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Abstract

The effective reproductionnumber Rwaswidely accepted as a key indicator during the early stages
of the COVID-19 pandemic. In theUK, the Rvalue published on theUKGovernment Dashboard
has been generated as a combined value from an ensemble of epidemiological models via a
collaborative initiative between academia and government. In this paper, we outline this collab-
orative modelling approach and illustrate how, by using an established combination method, a
combined R estimate can be generated from an ensemble of epidemiological models. We analyse
the R values calculated for the period betweenApril 2021 and December 2021, to show that this R
is robust to different model weighting methods and ensemble sizes and that using heterogeneous
data sources for validation increases its robustness and reduces the biases and limitations associated
with a single source of data. We discuss how R can be generated from different data sources and
show that it is a good summary indicator of the current dynamics in an epidemic.

Introduction

Since the onset of the coronavirus disease in early 2020 (COVID-19) as a pandemic, mathem-
atical modelling has been widely used to generate policy-relevant evidence. Mathematical
modelling provides a framework for simulating the dynamics of the pandemic. When param-
eterized with and calibrated to data, this can be used to generate projections of future epidemic
trajectories as well as to track the current epidemic status. Epidemiological estimates such as the
reproduction number R derived from models can be useful tools for such epidemic status
tracking.

The reproduction number R is ameasure of the infectious potential of a disease and represents
the average number of secondary infections that emerge from one infection [1]. At the onset of a
new disease, in a naive, fully susceptible population, the basic reproduction number R0 represents
the average number of secondary infections stemming from an initial case. In contrast to R0, R is
the reproduction number at any time during an epidemic – often referred to as the effective
reproduction number Re or temporal reproduction number Rt [2]. It reflects the average number
of secondary infections generated from a population consisting of susceptible, exposed, and
immune individuals, and potential changes in mixing and the presence of interventions.

The growth rate r represents the rate at which the epidemic is growing during the exponential
phase of epidemic growth. In epidemiological modelling, r and R are related via the generation
time distribution ðf ðτÞÞ of the epidemic [2]. Mathematically, this is expressed as follows:

R�1 ¼
Z ∞

0
e�rτ f τð Þdτ, (1)

where τ is the time since infection of an individual and the generation time distribution f τð Þis
defined as the probability density function for the time of a subsequent infection made by that
individual. The generation time Tg is defined as the mean of the generation time distribution. As

Epidemiology and Infection

www.cambridge.org/hyg

Original Paper

Cite this article: Manley H, Park J, Bevan L,
Sanchez-Marroquin A, Danelian G, Bayley T,
Bowman V, Maishman T, Finnie T, Charlett A,
Watkins NA, Hutchinson J, Medley G, Riley S,
Nowcasts Model Contributing Group and
Panovska-Griffiths J (2024). Combining models
to generate a consensus effective
reproduction number R for the COVID-19
epidemic status in England. Epidemiology and
Infection, 152, e59, 1–12
https://doi.org/10.1017/S0950268824000347

Received: 12 February 2023
Revised: 06 November 2023
Accepted: 25 January 2024

Keywords:
COVID-19; reproduction number R; ensemble
modelling; statistical analysis

Corresponding author:
Jasmina Panovska-Griffiths;
Email: jasmina.panovska-griffiths@ndph.ox.ac.
uk

© The Author(s), 2024. Published by Cambridge
University Press. This is an Open Access article,
distributed under the terms of the Creative
Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0), which
permits unrestricted re-use, distribution and
reproduction, provided the original article is
properly cited.

https://doi.org/10.1017/S0950268824000347 Published online by Cambridge University Press

https://orcid.org/0000-0001-5962-4211
https://orcid.org/0000-0002-7720-1121
https://doi.org/10.1017/S0950268824000347
mailto:jasmina.panovska-griffiths@ndph.ox.ac.uk
mailto:jasmina.panovska-griffiths@ndph.ox.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0950268824000347&domain=pdf
https://doi.org/10.1017/S0950268824000347


evident from this equation, changes in f ðτÞ, r, and R affect each
other. Although precise statements depend on the specific shape of
f ðτÞ, broadly speaking, for fixed Tg, r and R increase/decrease in
tandem; for fixed r, Tg and R increase/decrease in tandem, while for
fixed R, increasing Tg means decreasing r and vice versa.

While R is reflective of the current strength of transmission, r is
reflective of the transmission speed [3]. Both provide information
about the impact of control measures. For example, if an interven-
tion is imposed and R is consequentially reduced to below the
R¼ 1 threshold, or r is reduced to below the 0 threshold, this
suggests that the intervention has had an impact on reducing
onward transmission. However, when providing policy advice
during the COVID-19 epidemic, R was used as it is more easily
interpretable than r and does not require a conceptual understand-
ing of exponential growth or decay, so it is therefore simpler to
explain to the public. Additionally, R at the onset of the epidemic
R0ð Þ provides information on the likely level of herd immunity
necessary. In a homogeneous population, the herd immunity
threshold as a percentage of the population, Ic , can be calculated
as follows:

Ic ¼ 1� 1
R0

:

which suggests that the more people that become infected by each
individual who has the virus, the higher the proportion of the
population that needs to be immune to reach herd immunity [4].
However, it should be noted that this is subject to large uncertainties
due to the difficulty in calculating R0, which leads to differing
estimates of Ic, and should therefore be used with care [5, 6]. Further
details on R and the differing methodologies for calculating the
reproduction number can be found in the Section titled “Outline of
epidemiological models used to produce R values”.

In the UK, the Scientific Advisory Group for Emergencies
(SAGE) is activated in response to emergencies and is made up of
several subgroups consisting of experts relating to different scientific
fields [7]. These subgroups are often called upon in order to provide
evidence to the UK government relating to key policy questions. One
of these groups is the Scientific Pandemic Influenza Group on
Modelling-Operational (SPI-M-O),whichhas been leading themod-
elling of the COVID-19 epidemic since its onset [8]. SPI-M-O
primarily consists of experts in infectious disease modelling.

In early 2021, a formal collaboration between SPI-M-O and the
UK Health Security Agency Epidemiological Ensemble (UKHSA
Epi-Ensemble) modelling group was established, which has pro-
vided the UK government with weekly estimates of key epidemio-
logical indicators, including the effective reproduction number R
[9] throughout 2021–2023. The consensus values were generated as
a combined estimate from a set of epidemiological models main-
tained and run by members of SPI-M-O and the UKHSA Epi-
Ensemble and were combined using a random-effects meta-ana-
lysis approach with equal weighting applied [10], with visualization
implemented using CrystalCast developed by the Defence Science
and Technology Laboratory (DSTL) [11]. The combined estimates
were agreed in a weekly meeting of the UKHSA Epidemiology
Modelling Review Group (EMRG), attended by government mod-
ellers and policy stakeholders, as well as academic modellers.

Generating a combined ensemble estimate in place of a single
model truth can lead to improved predictive power [12], allows an
increased robustness of the outcomes, and is a useful tool for
policymakers [13]. Generating a combined estimate from a set of
models is not a new concept; they are widely used across many
disciplines, such as forecasting the weather [14], hydrology [15],

flood losses [16], cancer prediction [17] and climatemodelling [18].
Within infectious diseases, combined model estimates have been
applied to modelling human immunodeficiency virus (HIV) [19],
influenza [20], and Ebola [21, 22] transmission and recently for
outbreak analysis related to COVID-19 in the United States [23]
and Europe [24].

While mathematical models have been used to offer informed
advice to the scientific community and policymakers throughout
the COVID-19 pandemic across a number of countries, the use of
modelling has differed. For example, modellers in theUnited States,
in conjunction with the Center for Disease Control and Prevention
(CDC), published ensemble forecasts using a wide variety of math-
ematical models [13, 25]. These models had focused on forecasting
new cases, hospitalizations, and deaths at a national and state level
but did not estimate R or r specifically. On the other hand, in New
Zealand and Italy, modellers advising the government have com-
pared estimates of R obtained from different models but without
producing formal combined estimates [26, 27]. In Norway, mul-
tiple data sources including confirmed cases, proportion of
COVID-19 attributable hospital admissions, and a national symp-
tom survey were used to estimate rover the course of the pandemic,
but only one model has been used to estimate R from these sources
[28]. Similarly, the Robert Koch Institute in Germany only used a
single model to estimate R, which depended on nowcasting
estimates of the number of new cases [29].

As noted above, in the UK, since the onset of the pandemic, a set
of mathematical models developed, maintained, and applied by the
members of SPI-M-O and the UKHSA Epi-Ensemble have been
used to track the epidemic status, including generating R and r
alongside estimates of incidence and prevalence. The R value
published on the UK Government Dashboard [30] has been gen-
erated as a combined value from these models and agreed at the
weekly EMRG meeting.

The usefulness in getting a combined estimate from across
models and data sets is not just in the averaging of different models’
estimates with weighting but also in the formation of a community
that is constantly discussing the outcomes, the assumptions, and
the input data identifying the drivers behind the differences across
models. This is especially important when generating R. While
doubling time and rcan be thought of as almost features of the data,
requiring very few assumptions, the move to R requires a set of
subjective assumptions. This is why there is a need to have multiple
groups making different assumptions, leading to heterogeneous
outcomes that can be discussed, understood, and combined. When
R can be generated using different data sets, in addition to different
models, this is particularly important. The development of the
formal collaboration between themodellers at UKHSAEpi-Ensem-
ble and within SPI-M-O, and the weekly technical meetings of the
group and the follow-up EMRG meeting, gave a platform for
informed discussions of the similarities and the differences across
models’ nowcast estimates and provided a place where decisions
could bemade onwhether to include or exclude a givenmodel from
the combined estimate.

This paper outlines the process of this collaboration between
government and academia to continually generate estimates for the
effective reproduction number in England over the COVID-19
epidemic. Specifically, we outline how a previously established
combination method, described in [10], has been applied in the
UK throughout the COVID-19 pandemic. We detail our approach
of generating a consensus value of R from an ensemble of epi-
demiological models applied to the English epidemic. We illustrate
the process, show how a combined R estimate has been generated
in April 2021 and in September 2021, and explore the robustness of
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the combined R value on the size and weighting of the models’
combination. By comparing the change in R with the change in
measurable data such as COVID-19 cases, hospitalizations, and
deaths, we also explore whether R can be a good indicator of
epidemic status.

Methodology

Outline of epidemiological models used to produce R values

Generating an R estimate requires a model of some kind with
subjective assumptions and information from other sources. Our
modelling ensemble comprised mathematical models that were
developed, adapted, and used throughout 2020–2022, to model
the COVID-19 epidemic in England; to generate epidemic metrics
such as R, r, incidence, and prevalence; and to produce medium-
term projections (MTPs) of hospital admissions, hospital bed occu-
pancy, and deaths. TheMTPs will be explored separately in a future
publication. These models fall into three broad groups, as described
in [31] and [2]: population-based models (PBMs), data-driven
models (DDMs), and agent-based models (ABMs). The models
in the ensemble can be split further into three broad categories
based on the data they primarily used to inform their estimates:
case-based models, admission-based models, and models that were
fitted to both case data and hospital data. For the purposes of this
study, models that were fitted to survey data are categorized as case-
basedmodels as they were focused on detecting the incidence of the
disease, though there were differing delays associated with models
that were fitted to cases and models that were fitted to survey data.
There are drawbacks and advantages associated with fitting to
either cases or admissions. Case data are highly sensitive to ascer-
tainment biases. For example, an under-ascertainment of casesmay
be related to weekend/weekday periods, with people with milder
symptoms over theweekend less likely to get confirmed than during
the weekdays. The scale of these biases has varied greatly over time.
Therefore, models that were fitted to case counts or positivity must

be interpreted in the context of testing behaviours and policies at
the time. However, admission data are not free from bias either, as
they depend on input from physicians and other hospital staff,
which means that weekend/weekday effects are likely. In addition,
the likelihood of being admitted to the hospital varies greatly by age.
Hence, without age stratification in the model, it is likely that
community transmission is underestimated among younger age
groups. Furthermore, the delay between being infected with
COVID-19 and being admitted to the hospital is on average far
greater than that between infection and receiving a positive test.
This presented difficulties when trying to produce timely estimates
of community transmission. Table 1 lists these models along with
the type of data they were fitted to and whether or not they were run
internally by either the UKHSA Epi-Ensemble or a Devolved
Administration (DA) Department.

While these models can be broadly stratified into the PBM,
DDM, and ABM groups, each model within the group has distinct-
ive characteristics. For example, EpiEstim followed the method-
ology described in [32] and therefore assumed a consistent
relationship between infections and cases. The estimated R was
therefore only robust when the ascertainment rate was roughly
constant. While GenSur shared this same limitation, Epidemia
andOxfordCSML did notmake this assumption [33]. Furthermore,
renewal equation-basedmodels tend to be semi-mechanistic, that is
assuming that the effects of interventions are absorbed into the data
to which they fit. In contrast, fully mechanistic models, such as the
susceptible–exposed–infected–recovered (SEIR) population-based
models and ABMs, explicitly modelled the effects of interventions
such as test–trace–isolate strategies and imposing and removing of
social distancing measures.

In epidemiological models, the structure of the model deter-
mines the method to calculate R and depends on the assumptions
and data sets used to parameterize and validate the model [34].

In the classic compartmental SEIR model, R0 ¼ β∗c=γ, where β
is the transmission probability per contact, c is the number of
contacts c, and 1=γ is the infectiousness period (average time that

Table 1. The UKHSA/SPI-M-O models split by model type and the data to which they fit to

Model name Model type Data type
Was the model run either by the
UKHSA or a DA department?

Lancaster Spatial Stochastic PBM Case data No

Edinburgh WSS Model PBM Case data No

Manchester Model PBM Hospital data Yes

University of Liverpool Model PBM Hospital data Yes

PHE/Cambridge PBM A mix of data Yes

Warwick Model PBM A mix of data No

Imperial Model PBM A mix of data No

EpiEstim DDM Case data Yes

GenomicSurveillance DDM Case data Yes

Epidemia DDM UKHSA runs two versions, one fitting to cases and
one fitting to admission data

Yes

LSHTM EpiNow2 DDM Two versions are run: one fitting to cases and one fitting to admissions Yes

LSHTM ONS inc2prev DDM Fits to ONS positivity, which is treated as case data Yes

Oxford CSML Model DDM Case data Yes

OpenABM ABM Hospital data Yes

Covasim ABM The UKHSA version fits to a mix of data Yes
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an individual is infectious for). R is typically calculated from more
complex (e.g. multi-group) SEIRmodels as the largest eigenvalue of
the next-generation matrix (NGM), which can be expressed as
FV�1 , where F represents infection rates and V represents
recovery rates [35, 36]. R can also be estimated using the renewal
equation [37, 38]:

RðtÞ¼ E½IðtÞ�Z ∞

0
f ðτÞIðt� τÞdτ

, (2)

where IðtÞ is number of new infections (i.e. the incidence) at time t
and E½� denotes the expected value.

Across the dynamical models that comprise sets of differential
equations in our ensemble, such as the Manchester or University of
Liverpool models, R was estimated by inferring the rate of trans-
mission within the model, which was fitted to observed data on
cases, hospitalizations, deaths, or their combination. Some more
complex dynamical models, such as the one developed by Public
Health England (PHE) and Cambridge or the Imperial one (sir-
covid), explicitly calculated R as the largest eigenvalue of the NGM.

There is also a difference in how R was estimated between
compartmental and ABMs or individual-based models. In ABMs,
such as Covasim, it is possible simply to count exactly how many
secondary infections are caused by each primary infection at any
stage of the epidemic and hence explicitly calculate R.

A third approach, and a characteristic of the data-driven models
in our ensemble, used statistical models to estimate R empirically
from the notification data. Thesemethodsmademinimal structural
assumptions about epidemic dynamics and only required users to
specify the generation time distribution. A selection of models in
this category in the ensemble was formulated based on Equation
(1). For example, where the generation time distribution is
described by a gamma distribution with shape a and rate b, R
can be expressed in terms of the growth rate r as follows:

R¼ rþbð Þa
ba

, (3)

A high-level description of the methods used to calculate R,
along with an outline of the main characteristics of each model, is
given in Table A1 in the Appendix.

Combining model estimates to generate a consensus R

To generate combined R estimates from the ensemble of models,
we used the statistical model developed as a collaboration between
DSTL, the University of Southampton, and the University of Liv-
erpool with the underlying methodology described in [10]. We
present a high-level outline of the method below. Each of the
epidemiological models described in Table A1 and calibrated to
the data as outlined in Table 1 generated 5th, 25th, 50th, 75th, and
95th percentile estimates for R. Using these, a mean and a standard
deviation for each model’s R estimate were generated. The mean of
the ith model, yi , was initially estimated as the median (or 50th

quantile), and the standard deviation was calculated as follows:

si ¼
max jqi 95ð Þ�qi 50ð Þj, jqi 50ð Þ�qi 5ð Þj� �

z95
, (4)

where qi xð Þ represented the xth quantile of the ithmodel and z95 is
the z-score for the 90% confidence interval (CI) of the standard
normal distribution. Where model estimates were highly skewed, a

skewness correction calculation was applied to provide alternative
estimates for the mean and the standard error (see [10] for further
details). Otherwise, the distribution of the model estimates for R
was assumed to be symmetric.

These estimates were then combined using a random-effects
model, which allowed for differences inmodel structure and did not
assume that models shared a common effect size. The random-
effects statistical model was described as follows:

yi ¼ μþμiþ ϵi, μi �N 0,τ2
� �

, ϵi �N 0,við Þ, (5)

where the estimated mean for model i is denoted by yi and the
standard error is denoted by si ¼ ffiffiffiffi

vi
p

. The model was fitted to
provide estimates for μ and τ , which are the mean and standard
deviation of the true effect size, respectively. The between-model
variance, τ2, was estimated using the restrictedmaximum-likelihood
method, and the CI of the mean true overall effect size is estimated
using the standard Wald-type method. The models were equally
weighted (see next section for more details) and the range of R was
rounded out to one decimal place, by using the lower and upper
bounds, respectively. Further details of other methods used for
calculating the between group errors and CIs are provided in [39].

Collaborating across government and academia to produce a
consensus nowcast

The process of cross-academic and government collaboration to
generate consensus Rwas done in several steps. Firstly, the outputs
from the models detailed in Table A1 were submitted by the
modellers to the UKHSA Epi-Ensemble team weekly. The team
then combined the model estimates using CrystalCast to generate a
combined estimate for R, r, incidence, and prevalence in England,
the English regions and theDAs. The combined estimates, as well as
individual model estimates, were discussed at a weekly meeting
between the UKHSA Epi-Ensemble and SPI-M modellers, wider
SPI-M-O members, and wider representatives from UKHSA and
DAs. These meetings gave the modellers the chance to explain their
outputs, discuss the model behaviour, and agree on the inclusion or
exclusion of any specific models in the ensemble for that week. A
model would only be excluded if there was a clear error in its
outputs or if it displayed behaviour that could not be justified from
an epidemiological perspective. Once a consensus was reached for
each of the epidemic metrics, a recommendation was made to the
EMRG, who then finally approved and published the consensus
outputs.

Sensitivity analysis

Two sensitivity analyses explored the extent to which the combined
R would have been impacted by the variable weighting of the
models within the ensemble and the size of the ensemble. For
consistency, no individual models were re-run for these analyses;
we used only the original model results submitted at the time the
consensus Rwas published. This was intentional so that the analysis
would serve as a historic record of the combined estimates at the
time.

Exploring the impact of model weighting on the combined R
Firstly, we explored the impact of the choice of model weighting on
the consensus R. The combined estimate ywas calculated from the
true effect size of eachmodel yi. The true effect size can therefore be
weighted. The simplest method is equal weighting, which was used
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to generate the published consensus R over 2020–2022. In this
method, eachmodel is assumed to have an equal contribution to the
combined estimate under the assumption that all models are
equally valid.

Another common method of weighting is inverse-variance
weighting. In this method, models with a high variance, that is
those that are less certain, are penalized more than models with a
low variance, that is more certain models. However, individual
models have different methods of representing uncertainty, and a
model that is more certain is not necessarily more likely to be
accurate. Therefore, this method is not applicable here.

An alternativemethod ofmodel weighting is to groupmodels by
either their structure or the data to which they fit. For example,
models that may have a different structure but use the same data
form a subgroup as described in Table 1.We explored the impact of
this on the consensus R value by dividing the ensemble into
subgroups, so each subgroup represents a homogeneous set of
models according to either their structure or the data to which they
fit. Models within each subgroup were equally weighted, and then,
the contributions from the subgroups were equally weighted to give
the overall combined estimate. This had two purposes: firstly, a
single data stream or model structure would not have gained a
larger weighting in the final combination, meaning that the com-
binationwas ‘data-agnostic’ or ‘model-agnostic’ andmodels such as
EpiEstim, with a larger representation in the ensemble, did not bias
the final estimates; secondly, it allowed us to compare the difference
in trends between admissions and case data and therefore learn
about the epidemic dynamics by inspection.

Similarly, as for the equal weighting model method, a consensus
R value was derived with this alternative variable weightingmethod
as a range for April and September 2021. We present the results as
rounded to two decimal places. However, we note that the range
was published to only one decimal place to avoid presenting a false
sense of precision. The range published was also rounded out,
rather than rounding to the nearest decimal place, in order to
increase the uncertainty instead of possibly reducing it.

Exploring the impact of ensemble size on the combined R
The models included within the ensemble varied throughout the
pandemic; as new models were developed and introduced, some
were phased out and others were updated in response to the
changing epidemic. This could hypothetically result in inconsistent
estimates through time. Furthermore, as UKHSA moved from a
‘response’ to a ‘business-as-usual’ phase during 2022, a need
emerged to reduce the resource dedicated to modelling COVID-
19 and hence reduce the number of models in the ensemble. These
factors motivated us to explore how the combined R may have
changed if a different model ensemble was used to generate it.

We investigated the implications of reducing the size of the
ensemble on the combined R estimate over the period April
2021–December 2021. UKHSA models are labelled in Table 1
and comprised of internal models, that is run by UKHSA or DA
modellers. We re-calculated the combined estimate using the
‘reduced’ ensemble of only internalmodels and, using equal weight-
ing, compared this to the published consensus R number in
England.

R as an epidemic indicator

The R time series is a transform of epidemic metrics such as case
incidence or hospitalizations. Hence, we expect it would be statis-
tically correlated with the epidemic metrics, but quantifying the
degree of correlation with different metrics is interesting.

We explored the correlation between the consensus R as pub-
lished on the UK Government COVID-19 Dashboard and the key
public data sources relating to the COVID-19 pandemic, namely
cases, admissions, and deaths. We expect the R number to be
correlated in some way to the rate of change of these three metrics,
and we know this relationship is non-linear. Therefore, we used
Spearman’s rank correlation coefficient, ρ.

In order to adjust for periodic weekly fluctuations (e.g. weekend/
weekday differences in under-ascertainment), each source of data
was transformed into a centred weekly moving average. For each
date that an R number was calculated, the slope of the data was
calculated over a centred weekly window. We used the same length
and position of windows over which to perform the analysis in
order to ensure consistency; otherwise, additional artificial lag
would be introduced into the analysis.

The correlation between R and the weekly rate of change in
cases, admissions, or deathsmay have an inherent lag due to the fact
that it takes time for more severe symptoms to develop. In order to
investigate this, we explored how the correlation changed between
the R number, shifted along its time axis by a varying number of
days, and the rate of change of new hospital admissions and deaths.
This was done by shifting the calculated values of R we used by 1–
20 days and observing how ρ changed with an increasing shift size.
Mathematically, we are calculating the following, where the variable
X represents the centred weekly rolling average of either the
recorded incidence of cases, hospital admissions, or deaths:

ρR Rt0ð Þ,R _Xð Þ ¼
Cov R Rt0ð Þ,R _X

� �� �
σR Rt0ð Þ,R _Xð Þ

:

In the above, R �ð Þ denotes the ordinal rank and Rt0 is the time-
shifted R, equal to R t� tshiftð Þ, where tshift ∈ 1,20ð Þ. _X denotes the
rate of change of variable X with respect to time, and all times
considered are measured in days.We performed this calculation on
data within specific time windows, which correspond to the Delta
and Omicron waves, respectively, and shifted the time window for
the published R value against the static recorded data. These time
windowswere 7May 2021 to 30 July 2021 and 26November 2021 to
25 February 2022 for the Delta and Omicron waves, respectively.

Results

Generating a consensus R range in April and September 2021
using different weighting methods

Whisker plots of the 90th CIs of R for each model are plotted
alongside the resulting combinations from the different methods
and shown in Figure 1. We note that because of the delays between
new infections and the time they are observed as cases or admis-
sions, the combined R estimates on 21April 2021 and 29 September
2021 reflect the R values on 6 April 2021 and 14 September 2021.
The numerical values for the 90% CIs for each weighting method
are given in Table 2.

Using the equal weighting method, and combining the R
outcomes from the various epidemiological models (a mixture of
SEIR-type, agent-based, and data-driven models), we generated
combined R estimates of 0:81,0:93½ � in April 2021 and
0:91,1:07½ � in September 2021. These represent the 90% CI that
was published on the UK Government dashboard at the time.

Using a different weighting for the combination of models
produces very similar combined R values at the two snapshots
in time we studied: in April 2021 and in September 2021. Weight-
ing by data resulted in an R combination of 0:82,0:93½ � and
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0:86,1:04½ � for the April 2021 and September 2021 estimates,
respectively. Weighting by model structure resulted in a combin-
ation of 0:8,0:94½ � and 0:9,1:07½ � for the April 2021 and September
2021 estimates, respectively.

The effect of ensemble size on the combined estimate

Figure 2A compares the unrounded combined R number generated
from a reduced model ensemble that includes models run by
UKHSA and DA teams as outlined in the sectiontitled “Exploring
the impact of ensemble size on the combined R”. Our results show
that the two combined R value time series are similar but not
identical, with the level of agreement changing over the study
period. For most of the study period, the values of the combined
R from the two model ensembles were similar, with the smaller
model ensemble increasing the uncertainty in the consensus R
value (comparing the width of the blue bandwidth and orange
bands in Figure 2A). There was a notable difference in the com-
bined R from the two ensembles in July 2021, which is due to a very
different number of models constituting the model ensemble. The
full ensemble for 14 July 2021 contained thirteen different models,
compared to the internal model ensemble, which contained four
differentmodels (Figure 2B). On 21 July 2021, the full ensemble had
eleven models, while the internal model ensemble contained only

Figure 1.Model ensemble generated R values at two time points of the COVID-19 epidemic in England. The parts of each plot to the left of the dashed line show themedian and the
10th and 90th percentiles of the reproduction numbers R from themodels included in the model ensemble on 21 April 2021 and 29 September 2021. The Rvalues on the right of the
dashed line show the 90%CI for the combined Rvalue generated with different weightedmethods. Because of the delays between new infections and the time they are observed as
cases or admissions, the combined R estimates reflect the R values on 6 April 2021 and 14 September 2021.

Table 2. 90% confidence intervals for combined R estimates using different
weighting methods

Weighting methodology 6 April 2021 14 September 2021

Equal weighting [0.81, 0.93] [0.91, 1.07]

Weighting by data [0.82, 0.93] [0.86, 1.04]

Weighting by model [0.80, 0.94] [0.90, 1.07]

Equal weighting of case models [0.81, 0.90] [0.98, 1.15]

Equal weighting of hospital models [0.78, 1.02] [0.80, 0.93]

Equal weighting of mixed models [0.74, 1.00] [0.72, 1.12]
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two. The twomodels for 21 July 2021would not have been sufficient
to produce a published combination,1 but we have shown the result
here for completeness. From August 2021 onwards, the full and
internal model-only ensembles show much better agreement,
which is due to the latter having a more comparable number of
models.

The combined R is a good, but delayed, epidemic indicator

Figure 3 shows the relationship between the rate of change of the 7-
day rollingmean of cases, admissions, and deaths with an optimally

time-shifted R. Figure 3A shows that R values larger or smaller
than 1 (shown in red and blue, respectively) occurwhen the number
of COVID-19 cases is increasing and decreasing. The correlation,
calculated as Spearman’s rank coefficient between a time-shifted R
and the rate of change of recorded cases (Table 3), is given in the box
to the top left of the plot. This is done separately for the Delta and
Omicron waves, and the time periods we considered for each wave
are demarcated by the vertical dotted lines. Overall, our results
show a good positive correlation between epidemic status indica-
tors and a time-shifted R across both epidemic waves, confirming
that R is following the trends in cases, hospitalizations, and deaths
related to COVID-19 over both of the Delta andOmicron epidemic
waves, albeit with a delay. Here, we have shown only the maximum
correlation obtained from the optimal shift of the R number. The
values of ρ calculated for Rt�tshift where tshift ∈ 1,20ð Þ are shown in
Figure B1.

Discussion

This study outlines a collaborative approach across government
and academia to generate the combined R value for England over
the period April 2021 to December 2021 using a previously estab-
lished combinationmethod [10] and Restimates from an ensemble
of epidemiological models. The combined Rvalue was used to track
the epidemic status over the COVID-19 epidemic in England and
was produced by SPI-M-O in 2020 and by the UKHSA Epi-Ensem-
ble modelling team since early 2021.

In this paper, we described the process of cross-academia and
government collaboration and outlined the ensemble of epidemio-
logical models used to generate individual R values in England,

Figure 2. The combined R number in the period April 2021–December 2021 in England for the full model ensemble and the reduced (internal UKHSA and DAmodels only) ensemble.
Plot A shows the time series of the two R values over the study period, while plot B shows the number of models in each ensemble at different time points when the R value was

generated.

Table 3. Spearman’s rank coefficient, ρ, and the respective p-values between
the time-shifted R and the rate of change in a given epidemic metric. The
coefficient was calculated only on data within the time period shown in the
table

Metric Dominant variant ρ p-value Days shifted

Cases Delta 0.82 0.00003 3

Cases Omicron 0.84 0.00064 1

Hosp. admissions Delta 0.80 0.00002 8

Hosp. admissions Omicron 0.83 0.00114 0

Deaths Delta 0.72 0.00111 18

Deaths Omicron 0.71 0.00654 9

1A minimum of three distinct models were required for a combination to be
published.
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highlighting their key structural characteristics and the data they
used, as well as the method to individually derive an R value. We
also outlined the methodology developed in [10] of combining the
individual R values to generate a combined consensus R value and
illustrated this by generating the published R values of 0:81,0:93½ �
on 21 April 2021 and 0:91,1:07½ � on 29 September 2021.

21 April 2021 and 29 September 2021 were very different
epidemic points in time. 21 April 2021 followed the third national
lockdown in England imposed to control the transmission of the
Alpha variant [40]. Incidence and prevalence within the population
were low and large-scale vaccination against COVID-19 had only
started to be rolled out, with roughly half the population having
received a first dose and only 8% having received a second dose.
Against this mostly homogeneous immunity, susceptibility, and
vaccine backdrop, the assumptions within the models would have
been similar, producing similar R values across models.

In September 2021, the immunity, susceptibility, and vaccin-
ation levels were very different. There was a backdrop of population
immunity from either vaccination or previous infection, with a
large proportion of the population aged 12 and over either having
received two doses of the vaccines or having been infected by the
large Delta epidemic wave over the summer of 2021. The COVID-

19 case rate remained high with schools just returning, and this
period preceded the arrival of the Omicron variant.

Differentmodels would havemade different assumptions on the
impact of the large Delta wave on population immunity and would
have incorporated different assumptions around vaccination and
social mixing associated with returning to school. All of these
assumptions would impact individual R values, illustrated by the
varying R values across models at this time.

Furthermore, different models were fit to different data and this
can generate different estimates. For example, the two London
School of Hygiene and Tropical Medicine (LSHTM) EpiNow2
models, one that fits to cases and the second that fits to admissions,
have vastly different R estimates. This difference is also reflected in
the combinations from models that fit only to cases (reporting a
range of [0.98, 1.15]) and frommodels that fit only to hospital data
(reporting a range of [0.8, 0.93]). If we were only to use models that
fit to cases, this would imply that the epidemic was increasing.
However, models that fit to hospital data imply that the epidemic
was decreasing. Models that fit to both report a central estimate in
between the two with larger uncertainty. A more thorough study of
different weighting methods and their effects on the combination
estimate is out of the scope of this paper; however, this relatively

Figure 3. Plots comparing the published R number to data published on the public government COVID-19 dashboard. The plots show the superimposed time series of the 7-day
rolling average of the dashboard data for various metrics, on top of the published R number for England. Where the shading is red, the median estimate for the R number was
greater than 1. Where it is blue, the median Rwas less than 1. For each plot, Spearman’s rank correlation coefficient, ρ, was calculated to evaluate the correlation between the rate
of change of the rolling 7-daymean of a given epidemicmetric (cases, hospital admissions, and deaths) and themedian published Rnumber, where R tð Þhas been shifted along the
time axis tomaximize the correlation and t ismeasured in days. The amount of shift is different for eachmetric andwave. Themaximum ρ is obtained at a shift of 3 days for the Delta
wave and 1 day for theOmicronwave for cases; 9 days for the Deltawave and no shift for theOmicronwave for hospital admissions; and 18 days for the Deltawave and 9 days for the
Omicron wave for deaths. Only the data within the dotted lines pertaining to the Delta and Omicron waves, respectively, were included in the correlation calculation.

8 Harrison Manley et al.

https://doi.org/10.1017/S0950268824000347 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268824000347


simple example demonstrates that it is important that the ensemble
features models that fit to a range of different data sources.

We note that the ensemble of models on 21 April 2021 and 29
September 2021 are not identical, and themodel ensemble has been
changing over time. New models were introduced to the ensemble
throughout the epidemic, and models were omitted from or not
submitted to the ensemble due to technical issues, such as calibra-
tion error or computer outage. Furthermore, in periods of change,
such as the introduction of a new variant, some models required
extensive development work before re-inclusion into the ensemble.
This is an inevitable part of the process when collaborating with
variousmodelling teams across government and academia, who are
responsively modelling a fast-changing epidemic.

Reducing the size of the model ensemble to include only models
run internally within UKHSA and DAs made a small difference to
the combined R value, but did increase the width of the 90% CI.
Overall, and for the majority of the study period, the values of the
combined R from the two model ensembles were similar as shown
in Figure 2A. There were some differences around the peaks of the
Delta epidemic waves in the summer of 2021, when the internal
model ensemble (comprising UKHSA and DA-only models) had a
very small number of models (Figure 2B) and as a consequence the
combined R had a wider CI. This suggests that our process was
robust to changes in themodel ensemble, provided there weremore
than five constituent models going into any combination. This is
encouraging for institutions that may be nowcasting future epi-
demic: an ensemble does not need to be enormous to reap the
benefits of model combination.

The time series of the combined R for the duration of the Delta
and Omicron waves, respectively, is strongly positively and statis-
tically significantly correlated with the rate of change of cases,
hospitalization, and deaths related to COVID-19 (Figure 3). How-
ever, this strong positive correlation only occurred for eachmetric if
the time series for R was shifted along its time axis by a certain
optimum number of days, which differs for each wave and metric
(Table 3). Exactly what causes the specific lag for each wave and
metric is unclear. We acknowledge the limitations of using Spear-
man’s rank correlation coefficient to show this relationship; how-
ever, for this paper we simply wanted to gain an understanding of
whether or not the R number is a valid proxy for epidemic status.
Therefore, a more sophisticated regression model, combined with a
full investigation of the cause of the lag between epidemic metrics
and R, is left to future work.

In order tomitigate uncertainty associatedwith nowcasting, since
March 2021, the R value from each model was taken on a single day
in time 2 weeks before the day on which models were combined.2

Incorporating these delays in R is important as not all models are
always able to report estimates up to the day that they are run as they
do not possess the ability to forecast. For example, the simplest
model, an application of EpiEstim, uses a delay distribution between
infection and the observation to which it is fit, to back-calculate and
infer the incidence time series. The R number is then estimated
directly from the back-calculated time series for incidence. Therefore,
the model is only able to provide estimates lagged to the order of the
length of the delay distribution. Even where models are able to
estimate current R numbers, due to the delay between infection
and observation, the infections occurring on a given day correspond
to data that will be observed in the future and hence, are, in essence,

projections. Due to the difficulty in producing accurate estimates for
R without the time delay, and in the light of the above discussion
about the lagged correlation, it is vital to use a range of metrics to
inform policy decisions around epidemic status. For this reason, the
R value estimates were used alongside estimates of three other
epidemiologicalmetricswhen informing policy decisions: the growth
rate, r, incidence, and prevalence, and the MTPs for hospital
admissions, occupancy, and deaths.

Future planning and lessons learnt

While combining multiple models, particularly in epidemic mod-
elling, has proven to be very useful during the COVID-19 epidemic,
there are lessons from this that should be considered in future.

Firstly, it should be ensured that CIs calculated by each of the
models represent the same sources of uncertainty. Do they capture the
underlying uncertainty present in the data, the parametric uncertainty
or the structural uncertainty? The forecast hub at the CDC treats
models primarily as black boxes, though model details are published
andmodels are assessed for accuracy, and there is no explicit treatment
of the resulting uncertainty. For future pandemics, there should be a
clear definition of uncertainty and what it should represent.

Secondly, the combination method used to generate a consensus
R is insensitive to the performance of individualmodels.Whereas for
forecasts, model performance can be calculated by comparingmodel
estimates with observed data, the R number is a latent variable and
therefore is not observed. We rely on the expertise of modellers to
ensure that models fit well to the data and make sound assumptions.
In the future, developing an unbiased scoring method for individual
models would help in ensuring the robustness and reliability of the
individual models before combining them into an ensemble.

Finally, running an ensemble of models is resource-intensive
and relies on a significant amount of external expertise. If models
are not to be treated as black boxes, specialist expertise of academic
groups continues to be required, and developing formal cross-
government and academia modelling hubs is necessary for ongoing
cross-institutional collaboration.
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Appendix

A models used in the ensemble

Table A1. Summary of the epidemiological models used to generate R outcomes for the English COVID-19 epidemic. We list the names of the models, their main
modelling characteristics, and the data to which they are calibrated against and the method to calculate R

Model name Description R estimation

Lancaster Spatial Stochastic A Bayesian spatial stochastic compartmental model that is fit to cases. Census commuter
flow data are also used to infer mixing between local authorities

R is calculated as the dominant
eigenvalue of the NGM

Edinburgh WSS
model [41]

The weight–shift–scale (WSS) model fits to case data to derive R but accounts for
systematic reporting errors (e.g. false positives and false negatives and under–
reporting). Case counts are weighted, scaled, and shifted to account for the change in
the size in future compartments, the delay between infection and case reporting, and
to account for seasonality

The estimated R is assumed to
be the combination of the
true R plus a stochastic term
and is calculated from the
rate of change in reported
cases, scaled by the time lag
between infection and the
time of case report

Manchester model
(DetSEIRwithNB) [42, 43]

A deterministic compartmental ODE model that fits to hospital admissions, hospital
occupancy, ICU occupancy, and deaths in hospital. β, the transmission rate, varies
step–wise between change points. Change points, such as policy or behavioural
changes (e.g. schools returning and lockdowns), are defined by the modeller and are
used to represent changes in the epidemic

R is estimated from the most
recent β in the calibrated
model

University of Liverpool
model [44]

A Bayesian statistical model that comprises a deterministic compartmental transmission
model governed by a system of ODEs and a stochastic observation model. Fitted to
deaths, hospital admissions, and symptomatic report data from NHS 111 online

R is calculated fromestimates of
the daily number of
infections, the infectious
population, and the mean
time for which individuals are
infectious

PHE/Cambridge model [45, 46] A deterministic age–structured compartmental model fitted to serology data. Google
mobility data are also used. Different versions of the model have been run throughout
the pandemic that fit to slightly different data streams. Two versions of the model are
presented in Figure 1. Deaths/ONS fits to ONS infection survey data, whereas regional/
age does not. More recently, during the pandemic, the regional/age model has been
replaced with the admissions/ONS model, which has the same model structure as
deaths/ONS, but fits to admissions

R is calculated as the dominant
eigenvalue of the NGM

(Continued)

Epidemiology and Infection 11

https://doi.org/10.1017/S0950268824000347 Published online by Cambridge University Press

https://github.com/burtonjosh/DetSEIRwithNB_MCMC
https://github.com/burtonjosh/DetSEIRwithNB_MCMC
https://www.mrc-bsu.cam.ac.uk/now-casting/
https://mrc-ide.github.io/sircovid/
https://mrc-ide.github.io/sircovid/
https://github.com/MichelleKendall/UK_recent_R_estimate
https://github.com/MichelleKendall/UK_recent_R_estimate
https://doi.org/10.1101/2021.05.22.21257633
https://doi.org/10.1101/2021.05.22.21257633
https://epiforecasts.io/EpiNow2/
https://doi.org/10.1111/rssa.12971
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/976328/S1164_SPI-M-O_Consensus_Statement.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/976328/S1164_SPI-M-O_Consensus_Statement.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/976328/S1164_SPI-M-O_Consensus_Statement.pdf
https://doi.org/10.1017/S0950268824000347


B Hospital admissions and deaths with a shifted R

Table A1. (Continued)

Model name Description R estimation

Warwick model [47] A deterministic age–structured compartmental ODE model fitted to hospital and ICU
admissions and COVID–19 positivity rate data

R is calculated as the dominant
eigenvalue of the NGM

Imperial Stochastic
Compartmental (sircovid)
[48]

Compartmental transmission model described by stochastic difference equations fitted
to deaths, hospital admissions, and prevalence, tested cases in hospital beds, ICU
prevalence, and serology data

R is calculated as the dominant
eigenvalue of the NGM

EpiEstim [32, 49, 50] EpiEstim applies the renewal equation given a time series of incidence. The
implementation described in [50] is used (code available at [49]). Estimates are back–
calculated from an observation, for example cases, to time of infection, using an
assumed delay distribution

R is calculated using the
renewal Equation (2)

GenomicSurveillance [51] A spatio–temporal hierarchical Bayesianmodel, which fits to daily new cases and COVID–
19 lineage counts

R is calculated based on the
derivative of the cubic spline
function fitted to the
incidence

Epidemia [52] A hierarchical semi–mechanistic Bayesianmodel based on the renewal equation. Multiple
data streams can be fit to simultaneously. Two separate versions of the model are run,
one that fits to weekly admissions and one that fits to weekly cases. The admission
version of themodel was developed later in the epidemic in response to changes in the
case ascertainment rate

R is specified to vary weekly
according to a random walk
and is calculated using the
renewal Equation (2)

LSHTM EpiNow2 [53, 54] EpiNow2 uses the renewal equation to estimate R, where initial infections are estimated
based on the initial number of cases or hospital admissions. The relationship between
cases (or hospital admissions) and infections is obtained from a convolution of the
relevant delay distributions (an uncertain incubation period and reporting delay).
Similarly to Epidemia, versions fitting to cases and admissions are run

R is derived using the renewal
Equation (2)

LSHTM ONS inc2prev [55] A Gaussian process model that uses PCR positivity rates published by the ONS to model
incidence by convolution with the curve estimating the evolution of the probability of a
positive test since time of infection

R is derived using the renewal
Equation (2)

Oxford CSML Model Dashboard
on [56]

Hierarchical semi–mechanistic Bayesianmodel fitted to cases, similar to Epidemia and as
described in [33], but with a spatio–temporal component

R is derived using the renewal
Equation (2)

OpenABM [57] Stochastic agent–based model calibrated to hospital admissions, ICU bed occupancy,
deaths, and vaccinations. Social mixing, test–trace–isolate interventions, different
SARS–CoV–2 variants, and progressive vaccination are explicitly modelled

R is calculated by directly
counting the number of
secondary infections that are
caused by each primary
infection

Covasim [58] A stochastic agent–based model calibrated to COVID–19 diagnoses, hospital admissions,
and deaths related to COVID–19 and modelling progressive vaccine roll–outs. Social
distancing and test–trace–isolate interventions are also modelled, and progressive
SARS–CoV–2 variants are incorporated

R is calculated by directly
counting the number of
secondary infections that are
caused by each primary
infection

Figure B1. Plots A, B, and C show Spearman’s rank correlation coefficient, ρ, between R t� tshiftð Þand the rate of change in cases, hospital admissions, and deaths, respectively, for
a varying tshift. The maximum value of ρ found from this analysis is included in Figure 3. Theminimum p-values occurred in each instance for the maximum correlations; hence, the
p-values are not included in this plot.
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