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SOME REMARKS ON THE NIJENHUIS TENSOR
A. P. STONE

A differential form « of degree » on an n-manifold is exact if there exists a
form B of degree » — 1 such that @ = dB and is closed if da = 0. Since d-d = 0
any exact form is closed. The Poincaré lemma asserts that a closed differential
form of positive degree is locally exact. There is also a complex form, proved
by Cartan-Grothendieck, of the Poincaré lemma in which the operator d has
a decomposition into components d and d. In this paper a Poincaré lemma is
established for an operator d,, where h is a nonsingular vector 1-form with
vanishing Nijenhuis torsion [h,h]. The operator d, is an anti derivation of
degree one and it reduces to d when h is the identity on differential forms of
degree one. The main result (Theorem 3.5) states that if h is any nonsingular
vector 1-form whose Nijenhuis tensor [h,h] vanishes identically, and if
dyae = 0 for any differential form « of degree 7, then locally there exists a
differential form B of degree » — 1 such that @ = d;8. In section 4 some
applications involving conservation laws and almost complex structures are
discussed.

It should be noted that the vanishing of [h,h] is a condition which has
appeared in various integrability problems on manifolds. A list of some of
these problems would include the study of almost complex and complex
manifolds, Kidhler manifolds, G-structures, Sasakian structures, and f-structures.

The operator d, is an example of a derivation of “type d«"’. These deriva-
tions were studied by A. Frolicher and A. Nijenhuis in [1], which deals with
the theory and basic properties of vector valued differential forms (i.e. differ-
ential forms whose values are tangent vectors). In their paper the theory is
developed by starting with the graded ring ® of C* differential forms (scalar
forms) over a C* manifold. The ring is commutative in the sense that ¢, A ¢, =
(—=1)*%, A ¢,, where the subscripts denote the degrees of the elements. The
subring @&, of elements of degree zero consists of the C* functions. Vector forms
then arise in connection with derivations in ®. A mapping D:® — & is a
derivation of degree » if D(®,)C ®,+, and D(¢ + ¢) = Do + Dy. Their
analysis showed that there are two special kinds of derivations, namely those
of “type 7+"" and those of ‘““type d+"’, and every derivation of degree 7 is a sum
of derivations of these two types. A derivation D of type dx is determined by
its action on @, and the requirement that Dd = (—1)’dD. Examples of
derivations of type d+ of degree one are exterior differentiation d, and the
operator d; which is defined in the next section. The Lie derivative provides
an example of a derivation of type d« and degree zero.
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2. Preliminaries. Let M be a C* manifold of dimension # and 4 the ring
of C* functions on M. The module of C” differential forms of degree p on M
is denoted by A?¢&” and so A°6” = 4 and A& = &. A C” vector 1-form h on M

is an element of Hom (&, &°). The vector 1-form h induces homomorphisms
R p=0,1,...,q,

h(p)
AE —— A&
which are defined (as in [5]) by the equations

@21) EP(er Ao A @)

1
= FWZ Iml{he:ay A« oo Aherpl A erin A - A er
where ¢; € &, = runs through all permutations of (1, 2,...,¢), and the

signature of 7 is denoted by |r|. The transformation A is the identity on
A& . Observe that A" defines a derivation and note also that for ¢ = 2.

R (o1 A @2) =her A o2 + o1 A hes,
(o1 A ¢2) =hei A ho,.

The operators k) can be expressed in terms of AW, A .. . k@D by
the formula
(2.2) [(rP)D — (BP—1)DpD 4 (—1)P1pDpP-D]g

_J0, p>g¢
(=1 ph®B, p = g

where 8 € A?&. Formula (2.2) is established in [5]. Note that the case p = 2
is simply the statement that (A*)® — AR = —24® on g-forms, when
q =z 2.

It is not difficult to prove that

(2.3) det[#®] = (det[h]) G-1)

where 1 £ p < n and where 2@ in formula (2.3) is interpreted as an operator
on p-forms. In particular, 2® regarded as an operator on p-forms is invertible
if and only if h is invertible.

The Nijenhuis tensor [h, h] of h can be defined on p-forms a by the equation

(2.4) [h,hla = —h®da + EPdEDVa — d (AP 4+ (B2)D)a.

Observe that if p = 1, and ¢ € &, then [h, hlp = —h®de + hVdhe — dh?e,
which is the usual expression for [h, h] on 1-forms. It is not hard to establish

that
(2-5‘1) [h, h] (ﬂ% AN 'Pq) = [h’ h]@zz AN ‘pq + <_1)p‘Pp AN [h,h]l//q
(2.50) (h, h] fe, = f[h, h]e,,
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for any ¢, € A?&, Y, € A'E, f € A. Thus [h,h] is a derivation (of degree 1)
and is an element of Hom, (A’&", A™+1&°).
An operator d,:A?& — A?t1¢&” may be defined by setting

(2.6) du = hda — dhWa

for any a € A?&, and any non-negative integer p. In particular, if f € 4
then d,f = hd f. Observe also that d; = d, where I is the identity on &.
The following propositions are easy to establish by direct calculations.

ProposITION 2.1. The operator dy is an anti-derivation of degree 1.
ProrosiTiON 2.2. d[h,h] 4+ [h,h]d = d;d,.

A p-form « is said to be h-closed if dja = 0; similarly a is h-exact if there
exists a p — 1 form B such that @ = d,8. Hence, as a consequence of Proposi-
tion 2.2, if [h, h] = 0 any h-exact form is h-closed.

3. A Poincaré lemma for d,. It is clear from the definitions (2.4) and (2.6)
of [h, h] and d, that the Nijenhuis tensor can be written in the alternative form

(3.1) [h,hla = —1®da + dphPa + dhPa

for any @ € A?&. In particular, if ¢ € & then equation (3.1) can be written
as [h,h]p = —h®de 4 d;he.

The relationship between closed forms and h-closed forms (degree 1) is
expressed by the following proposition.

ProrositioN 3.1. Let [h,h] = 0 and supposeh is non-singular. A differential
form ¢ € & is closed if and only if he is h-closed.

Proof. If ¢ is closed, then equation (3.1) implies d;he = 0. Conversely, if
dihe = 0, then 2®dy = 0 and since 4® is invertible on 2-forms ¢ is closed.

A special case of the main result (Theorem 3.5) is the following theorem,
which is proven here to illustrate the idea of the proof of the main theorem.

THEOREM 3.2. Let [h,h] = 0 and suppose thath is non-singular. If dpp = 0
for any ¢ € & then locally there exists a function f € A such that ¢ = dyf.

Proof. If dye = 0, then 2®dh—'¢ = 0 and hence there exists a function
f € A such that A7'¢ = df. Thus ¢ = hdf = d,f and the theorem is established.

An operator {h,h} which takes p-forms into (p + 1)-forms is defined by
setting

(3.2) (h,hja = —h®*Vda + dhPa

for any a € A?&’. Observed that {h,h} fa = f}h,h}a for any f € 4, and
moreover that {h,h} =[h,h] when p = 1. The following lemma relates
{h,h} to [h,h] when p > 1.
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LeEMMA 3.3. For p = 1,2, ..., m,and ¢; € &,1 <1 £ p,

(3.3) (hyh}(e1 A ... A @)
Y4
=2 (=1)"he1 A ... AheiAlh hlp, A her A ... A g,
i=

Proof. The formula (3.3) is established by a direct computation. From
equation (3.2),
thyhli(er A ... A @)
= _h(ﬁl)d(ﬂpl VANRIRIRRVAN ‘Pp) + dh@® (‘Pl ANEIIIVAN ‘Pp)
= (=h®[dor A2 A ... ANgp—e1 ANdea Ao . ANy A+ A o0 A+
+ (1) o1 A ot A gpe1 A dep))
+ di(her Ahes A ... Ahg,)
= (—=h®@de; ANhea A ... Ahg, +hor A E®Pdes A hos A ... Ahe, — . ..
+ (=1)her A ... Ahgys A dey) + (diher Ahes A ... Ahg,
—hey A dhes Ahes A ... /\h<pp+...
+ (=1)"they A ... Ahg, 1 A dihgy)
=[h,h]les Ahes A ... Ahg, —he; A [h,hlps A ... Ahg, + ...
+ (=1)>"the; A ... Ahg,1 A [h, hle,.
CorOLLARY. If [h,h] = 0, then (h,h} = 0.
The proofs of the following proposition and theorem are a consequence of
the preceding corollary and they parallel the proofs of Proposition 3.1 and

Theorem 3.2. The fact that A® is invertible on p-forms if and only if h is
invertible on 1-forms is also needed in the proofs.

ProrositioN 3.4. If [h,h] = 0 and h is non-singular, then o is a closed
p-form if and only if hPa is h-closed.

THEOREM 3.5. Let [h,h] = 0 and suppose that h is non-singular. If dya = 0
for any a € A*&, then locally there exists a form 8 € A?='& such that « = d,8.

Proof. It is clear that if d;a = 0, then there exists a form X\ € A?~1&” such
that « = E®d\. Thus if 8 = A®—D), then

a = hPd\ = dh® VN = hOGRP-D\ — dhDpE—D)
= hVdB — dhVB = duB
and the theorem is established.
4. Applications. The first application concerns the notion of conservation
laws on a manifold. A 1-form ¢ € & is a conservation law for h if both ¢ and

ho are exact (see [4]). This definition of a conservation law on a manifold can
be related to the notion of a conservation law in the sense of physics. The
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following proposition gives an equivalent definition of a conservation law for
h in terms of the operator d.

ProposiTiON 4.1. Let [h,h] = 0 and suppose that h is non-singular. A 1-form
¢ s a conservation law for h if and only if dyo = dihe = 0.

Proof. If ¢ € & is a conservation law for h, then formula (2.4) implies
dh?p = 0. Thusde = dh¢ = dh?p = 0and hence dyp = dyhe = 0. Conversely
if djhe = 0, then 2®dy = 0 and hence ¢ is locally exact. The condition that
dne = 0 then implies hg is also locally exact.

Note that if ¢ is a conservation law for h, so are the forms hiy for any
positive integer ¢ and hence d;h% = 0. This fact results from a repeated ap-
plication of formula (2.4).

An almost complex structure is defined if h satisfies the conditionh? = —1,
where I is the identity on 1-forms. A second application provides an alterna-
tive characterization of the integrability of an almost complex structure h.
Since [h,h] = —2®d + d4;h, the condition that A2 = —1I yields the formula
(on 1-forms)

(4.1) (h, h] = 3{dh — EDd, + dj.
Thus if ¢ is a conservation law for h, [h,h]e = 0.

ProprosITION 4.2. Leth? = —1I; thenh defines a complex structure if and only
if there exists a basis of conservation laws for & .

Proof. 1f a basis of conservation laws exists then equation (4.1) implies
[h,h] = 0. Conversely, if [h,h] = 0 then the almost complex structure h is

integrable and hence there exist coordinates (x!,...,%" 3%, ...,9") such
that hdx? = —dy® and hdy® =dx? <=1, 2, ..., n, and consequently
(dxt, ..., dx" dyl, ..., dy") is a basis of conservation laws.
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