτ ,k(v).

But pσ,k = pk|σ and pτ ,k = pk|τ . Thus pk|σ and pk|τ agree at the intersection of σ
and τ and hence pk is continuous, that is, pk ∈ R.

Let F• = F0 ⊂ F1 ⊂ · · · be the filtration in the Carrell–Lieberman theorem

(Theorem 2.1) where the vector field V is the generating vector field of a 1-parameter

subgroup γ in general position. The following theorem gives an explicit connection

between the grading in R by the Rk and the Carrell–Lieberman filtration F•.

Theorem 5.2

(i) Φ(gρ) = fρ;

(ii) Φ(⊕k
i=0Ri) = Fk.

Proof (i) Let ρ ∈ Σ(1) and let σ be a d-dimensional cone containing ρ. Since σ is

simplicial, the set {ξρ ′ | ρ ′ ∈ Σ(1), ρ ′ ⊂ σ} form a basis for NR. Consider the linear

function l defined by l(ξρ) = 1 and l(ξρ ′) = 0, ρ ′ ⊂ σ and ρ ′ 6= ρ. Let A be the

d × d matrix whose rows are vectors ξρ and B be the d × d matrix whose columns

are vectors uσ,ρ ′ , where ρ ′ is an edge of σ. Let v be the vertex of ∆ corresponding

to σ. The cone at v is dual to σ and hence we have AB = id. View γ as a row vector.

Then γ in the basis ξρ ′ , ρ ′ ⊂ σ is γA−1 = γB. Thus, one sees that l(γ) is equal to the

ρ-th component of γB. But this is the same as fρ(z).

(ii) Each p ∈
⊕k

i=0 Ri can be written as a polynomial of degree ≤ k in the gρ.

Also, each f ∈ Fk can be written as a polynomial of degree ≤ k in the fρ. Now, (ii)

follows from (i).

Now, let us define an algebra homomorphism Ψ : R → Gr A(Z) =
⊕∞

i=1 Fi/Fi−1

as follows. For p ∈ Rk, let Ψ(p) = Φ(p) ∈ Fk/Fk−1, and extend the definition of Ψ

to all of R by linearity.

https://doi.org/10.4153/CMB-2005-039-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-039-1


424 K. Kaveh

Theorem 5.3 Ψ induces an isomorphism between R/I and Gr A(Z).

Proof It follows from the definition that Ψ is an algebra homomorphism. Since R

is generated by the gρ and Gr A(Z) is generated by the images of the fρ, from Theo-

rem 5.2(i) it follows that Ψ is surjective. To prove the theorem we need to show that

ker(Ψ) = I. Let l be a (global) linear function on NR. Then Φ(l) = f is a constant

function on Z defined by f (z) = l(γ), ∀z ∈ Z. Thus Φ(l) belongs to F0, that is Ψ(l),

as an element of F1/F0, is zero. Thus, l belongs to ker(Ψ). Since I is the ideal of R gen-

erated by the (global) linear functions, we see that I ⊂ ker(Ψ). But both of R/I and

Gr A(Z) are isomorphic, as graded algebras, to H∗(X, C). Hence the dimensions of

the graded pieces of R/I and Gr A(Z) are the same. Since I ⊂ ker(Ψ), by comparing

dimensions, we conclude that I = ker(Ψ) and the theorem is proved.

6 Examples

In this section we consider two examples in dimension 2, namely, CP2 and the Hirze-

bruch surface Fa. For each example, we compute the functions fρ and the finite affine

set Z.

Example 6.1 (CP2) The fan of CP2, and a polytope normal to it, is shown in Fig-

ure 2. There are three 1-dimensional cones denoted by ρ1, ρ2 and ρ3 along the

primitive vectors ξ1 = (1, 0), ξ2 = (0, 1) and ξ3 = (−1,−1). There are three 2-

dimensional cones σ1, σ2 and σ3 corresponding to the three fixed points z1, z2, z3. To

each cone σi , there corresponds a vertex of the normal polytope and two vectors uσi ,ρ

at this vertex along the edges. For σ1, these vectors are {(1, 0), (0, 1)}, for σ2 they are

{(−1, 0), (−1, 1)} and finally, for σ3 they are {(0,−1), (1,−1)}.

v2 v1

v3

σ1

σ2

σ3

ξ1

ξ2

ξ3

Figure 2: Fan of CP2 (right) and a polytope normal to the fan together with the vectors uσi ,ρ

(left).
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Let γ = (γ1, γ2) be a 1-parameter subgroup. From the definition of the functions

fρ (Proposition 4.2), we get the following table for their values:

z1 z2 z3

f1 γ2 γ2 − γ1 0

f2 γ1 0 γ1 − γ2

f3 0 −γ1 −γ2

and hence, Z = {(γ2, γ1, 0), (γ2 − γ1, 0,−γ1), (0, γ1 − γ2,−γ2)} ⊂ C
3. Note that

the points in Z lie on the same line parallel to (1, 1, 1). One can see that Gri A(Z) ∼=
C, 0 ≤ i ≤ 2 and Gri A(Z) = {0}, i > 2. If x is a non-zero element of Gr1 A(Z) then,

H∗(CP2, C) ∼= Gr A(Z) ∼= C[x]/〈x3〉.
The above calculation can be carried out in general for CPn. One can show that

all the points in the set Z lie on the same line parallel to (1, . . . , 1), and Gri
∼= C for

0 ≤ i ≤ n and Gri
∼= 0 for i > n and thus H∗(CPn, C) ∼= Gr A(Z) ∼= C[x]/〈xn+1〉.

In fact, the associate graded algebra of the coordinate ring of any set of n + 1 points

lying on the same line (in the affine space) gives the cohomology algebra of CPn.

Example 6.2 (Hirzebruch surface) For each a ∈ N ∪ {0}, one can construct a toric

surface Fa, called a Hirzebruch surface whose fan, and a normal polytope to it, is

shown in Figure 3. There are four 1-dimensional cones denoted by ρ1, ρ2, ρ3 and ρ4

along the primitive vectors ξ1 = (1, 0), ξ2 = (0, 1), ξ3 = (−1, a) and ξ4 = (0,−1).

There are four 2-dimensional cones denoted by σ1 to σ4. They correspond to the

four fixed points z1, z2, z3 and z4. To each σi there corresponds a vertex of the normal

polytope to the fan and two vectors uσi ,ρ along the edges. For σ1 these vectors are

{(1, 0), (0, 1)}, for σ2 they are {(−1, 0), (a, 1)}, for σ3 they are {(−1, 0), (−a,−1)}
and finally, for σ4 they are {(1, 0), (0,−1)}.

v1v2

v3 v4

σ1

σ2

σ3

σ4

ξ1

ξ2

ξ3

ξ4

Figure 3: Fan of Fa (right) and a polytope normal to the fan together with the vectors uσi ,ρ

(left).
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Let γ = (γ1, γ2) be a 1-parameter subgroup. We get the following table for the

values of the fρ:

z1 z2 z3 z4

f1 γ1 0 0 γ1

f2 γ2 aγ1 + γ2 0 0

f3 0 −γ1 −γ1 0

f4 0 0 −aγ1 − γ2 −γ2

and hence,

Z = {(γ1, γ2, 0, 0), (0, aγ1+γ2,−γ1, 0), (0, 0,−γ1,−aγ1−γ2), (γ1, 0, 0,−γ2)} ⊂ C
4.

Note that the points in Z lie on the same 2-plane defined by f1 − f3 = γ1 and a f1 +

f2 − f4 = aγ1 + γ2. Also, no three of them are collinear. Thus, one can see that

Gr0
∼= C, Gr1

∼= C
2, Gr2

∼= C and Gri = {0}, i > 2. One can see that there are two

polynomials l1 and l2 of degree 1 on C
4 such that they form a basis for Gr1 A(Z) and,

l1
2

= l2
2

= 0 in Gr2 A(Z). Hence H∗(Fa) ∼= Gr A(Z) ∼= C[l1, l2]/〈l1
2, l2

2〉. In fact,

any set of four points lying on the same 2-plane such that no three are collinear can

give the cohomology of Fa.
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