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The decay of a turbulent magnetic field is slower with helicity than without. Furthermore,
the magnetic correlation length grows faster for a helical than a non-helical field. Both
helical and non-helical decay laws involve conserved quantities: the mean magnetic
helicity density and the Hosking integral. Using direct numerical simulations in a
triply periodic domain, we show quantitatively that in the fractionally helical case the
mean magnetic energy density and correlation length are approximately given by the
maximum of the values for the purely helical and purely non-helical cases. The time of
switchover from one to the other decay law can be obtained on dimensional grounds and
is approximately given by I1/2

H I−3/2
M , where IH is the Hosking integral and IM is the mean

magnetic helicity density. An earlier approach based on the decay time is found to agree
with our new result and suggests that the Hosking integral exceeds naive estimates by the
square of the same resistivity-dependent factor by which also the turbulent decay time
exceeds the Alfvén time. In the presence of an applied magnetic field, the mean magnetic
helicity density is known to be not conserved, and we show that then also the Hosking
integral is not conserved.

Keywords: astrophysical plasmas, plasma simulation

1. Introduction

In recent years, there has been significant interest in the study of decaying turbulent
magnetic fields. One of the main applications has been to the understanding of the
magnetic field evolution during the radiation-dominated era of the early universe
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2 A. Brandenburg and A. Banerjee

(Brandenburg, Enqvist & Olesen 1996; Christensson, Hindmarsh & Brandenburg 2001;
Banerjee & Jedamzik 2004). The special case with finite magnetic helicity has been
studied and understood for a long time (Hatori 1984; Biskamp & Müller 1999). It is
the prime example of large-scale magnetic field growth due to an inverse cascade. The
possibility of such an inverse cascade is explained by the conservation of magnetic
helicity (Frisch et al. 1975). However, even in the absence of magnetic helicity, an inverse
cascade can develop (Kahniashvili et al. 2013; Zrake 2014; Brandenburg, Kahniashvili &
Tevzadze 2015), and it is well explained by the conservation of what is now called the
Hosking integral (Hosking & Schekochihin 2021, 2023a; Zhou, Sharma & Brandenburg
2022; Brandenburg, Sharma & Vachaspati 2023c), which is the correlation integral of the
magnetic helicity density.

In all the cases mentioned above, either the magnetic helicity density was vanishing,
so the spectral magnetic helicity was zero at all wavenumbers and the decay governed by
the conservation of the Hosking integral, or the magnetic helicity density was finite and
the spectral magnetic helicity had the same sign at all wavenumbers, so the decay was
governed by the conservation of the mean magnetic helicity density. A special situation
was studied in the work of Brandenburg, Kamada & Schober (2023b), where the magnetic
helicity was finite, but it was balanced by fermion chirality of the opposite sign so that the
net chirality was vanishing. For such a system, the decay was again successfully explained
by the conservation of the Hosking integral, which was adapted to include the chirality
from the fermions.

We have seen that the Hosking integral can be applied to broad ranges of systems
where magnetic helicity is still important locally, but globally the net magnetic helicity
vanishes. However, there is an important class of astrophysically relevant systems, where
the magnetic field is not generated by magnetogenesis, as in the early universe, but by
dynamo action. This means that some of the kinetic energy of turbulent motions is
converted into magnetic energy. It is important to stress that, even if the velocity field were
helical, i.e. if there is finite kinetic helicity in the system, as is generally the case when there
is rotation and stratification of density and/or velocity, magnetic helicity conservation still
precludes the generation of magnetic helicity, at least on dynamical time scales (Ji 1999).

In the aforementioned helically driven large-scale dynamos, magnetic helicity can be
generated at small scales, but it is then balanced by magnetic helicity at large scales so
as to conserve magnetic helicity. Alternatively, we can also say that magnetic helicity
is produced at large scales, for example by the tilting of buoyantly rising magnetic flux
tubes in cyclonic convective events, as envisaged by Parker (1955). Magnetic helicity
conservation then implies magnetic twist of opposite sign at smaller scales. In practice,
because there is always finite magnetic diffusivity, which acts especially on small scales,
the magnetic helicity from large scales will, after some time, dominate the total magnetic
helicity owing to the loss at small scales where the magnetic helicity has the opposite
sign. Therefore, there is always a small imbalance between the contributions from small
and large length scales. It is therefore a situation that is only partially suited to the
phenomenology involving the conservation of the Hosking integral.

If we now were to turn off the driving, the turbulence would gradually decay. This decay
should then be governed by the conservation of both the Hosking integral and the mean
magnetic helicity density. Both helical and non-helical cases lead to inverse cascading,
where the magnetic field decays more slowly than the velocity field, leading ultimately to
a magnetically dominated state. Such conditions could apply to the decay of a magnetic
field produced in a proto-neutron star. There, we expect a turbulent dynamo to occur that is
driven by convection (Thompson & Duncan 1993). This would happen when the neutrino
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opacity is large enough to prevent neutrinos from escaping freely (Epstein 1979; Burrows
& Lattimer 1986).

Another source of turbulence in proto-neutron stars could be the magnetorotational
instability that results from the radially outward decreasing angular velocity gradient
associated with collapsed material having an approximately constant angular momentum
density (Guilet et al. 2022). In both cases, the turbulence itself has kinetic helicity of
opposite signs in the northern and southern hemispheres (negative in the north and positive
in the south). In each hemisphere, this leads to dynamo action of the type described above,
but the magnetic helicities have opposite signs not only in the two hemispheres, but also on
small and large length scales. One would thus focus only on one hemisphere and ignore
the interaction between north and south. The magnetic helicities from small and large
length scales would then nearly cancel. Such fields have been called ‘bihelical’ and their
decay properties were first studied by Yousef & Brandenburg (2003). They found that the
positive and negative contributions rapidly mix and annihilate, and that the ratio of the
magnetic helicity spectrum to the magnetic energy spectrum has local extrema at both
small and large scales, although the latter is dominant in an absolute sense.

Since the net magnetic helicity of a bihelical magnetic field does not vanish exactly,
and since the mean magnetic helicity itself is an important conserved quantity, we are
confronted with a situation where the magnetic decay is governed by two conserved
quantities. Investigating this aspect in a more controlled fashion is the main purpose of
this paper.

In an earlier paper, Tevzadze et al. (2012) studied a case with fractional helicity. They
found that the correlation length developed a steeper growth (indicative of magnetic
helicity domination) at a specific moment that depends on the value of the magnetic
helicity as well as on the initial values of the magnetic energy and the magnetic
correlation length. This consideration provided a quantitative estimate for the time of
the switchover from non-helical to helical scalings. A similar estimate was provided by
Hosking & Schekochihin (2021) based on the scaling of the Hosking integral IH . One
may then ask whether the time of the switchover from a decay controlled by IH to
that controlled by the mean magnetic helicity density IM can be computed based on
dimensional arguments. Indeed, given that the quantity IH has dimensions cm9 s−4 and
IM has dimensions cm3 s−2 (see Brandenburg (2023), and note that the magnetic field is
here understood to be in Alfvén units with dimensions cm s−1) a combination of IH and
IM that yields a time would be I1/2

H I−3/2
M . It will turn out that this is indeed the time of

switchover between the two regimes.

2. Our model
2.1. Basic equations

We simulate the compressible magnetohydrodynamic equations with an isothermal
equation of state with constant sound speed cs, so the pressure p and the density ρ are
related by p = ρc2

s . The equations for the magnetic vector potential A, the velocity U and
the logarithmic density ln ρ are

∂A
∂t

= U × B + η∇2A, (2.1)

DU
Dt

= −c2
s∇ ln ρ + 1

ρ
[J × B + ∇ · (2ρνS)] , (2.2)

D ln ρ

Dt
= −∇ · U, (2.3)
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where D/Dt = ∂/∂t + U · ∇ is the advective derivative, B = ∇ × A is the magnetic
field, J = ∇ × B/μ0 is the current density, μ0 is the vacuum permeability, ν is the
viscosity and Sij = (∂iUj + ∂jUi)/2 − δij∇ · U/3 are the components of the traceless
rate-of-strain tensor S. Our computational domain is a periodic cube of size L3, and
k1 = 2π/L is the smallest wavenumber. Since the mass in the domain does not change,
the volume-averaged density is constant in time, i.e. 〈ρ〉 = const. ≡ ρ0. Here and below,
angle brackets denote volume averaging.

2.2. Initial conditions
In our idealized studies, we focus on the decay governed by two conserved quantities
(Hosking integral and mean magnetic helicity density). We construct an initial magnetic
vector potential in Fourier space as Ã(k) = R(k; ς)Ãnhel, where

Rij(k; ς) = δij − k̂ik̂j + ik̂�ςεij� (2.4)

is a matrix with k̂i being the components of the unit vector k̂ = k/k, |ς | � 1 is a
non-dimensional parameter that quantifies the fractional helicity and Ãnhel is a non-helical
field with random phases and possesses the desired spectrum for the magnetic field
Sp(B) = k2Sp(A), i.e.

Sp(B) = A0kα

1 + (k/k0)5/3+α
, (2.5)

where A0 is an amplitude, k0 denotes the initial position of the spectral peak, α is the
subinertial range slope (here always α = 4) and the inertial range has a k−5/3 spectrum.
Note that A is by construction periodic. Therefore, B = ∇ × A has zero mean field. At the
end of this paper, we also briefly discuss a case with a finite mean magnetic field.

The strength of the magnetic field can be characterized by the Alfvén speed, vA =
Brms/

√
μ0ρ0, which is here based on the mean density. For ς �= 0, we have a finite

magnetic helicity and expect then the decay to be governed by both the Hosking integral
and the mean magnetic helicity density.

In (2.5), Sp(·) denotes a shell integrated spectrum. This operation will also be applied
to the local, gauge-dependent magnetic helicity density h = A · B, so that Sp(h) =
(k2/8π3L3)

∮
4π

|h̃|2 dΩk. The tilde marks a quantity in Fourier space, and Ωk is the solid
angle in Fourier space, so that

∫
Sp(h) dk = 〈h2〉, and likewise for

∫
Sp(B) dk = 〈B2〉.

Owing to the integration over shells in three-dimensional wavenumber space, the spectrum
of a spatially random (δ correlated) field is proportional to k2. This is indeed the case for
a globally non-helical field, where 〈h〉 = 0.

2.3. Definitions of the Hosking integral
The Hosking integral IH is defined as the asymptotic limit of the magnetic helicity density
correlation integral:

IH(R) =
∫

VR

〈h(x)h(x + r)〉 d3r, (2.6)

for scales R large compared with the correlation length ξM of the turbulence, but small
compared with the system size L. Here, VR = 4πR3/3 is the volume of a sphere of radius
R. For small values of R, the function IH(R) increases proportional to R3, but for large R,
it levels off when there is no net magnetic helicity. However, as explained in Hosking &
Schekochihin (2021), this is different for finite magnetic helicity, as is discussed below. In
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Run k0/k1 ς vA0/cs vAm/cs Ma Lu IM/2ξMEM N3 Figures

A 60 1 0.57 0 0.20 → 0.03 1000 → 2500 0.95 → 0.94 11523 1
B 30 0.003 0.21 0 0.10 → 0.005 2700 → 1500 0.01 → 0.13 10243 2, 3, 8
C 60 0.01 0.20 0 0.10 → 0.001 1300 → 800 0.06 → 0.78 10243 4–8
D 60 0 0.22 0.1 0.11 → 0.001 800 → 70 0 10243 9

TABLE 1. Summary of runs presented in this paper. The arrows indicate the change from the
beginning to the end of the run.

practice, the value of R is chosen empirically and must always be small compared with the
size of the domain.

Zhou et al. (2022) devised and compared different methods for computing IH(R). These
methods are all based on the Fourier transform of h. Particularly simple is what they
called the box-counting method for a spherical volume with radius R. This allowed them
to rewrite (2.6) as a weighted integral over Sp(h):

IH(R) =
∫ ∞

0
w(k, R) Sp(h) dk, (2.7)

where

w(k, R) = 4πR3

3

[
6j1(kR)

kR

]2

, (2.8)

and j1(x) = (sin x − x cos x)/x2 is a spherical Bessel function.

2.4. Input and diagnostic parameters of the model
Important input parameters of the model are the ratio of the initial Alfvén speed to
the sound speed, vA0/cs. In the presence of an imposed mean field, Bm = Bmx̂, a case
discussed at the end of the paper, the corresponding Alfvén speed is denoted by vAm. To
obtain information about the turbulent decay that is independent of the size and shape
of the computational domain, we must choose the value of k0/k1 to be sufficiently large.
However, it should also not be chosen too large, because it would diminish the range of
wavenumbers between k0 and the largest wavenumber in the domain, which is called the
Nyquist wavenumber, kNy = k1N/2, where N is the number of mesh points. The sensitivity
of the results on the choice of k0 has been studied on various occasions (e.g. Zhou et al.
2022). A reasonable compromise that still allows for sufficiently large Reynolds numbers
seems to be k0/k1 = 60. This is the value that is used for the main run in the present
paper, but we also present some results with k0/k1 = 30; see table 1 for a summary of runs
presented in this paper.

To characterize the degree of compressibility and the vigour of turbulence, we quote the
Mach and Lundquist numbers:

Ma = urms/cs, Lu = vA/ηk0. (2.9a,b)

Since our model is spatially homogeneous, it can be characterized by the magnetic energy
and helicity spectra, EM(k, t) and HM(k, t), respectively. They are normalized such that
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their integrals give the mean magnetic energy and helicity densities, EM ≡ ∫
EM(k, t) dk =

〈B2〉/2μ0 and IM ≡ ∫
HM(k, t) dk = 〈A · B〉, respectively.1

The position of the peak of the spectrum is characterized by the inverse magnetic
integral scale, kpeak = ξ−1

M , where ξM is here defined as

ξM =
∫

k−1 EM(k, t) dk
/∫

EM(k, t) dk. (2.10)

Of particular importance are the time dependencies ξM(t) and EM(t), which, in turn,
are characterized by the instantaneous scaling exponents q(t) = d ln ξM/d ln t and p(t) =
−d ln EM/d ln t. The relative magnetic helicity can be computed as the non-dimensional
ratio IM/2ξMEM, which is between −1 and +1.

The relevant information that quantifies the Hosking integral is the first non-vanishing
coefficient in the Taylor expansion:

Sp(h)|k→0 = IH

2π2
k2 + . . . ; (2.11)

see Hosking & Schekochihin (2021), Schekochihin (2022) and Zhou et al. (2022) for
details. This is also the primary method used here to determine the value of IH; see Zhou
et al. (2022) for a comparison between different methods. We confirm that 2π2Sp(h)/k2

has an approximately flat part for small values of k and use its value at k = k1 to
measure IH . Below, we also confirm that IH is nearly independent of time; see Zhou et al.
(2022) for quantitative assessment of its invariance in the ideal limit. Note that, since∫

Sp(h) dk = 〈h2〉, which has dimensions (cm3 s−2)2, Sp(h) has dimensions cm7 s−4 and
therefore IH has dimensions cm9 s−4, as expected.

To facilitate comparison with other work, it is useful to present our results in
non-dimensional form. The time used in the numerical simulations is made non-
dimensional by plotting the evolution versus csk1t, which is convenient for numerical
reasons, because cs and k1 are constant in time. However, physically more meaningful
would be a non-dimensionalization by using the Alfvén speed and the inverse correlation
length. Both are time dependent, but the values vAe and ke at the end of the simulations
seem to be most meaningful.

2.5. Run time and scale separation
To obtain meaningful results, two important constraints need to be obeyed. First, the value
of Lu needs to be large enough so that we are in the regime of developed turbulence.
Second, the subinertial range must always be large enough so that, by the end of the run, its
slope is not affected by finite size effects of the computational domain. This automatically
limits the maximum run time below which our results can still be meaningful. Both
constraints can only be obeyed in the limit of infinite resolution. In practice, the largest
resolution that is presently feasible is typically 20483 mesh points (Zhou et al. 2022),
but this large resolution does already constrain the number of experiments that can
reasonably be performed. Therefore, we use for most of our simulations a lower resolution
of N3 = 10243 mesh points. In that case, the largest wavenumber in the domain is
kNy = k1N/2 = 512 k1. As discussed above, this led us to the compromise of choosing the
values 30 and 60 for the scale separation ratio k0/k1, so k0/kNy = 17–8.5, leaving barely
enough dynamical range for turbulence to develop.

1The name IM has been chosen here to mark its important role as an ideal invariant and to highlight its usage
analogously to that of the Hosking integral IH .
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Turbulent decay controlled by two conserved quantities 7

i β q p σ C(ξ)
i C(E)

i C(E)
i

M 0 2/3 2/3 1/3 0.13 4.1 0.7
H 3/2 4/9 10/9 1/9 0.12 3.7 0.025

TABLE 2. Summary of the coefficients characterizing the decays governed by the conservation
of magnetic helicity (i = M) and the Hosking integral (i = H).

3. Results

In the present context, we have to deal with two conserved quantities, namely the
Hosking integral IH and the mean magnetic helicity density IM = 〈A · B〉. The former case
has been studied extensively in recent years. Specifically, Brandenburg & Larsson (2023)
and Brandenburg et al. (2023c) found

ξM(t) ≈ 0.12 I1/9
H t4/9, EM(t) ≈ 3.7 I2/9

H t−10/9, EM(k, t) � 0.025 I1/2
H (k/k0)

3/2.

(3.1a–c)

The hope is that the coefficients in these expressions are universal, but it should be noted
that they have not yet been verified in other contexts.

3.1. Decay controlled by mean and fluctuating magnetic helicities
In the helical case with IM �= 0, we have ξM ∝ t2/3 and EM ∝ t−2/3 (Hatori 1984; Biskamp
& Müller 1999; Brandenburg & Kahniashvili 2017). In the present context, the pre-factors
are important. Using the data from figures 1(c) and 2(c) of Brandenburg & Kahniashvili
(2017), here referred to as Run A, we find

ξM(t) ≈ 0.12 I1/3
M t2/3, EM(t) ≈ 4.3 I2/3

M t−2/3, EM(k, t) � 0.7 IM. (3.2a–c)

Generally, we can write

ξM(t) = C(ξ)

i Iσ
i tq, EM(t) = C(E)

i I2σ
i t−p, EM(k) = C(E)

i I(3+β)σ

i (k/k0)
β, (3.3a–c)

where the index i in the integrals Ii and the coefficients C(ξ)

i , C(E)

i and C(E)

i stands for M
or H for magnetic helicity and Hosking scalings, respectively, and σ is the exponent with
which length enters in Ii: σ = 1/3 for the magnetic helicity density (i = M) and σ = 1/9
for the Hosking integral (i = H); see table 2 for a summary of the coefficients.2

In figure 1, we show the magnetic energy spectra, as well as compensated evolutions
of ξM(t) and EM(t) for the maximally helical run (Run A). We see that the peak of EM(t)
remains underneath a nearly flat envelope (its slope is β = 0), as is expected for a fully
helical turbulent decay at late times. The compensated evolutions of ξM(t) and EM(t)
are not yet fully converged towards the end of that run (the lines are not yet flat). This
is partially caused by the insufficient scale separation between the box wavenumber k1
and that of the spectral peak by the end of the run. Nevertheless, we can read off the
approximate values C(ξ)

M ≈ 0.12 and C(E)

M ≈ 4.3 towards the end of the run. The values of
these coefficients are revisited later in this paper.

2In (3.3c), we have here corrected a typo in (12c) of Brandenburg & Larsson (2023) and (3.1c) of Brandenburg et al.
(2023c), where the exponent on Ii was incorrectly stated as (3 + β)/σ instead of (3 + β)σ , but the calculations were
done correctly.
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8 A. Brandenburg and A. Banerjee

(a) (b) (c)

FIGURE 1. (a) Magnetic energy spectra, as well as compensated evolutions of (b) ξM(t) and (c)
EM(t) for the maximally helical run of figure 2(c) of Brandenburg & Kahniashvili (2017), here
referred to as Run A. In (a), the red symbols denote the spectral peaks.

(a) (b)

(c) (d)

FIGURE 2. Evolution of ξM(t) (a,b) and EM(t) (c,d) for Run B with k0/k1 = 30 and ς = 0.003,
compensated by the expected evolution if the decay is controlled either by IH (a,c) or by IM
(b,d). The dashed line denotes the use of IM at the end of the run, while for the solid line, the
time-dependent value was taken.

In figure 2, we again show the compensated evolutions of ξM(t) and EM(t), but
now for Run B, which is nearly perfectly non-helical (ς = 0.003) and has k0/k1 = 30.
The resulting coefficients are close to those estimated previously, namely C(ξ)

H ≈ 0.12
and C(E)

H ≈ 4.7. This supports the previous hypotheses of Brandenburg & Larsson (2023)
and Brandenburg et al. (2023c) that these coefficients may indeed be universal.

To determine the value of IH(t), we plot in figure 3 the evolutions of (2π2/k2) Sp(h)
(normalized by v4

Ae/k5
e ) for k/k1 = 1, 2 and 3 for Run B. We see that for k/k1 = 1, the
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Turbulent decay controlled by two conserved quantities 9

FIGURE 3. Evolutions of (2π2/k2) Sp(h), normalized by v4
Ae/k5

e , for k/k1 = 1 (solid line), 2
(dashed-dotted line) and 3 (dashed line), for the nearly non-helical Run B with ς = 0.003 and
k0/k1 = 30.

result shows a nearly negligible decline proportional to t−0.07. Note that, in units of v4
Ae/k5

e ,
the value of IH is about 500.

3.2. Decay controlled by IM and IH

If both IM and IH control the decay, we have a combination of the two decay laws such
that the late times are always controlled by the more strongly conserved quantity, i.e. by
IM. One might expect that the resulting expression for the combination of the decay laws
(3.1a–c) and (3.1a–c) is given by the sum of both expressions. This would be analogous
to the way how in radiation transport the cooling time is given by the sum of the cooling
times for the optically thick and thin cases; see (7) of Brandenburg & Das (2020). In the
present case, this would translate to

ξM ≈ 0.12 I1/3
M t2/3 + 0.12 I1/9

H t4/9, (3.4)

EM ≈ 4.3 I2/3
M t−2/3 + 3.7 I2/9

H t−10/9. (3.5)

Since the second terms involving IH are initially larger, but their contributions to ξM grow
more slowly and that to EM decay faster than the first terms, one expects their contributions
to become subdominant after some time. Thus, the magnetic helicity will always survive
and be the dominant contribution to explaining the decay.

To examine now a run where the decay is controlled by both IM and IH , we now increase
the initial fractional helicity slightly from 0.003 to 0.01; see figure 4 for magnetic energy
spectra at different times for Run C. Note that the peaks of the spectra evolve at first
underneath an envelope with the slope β = 3/2, as expected for a decay controlled by IH .
At later times, however, the envelope becomes flat (slope β = 0), as expected for a decay
controlled by IM.

In figure 5, we show the evolutions of ξM(t) and EM(t) for Run C, compensated
by t−2/3 and t2/3, respectively, as well as t−4/9 and t10/9, respectively. We see that
now the curves compensated by t−2/3 and t2/3, respectively, become nearly constant, as
expected for a decay that is governed by magnetic helicity conservation. Specifically, we
find ξM/(I1/3

M t2/3) ≈ 0.14 and EM/(I2/3
M t−2/3) ≈ 4.0. During a short intermediate interval,
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10 A. Brandenburg and A. Banerjee

FIGURE 4. Magnetic energy spectra for Run C with k0/k1 = 60 and ς = 0.01 at times
vAeke t = 0.07, 0.18, 0.40, 0.82, 1.65, 3.3, 6.1, 11.1 and 20.7.

(a) (b)

(c) (d)

FIGURE 5. Similar to figure 2, but for Run C with k0/k1 = 60 and ς = 0.01.

however, we see that the curves compensated by t−4/9 and t10/9, respectively, show brief
plateaus around vAeket = 1 with ξM/(I1/9

H t4/9) ≈ 0.12 and EM/(I2/9
H t−10/9) ≈ 4.0.

3.3. Improved fits with IM and IH

We have seen that the limiting cases where the decay is controlled either by IM or by IH are
well reproduced by (3.1a–c). It turns out, however, that the combined fits given by (3.4)
and (3.5) are not very accurate. Improved fits can be obtained by using large weighting
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(a)

(b)

FIGURE 6. Decay of magnetic energy (black line) and the fit given by (3.5) (dotted blue line,
denoted by s = 1) as well as (3.7) with s = 2 (dashed orange line) and s = 10 (solid red line).
The dotted red line corresponds to the limit s → ∞, as realized by (3.8) and (3.9).

exponents for both contributions, i.e.

ξM ≈
[(

0.12 I1/3
M t2/3

)s
+

(
0.14 I1/9

H t4/9
)s]1/s

, (3.6)

EM ≈
[(

4.0 I2/3
M t−2/3

)s
+

(
4.0 I2/9

H t−10/9
)s]1/s

. (3.7)

The result is shown in figure 6 for Run C, where we show that s = 10 yields satisfactory
fits, while s = 2 and s = 1 (our original hypothesis) are poor. The fact that the coefficients
for both parts are different from those of the individual fits and that they happen to be 4.0
in (3.7), but different from each other in (3.6), is probably just by chance and reflect that
degree of uncertainty of these values.
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It is important to emphasize that the limit s → ∞ corresponds to

ξM ≈ max
(

0.12 I1/3
M t2/3, 0.14 I1/9

H t4/9
)

, (3.8)

EM ≈ max
(

4.0 I2/3
M t−2/3, 4.0 I2/9

H t−10/9
)

. (3.9)

These expressions yield discontinuities in the derivative. An advantage of such expressions
is that one can clearly see the regimes of validity of both expressions. The critical times
when characterizing the crossover from Hosking scaling to magnetic helicity scaling are
given by

tξ ≈ (0.12/0.14)9/2 (
IH/I3

M

)1/2 ≈ 0.50 I1/2
H I−3/2

M , (3.10)

tE ≈ I1/2
H I−3/2

M . (3.11)

It would be plausible to assume that both times should equal each other. The fact that
they are not equal to each other might hint, again, at the possibility that the precise
values of these coefficients are still uncertain. On the other hand, looking at figure 5,
it is actually true that ξM approaches the IM-dominated scaling by a factor two earlier than
EM. A possible explanation for this behaviour could lie in the fact that the spectral shapes
change as the system becomes fully helical. We return to this in § 3.4, where we discuss
the spectral shapes in more detail.

We recall that an essential assumption in our dimensional argument was the fact that the
magnetic field is understood to be in Alfvén units and thus has dimensions of cm s−1.
In neutron star crusts, by contrast, where the magnetic field is governed by the Hall
effect (Goldreich & Reisenegger 1992), it has units of cm2 s−1, so [IM] = cm5 s−2 and
[IH] = cm13 s−4 (Brandenburg 2023), so tξ and tE are now proportional to I5/6

H I−13/6
M , so

both exponents are larger than in the ordinary magnetohydrodynamic case; cf. (3.10) and
(3.11). An example of the corresponding switch between the two regimes was presented in
figure 10(b) of Brandenburg (2020).

3.4. Collapsed spectra
The quality of the fits of (3.6) and (3.7) for s = 1 and s → ∞ can be examined further by
computing compensated spectra. This is shown in figure 7, where the abscissa is scaled
with ξM(t) and the ordinate with [EM(t)ξM(t)]−1. We see that the collapse in figure 7(b),
where s → ∞, is much better than that in figure 7(a), where s = 1, and it is almost as good
as that in figure 7(c), where the actual values of ξM(t) and EM(t) are used. This supports
our finding that in the fractionally helical case, the magnetic energy and correlation length
are approximately given by the maximum of the values for the purely helical and purely
non-helical cases, and not by their sum, as might naively have been expected.

As alluded to in § 3.3, there is a change in the shape of the spectrum as the system
becomes fully helical. In particular, the position of the peak appears for slightly larger
values of kξM(t) at later times; see figure 7(c). Thus, the value of ξM(t) is slightly
overestimated, which would explain the smaller value of tξ compared with tE .

3.5. Comparison with earlier work
As mentioned in the introduction, the switchover time from non-helically to helically
dominated decay has been studied by Tevzadze et al. (2012) under the assumption that
p = 1 and q = 1/2 (Christensson et al. 2001) instead of p = 10/9 and q = 4/9, as now
motivated by the conservation of the Hosking integral. The basic idea is to assume
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(a)

(b)

(c)

FIGURE 7. Magnetic energy spectra similar to figure 4, but the abscissa is scaled with ξM(t)
and the ordinate with [EM(t)ξM(t)]−1, where (3.6) and (3.7) are used with s = 1 in (a) and with
s → ∞ in (b). In (c), the actual values of ξM(t) and EM(t) are used. The last time is shown as a
thick red line.

that at the time of switchover, t∗, the real-space realizability condition (Biskamp 2003;
Kahniashvili et al. 2010) is saturated, i.e. 2ξM(t∗)EM(t∗)/ρ0 = IM. Next, inserting ξM(t∗) =
ξM(t0) (t∗/t0)

q and EM(t∗) = EM(t0) (t∗/t0)
−p, we find 2ξM(t0)EM(t0)/ρ0 (t∗/t0)

−( p−q) = IM,
and therefore

t∗=t0
[
2ξM(t0)EM(t0)/IMρ0

]1/( p−q)
. (3.12)
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For p = 1 and q = 1/2, we have 1/( p − q) = 2 and recover the result of Tevzadze et al.
(2012), while for p = 10/9 and q = 4/9, we have 1/( p − q) = 3/2. Comparing with
(3.11), we see that IM enters with the same exponent 3/2, and that the remainder can
be identified with

IH = [2ξM(t0)EM(t0)]3 t2
0. (3.13)

This suggests that IH is related to ξM and EM, but the problem is that t0 is not
straightforwardly related to the Alfvén time ξM/vA, where v2

A = 2EM/ρ0. Indeed,
Brandenburg, Neronov & Vazza (2024) found that there is a pre-factor CM that increases
with increasing magnetic Reynolds number. Such a factor has been motivated based
on magnetic reconnection arguments (Hosking & Schekochihin 2023a). Thus, inserting
t = CMξM/vA, we find

IH = C2
Mξ 5

Mv4
A. (3.14)

The fact that CM enters quadratically and approaches values in the range 20–50 for large
magnetic Reynolds numbers explains why IH strongly exceeds the naive estimate ξ 5

Mv4
A.

Interestingly, Zhou et al. (2022) found that part of the large excess over the naive estimate
is related to non-Gaussianity. Another smaller part has to do with the spectral shape.
Linking the value of CM to non-Gaussianity of the magnetic field provides a new clue
to the question of why there is a resistivity-dependent relation between decay and Alfvén
times in hydromagnetic turbulence.

3.6. Can the switchover time be resistively limited?
We know that the decay time, τ(t) = (−d ln EM/dt)−1 = t/p(t), can be regarded as
resistively limited when relating it to the Alfvén time, τA = ξM/vA. In particular, as alluded
to in § 3.5, it turns out that τ/τA = CM(Lu), which is a monotonically increasing function
of Lu that saturates near Lu∗ at C∗

M ≈ 50 (Brandenburg et al. 2024). Such a relation was
theoretically expected and has been associated with magnetic reconnection (Hosking &
Schekochihin 2023a). However CM(Lu) was found to be independent of the value of the
magnetic Prandtl number, which raised doubts about this interpretation.

The question now is whether the switchover time might also depend on the value of
Lu. Differentiating (3.7) or (3.9), we see that the decay time depends on whether t < t∗ or
t > t∗ and is equal to 9t/10 or 3t/2, respectively, but the switchover time itself is unaffected
by resistivity effects. In other words, the decay time is always t/p, where the value of p
depends on the time.

There is also the possibility that for Lu < Lu∗, the exponent p might depend on the order
of the diffusion operator, i.e. on whether it is proportional to ∇2 or some higher power;
see Zhou et al. (2022) for details. However, this consideration only applies to the regime
of low enough values of Lu and it would still not affect the actual value of t∗.

3.7. Hosking scaling at intermediate length scales
Hosking & Schekochihin (2021) presented arguments that for finite magnetic helicity, the
Hosking scaling should only be obeyed at intermediate length scales. To check this, we
now use the box-counting method as described by (2.7) to plot IH(t, R) at different times
t. The result is shown in figure 8 and resembles the sketch provided in figure 10 of Hosking
& Schekochihin (2021). We do indeed see a short plateau where the Hosking scaling can
be discerned for intermediate times. Furthermore, at later times, we see the expected R3

scaling over the whole range of R.
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(a) (b)

FIGURE 8. Box-counting result for IH(R) for runs B and C in the left- and right-hand panels.
Note the plateau for intermediate values of R at early times.

3.8. Comment on the case of a finite mean field
Our simulations presented above had zero mean field. It is well known that in the
presence of a mean field across the entire domain, the magnetic helicity is no longer
conserved (Berger 1997; Brandenburg & Matthaeus 2004); see Brandenburg et al. (2020)
for corresponding decay simulations in the presence of a mean field. To check whether
the Hosking integral could still be meaningful in such a case, we now present the time
dependence of IH(t) for Run D with different magnetic field strength, where a mean field
Bm = Bmx̂ is now imposed, so the magnetic field is given by B = Bm + ∇ × A. As before,
we evaluate IH(t) = 2π2Sp(h)/k2 at k = k1. The result is shown in figure 9 for four values
of vAm. We see that IH(t) is now decaying ∝ t−2, i.e. the Hosking integral is not conserved.
Thus, with periodic boundary conditions, not only is IM not conserved, but IH is also
not conserved.

3.9. Comment on the case with chiral fermions
As we have mentioned in the introduction, the Hosking integral also describes the decay of
helical turbulence in the presence of chiral fermions if their chirality exactly balances the
magnetic helicity. One may therefore ask whether a switchover to helical scaling could
also occur in this case of the initial balance being not perfect. In Brandenburg et al.
(2023a), two cases of imbalanced chirality were presented. In the case where the magnetic
helicity exceeds the negative contribution to the chirality, a helical decay scaling ∝ t−2/3

of the magnetic energy was found, thus supporting our expectation. In the opposite case
of an excess of fermion chirality, the time evolution of the magnetic energy was more
complicated and no clear scaling suggestive of a helical decay was found.
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FIGURE 9. Time dependence of Sp(h) for Run D (solid curve, vAm/cs = 0.1) and several cases
with weaker mean field (vAm/cs = 0.05 for the dashed-dotted line, 0.02 for the dashed line and
0.01 for the dotted line).

4. Conclusions

The present work has shown that the decay laws for the combined case of two conserved
quantities are best represented not simply by the sum of the individual laws, but that a good
description of the numerical results is obtained by taking the maximum between the two
individual decay laws. The switchover from one to the other decay law occurs earlier for
ξM(t) than for EM(t). This behaviour is surprising, but confirmed by direct inspection of
the two time traces in figures 5(b) and 5(d) and perhaps explained by changes in the shape
of the magnetic energy spectrum during an otherwise almost perfectly self-similar decay.

Comparing with earlier work on the switchover from one to the other regime suggests
that the ratio of the decay time to the Alfvén time enters in such a relation. This is
remarkable, because in hydromagnetic turbulence the decay time is known to be longer
than the Alfvén time by a resistivity-dependent factor of up to 50 (Brandenburg et al.
2024). This large factor might also explain why the value of the Hosking integral is always
found to strongly exceed the naive estimate ξ 5

Mv4
A. In other words, the reason why this

simple formula underestimates the value of the Hosking integral might be the occurrence
of the same resistivity-dependent factor that also occurs in the expression for the Alfvén
time. However, as shown in Zhou et al. (2022), also other factors enter that involve the
spectral shape. It would therefore be interesting to revisit this question.

As alluded to in the introduction, an obvious astrophysical application of our work
is the decay of an initially bihelical magnetic field. Such situations are important in
proto-neutron stars after the neutrino-driven convection ceases. Although this was actually
our initial motivation, we have not analysed this case any further, because the most
important aspect turned out to be the fact that the magnetic field has always fractional
helicity in such cases, which we have now addressed in the present paper. A problem with
the application to proto-neutron stars is of course the fact that in stars the magnetic field is
inhomogeneous and the decay is initially not yet magnetically dominated; see Brandenburg
et al. (2019) and Uchida et al. (2024). Another obvious application is to the decay of
primordial magnetic fields during the radiation-dominated era of the early universe, which
led to the aforementioned work by Tevzadze et al. (2012).
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A more general question is that of a decay governed by two decay laws and whether
there are other useful examples where the physics discussed in the present paper can be
studied. As far as turbulence is concerned, one might think of the Saffman and Loitsyansky
integrals, which represent the coefficients of the k2 and k4 terms in the Taylor expansion
of the kinetic energy spectrum (see e.g. Davidson 2000). An initial k4 spectrum (for a
vanishing Saffman integral) might survive for some time, but neither of the two integrals
is well conserved, and the Saffman integral might become important at later times when
long-range interactions have occurred (Hosking & Schekochihin 2023b). This idea could
also be applied to the magnetic case.

The case with an imposed magnetic field in a triply periodic domain is known to be
peculiar. The mean magnetic helicity density of the remaining magnetic field (without the
imposed one) is not conserved (Berger 1997). Although one can construct an additional
quantity that takes the imposed field into account (Stribling, Matthaeus & Ghosh 1994),
it turns out that it is not gauge-variant (Brandenburg & Matthaeus 2004). Our present
work has shown that with an imposed mean magnetic field, also the Hosking integral is no
longer conserved and tends to zero.

In summary, the present work has extended our knowledge about the Hosking integral,
a remarkably useful quantity whose influence on many aspects of decaying hydromagnetic
turbulence can be understood based on dimensional analysis. Numerical simulations are
used to pinpoint the values of the coefficients. For several different systems, the set of these
coefficients has been found to be similar, suggesting that their values might be fundamental
quantities. But more work is required to establish this more firmly.
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