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Serrations are commonly employed to mitigate the turbulent boundary layer trailing-edge
noise. However, significant discrepancies persist between model predictions and
experimental observations. In this paper, we show that this results from the frozen
turbulence assumption. A fully developed turbulent boundary layer over a flat plate
is first simulated using the large-eddy simulation method, with the turbulence at
the inlet generated using the digital filter method. The space–time correlations and
spectral characteristics of wall pressure fluctuations are examined. The simulation results
demonstrate that the coherence function decays in the streamwise direction, deviating from
the constant value of unity assumed in the frozen turbulence assumption. By considering
an exponential decay function, we relax the frozen turbulence assumption and develop a
prediction model that accounts for the intrinsic non-frozen nature of turbulent boundary
layers. To facilitate a direct comparison with frozen models, a correction coefficient
is introduced to account for the influence of non-frozen turbulence. The comparison
between the new and original models demonstrates that the new model predicts lower
noise reductions, aligning more closely with the experimental observations. The physical
mechanism underlying the overprediction of the noise model assuming frozen turbulence
is discussed. The overprediction is due to the decoherence of the phase variation along the
serrated trailing edge. Consequently, the ratio of the serration amplitude to the streamwise
frequency-dependent correlation length is identified as a crucial parameter in determining
the correct prediction of far-field noise.
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1. Introduction

Trailing-edge (TE) noise is a major concern in various industrial applications, including
wind turbines, cooling fans and turbo-machinery. As a turbulent boundary layer convects
past a trailing edge, pressure fluctuations beneath the boundary layer scatter into sound,
leading to noise emissions. Inspired by the silent flight of owls (Jaworski & Peake 2020),
serrated trailing edges have emerged as a promising approach to reduce this noise.

Extensive research has been conducted to investigate the effectiveness of serrated
trailing edges in reducing noise. Howe (1991a,b) first developed an analytical model to
predict the scattered noise from serrated trailing edges, and found that sharp sawtooth
serrations are effective in suppressing TE noise. However, the experimental studies
conducted by Gruber (2012) showed that Howe’s model significantly overpredicted the
noise reduction due to TE serrations. Based on a Fourier expansion technique, Lyu,
Azarpeyvand & Sinayoko (2016) extended the theory of Amiet (1976) to sawtooth trailing
edges. Their model yielded a more realistic noise reduction prediction compared to Howe’s
model. It was shown that the mechanism underlying the noise reduction was the destructive
interference effects of the scattered pressure due to the presence of serrations. Two
parameters were identified to be important in effectively reducing TE noise. Recently,
Ayton (2018) presented an analytical model based on the Wiener–Hopf method, and
applied this model to five test-case TE geometries. Furthermore, Lyu & Ayton (2020)
simplified Ayton’s model by approximating the infinite interval involving two infinite
sums, and the resulting model consumes much less time when evaluated. However, as
a semi-infinite flat plate was assumed, the solution was strictly two-dimensional (2-D) –
the predicted sound pressure decays as 1/

√
r, where r is the cylindrical radial distance

of the observer – rendering it difficult to use in applications involving rotating blades
(Lyu 2023). In most practical applications, however, blades are in a state of rotation
during their operation, such as the propellers of drones. Halimi, Marinus & Larbi (2019)
investigated the broadband noise from a small remotely piloted aircraft (RPA) propeller
with sawtooth serrations using the first-order approximation of Lyu’s model. Tian &
Lyu (2022) conducted a theoretical investigation on the noise emitted from three kinds
of rotating serrated blades using the second-order approximation. The three-dimensional
(3-D) directivity patterns of an isolated flat plate were found to be important for the
far-field noise characteristics of a rotating blade. A comprehensive review of the TE noise
and noise reduction studies can be found in a recent paper by Lee et al. (2021).

Despite the valuable insights provided by theoretical models, indispensable
discrepancies still exist between the latest analytical predictions and experimental results
(Oerlemans et al. 2009; Arce-León et al. 2016; Zhou et al. 2020). In a recent study,
Zhou et al. (2020) conducted anechoic wind tunnel experiments to investigate the effect
of serration shape and flexibility on TE noise. Their findings demonstrated that the new
analytical model proposed by Lyu & Ayton (2020) still notably overpredicted the noise
reduction capacity achieved by serrations. Given that all these analytical prediction models
rely on the statistics of the wall pressure fluctuations as inputs, an accurate characterization
of these fluctuations is crucial to an accurate noise prediction.

Comprehensive reviews on the features of the wall pressure fluctuations can be found
in the works of Willmarth (1975) and Bull (1996). In general, the temporal and spatial
characteristics of the wall pressure fluctuations on a flat plate can be described in terms
of the wavenumber–frequency spectrum, which exhibits two distinct regions. The first
region is called the acoustic domain (Blake 2012; Gloerfelt & Berland 2013), where the
phase speed is equal to or greater than the speed of sound, enabling efficient radiation
to the far field. The second region, referred to as the convected domain, comprises wave
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Impact of non-frozen turbulence

components that travel at speeds slower than the speed of sound. Pressure fluctuations
in the convected domain exhibit significantly higher magnitudes compared to those
observed in the acoustic domain, and are related to the scattering process of the TE
noise. In practice, semi-empirical wall pressure spectrum models are commonly used
in analytical noise predictions, such as the Corcos model (Corcos 1964), the Chase
model (Chase 1987), and the Goody model (Goody 2004). Semi-empirical models are
usually formulated empirically according to certain scaling laws. Hwang, Bonness &
Hambric (2009) conducted a comparison of the frequency spectra calculated using nine
semi-empirical models, and found that the Goody model could provide the best overall
estimation for zero pressure gradient flows. This conclusion was also confirmed by Lee
(2018), and a new empirical model was developed in Lee’s work that could provide more
accurate results for both flat plates and aerofoils. Recently, the TNO model has shown
promise in obtaining the surface pressure wavenumber–frequency spectrum (Stalnov,
Chaitanya & Joseph 2016), and could potentially improve noise prediction performance
compared to other empirical models (Mayer et al. 2019).

One of the most important assumptions made in modelling the turbulent flow is Taylor’s
hypothesis of frozen turbulence (Taylor 1938). Taylor hypothesized that the spatial patterns
of turbulent motions are carried past a fixed point at the convection velocity without
changing significantly. The frozen turbulence assumption depicted a simple scenario
that could provide significant convenience in developing analytical models. However, the
applicability of this assumption was open to some debate. Lin (1953) has shown that this
hypothesis is not applicable in cases of high shear flows, such as turbulent boundary layers
and the mixing region of a jet. The large-scale shear flows induce the distortions of small
eddies as they are carried downstream (Zhao & He 2009). Subsequently, numerous studies
have focused on assessing the validity and improving Taylor’s hypothesis (Fisher & Davies
1964; Wills 1964; Dennis & Nickels 2008; Del Álamo & Jiménez 2009; Renard & Deck
2015; He, Jin & Yang 2017). Fisher & Davies (1964) pointed out that when intensity
is high, different turbulent spectral components appear to travel at different speeds.
Furthermore, under the frozen turbulence assumption, the energy spectrum obtained in
a frame of reference moving with the convection velocity contains only components of
zero frequency. However, the experimental results of Fisher & Davies (1964) showed that
the energy was spread over a considerable band of frequencies for the shear flows. In
the region of high shear stress within a turbulent channel flow, Del Álamo & Jiménez
(2009) showed that the phase velocity of the modes with long wavelengths was higher
than the local mean velocity. They also proposed a method to determine the convection
velocity that relies solely on the spectral information in the temporal or spatial direction.
Considering that the frozen turbulence assumption implied a first-order approximation,
He & Zhang (2006) developed an elliptic model based on a second-order approximation.
Two characteristic velocities were utilized in this model, i.e. a convection velocity and a
velocity that characterizes the distortion of flow patterns. The elliptic model can be used
to reconstruct space–time correlations from temporal correlations, and has been validated
in turbulent channel flows (Zhao & He 2009), turbulent boundary layers (Wang, Guan &
Jiang 2014) and turbulent Rayleigh–Bénard convection (He et al. 2012).

For the prediction of TE noise, most previous analytical models adopted the frozen
turbulence assumption to facilitate a quick estimation, which may be a potential
contributor to the discrepancies between models and experiments. Recently, several
experimental and numerical studies (Avallone, Pröbsting & Ragni 2016; Avallone et al.
2018; Zhou et al. 2020; Pereira et al. 2022) have called into question the use of the frozen
turbulence assumption. Therefore, it is necessary to explore to what extent the frozen
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turbulence assumption approximates the real turbulent statistics and to develop methods
for incorporating the non-frozen effect in noise prediction models.

This paper is structured as follows. Section 2 shows a statistical description of wall
pressure fluctuations. Section 3 describes the numerical set-up employed to simulate a
fully-developed turbulent boundary layer. The correlation and spectral features of wall
pressure fluctuations are examined. Subsequently, in § 4, a new model that accounts for
the non-frozen effect is proposed, and the corresponding prediction results are presented.
Section 5 elucidates the physical mechanism behind the noise reduction when non-frozen
turbulence is taken into consideration. The final section concludes the present paper and
lists our future work.

2. The statistical description of the wall pressure fluctuations

In this paper, we will consider a turbulent boundary layer that develops on a flat plate
under a zero mean pressure gradient. In TE noise modelling, the statistical spectrum of the
wall pressure fluctuations beneath a turbulent boundary layer is often used as an input. We
define some of the key quantities in this section. The space–time correlation of the wall
pressure fluctuations p′(x, t) at position x = (x, z) at time t is defined by

Qpp(x, t; ξ , τ ) = 〈 p′(x, t) p′(x + ξ , t + τ)〉, (2.1)

where ξ = (ξ, η), ξ and η are the spatial separations in the streamwise and spanwise
directions respectively, and τ is the time delay. As the turbulent boundary layer develops
slowly in the streamwise direction, the flow field may be regarded as homogeneous in the
directions parallel to the wall and stationary in time within the scales of interest. Thus we
have Qpp(x, t; ξ , τ ) ≈ Qpp(ξ , τ ). The correlation coefficient is then defined by

Rpp(ξ, η, τ ) = Qpp(ξ, η, τ )

Qpp(0, 0, 0)
. (2.2)

The streamwise and spanwise integral lengths can be defined as

Λx =
∫ ∞

−∞
|Rpp(ξ, 0, 0)| dξ, (2.3)

Λz =
∫ ∞

−∞
|Rpp(0, η, 0)| dη. (2.4)

The spectral density of wall pressure fluctuations can be obtained by performing the
Fourier transform of the space–time correlation. In the frequency domain, the single-point
spectrum φ(ω) is expressed as

φ(ω) = 1
2π

∫ ∞

−∞
Qpp(0, 0, τ ) e−iωτ dτ, (2.5)

where ω = 2πf is the angular frequency, and f is the frequency. Similarly, the
cross-spectral density is defined by

Gpp(ξ, η, ω) = 1
2π

∫ ∞

−∞
Qpp(ξ, η, τ ) e−iωτ dτ. (2.6)

Making use of the single-point spectrum and the cross-spectral density, the coherence
function can be defined as

γ 2(ξ, η, ω) = |Gpp(ξ, η, ω)|2
φ(ω)2 . (2.7)
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In (2.3) and (2.4), we have defined the streamwise and spanwise integral lengths based
on the correlation coefficients, which are independent of frequency. However, it is known
that the spatial correlation of the pressure fluctuations varies with frequency. Therefore,
we introduce the frequency-dependent correlation lengths defined as

lx(ω) =
∫ ∞

0
γ (ξ, 0, ω) dξ, (2.8)

lz(ω) =
∫ ∞

0
γ (0, η, ω) dη. (2.9)

As will be seen, the characteristics of lx,z differ significantly from those of Λx,z, and they
have significant implications in noise predictions.

To obtain the wavenumber–frequency spectrum of the wall pressure fluctuations, we
perform spatial Fourier transforms on the cross-spectral density, resulting in the definition
of the wavenumber–frequency spectrum,

Π(k1, k2, ω) = 1
(2π)2

∫ ∞

−∞

∫ ∞

−∞
Gpp(ξ, η, ω) exp(i(k1ξ + k2η)) dξ dη, (2.10)

where k1 and k2 are wavenumbers in the streamwise and spanwise directions, respectively.
The wavenumber–frequency spectrum describes the spectral distribution of energy in

wall pressure fluctuations and serves as a key input in TE noise prediction models.
The highest levels of pressure fluctuations typically occur within a specific region
centred around k1 = ω/Uc, k2 = 0, where Uc is the convection velocity. This region
is the so-called convective ridge. The idea that slowly distorting eddies are convected
downstream by the mean flow at a fixed velocity is useful in the study of turbulent shear
flows, and is particularly important in the research of aerodynamic noise (Wills 1964).
Various approaches exist for defining the convection velocity (Hussain & Clark 1981),
and a comprehensive review of the convection velocity datasets in turbulent shear flows
was conducted by Renard & Deck (2015). In general, the convection velocity should not
be treated as a constant value. This is because eddies of different sizes can convect at
different velocities, and so do the eddies with different time scales. Therefore, in general,
the convection velocity can be expressed as a function of time delay τ and streamwise
separation ξ , or as a function of frequency ω and streamwise wavenumber k1 in the spectral
domain.

Obtaining a well-resolved space–time flow field database is often challenging or
impractical in real-world scenarios. As a result, it becomes necessary to reconstruct the
wavenumber–frequency spectrum from either the space or time datasets based on the
statistical characteristics of the turbulent boundary layer. Taylor (1938) proposed the
well-known hypothesis that turbulent eddies convect uniformly and unchangingly past
a fixed point as if the spatial patterns of the flow field are ‘frozen’. Under this frozen
turbulence assumption, the correlation function satisfies (Bull 1967)

Qpp(ξ, η, τ ) = Qpp(ξ − Ucτ, η, 0). (2.11)

The streamwise coherence function can be found readily as a constant from (2.7), i.e.

γ (ξ, 0, ω) = 1. (2.12)

This implies that the eddy patterns exhibit perfect coherence in the streamwise direction
at all frequencies as they convect downstream. The frozen turbulence assumption has been
employed widely due to its simplicity in modelling the wavenumber–frequency spectrum.
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However, in a real turbulent boundary layer, the eddies undergo distortions caused by the
mean shear (Fisher & Davies 1964). This implies that the streamwise coherence would
decay as ξ increases. In such cases, assuming a constant streamwise coherence function
may introduce large errors when used in noise prediction models. Therefore, gaining a
more comprehensive understanding of the spatial coherence of wall pressure fluctuations,
especially the frequency-dependent correlation lengths, is crucial. In the next section, a
numerical investigation will be conducted to examine in detail the characteristics of wall
pressure fluctuations.

3. Numerical simulation of a turbulent boundary layer

3.1. Numerical set-up
To investigate the space–time correlations and spectral characteristics of wall pressure
fluctuations, we use the wall-resolved large-eddy simulation (LES) method to simulate
a fully-developed turbulent boundary layer over a flat plate. Considering that in many
applications where TE noise is important the Mach number is relatively low, we choose
to perform an incompressible simulation. Compared to the direct numerical simulation
(DNS) method, LES require fewer grid points for wall-resolved simulations (Schlatter
et al. 2010), leading to less computational resource demands. The LES method solves
the spatially filtered Navier–Stokes equations using a subgrid-scale (SGS) model. For
incompressible flows, the filtered momentum and continuity equations can be expressed
as

∂ ūi

∂t
+ ∂

∂xj
(ūiūj) = − 1

ρ0

∂ p̄
∂xi

+ ν
∂2ūi

∂xj ∂xj
− ∂τij

∂xj
, i = 1, 2, 3, (3.1)

∂ ūj

∂xj
= 0, (3.2)

where the overbar denotes filtered variables with a filter width , t is the time, ui is the
velocity component in the xi-direction (also denoted as u, v or w), ρ0 is the density, p is
the pressure, and ν is the kinematic viscosity. The contributions from SGS components
are represented through the SGS stresses τij = uiuj − ūiūj, which need to be modelled.
Following the eddy-viscosity assumption, the SGS stress can be modelled as

τij − 1
3 δijτkk = −2νT S̄ij, (3.3)

where δij is the Kronecker delta, and S̄ij = (∂ ūi/∂xj + ∂ ūj/∂xi)/2 is the large-scale
strain-rate tensor. The SGS viscosity νT can be calculated using various models. In this
study, the wall-adapting local eddy-viscosity (WALE) model (Nicoud & Ducros 1999) is
used due to its ability to account for the wall effect on the turbulent structure. The value
of νT is obtained as

νT = C2
wΔ2

(Sd
ijS

d
ij)

3/2

(S̄ijS̄ij)5/2 + (Sd
ijS

d
ij)

5/4
, (3.4)

where Cw is a constant coefficient, and Sd
ij is the traceless symmetric part of the square of

the velocity gradient tensor,

Sd
ij = 1

2

(
ḡ2

ij + ḡ2
ji

)
− 1

3δijḡ
2
kk. (3.5)

Here, ḡij = ∂ ūi/∂xj.
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Lx
u Lx

v Lx
w Ly

u Ly
v Ly

w Lz
u Lz

v Lz
w

0.6 δin 0.33 Lx
u 0.33 Lx

u 0.235 Lx
u 0.235 Lx

u 0.235 Lx
u 0.35 Lx

u 0.35 Lx
u 0.35Lx

u

Table 1. Turbulent length scales used in the inlet boundary condition.

For the turbulent inlet boundary condition, we use the synthetic turbulent inflow
generator. The generator employs a 2-D filter to produce spatially correlated 2-D slices
of data. The instantaneous velocity on the slice is computed as

ui = ūi + aijΨj, (3.6)

where Ψj denotes the filtered fluctuating velocity field, and aij is the amplitude tensor,
which is related to the Reynolds stresses tensor Rij by

aij =

⎡
⎢⎢⎢⎢⎢⎣

√
R11 0 0

R21

a11

√
R22 − a2

21 0

R31

a11

R32 − a22a31

a22

√
R33 − a2

31 − a2
32

⎤
⎥⎥⎥⎥⎥⎦ . (3.7)

By applying spatial and temporal filters to the random array sequences, we can introduce
the desired temporal and spatial correlations in the instantaneous velocity fluctuations. The
spatial turbulent length scale is defined by the two-point correlation, which is given by

L j
i (x) =

∫ ∞

0

u′
i(x) u′

i(x + ejr)

u′
i(x) u′

i(x)
dr, (3.8)

where r is the spatial separation in the j-direction, and u′
i(x) denotes the velocity

fluctuations. The parameters required to generate a turbulent inlet condition using the
digital filter method (DFM) include the profiles of the mean velocity, turbulent Reynolds
stresses and turbulent length scales. These parameters can be obtained through various
approaches, such as precursor DNS, modelling from a Reynolds-averaged Navier–Stokes
computation, or measurements from experiments. In this work, the mean velocity and
turbulent Reynolds stresses are obtained from the DNS data provided by Schlatter & Örlü
(2010). The Reynolds number at the inlet, based on the momentum thickness θ and the
free-stream velocity U0, is set to 1410. Regarding the turbulent length scale Lx

u, a constant
value may be prescribed. Following Wang et al. (2022), Lx

u is set to the boundary layer
thickness scaled by a factor 0.6, and other turbulent length scales can be prescribed based
on Lx

u. Table 1 shows the nine turbulent length scales used at the inlet with the DFM, where
δin denotes the boundary layer thickness at the inlet.

The numerical simulation in this study is conducted using OpenFOAM-v2206. The
computational domain, as illustrated in figure 1, has dimensions 50δin × 3.3δin × 3δin
in the streamwise (x), wall-normal (y), and spanwise (z) directions, respectively. The
mesh cells are distributed exponentially along the y-axis and placed uniformly along the
streamwise and spanwise directions. Table 2 lists detailed parameters employed in this
study. To ensure grid independence, both fine and coarse meshes are tested, and the results
of the grid independence test can be found in Appendix A.
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3.3δin

50δin

3δin

19δin

Inlet Outlet

Flow

z

y
x

Figure 1. Computational domain of the LES and an instantaneous flow field from the inlet to 19δin
downstream. The flow is visualized using the Q-criterion (Q = 2.5 × 104) and coloured by the streamwise
velocity (with levels increasing, the colour changes from blue to red).

U0 (m s−1) Reθ δin (mm) Lx/δin Ly/δin Lz/δin nx ny nz x+ y+
min z+

10 1410 16.4 50 3.3 3 2000 45 120 12.3 1.1 12.3

Table 2. Grid information and free-stream velocity for the LES of a spatially developing turbulent boundary
layer.

For the velocity boundary condition, a slip condition is used on the top wall, while
a no-slip condition is imposed on the bottom wall. In the lateral direction, a periodic
boundary condition is employed to simulate an infinite domain. At the outlet, the
inletOutlet boundary condition is imposed. Regarding the pressure boundary conditions,
all boundaries are set to zero gradient except for the top boundary, where a fixed pressure
is prescribed.

3.2. Numerical results
In this subsection, we present the simulation results of a spatially developing turbulent
boundary layer using the LES method. The turbulent statistics are obtained after the flow
field reaches a statistically stationary state. The LES data are used to show the spatial
evolution of the flow structures, validate the flow statistics, and examine the statistical
characteristics of wall pressure fluctuations.

3.2.1. Flow field
An instantaneous flow field is visualized using an isosurface of the Q-criterion, as shown
in figure 1. The computational domain is sufficiently long in the streamwise direction,
and the flow region from the inlet to 19δin downstream is selected for visualization. It
can be seen that the unsteady flow structures generated at the inlet are not physical.
But these unphysical structures quickly decay and the flow becomes more physical after
approximately 10δin. Similar phenomena can be seen in figure 2, where instantaneous
snapshots of the flow field are displayed. Figure 2(a) shows the side view of the
instantaneous streamwise velocity field in the x–y plane, while figure 2(b) shows the
overview in the x–z plane located at y = 0.3δin. The visualization demonstrates that
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0

3

100 20 30 40 50

4 6 8 10

u (m s–1) 

y/δin

(a)

0

3

z/δin

(b)

100 20 30 40 50

x/δin

Figure 2. Instantaneous snapshots of the streamwise velocity: (a) side view in the x–y plane, and
(b) overview in the x–z plane at y = 0.3δin.

Parameter Symbol Value

Boundary layer thickness δ/δin 1.73
Displacement thickness δ∗/δin 0.25
Momentum thickness θ/δin 0.18
Wall shear velocity uτ /U0 0.042
Reynolds number Reθ 2056

Table 3. Turbulent boundary layer parameters at the streamwise location x = 40δin.

artificial turbulent structures are instigated at the inlet, preserved for a short distance
downstream, and subsequently replaced by more physical structures.

Flow statistics are obtained by averaging over the spanwise direction z and time t.
Therefore, the streamwise velocity can be decomposed into u = U + u′, where U and
u′ denote the mean velocity and the fluctuating velocity, respectively. The wall shear
stress can be calculated as τw = μ(dU/dy)|y=0, where μ is the dynamic viscosity. The
friction velocity is defined as uτ = √

τw/ρ0, and the characteristic length is given by
l� = ν/uτ . Therefore, the mean velocity and distance normal to the wall can be expressed
in non-dimensional forms as U+ = U/uτ and y+ = y/l�, respectively. In the subsequent
analysis, the streamwise location x = 40δin is used as the reference position. Table 3
provides the parameters of the turbulent boundary layer at this position.

Figure 3 shows the distributions of the mean velocity and turbulent Reynolds stress
components. The simulated mean velocity exhibits good agreement with values obtained
by Wang et al. (2022) using the dynamic Smagorinsky model, as shown in figure 3(a).
In the near-wall region, the simulated mean velocity profile collapses well with the linear
law. However, in the logarithmic region, both the simulation results of the present study
and Wang et al. (2022) slightly deviate from the log law. From figure 3(b), we can see
that the simulated velocity fluctuations and Reynolds shear stress are in good agreement
with DNS results. Slight deviations from the DNS profile can be seen for the u′+

rms profile in
both the present study and the work of Wang et al. (2022), which might be attributed to the
artificial inflow-boundary condition employed in these two works. Nevertheless, figure 3
shows that the present LES capture essential flow physics.
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Figure 3. Profiles of mean flow statistics at x = 40δin: (a) velocity and (b) Reynolds shear stress as well as
streamwise, spanwise and wall-normal velocity fluctuations.
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Figure 4. Single-point spectrum scaled with outer parameters.

3.2.2. Properties of wall pressure fluctuations
In this part, we examine the statistical characteristics of wall pressure fluctuations. The
key properties for noise predictions such as the frequency-dependent correlation lengths
are presented here, and other properties, such as space–time correlations, can be found in
Appendix B.

Figure 4 shows the single-point spectrum of the pressure fluctuations obtained using
Welch’s method (Welch 1967) and normalized by the dynamic pressure q∞ = ρ0U2

0/2
and the displacement thickness δ∗. The simulated pressure spectrum exhibits two distinct
regimes: a −1 scaling regime, and a −5 scaling regime. The −1 scaling is associated
with the eddies present in the logarithmic region of the boundary layer. These eddies
contribute to the energy distribution in the low-frequency range of the spectrum. On the
other hand, the −5 scaling, appeared in the high-frequency range, is related to the presence
of smaller-scale eddies within the buffer layer (Blake 2012).

The mean convection velocity Ūc can be estimated by determining the time delay τ

corresponding to the correlation peak shown in figure 25 of Appendix B for a fixed spatial
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Figure 5. (a) Comparison of the mean convection velocity. (b) Phase velocity as a function of frequency
for fixed streamwise separations with increment 1.6δ∗ as well as convection velocities calculated using the
Smol’yakov model and the Bies model.

separation ξ , i.e.

Ūc(ξ) = ξ

τ
. (3.9)

On the other hand, to obtain a frequency-dependent convection velocity, we can use the
cross-spectral density Gpp(ξ, η, ω), which is a complex function (Gloerfelt & Berland
2013). Let θp(ξ, ω) denotes the phase of Gpp(ξ, 0, ω). Then the phase velocity Ucp(ξ, ω)

can be determined by (Farabee & Casarella 1991)

Ucp(ξ, ω) = − ωξ

θp(ξ, ω)
. (3.10)

The cross-spectral density can be written as

Gpp(ξ, η, ω) = |Gpp(ξ, η, ω)| e−iξω/Ucp(ξ,ω). (3.11)

The exponential term in (3.11) represents the convection behaviour of turbulent eddies,
where the phase velocity is expected to be dependent on the frequency ω and the separation
distance ξ .

Figure 5(a) shows the comparison between the simulated mean convection velocity
and the experimental measurements by Bull (1967). It can be seen that there is good
agreement between the two. As the streamwise separation increases, the mean convection
velocity also increases and approaches 0.8. Note that most serration amplitudes are within
10–20δ∗. The variation of the mean convection velocity Ūc is very small in these distances.
Figure 5(b) shows the variations of the phase velocity as functions of frequency for various
fixed streamwise separations. The convection velocities calculated using the empirical
models proposed by Smol’yakov (2006) and Bies (1966) (see Appendix C) are also shown
for comparison. It is evident that the phase velocity increases with increasing streamwise
separation, and as the frequency increases, the phase velocity rises rapidly, reaches a peak
velocity, and then decays slowly. This suggests that the assumption of frozen turbulence,
which assumes that all eddies in the turbulent boundary layer convect at the same velocity,
is not strictly valid (Farabee & Casarella 1991). Both the Smol’yakov model and the Bies
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Figure 6. (a) Streamwise and (b) spanwise coherences of wall pressure fluctuations.

model agree with the numerical results at intermediate and high frequencies, but the Bies
model fails to capture the characteristics at low frequencies.

Figure 6 examines the streamwise and spanwise coherences of pressure fluctuations.
We see that the contour shapes of the coherence functions in the two directions are
similar. For a fixed non-zero separation, the coherence increases with the increase of
frequency and then decays. This behaviour indicates that the low-frequency components,
associated with large-scale structures, maintain their coherence over longer distances,
while the high-frequency components lose their coherence more rapidly with increasing
separation. In particular, for the non-dimensional frequency ωδ∗/U0 > 1, the wall
pressure fluctuations quickly lose their coherence as the separation increases, indicating
that the perfect coherence assumed by the frozen turbulence might lead to significant
errors. The coherence contours provide valuable information for determining the
frequency-dependent correlation lengths.

Equations (2.8) and (2.9) provide the definitions of the streamwise and spanwise
frequency-dependent correlation lengths. However, in practical applications, curve-fitting
approaches are often employed. For each discrete frequency, the frequency-dependent
correlation lengths can be assumed in exponential forms, i.e.

γ (ξ, 0, ω) = e−|ξ |/lx(ω), (3.12)

γ (0, η, ω) = e−|η|/lz(ω). (3.13)

In figure 7, the frequency-dependent correlation lengths in the streamwise and spanwise
directions are plotted as functions of frequency. Three empirical models, i.e. the Corcos
model (Corcos 1964), the Smol’yakov model (Smol’yakov 2006), and the Hu model (Hu
2021) are also shown for comparisons, whose formulations can be found in Appendix D.
It can be seen that both correlation lengths increase slightly as frequency increases in
the low-frequency range. When the frequency further increases, lx(ω) and lz(ω) decay
rapidly. All three empirical models exhibit similar decay trends within the intermediate-
and high-frequency ranges. However, the Smol’yakov model and the Hu model could
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Figure 7. Frequency-dependent correlation lengths in (a) the streamwise direction and (b) spanwise direction.

capture the characteristics at low frequencies. In addition, at higher frequencies, we can see
that the simulated correlation lengths decay slowly and even increase. This phenomenon
can also be found in the study of Van Der Velden et al. (2015), and a mesh refinement may
be helpful to obtain improved decay tendencies of the frequency-dependent correlation
lengths in this regime.

An interesting observation is that for the same frequency, lx(ω) > lz(ω). This is in
contrast to the streamwise frequency-independent correlation length Λx, which is smaller
than the spanwise correlation length Λz. This phenomenon can be attributed to the
convection of turbulence in the streamwise direction. Considering the definition of the
frequency-dependent correlation length, we have

lx(ω) =
∫ ∞

0

|Gpp(ξ, 0, ω)|
φ(ω)

dξ. (3.14)

From (3.14), we can see that lx(ω) characterizes the correlation that eliminates the effect
of the streamwise convection of turbulent eddies. Physically, this represents the correlation
length measured in a coordinate frame that moves with the eddy.

Introducing the complex form of the cross-spectral density, the space–time correlation
in the streamwise direction can be written as

Qpp(ξ, 0, τ ) =
∫ ∞

−∞
|Gpp(ξ, 0, ω)| exp(iω(τ − ξ/Ucp(ξ, ω))) dω. (3.15)

Therefore, the frequency-independent correlation length reads

Λx = 1
Qpp(0, 0, 0)

∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
|Gpp(ξ, 0, ω)| exp(−iωξ/Ucp(ξ, ω)) dω

∣∣∣∣ dξ. (3.16)

Comparing (3.14) and (3.16), it is clear that the calculation of the streamwise
frequency-independent correlation length Λx takes into account the influence of the
convection of turbulent structures. On the other hand, the frequency-dependent correlation
length lx(ω) does not. Since the convection of eddies contributes to the decay of the
correlation, it is possible that Λx < Λz even though lx(ω) > ly(ω).

In this part, we have examined two important features of wall pressure fluctuations
that are omitted by the frozen turbulence assumption. First, the convection velocity is
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Figure 8. Schematic of a flat plate with TE serrations.

not strictly constant. Second, the eddies lose their coherence as they convect downstream,
leading to a finite streamwise correlation length. These two characteristics are important
non-frozen properties and must be accounted for in the modelling of the far-field noise
emitted from serrated trailing edges.

4. Acoustic prediction

4.1. Model establishment
With the properties of wall pressure fluctuations and the numerical results discussed
above, we are in a position to consider the influence of non-frozen turbulence on the
noise prediction for serrated trailing edges. As shown in figure 8, consider a flat plate
encountering a uniform flow. The plate has chord length c, span d, and a trailing edge with
serrations of amplitude 2h and wavelength λ.

According to Lyu et al. (2016), for a general wall pressure fluctuation characterized by
its wavenumber–frequency spectrum Π(k1, k2, ω), the far-field acoustic power spectral
density Spp at the observer position X 0 = (X0, Y0, Z0) is found to be

Spp(X 0, ω) =
(

ωY0c

4πc0S2
0

)2

2πd
∞∑

m=−∞

∫ ∞

−∞
|L(k1, 2mπ/λ, ω)|2 Π(k1, 2mπ/λ, ω) dk1,

(4.1)

where c0 is the speed of sound, S2
0 = X2

0 + (1 − M2
0)(Y2

0 + Z2
0), M0 is the Mach number

of the flow, and L is the response function, which could be calculated iteratively. Note that
there is no assumption regarding the frozen property of the wall pressure fluctuations here.
More details about this model can be found in Lyu et al. (2016).

It can be seen from (4.1) that the formulation relies on the wavenumber–frequency
spectrum as input, and involves an infinite integral over the streamwise wavenumber
k1. While this integral can be evaluated numerically, such an approach would be
computationally demanding. Furthermore, obtaining an accurate wavenumber–frequency
spectrum Π(k1, k2, ω) is challenging in both numerical simulations and experimental
measurements. To achieve a convenient prediction and determine the physical impact
of non-frozen turbulence on TE noise, we aim to develop a simplified model based
on the characteristics of wall pressure fluctuations. Specifically, we approximate the
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cross-spectral density using a variable-separation form:

Gpp(ξ, η, ω) = γ (ξ, 0, ω) e−iξω/Uc(ω) Gpp(0, η, ω). (4.2)

This form is similar to the Corcos model (Corcos 1964), which was initially developed
by fitting experimental data and has since been widely used in the modelling of wall
pressure fluctuations. However, the Corcos model is more stringent as it assumes that
the normalized cross-spectral density can be represented by a function that depends on a
single dimensionless variable. Here, the convection velocity is expressed as a function of
the angular frequency, while its dependency on the streamwise separation is neglected for
simplicity.

By performing Fourier transforms, the wavenumber–frequency spectrum can be written
as

Π(k1, k2, ω) = 1
(2π)2

∫ ∞

−∞

∫ ∞

−∞
γ (ξ, 0, ω) e−iξω/Uc(ω) Gpp(0, η, ω) eik1ξ eik2η dξ dη

= φx(k1, ω) φz(k2, ω), (4.3)

where

φx(k1, ω) = 1
2π

∫ ∞

−∞
γ (ξ, 0, ω) e−iξω/Uc(ω) eik1ξ dξ (4.4)

and

φz(k2, ω) = 1
2π

∫ ∞

−∞
Gpp(0, η, ω) eik2η dη. (4.5)

Here, φz(k2, ω) is the spanwise wavenumber–frequency spectrum, while φx(k1, ω) denotes
the effects of both the coherence decay and the convection of turbulent eddies. Thus Spp
can be shown to be

Spp(X 0, ω)

=
(

ωY0c

4πc0S2
0

)2

2πd
∞∑

m=−∞

∫ ∞

−∞
|L(k1, 2mπ/λ, ω)|2 φx(k1, ω) dk1 φz(2mπ/λ, ω).

(4.6)

Equation (4.6) shows that the form of φx plays an important role in estimating the integral
and hence the far-field sound.

Under the frozen turbulence assumption, as discussed in § 2, the streamwise coherence
function is equal to 1, and the convection velocity is assumed to be a constant value. This
implies that all eddies convect at the same velocity while maintaining their coherence. As
a result, the cross-spectral density is found to be

Gpp(ξ, η, ω) = Gpp(0, η, ω) e−iωξ/Uc . (4.7)

It follows that
φx(k1, ω) = δ(k1 − ω/Uc). (4.8)

Substituting (4.8) into (4.6), we recover

Spp(X 0, ω) =
(

ωY0c

4πc0S2
0

)2

2πd
∞∑

m=−∞
|L(k̄1, 2mπ/λ, ω)|2 φz(2mπ/λ, ω), (4.9)

where k̄1 = ω/Uc. Equation (4.9) is identical to (2.56) in Lyu et al. (2016). In this case, a
given frequency ω is assumed to be associated with a specific wavenumber k̄1 through the
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convection velocity Uc. Therefore, only the convection of eddies is considered, while the
streamwise distortion is neglected. In terms of noise prediction models, the sound response
function L sees only the value at the convective wavenumber k̄1. This simplification may
be the reason why most analytical models overestimate the noise reduction of serrated
trailing edges. It is worth noting that in the present work, the frozen turbulence refers to
the idea that the wall pressure fluctuation pattern convects downstream as if it is frozen,
which is widely used in the TE noise modelling. Since the wall pressure is the imprint
of turbulence of various scales within the boundary layer, the frozen pressure fluctuation
pattern implies that eddies of different sizes must convect at the same speed. Otherwise,
the pressure fluctuation pattern would change and a coherence decay would occur.

To account for the non-frozen nature of the turbulent boundary layer quantitatively, a
coherence decay function is needed. We use

γ (ξ, 0, ω) = e−|ξ |/lx(ω), (4.10)

as informed by (3.12). By employing this approximation, we can evaluate the integral in
(4.6) and obtain

φx(k1, ω) = lx(ω)

π[1 + (k1 − ω/Uc(ω))2 l2x(ω)]
. (4.11)

Equation (4.11) incorporates the decay of streamwise coherence caused by the distortion
of turbulent eddies as they convect downstream. It can be seen that wavenumbers around
ω/Uc(ω) still play a significant role in shaping the spectrum; however, the contribution to
the spectrum is not limited to a one-to-one correspondence between a given frequency and
a specific wavenumber. This spreading phenomenon is a notable spectral characteristic of
the wall pressure fluctuations beneath a turbulent boundary. In the following analysis, we
adopt the notation k̃1(ω) to represent the frequency-dependent convective wavenumber, i.e.
k̃1(ω) = ω/Uc(ω). This parameter represents the dominant wavenumber on the frequency
of ω.

To obtain the acoustic prediction, we need to evaluate the integral of |L|2φx over the
streamwise wavenumber k1. As mentioned at the beginning of this subsection, rather than
relying on numerical techniques, we aim to obtain a compact estimation for the integral,
enabling a convenient prediction and determining the physical impact of non-frozen
turbulence on TE noise.

4.2. Approximation of the model
According to the mean value theorem for integrals (Stewart 2011), for a given frequency ω

and spanwise mode m, there exists a characteristic streamwise wavenumber k∗
1,m(ω) such

that∫ ∞

−∞
|L(k1, 2mπ/λ, ω)|2 φx(k1, ω) dk1 = |L(k∗

1,m(ω), 2mπ/λ, ω)|2
∫ ∞

−∞
φx(k1, ω) dk1.

(4.12)

Substituting the expression for φx given in (4.11) into (4.12) and recognizing that∫ ∞

−∞
lx(ω)

π[1 + (k1 − k̃1(ω))2 l2x(ω)]
dk1 = 1, (4.13)

we have∫ ∞

−∞
|L(k1, 2mπ/λ, ω)|2 φx(k1, ω) dk1 = |L(Cm(ω) k̃1(ω), 2mπ/λ, ω)|2. (4.14)
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Substituting (4.14) into (4.6), we see that the resulting non-frozen model is identical
to the frozen model apart from the introduction of a correction coefficient Cm(ω) =
k∗

1,m(ω)/k̃1(ω) to the dominant convection wavenumber. For a given frequency, by
determining the correction coefficient Cm, the far-field noise can be calculated using
essentially the same frozen prediction model. However, due to the complex nature of the
response function, determining this coefficient is challenging. Therefore, in subsequent
analysis, we aim to find a convenient approximation for |L|2. From the analysis of Lyu
et al. (2016), it is known that

|L|2 ∼ O(|am|2), (4.15)

where

am = eimπ/2

2
sinc(k1h − mπ/2) + e−imπ/2

2
sinc(k1h + mπ/2). (4.16)

Examining the shape of |am|2, we see that it can be very well approximated by

Hm(k1h) = 1
4

(
1

(k1h + mπ/2)2 + m̃
+ 1

(k1h − mπ/2)2 + m̃

)
, (4.17)

where

m̃ = 1 − 1
mπ + 2

. (4.18)

It can be seen that Hm is a purely algebraic function of k1h. Therefore, the correction
coefficient can be determined analytically by solving

Hm(Cmk̃1h) =
∫ ∞

−∞
Hm(k1h) φx(k1, ω) dk1. (4.19)

The integral in (4.19) can be found analytically to be Im/4, and the expression for Im can
be written as

Im = Im1 + Im2

Im3 + Im4
+ Im5 + Im6

Im7 + Im8
, (4.20a)

Im1 = 4
√

m̃(4m̃ + π2m2 + 4πmσ2 + 4σ 2
2 − 4σ 2

1 ), (4.20b)

Im2 = 4(−4m̃σ1 + π2m2σ1 + 4πmσ1σ2 + 4σ1σ
2
2 + 4σ 3

1 ), (4.20c)

Im3 =
√

m̃ (16m̃2 + 8(πm + 2σ2 − 2σ1)(πm + 2σ2 + 2σ1)m̃ + π4m4 + 8π3σ2m3),
(4.20d)

Im4 =
√

m̃ (24π2m2σ 2
2 + 8π2m2σ 2

1 + 32πmσ 3
2 + 32πmσ 2

1 σ2

+ 16σ 4
2 + 32σ 2

1 σ 2
2 + 16σ 4

1 ),
(4.20e)

Im5 = 4
√

m̃ (4m̃ + π2m2 − 4πmσ2 + 4σ 2
2 − 4σ 2

1 ), (4.20f )

Im6 = 4(−4m̃σ1 + π2m2σ1 − 4πmσ1σ2 + 4σ1σ
2
2 + 4σ 3

1 ), (4.20g)

Im7 =
√

m̃ (16m̃2 + 8(πm − 2σ2 − 2σ1)(πm − 2σ2 + 2σ1)m̃ + π4m4 − 8π3σ2m3),
(4.20h)

Im8 =
√

m̃ (24π2m2σ 2
2 + 8π2m2σ 2

1 − 32πmσ 3
2 − 32πmσ 2

1 σ2

+ 16σ 4
2 + 32σ 2

1 σ 2
2 + 16σ 4

1 ),
(4.20i)
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where σ1 = h/lx and σ2 = k̃1h. Subsequently, the correction coefficient Cm can be
computed as

Cm =
√

m2π2

4
− m̃ + 1 +√

1 + m2π2Im − m2π2m̃I2
m

Im

/
σ2. (4.21)

It can be seen that the correction coefficient Cm is determined by σ1 and σ2 only. Note,
however, that introducing a correction coefficient is simply to facilitate a quick evaluation.
Therefore, we do not expect Cm to be strictly accurate.

With the introduction and evaluation of Cm, the far-field noise spectrum is shown to be

Spp(X 0, ω) =
(

ωY0c

4πc0S2
0

)2

2πd
∞∑

m=−∞
|L(Cm(ω) k̃1(ω), 2mπ/λ, ω)|2 φz(2mπ/λ, ω).

(4.22)

Equation (4.22) is purposely cast into the same form as the frozen model so that the
effects of non-frozen turbulence can be accounted for conveniently by a single correction
coefficient Cm(ω). In the following subsections, we will show the prediction results
obtained using (4.22), along with a discussion of the rationality behind the approximations
used in this subsection.

4.3. Prediction results
Using the new model that incorporates the impact of non-frozen turbulence, we can
now predict the far-field noise. We apply the model to flat plates with straight and
serrated trailing edges, and use parameters similar to those employed in the preceding
numerical simulations. In particular, the Mach number is chosen to be M0 = 0.03, while
the chord length of the flat plate is chosen as c = 1.12 m. The streamwise correlation
length lx(ω) and the spanwise wavenumber–frequency spectrum φz(k2, ω) are both
obtained from the numerical simulation. Smol’yakov’s model is selected to compute the
frequency-dependent convection velocity for the new model. For the frozen model, the
same computed spanwise wavenumber–frequency spectrum and a constant convection
velocity Uc = 0.7U0 are used. The non-dimensionalized form of the far-field power
spectral density,

Ψ (X , ω) = 2π Spp(X , ω)

C∗(ρ0v2∗)2 (d/c0)
, (4.23)

is used to facilitate a direct comparison with results from frozen models, where C∗ ≈
0.1553 and v∗ ≈ 0.03U0.

Figure 9 presents the predicted far-field noise using both the frozen and non-frozen
models. Here, we use kc to represent the dimensionless frequency, where k = ω/c0. The
observer is located at 90◦ above the trailing edge, and the distance between the observer
and the trailing edge is equal to the chord length c. The serration amplitudes are set to
2h/c = 0.05 and 2h/c = 0.1, while the aspect ratio remains constant, i.e. λ/h = 0.1. It
can be seen that there are minimal discrepancies between the results obtained using these
two models for straight trailing edges. As will be discussed in the following analysis, the
correction due to non-frozen turbulence goes to zero for straight trailing edges. The slight
difference between the two curves is attributed to the frequency-dependent convection
velocity used in the new model. Figure 9 shows that the frequency-dependent variation
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Figure 9. Predicted far-field noise produced by the straight and serrated trailing edges:
(a) λ/h = 0.1, 2h/c = 0.05, and (b) λ/h = 0.1, 2h/c = 0.1.
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Figure 10. Directivity patterns for straight and serrated trailing edges predicted using frozen and non-frozen
models: (a) λ/h = 0.1, 2h/c = 0.05, kc = 6.5; (b) λ/h = 0.1, 2h/c = 0.05, kc = 22.5; (c) λ/h = 0.1, 2h/c =
0.1, kc = 6.5; and (d) λ/h = 0.1, 2h/c = 0.1, kc = 22.5.

of the convection velocity has a limited influence. Significant noise reductions predicted
by the frozen model can be seen within the intermediate-frequency range for serrated
trailing edges, especially for the longer serration. However, the new model that accounts for
non-frozen turbulence predicts less pronounced noise reductions. One important feature
shown in figure 9 is that the noise reduction level reduces at high frequencies, which will
be discussed further in the rest of the paper. It is also shown that the long serration with
the same slope performs better than the short one.

The directivity patterns predicted by frozen and non-frozen models for different Mach
numbers and frequencies are shown in figure 10. The frozen model assumes a constant
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Figure 11. Comparison of the noise reduction predictions from analytical models with experimental
measurements by Gruber (2012): (a) λ/h = 0.6 and (b) λ/h = 0.1.

convection velocity Uc = 0.7U0. It can be seen that the presence of serrated trailing
edges significantly influences the directivity patterns, especially at higher frequencies (see
figures 10b,d). Similar to those observed in figure 9, the new model predicts reduced
levels of noise reduction, while the shapes of the directivity patterns remain similar. From
figure 10, we can also see that the noise reduction effects are more pronounced in the
regions located in front of and behind the flat plate.

In the prediction results shown above, the frequency-dependent correlation length
and the spanwise wavenumber–frequency spectrum are obtained through numerical
simulations. However, considering the high cost associated with computational fluid
dynamics or experimental investigations, the use of empirical models may be more
convenient for practical applications. For example, we can use Chase’s model to estimate
the spanwise wavenumber–frequency spectrum, which is given by (Chase 1987; Howe
1991b)

φz(k2, ω) ≈ 4C∗ρ2
0v4∗(ω/Uc)

2δ4

Uc
(
((ω/Uc)2 + k2

2)δ
2 + χ2

)2 . (4.24)

Here, χ ≈ 1.33, and the boundary layer thickness δ is estimated using δ/c = 0.382 Re−1/5
c ,

where Rec represents the Reynolds number based on the chord length. Again, the
Smol’yakov model (Smol’yakov 2006) can be used to obtain the streamwise correlation
length. Therefore, the new model demonstrates applicability across a broader range of
scenarios.

To further investigate the accuracy of the new model, a comparison is conducted
between the predicted noise reduction and that from experimental measurements by
Gruber (2012). Predictions from earlier models are also included for comparison. The
experimental study used a NACA 65(12)-10 aerofoil at a 5◦ angle of attack with
free-stream velocity U0 = 40 m s−1. The aerofoil has chord length 0.15 m, and the
serration amplitude is 2h/c = 0.2. Two different sizes of serrations were used, namely
λ/h = 0.6 and λ/h = 0.1. The observer is located at 90◦ above the aerofoil.

Figure 11 shows the comparison of the noise reduction SPL = 10 log10(Spp|b/Spp|s),
where Spp|b and Spp|s denote the far-field spectral density for the straight and serrated
trailing edges, respectively. In the experiments, noise reductions are observed at
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Figure 12. Comparison of noise reductions predicted by analytical models and obtained from the experiments
for four values of the Strouhal number: (a) St = 0.17, (b) St = 0.45, (c) St = 0.9 and (d) St = 1.4.

intermediate frequencies, albeit not exceeding approximately 5 dB. Conversely, noise
increment appears at high frequencies. This phenomenon is consistent with the
observations reported in the experiments conducted by Oerlemans et al. (2009), which
investigated full-scale serrated wind turbine blades. Howe’s model exhibits a significant
overprediction of the noise reduction, reaching a maximum SPL of 30 dB for the
narrow serration (see figure 11b). On the other hand, Lyu’s original model demonstrates
a more realistic prediction, but overestimation is still pronounced. Comparatively,
the discrepancies between the prediction using the new model and the experimental
measurements are considerably smaller for both serrations. Therefore, we see that the
frozen turbulence assumption contributes significantly to the overestimation of noise
reduction. Interestingly, as shown in figure 11(a), noise increase at high frequencies is
also predicted by the new model. This increment phenomenon has been attributed to the
presence of a cross-flow between serration teeth (Gruber 2012). However, the present
model suggests another possible cause of the noise increase at high frequencies at this
observer angle.

It can be seen from figure 9 that the long serration with the same slope can lead to
more noise reduction. Here, we explore further the effects of the serration geometry by
considering an extensive set of the serration amplitude and wavelength. Figure 12 shows
the comparison of the noise reduction as a function of the normalized half-amplitude h/λ
between the analytical models and Gruber’s experiments (Gruber 2012). According to
Gruber (2012), the serration wavelength remains unchanged, and the Strouhal number is
defined as St = f δ/U0. The incoming flow velocity is 40 m s−1, while the angle of attack
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Figure 13. Comparison of noise reductions predicted by analytical models and obtained from the experiments
for four values of λ: (a) Gruber’s experiments; (b) predicted using the new model; and (c) predicted using Lyu’s
original model.

of the aerofoil is 0◦. The noise reduction is calculated using equation (2.2) of Gruber
(2012). As can be seen from figure 12(a), for St = 0.17, the measured noise reduction
increases with the increase of the half-amplitude. Both Lyu’s model using the frozen
turbulence assumption and the new model yield similar noise reduction results compared
to the experiment for large amplitudes. However, when h/λ is small, noise increases are
predicted by both models, which is possibly caused by the inaccurate Chase’s model. From
figure 12(b), we can see that with the increase of the Strouhal number, the predicted noise
reduction agrees much better with experimental results compared to the frozen model. In
general, the noise reductions predicted by the two models increase with the increase of the
half-amplitude. The apparent deviation in figures 12(c,d) between the new model and the
experimental result is likely due to the new flow features caused by serrations that are not
included in the model, as already discussed for figure 11.

Figure 13 shows the comparison of the noise reduction predicted by analytical models
and measured from experiments by Gruber (2012) for four aspect ratios, i.e. 0.1,
0.2, 0.47 and 0.83. The serration amplitude takes a constant value. It is shown from
figure 13(a) that the noise reduction measured from experiments generally increases with
the decrease of the aspect ratio. The analytical models predict similar trends, as shown in
figures 13(b,c). Both the experimental and analytical results show that with the decrease
of aspect ratio from 0.2 to 0.1, the increase of noise reduction is not significant in the
intermediate-frequency range. The noise reduction predicted by the new model is confined
to approximately 8 dB, which is consistent with the experimental measurements. However,
up to 15 dB noise reduction is predicted by the frozen model, which is much larger than in
experiments. Notably, the non-frozen model predicted a decrease trend at high frequencies,
which can also be seen in Gruber’s experiments. On the contrary, the noise reduction
predicted by the frozen model continually increases in the high-frequency range. It is worth
noting that since the empirical wavenumber–frequency model would inevitably deviate
from the experiment, achieving a quantitative agreement between the non-frozen model
and experiments within the whole frequency range is quite challenging. In addition, the
prediction model does not account for the additional flow features introduced by serrations,
leading to discrepancies with experimental measurements, especially at high frequencies.
However, figures 11–13 clearly show that including the impact of non-frozen turbulence
can significantly improve the predicted noise reductions, particularly within the frequency
range of validity.
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Figure 14. Correction coefficient Cm as a function of σ1 and σ2: (a,b) m = 0 and (c,d) m = 3. Note that the
variations of Cm are plotted from σ2 = 3 in (b,d).

4.4. Discussions on the correction coefficient and the approximation
Equation (4.22) shows that the effect of non-frozen turbulence is captured by a single
coefficient Cm(ω), which is determined by two dimensionless parameters σ1 = h/lx and
σ2 = k̃h. We can therefore study its variation and gain a better understanding of the
consequence of including non-frozen turbulence. Figure 14 presents the variation of the
correction coefficient Cm as a function of σ1 and σ2. As shown in § 4.2, σ1 is defined as
the ratio of the half-amplitude to the frequency-dependent correlation length, while σ2
represents the non-dimensional frequency. From figure 14(a), we can see that for m = 0,
the correction coefficient Cm initially decreases and then increases with the increase of
σ1 when σ2 is small. However, when σ2 attains large values, Cm decreases monotonically.
This implies that at high frequencies, more correctness is needed for the serrations with
larger amplitudes. As shown in figure 14(b), when σ1 is set to 0, Cm maintains a value of
1, indicating that no correction is needed for the straight trailing edge. When σ1 is larger,
Cm initially decreases and then remains virtually constant. This suggests that for serrated
trailing edges, the correctness is nearly frequency-independent in the high-frequency
range. For m = 3, as shown in figures 14(c,d), Cm continues to exhibit minor changes
for large values of σ2. However, the variation is more significant than for m = 0 when σ2
is small.
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Figure 15. Comparison of the approximation functions Hm and |L|2 multiplied by a constant value, and the
shape of φx at 600 Hz with M0 = 0.03: (a) m = 0, λ/h = 1, 2h/c = 0.05; (b) m = 9, λ/h = 1, 2h/c = 0.05;
(c) m = 0, λ/h = 0.2, 2h/c = 0.1; and (d) m = 9, λ/h = 0.2, 2h/c = 0.1. The vertical solid line and vertical
dashed line indicate the convective wavenumber and the corrected wavenumber, respectively.

To understand why the frozen turbulence assumption tends to overestimate the noise
reduction, we can study the integrand shown in (4.6) and its approximation in detail. To
achieve that, the response function |L|2 and its approximation function Hm, as well as the
shape of φx under non-frozen turbulence condition, are shown in figures 15 and 16. Note
that the response function has been scaled by a constant factor for clearer comparison,
without affecting the validity of the approximation. In addition, as pointed out by Amiet
(1978), the incorporation of the incident pressure raises the far-field sound by 6 dB. Here,
the response function of only the scattered pressure is considered. The vertical solid line
indicates the convective wavenumber, while the vertical dashed line denotes the corrected
wavenumber. In the following analysis, the chord length is set to 1 m, and the observer is
positioned at 90◦ above the flat plate.

In figure 15, the comparison results at frequency f = 600 Hz with Mach number M0 =
0.03 are presented. It can be seen that the response function exhibits peaks near k1 = 0 for
m = 0, but two peaks for m = 9. The approximation function Hm accurately captures the
main shape of the response function, particularly for m = 9, indicating the validity of the
approximation.

As anticipated, it can be seen that the function φx exhibits a clear ridge at the convective
wavenumber k̃1. Since the calculation of far-field sound involves integrating the product
of |L|2 and φx over the wavenumber k1 (see (4.6)), it is evident that the values near the
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Figure 16. Comparison of the approximation functions Hm and |L|2 multiplied by a constant value, and the
shape of φx at 2500 Hz with M0 = 0.2: (a) m = 0, λ/h = 1, 2h/c = 0.05; (b) m = 9, λ/h = 1, 2h/c = 0.05;
(c) m = 0, λ/h = 0.2, 2h/c = 0.1; and (d) m = 9, λ/h = 0.2, 2h/c = 0.1. The vertical solid line and vertical
dashed line indicate the convective wavenumber and the corrected wavenumber, respectively.

peaks of both the response function and the convective ridge are important to the integral.
However, assuming frozen turbulence results in the form of the Dirac delta function
for φx. Therefore, only the value of the response function at k̄1 is used, neglecting the
influence of the shape of the response function. In contrast, when the turbulent boundary
layer is not frozen, the shapes of both the response function and the convective ridge
play important roles. For instance, as shown in figure 15(a), the peaks of the response
function and the convective ridge are sufficiently far away and the peaks near both
k1 = 0 and k1 = ω/Uc(ω) contribute significantly to the integral. But if the single value
|L(k̄1, k2, ω)|2 is used to represent the value of the integral as assumed by the frozen
turbulence, then the predicted far-field sound would become significantly lower than
when using the integral value. Conversely, if the peaks of the response function and
the convective ridge are close to each other (see figure 15b), then the frozen turbulence
assumption tends to predict a higher result. However, as shown in (4.22), the overall
far-field noise is the sum of contributions from all spanwise modes. It is known that
the contribution of higher modes is less significant compared to lower modes. Therefore,
for intermediate and high frequencies, where the peaks of the response function of the
dominant modes and the convective ridge are not closely aligned, the analytical models
assuming frozen turbulence would predict lower noise levels for serrated trailing edges.
With regard to the impact of serration sizes, it can be seen from figures 15(c,d) that the
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indicate the convective wavenumber and the corrected wavenumber, respectively.

shape of the response function is sharper for longer serrations. Thus more correctness in
the convective wavenumber may be needed for longer serrations.

To examine the effect of the Mach number, we present a similar comparison with a
higher Mach number M0 = 0.2 at frequency f = 2500 Hz, as shown in figure 16. It can be
seen that with an increased Mach number, the convective ridge exhibits a sharper peak.
Moreover, the convection velocity also increases with the increase of the Mach number.
As shown in figure 16(a), the peaks of the response function and the convective ridge
become closer compared to the results shown in figure 15, despite the frequency being
increased from 600 Hz to 2500 Hz. This indicates that less correctness in the convective
wavenumber may be needed for higher Mach numbers. Figure 17 shows the products of
the response function and the convective ridge as well as of the approximation function
and the convective ridge corresponding to figures 16(c,d). For m = 0, both product results
exhibit two peaks, and the peak near the zero wavenumber is higher. Consequently,
the corrected wavenumber is smaller than the convective wavenumber. For m = 9, the
peak near the convective wavenumber dominates the products, resulting in the corrected
wavenumber being very close to the convective wavenumber. It is worth noting again that
the final prediction result is calculated by integrating all the spanwise modes. Therefore,
the influence of the approximation deviation for m = 0 is limited.

In conclusion, we see that the frozen turbulence assumption may lead to lower or higher
sound predictions for different spanwise modes, depending on the distance between the
peaks of the response function and the convective ridge. However, when considering
the collective contribution of all modes, lower noise levels would be predicted for
serrated trailing edges in the intermediate- and high-frequency ranges. In other words,
the frozen turbulence assumption results in an overestimated noise reduction, especially
for long serrations and at low Mach numbers. This work concentrates on the impact of
non-frozen turbulence on the noise from serrated trailing edges. Strictly speaking, the
frozen turbulence assumption also affects the noise modelling for straight edges. However,
from the above analysis, we show that the shape of the response function is heavily
dependent on the serration amplitude. Therefore, the influence of non-frozen turbulence
for the serrated trailing edge is much larger than for the straight one. In fact, the frozen
turbulence assumption serves as a sufficiently good approximation for baseline scattering
(Sandberg & Sandham 2008; Lee et al. 2021). As the serration amplitude 2h increases,
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the assumption becomes less accurate, and it is the extra loss of accuracy that we aim to
correct using the correction coefficient Cm introduced in this paper. Therefore, as h → 0,
Cm → 1, implying that no further correction is needed. Thus this paper does not aim to
show that the frozen turbulence is a good approximation for straight edges, but rather uses
it as a fact. And Cm = 1 merely means no further correction is needed because h = 0 and
the frozen and non-frozen models are set to become approximately identical simply by
construction.

It is worth noting that the new model proposed in this study may have limited
effectiveness when applied to very low frequencies. The first reason is that the phase
velocity demonstrates significant variations within this frequency range, as shown in
figure 5(b). The second reason is that the exponential decay function assumed in the
previous analysis may not accurately capture the behaviour of the coherence loss. In this
case, the introduction of a Gaussian phase decay term might be helpful to provide a more
appropriate description of the coherence decay (Palumbo 2013). Nevertheless, in practical
applications, it is the intermediate-frequency range that is of most interest, because this is
where noise reduction occurs.

5. Physical mechanism

In § 4.4, a mathematical examination was conducted to explain the impact of the frozen
turbulence assumption. In this section, we aim to elucidate the underlying physical
mechanism related to noise reduction using non-frozen turbulence.

Previous work has shown that the physical mechanism behind the noise reduction
can be attributed to the destructive interference of the scattered pressure (Lyu et al.
2016). To explore the efficiency of this interference, we show the scattered surface
pressure distributions at a fixed frequency 2000 Hz with the Mach number M0 = 0.2
in figure 18. The scattered surface pressure is obtained by evaluating the real part of
equation (2.39) presented in the study of Lyu et al. (2016), and detailed formulations can
also be found in this work. The horizontal and vertical axes are scaled by the spanwise
and streamwise frequency-dependent correlation lengths obtained using the Smol’yakov
model, respectively. Hence the distance between adjacent parallel dashed lines denotes the
correlation length at this particular frequency.

As shown in figures 18(a,b), little phase variation appears when k1h attains a small
value, indicating a weak noise reduction. However, as k1h increases, significant phase
variation along the serration edges can be observed (see figures 18c,d). The interference
resulting from this phase variation leads to noise reductions in the far field. Under the
frozen turbulence assumption, the streamwise correlation length is assumed to be infinitely
large. Consequently, the phase variations along the entire serration edges are considered to
contribute to the destructive interference (assuming that spanwise coherence is sufficiently
large for now). However, in realistic non-frozen flows, only the phase variation within
the streamwise correlation length is effective in the destructive interference. From
figures 18(c,d), it can be seen that the serration amplitudes are 2–5 times larger than the
streamwise correlation lengths, highlighting the significance of considering the streamwise
length scale for accurate noise predictions.

In the above discussion, we purposely ignored the effects of spanwise correlation length
for a simpler illustration. In realistic flows, both the spanwise and streamwise correlation
lengths are important in determining the efficiency of the destructive interference. In fact,
we can see from figure 18 the 2-D grids formed by the dashed lines that represent the
streamwise and spanwise correlation lengths. It is within the same grid that the phase
variation is effective. The 2-D grid reflects the 3-D structures of the turbulent flow.
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Figure 18. The scattered surface pressure distribution at a fixed frequency f = 2000 Hz: (a) k1h = 2,
(b) k1h = 6, (c) k1h = 12 and (d) k1h = 20. The distance between two adjacent dashed lines denotes the
correlation length at this frequency.

It can be seen that with the increase of k1h, the grids become denser, indicating that the
effective area of destructive interference is smaller. Therefore the non-frozen correction
must be included, particularly at high frequencies. At high frequencies, the streamwise and
spanwise correlation lengths are relatively small, thus the effective area of the destructive
interference is heavily restricted by the streamwise and spanwise correlation lengths.

To provide further clarity on the phase variation along the serration edges, we plot
the real and imaginary parts of the scattered pressure for different values of k1h in
figure 19. The streamwise coordinates are normalized by half the amplitude of the serration
h. Similarly, the distance between adjacent dashed lines corresponds to the streamwise
correlation length. It can be seen from figure 19(a) that the real part remains negative
for k1h = 2, and the imaginary part exhibits a phase that changes sign over the serration
edge. Although the correlation length is larger than the serration amplitude, the noise
reduction effect is not significant due to the insignificant phase variations. In figure 19(b),
for k1h = 6, the phase differences of the scattered pressure are more significant, especially
for the imaginary part. When k1h becomes larger, as shown in figures 19(c,d), strong
variation can be seen for both the real and imaginary parts along the serration edge.
However, it can be seen that these variations are less pronounced within a streamwise
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Figure 19. The real and imaginary parts of the scattered pressure on the serrated edge at a fixed frequency
f = 2000 Hz: (a) k1h = 2, (b) k1h = 6, (c) k1h = 12 and (d) k1h = 20. The distance between two adjacent
dashed lines denotes the streamwise correlation length at this frequency.

correlation length. Therefore, the interference effectiveness is not as strong as that assumed
by the frozen turbulence. This explains physically why the frozen turbulence assumption
tends to overestimate the noise reduction when employed in noise prediction models.

In the case of leading-edge noise problems, where the inflow is typically uniform, the
turbulent upwash velocity spectra can be captured accurately by various models, such as
the von Kármán spectrum model (Amiet 1975; Narayanan et al. 2015). By assuming frozen
turbulence, analytical prediction models can provide realistic results for the noise emitted
from leading-edge serrations (Lyu & Azarpeyvand 2017). However, this is not the case
for TE serrations. As the turbulent boundary layer develops on a flat plate or an aerofoil,
the turbulent eddies undergo severe distortions due to the strong shear stress, leading to
significant streamwise coherence decay. Therefore, the impact of non-frozen turbulence
must be taken into account. As shown in this study, a finite streamwise correlation length
is introduced into the noise prediction model, resulting in significantly improved prediction
accuracy.

In practical applications, the statistical characteristics of wall pressure fluctuations on an
aerofoil can be different from those on a flat plate due to the influence of many factors, such
as the aerofoil camber and angle of attack. Caiazzo et al. (2023) examined the statistics
of flows under mean zero pressure gradient (ZPG) and adverse pressure gradient (APG)
on a curved surface using the DNS method. Results showed that the strong APG had a
significant impact on wall pressure statistics. Streamwise cross-correlations were observed
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to decay rapidly with increasing streamwise separation when moving downstream from
ZPG to APG, indicating shorter coherence in the APG region than in the ZPG region.
On the other hand, the decay of spanwise coherence was much slower. These phenomena
imply that for turbulent boundary layers with strong APG, the efficiency of destructive
interference is different from ZPG. The change of the effective region has important
implications for the serration design.

6. Conclusion

This study investigates the impact of non-frozen turbulence on the noise prediction model
for serrated trailing edges by analysing the statistical characteristics of wall pressure
fluctuations. A fully developed turbulent boundary layer is simulated using LES, with
the turbulence at the inlet generated by the digital filter method. The accuracy of the
simulated mean flow statistics is validated against DNS and a previous study by Wang et al.
(2022). The simulation results demonstrate that as the spatial separations increase, the
streamwise–spanwise correlation contour changes from circular to oval. Additionally, the
space–time correlation contour lines concentrate into a narrow band. The mean convection
velocity increases with the increase of streamwise separation, while the phase velocities for
a fixed streamwise separation initially increase and then decay with increasing frequency.
Coherence function contours for both streamwise and spanwise directions are presented.
The variation of the streamwise frequency-dependent correlation length indicates that the
infinite streamwise correlation length assumed by frozen turbulence is not appropriate.

Lyu’s model for serrated trailing edges is used as the basis for developing a non-frozen
noise prediction model. This model involves integrating the product of the response
function and the wavenumber–frequency spectrum over the streamwise wavenumber.
Based on the statistical analysis of wall pressure fluctuations, an exponential coherence
decay function is assumed, departing from the constant value employed under the
frozen turbulence assumption. By examining the properties of the response function, an
approximation function is introduced, allowing for the inclusion of a correction coefficient
to account for the impact of non-frozen turbulence. Two non-dimensional parameters
are identified to be critical for the non-frozen correctness, i.e. σ1 = h/lx and σ2 = k̃h.
The far-field sound spectra for different serration sizes demonstrate that the new model
predicts lower noise reduction. Comparative analysis with the experimental measurements
of Gruber (2012) demonstrates that the new model has significantly better prediction
capability. Results also show that sharper serrations can lead to more noise reduction.
Through an examination of the response function and the convective ridge, it is shown
that the far-field noise depends on the relative positions of their peaks.

The physical mechanism underlying the overprediction of noise models employing the
frozen turbulence assumption is found to be an overestimated destructive interference of
the scatted pressure. As the non-dimensional parameter k1h increases, the streamwise
correlation length becomes shorter than the amplitude of the serration. Only the phase
variations within a streamwise correlation length can result in effective destructive
interference. Consequently, the far-field noise is larger compared to that predicted under
the frozen turbulence assumption. This highlights the importance of the non-dimensional
parameter h/lx as a crucial factor in determining the efficiency of destructive interference
along the serration edge.

It should be noted that the installation of serrations may alter the flow field near the
trailing edge. The spectral properties of wall pressure fluctuations may also change near
the serrations, as shown in the experimental works of Ayton et al. (2021) and Pereira et al.
(2022). Ayton et al. (2021) suggested that taking account of a weaker high-frequency decay

990 A4-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

49
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.495


Impact of non-frozen turbulence

nx ny nz

Coarse 1500 34 90
Middle 2000 45 120
Fine 2500 56 150

Table 4. Mesh parameters for different mesh sizes.

rate of the wall pressure spectrum for serrated TE edges could also produce a reduced noise
reduction. However, Pereira et al. (2022) showed that the variation of the wall pressure
spectrum from the root towards the tip of the serration was not significant, which was
bound to 3 dB. Therefore, we believe that the key mechanism to explain the overprediction
is the coherence decay due to the non-frozen turbulence.

The present model is applicable to predict the far-field TE noise from aerofoils with
serrated trailing edges. However, it relies on an accurate wavenumber–frequency spectrum
as its input. In addition, this model does not account for the effects of new flow features
such as the cross-flow. Compared to previous frozen models, the present model exhibits
significantly improved noise reduction predictions, but deviation from the experiments
can still be seen, particularly in the high-frequency regime. An accurate modelling
or measurement of the wavenumber–frequency spectrum may also help to reduce the
deviation from experiments. Improvement may also be expected by incorporating the
impact of additional flow features due to serrations. In future works, this model may be
extended to investigate the noise from rotating blades, which has received much attention
in applications such as fans and unmanned aerial vehicles.
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Appendix A. Mesh convergence test

To evaluate the convergence of the computational mesh, we use three different meshes:
coarse, middle and fine. These grid sizes are listed in table 4. The resulting mean velocity,
fluctuating velocities and the Reynolds shear stress computed using these three meshes are
shown in figures 20 and 21. We can see that the discrepancies between the results obtained
with the fine and middle meshes are generally smaller compared to those between the
middle and coarse meshes. Therefore, middle-size mesh is used in the simulation.

Appendix B. Temporal and spatial correlations of wall pressure fluctuations

Figure 22 shows the spatial correlations of wall pressure fluctuations in the streamwise
and spanwise directions, respectively. It can be seen that both correlations decay rapidly
with increasing separation. However, the spanwise correlation remains positive throughout
the shown range, while the streamwise correlation changes sign at ξ/δ∗ ≈ 3.9, which
aligns with the findings of Bull (1967). The decay of the spanwise correlation shown may
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Figure 20. Comparison of the mean velocities calculated using the three meshes.
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Figure 21. Comparison of the mean flow variables calculated using the three meshes: (a) streamwise velocity
fluctuation; (b) wall-normal velocity fluctuation; (c) spanwise velocity fluctuation; and (d) Reynolds shear
stress.

be improved by using a larger computational domain but should suffice for the present
study. Figure 23 presents the contour plot of the two-point spatial correlation. The overall
pattern is similar to the observations reported by Bull (1967), where the contours are
nearly circular for small separations, indicating near isotropy of the field. However, as the
separations increase, the contours elongate in the spanwise direction, indicating increasing
anisotropy. This elongation is likely attributed to large-scale flow structures and implies
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Figure 22. One-dimensional spatial correlations: (a) streamwise direction and (b) spanwise direction.

–8 –6 –4 –2 0 2 4 6 8

–4

–2

0

2

4

0

0.2

0.4

0.6

0.8

ξ/δ∗

η/δ∗

Figure 23. Contours of the spatial correlation Rpp(ξ, η, 0). Solid lines denote zero and positive isocontours:
0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. The dashed lines denote negative isocontours of −0.1.

that Λz is larger than Λx. In the streamwise direction, negative areas can be seen, consistent
with the behaviour depicted in figure 22(a).

An important characteristic of non-frozen turbulence is the presence of elliptic patterns
in the contours of the space–time correlation Rpp(ξ, 0, τ ), as illustrated in figure 24.
In contrast, under the assumption of frozen turbulence, the contours degrade to parallel
straight lines. As shown in figure 24, the concentration of contour lines into a narrow band
suggests that the development of flow structures downstream includes both convection
and decay. Figure 25 presents the space–time correlations for various fixed streamwise
separations as a function of time delay. It can be seen that the correlation peak decreases
as the streamwise separation increases. This behaviour indicates a decaying correlation
between the pressure fluctuations as separation distance increases. This contrasts directly
with a non-decaying correlation implied in the frozen turbulence assumption (see (2.11)).
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Figure 24. Contours of the space–time correlation Rpp(ξ, 0, τ ); levels are from 0.1 to 0.9 with an increment
of 0.1.
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Figure 25. Space–time correlation as a function of time delay for various fixed streamwise separations with
an increment of 0.7δ∗.

Appendix C. Empirical convection velocity models

The Bies model is given by (Bies 1966)

Uc(ω)

U0
=
(

U0

ωδ∗

)0.055

− 0.3. (C1)

The Smol’yakov model is given by (Smol’yakov 2006)

Uc(ω)

U0
= 1.6ωδ∗/U0

1 + 16(ωδ∗/U0)2 + 0.6. (C2)
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Appendix D. Empirical frequency-dependent correlation length models

The Corcos model (Corcos 1964) can be written as

lx,z(ω) = Uc

αx,zω
, (D1)

where αx = 0.11, αz = 0.73 and Uc = 0.7U0 are used.
The Smol’yakov model can be expressed as (Smol’yakov 2006)

lx,z(ω) = Uc

αx,zω
A−1, (D2)

with

A =
[

1 − βUc

ωδ∗ +
(

βUc

ωδ∗

)2
]1/2

. (D3)

Here, αx = 0.124, αz = 0.8 and β = 0.25. The convection velocity is determined by
employing (C2), and δ∗ is approximated using δ∗/c ≈ 0.048/Re1/5

c .
Based on Goody’s model (Goody 2004), Hu (2021) proposed an expression for the

frequency-dependent correlation length, which can be written as

lx(ω)

δ∗ = a (ωδ∗/U0)
0.3

(b + (ωδ∗/U0)3.854)0.389 , (D4)

with a = 1.357 ln(Reθ ) − 6.713 and b = 1.183 Re−0.593
θ . And

lz(ω)

δ∗ = a(ωδ∗/U0)
1.0

(b + (ωδ∗/U0)3.073)0.651 , (D5)

with a = 0.079 ln(Reθ ) + 0.155 and b = 0.348 Re−0.495
θ .
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