A COMMUTATOR FORMULA FOR A PAIR OF SUBGROUPS AND A THEOREM OF BLACKBURN

Tsit-Yuen Lam

Let $G = K_1(G) \supseteq K_2(G) \supseteq \ldots \supseteq K_n(G) \ldots$ be the lower central series of a group G, where $K_2(G) = [G,G]$ and inductively $K_{n+1}(G) = [K_n(G),G]$. A theorem of Blackburn ([1], Hilfssatz) states that

THEOREM 1. The exponent of $K_{n+1}(G)/K_{n+2}(G)$ divides the exponent of $K_n(G)/K_{n+1}(G)$.

In this note we shall establish

THEOREM 2. Let G_1 , G_2 be subgroups of a group G, and $L = [G_1, G_2]$. Define $L_i = G_i \cap L$, $G_i' = [G_i, G_i]$ and $e_i = \exp.(G_i/G_i' \cdot L_i)$, (i = 1, 2); then for $e = (e_1, e_2)$ (the greatest common divisor of e_1 and e_2) we have

$$L^{e} = [G_{1}, G_{2}]^{e} \subseteq [L, \langle G_{1}, G_{2} \rangle]$$

where $\langle G_1, G_2 \rangle$ denotes the subgroup of G generated by G_1 and G_2 .

We claim that Theorem 2 implies Theorem 1. Indeed suppose H is a normal subgroup of G and let us apply Theorem 2 with $G_1=G$ and $G_2=H$. Then clearly

$$L_1 = L_2 = [G, H] = L$$
.

Also $e_1 = \exp \cdot (G/G' \cdot [G, H]) = \exp \cdot (G/G')$ and $e_2 = \exp \cdot (H/[G, H])$. We have thus proved:

COROLLARY. If $H \triangle G$, then the exponent of [G, H]/[G, [G, H]] divides both

- (1) the exponent of G/G'
- (2) the exponent of H/[G, H].

$$|[G,H]/[G,[G,H]]|$$
, $|G/G'|$, $|H/[G,H]|$,

 $\underline{\text{then}}$ [G, H] = [G, [G, H]].

If we set now $H = K_n(G)$, then $[G, H] = K_{n+1}(G)$ and $[G, [G, H]] = K_{n+2}(G)$, so the second part of the corollary reproduces the theorem of Blackburn.

From the corollary, it follows trivially, for example, that for $G=S_3$, S_4 (and of course the other symmetric groups), A_4 , or |G| square free, $K_2(G)=K_3(G)=\ldots$.

Proof of Theorem 2. We first recall that $L = [G_1, G_2]$ is normal in $\langle G_1, G_2 \rangle$. Replacing G by $\langle G_1, G_2 \rangle$ we may suppose, from now on, that L and hence $W = [L, \langle G_1, G_2 \rangle] = [L, G]$ are normal in G. Write $\overline{L} = L/W$. For x_1 in G_1 consider a map $\beta(x_1): G_2 \to \overline{L}$ defined by $(\beta(x_1))(x_2) = [x_1, x_2]W \in \overline{L}$. In virtue of the formula

$$[x,yz] = [x,z] \cdot z^{-1} \cdot [x,y] \cdot z$$

 $\beta(x_1)$ is a homomorphism. This homomorphism clearly vanishes on $G_2 \cap L = L_2$. Moreover it vanishes on G_2' since the range \overline{L} is abelian. $\beta(x_1) \text{ thus induces a homomorphism } G_2 / G_2' \cdot L_2 \to \overline{L} \text{ which we again denote by } \beta(x_1). \text{ Now using the formula}$

$$[xy, z] = y^{-1} \cdot [x, z] \cdot y \cdot [y, z]$$

we see that $\beta:G_1\to \operatorname{Hom}(G_2/G_2'\cdot L_2,\overline{L})$, sending x_1 to $\beta(x_1)$, is again a homomorphism. This likewise induces an element

$$\beta \in \text{Hom}(G_1 / G_1' \cdot L_1, \text{Hom}(G_2 / G_2' \cdot L_2, \overline{L})) = X.$$

The exponent of the group X clearly divides both $e_1 = \exp(G_1/G_1' \cdot L_1)$ and $e_2 = \exp(G_2/G_2' \cdot L_2)$. Consequently $\beta^e = 1$ where $e = (e_1, e_2)$.

This means that $[x_1, x_2]^e \in W$ for all x_1 in G_1 and all x_2 in G_2 , and hence that $[G_1, G_2]^e \subseteq W$, which is the desired conclusion.

REFERENCE

 N. Blackburn, Über das Produkt von zwei zyklischen 2-Gruppen. Math. Z. 68 (1958) 422-427.

University of California Berkeley California 94720