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Abstract

In Angulo-Ardoy et al. [Anal. PDE, 9(3) (2016), 575-596], we found some necessary conditions
for a Riemannian manifold to admit a local limiting Carleman weight (LCW), based on the Cotton—
York tensor in dimension 3 and the Weyl tensor in dimension 4. In this paper, we find further
necessary conditions for the existence of local LCWs that are often sufficient. For a manifold of
dimension 3 or 4, we classify the possible Cotton—York, or Weyl tensors, and provide a mechanism
to find out whether the manifold admits local LCW for each type of tensor. In particular, we show
that a product of two surfaces admits an LCW if and only if at least one of the two surfaces is of
revolution. This provides an example of a manifold satisfying the eigenflag condition of Angulo-
Ardoy et al. [Anal. PDE, 9(3) (2016), 575-596] but not admitting LCW.

2010 Mathematics Subject Classification: 35R30 (primary); 53A30 (secondary)

1. Introduction

Since the 1987 foundational paper of Sylvester and Uhlmann [18] (for more
recent results see [4, 10, 11]), the only effective strategy to solve the Calderén
inverse problem has been based on the existence of Complex Geometric Optic
solutions. In the Riemannian setting, it was discovered in [8] that this type of
solution depends on the existence of so called limiting Carleman weights. This
notion was introduced by Kenig, Sjostrand and Uhlmann in [13]. The existence
of such functions was shown to be a problem in conformal geometry:
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THEOREM 1 [8, Theorem 1.2]. If (M, g) is an open manifold having a limiting
Carleman weight, then some conformal multiple of the metric g, called g € [g],
admits a parallel unit vector field. For simply connected manifolds, the converse
is true.

For further developments, see [5, 7, 9, 12, 16, 17]. To avoid the simply
connected hypothesis, we focus on existence of a local LCW at a point p, which
is an LCW defined on some neighborhood of p.

Another way to reformulate Theorem 1 is by saying that locally, the metric g
is conformal to a product metric of the form dt*> + g, in R x M, for some n — 1-
dimensional manifold M,; some of its limiting Carleman weights would be of the
form ¢ (¢, x) = at + b fora,b € R.

Since this condition relates to the conformal class, the paper [2] studied such
condition in terms of the classical tensors of conformal geometry, that is, the
Weyl and Cotton tensors (see [2, Section 2] for the basics on algebraic curvature
operators and bivectors over a real vector space V; we stick to the notation from
that paper). In [2] we introduced the following notion:

DEFINITION 2 [2]. Let W be a Weyl tensor in S*(A?V). We say that W satisfies

the eigenflag condition if and only if there is a nonzero vector v € V such that

W (v A vt) C v A vt where v A vt denotes the set of bivectors
fvAw:weV,(v,w)=0}.

A 1-dimensional subspace of V is called an eigenflag direction if it is spanned by
some v satisfying the above condition.

By examining the Weyl tensor of metrics with an R-factor, we obtained in [2]
the following obstruction for the existence of LCW’s.

THEOREM 3 [2]. Let (M, g) be a Riemannian manifold of dimension n > 4.
Assume that a metric g € [g] admits a parallel vector field. Then for any
p € M, W, satisfies the eigenflag condition. In particular, for any p € M,
W, € SZ(AZ(TP*M ) has at least n — 1 linearly independent eigenvectors which
are simple.

In dimension 3, the obstruction was described in terms of the Cotton—York
tensor CY.

THEOREM 4 [2]. Let n = 3. If a metric g € [g] admits a parallel vector field,
then for any p € M, there is a tangent vector v € T,M such that

CY,(v,v) =CY,(w;,wp) =0

for any pair of vectors wy, w, € v,
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Both theorems only gave necessary conditions for the existence of LCW’s.
The results of the current paper study whether the converse to the above results
hold. Specifically, we provide sufficient conditions for the existence of limiting
Carleman weights, and thus Complex Geometric Optics solutions, and develop
them in detail in dimensions 3 and 4.

For 3- and 4-dimensional manifolds, the results in this paper and in [2] can
answer whether the manifold admits a limiting Carleman weight, and identify
them if they exist, except for some corner cases that may require some ad hoc
work. We show in Section 7 how to deal with these cases.

The proof of our results combines a more precise analysis of the algebraic
structure of the Weyl and Cotton tensor and an analysis of how distributions
in TM get affected by conformal changes in the metric. With a slight abuse of
notation we define

DEFINITION 5. D C TM is a conformal factor of a metric g if it is a smooth
distribution of constant rank, such that a conformal multiple of g is a product
metric with D and D+ tangent to the factors.

When dim(D) = 1, Theorem 1 gives the connection between D being a
conformal factor, and the existence of LCW’s. Nonetheless, even the case
I < dim(D) < n — 1 is of independent interest, and can help to find LCW’s. The
reader can see this elsewhere in the paper, concretely in the proof of Theorem 11.

We prove that for a concrete distribution D, the behavior of the Lie
derivatives or of the covariant derivatives characterizes conformal factors (see
our Theorem 15). Thus, if for a metric (M, g) there are a finite number of
eigenflag conditions, the combination of this result for distributions of rank 1 and
Theorems 3 and 4 answers the question of the existence of LCW.

In this way we can analyze all 3-dimensional manifolds.

THEOREM 6. Let (M, g) be a 3-dimensional manifold, and p € M a given point.

(1) IfdetCY, # O, or there is a sequence of points py converging to p such that
detCY,, # 0, there are no local LCW'’s at p.

(2) If there is a neighborhood U of p where CY # 0 but detCY = 0, then
U admits an LCW if and only if one of the two 1-dimensional distributions
of eigenflag directions for CY satisfies one of the equivalent conditions in
Theorem 15.

(3) If there is a neighborhood U of p where CY |y = 0, then the metric is
conformally flat in U, and it admits the same LCW'’s as a subset of R>.
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REMARK 7. Theorem 6 does not cover all the possibilities for 3-dimensional
manifolds. There is one case missing, where CY, = 0, but in any neighborhood
of p there are points with CY = 0, and points with detCY = 0 but CY # 0. In
that case, the eigenflag direction fields obtained at points with detCY = 0 but
CY # 0 approaching p could loose smoothness (and even continuity!) at p, and
no LCW could be obtained.

The analysis for the 4-dimensional case requires significantly more work. We
start by dividing algebraic Weyl operators into types that depend on the different
possibilities for their eigenflag directions.

LEMMA 8. The algebraic Weyl operators W in a vector space of dimension 4 fall
into one of the following types:

A W has no eigenflag directions.

B W has at least one eigenflag direction and three different eigenspaces of
dimension 2. In this case, W has exactly four eigenflag directions.

C W has at least one eigenflag direction and two eigenspaces with dimensions 4
and 2. In this case, the eigenflag directions for W consist of the union of
two orthogonal 2-planes.

D W is null. All directions are eigenflag.

Once this is attained, we describe the existence of LCW’s when the type of the
Weyl curvature does not change in a neighborhood of a given point.

THEOREM 9. Let (M, g) be a 4-dimensional manifold and p € M.

e IfWisoftype A at p, or there is a sequence of points with Weyl tensors of type
A converging to p, there are no local LCW’s at p.

e If W is of type B at all points in a neighborhood of p, then M admits a local
LCW at p if and only if at least one of the four 1-dimensional distributions
defined by eigenflags as in Lemma 8 satisfies the hypothesis of Theorem 15.

o If W is of type C at all points in a neighborhood of p, and the two
complementary distributions of eigenflag directions satisfy the hypothesis of
Theorem 15, then M is locally conformal to a product of surfaces, and it admits
a local LCW if and only if at least one of the two integral factors is a surface of
revolution.
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o If W is of type D at all points in a neighborhood of p, then it is locally
conformally flat at p, every direction is an eigenflag direction, and the metric
admits the same LCW’s as a subset of R*.

To write a concrete example of a manifold with an eigenflag vector field, but
without any local LCW (showing that the necessary condition from Theorem 3
is not sufficient) recall that an ellipsoid in R? is scalene if its three axis have
different lengths.

THEOREM 10. Let (M, g) = (S1, g1) X (S2, g2) where S, and S, are two scalene
ellipsoids with the metric induced by R®. Then any open subset of (M, g) satisfies
the eigenflag condition but does not admit any LCW.

It should be remarked that Liimatainen and Salo were the first to prove the
existence of metrics for which there are no LCW’s, and in fact gave a qualitative
estimate of how large such set of metrics could be (see [15], and also [1]); later,
[2] wrote the first explicit examples of such metrics.

The paper starts in Section 2 by considering a metric that becomes a product
after a conformal change. The 3-dimensional case is examined in Section 3. Here
Theorem 4 says that there are only a finite number of directions than can be factors
of a product after conformal change; we analyze them by means of Theorem 15.
This will provide a proof of Theorem 6.

Section 4 classifies the possible algebraic Weyl tensors that may arise in a
4-dimensional manifold in terms of its eigenflag directions and eigenspaces. This
allows us to identify all the eigenflag directions.

We use this information in Section 5; as explained above, Theorem 15 suffices
to deal with case B. In Section 6, we give an interesting example where three of
the four eigenflag directions are conformal factors. This is a manifold with three
LCW’s with orthogonal level sets, that is not conformal to a product of surfaces.

We start Section 5 by proving that product metrics of surfaces have Weyl
operators of Types C and D; then we show that if such a product of surfaces
admits an LCW and its Weyl operator is of type C (not the trivial conformally flat
case), we can choose coordinates where the metric assumes a specially nice form.
As a result, we are able to prove

THEOREM 11. Let (S, g1) and (S,, g») be open subsets of R* with Riemannian
metrics. Assume that the Weyl operator of the product metric does not vanish at
any point. The following are equivalent:

e (81, g1) is locally isometric to a surface of revolution;
e (81, g1) has a nontrivial Killing vector field;
o (81 X 8, g1 X g) admits an LCW that is everywhere tangent to the first factor.
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Hence Theorem 10 is a corollary of this, as scalene ellipsoids are not surfaces
of revolution and their product satisfies the condition on the Weyl operator.

We are left with the case where a manifold may have a Weyl tensor of type C,
but not be conformal to a product of surfaces. Therefore, in principle there are
many candidates to be 1-dimensional conformal factors. In Section 7, we show
that this is indeed possible, and show to deal with this situation in a specific
example and explain how to proceed in general.

Finally, we would like to point out that, in principle, a similar analysis might
be conducted in higher dimensions though satisfying the eigenflag condition is
more rare (see [2, Theorem 6.1] for a quantitative statement in this regard), and
the analysis is bound to become much more complicated.

2. Criteria for a conformal product

Suppose we are given a Riemannian manifold (M, g) with a vector distribution
D C T M such that both D and its orthogonal complement D~ are integrable. The
main result of this section establishes criteria that will assure that M is locally
conformal to a product metric with D and D+ tangent to the factors. In order to
state them, we need some notation. We refer the reader to chapter 6 of [6] for a
detailed introduction.

The orthogonal splitting TM = D @& D* induces bundle projections

Pp,:TM — D, Pp.:TM — D*;

we respectively denote by X? and X+ to the components of a vector field under
the above splitting.

Given a metric tensor g in M, we denote by g” and g* the restrictions of g to
D and D+, respectively, that is

§°(X,Y) = g(Pp(X), Pp(Y)), g (X,Y):=g(Ppi(X), Ppr(Y)).

It is clear that
gX.Y)=g"X. V) + g (X, V),

for any pair of vector fields X, Y.
LEMMA 12. Assume D, Dt are integrable distributions of dimensions d and

n — d, respectively. Then for any point p € M, there is a coordinate chart (U, ¢)
with ¢ = (x1, ..., x,) such that:

(2) the integral manifolds for D in U are given by equations

d+1 .
(x +,...,x”):(ad+1,...,an),
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(3) the integral manifolds for D+ in U are given by equations

1

& xD = (.. ag).

Proof. Frobenius theorem gives us charts (Uj, ¢;) and (U,, ¢,), with ¢;(p) =

¢ (p) =0, 01 = V1, ---5 V), &2 = (21, ---,2,), and such that the integral
submanifolds for D and D+ are given respectively by the equations (ysi1, - . ., Y,)
= (ba41,...,b,) and (z1,...,24) = (c1, ..., cq) for constants b;, c;. The map

¢ = (215 2ds Yar1s - - -» Yn), defined in a neighborhood U of p, is a local
diffeomorphism at p with ¢(p) = 0, thus it defines a coordinate chart in some
neighborhood of p. Taking a smaller neighborhood if needed, and with the help
of a linear change of coordinates in R", we can assume that its image is (—1, 1)"
as required. O

It is clear from the Lemma that, if N and N* are the integral manifolds for
D and D+ through p in U, then U is diffeomorphic to N x N+. The aim of this
section is to find conditions on a metric g in U such that (¢~')*g is conformal to a
product metric on N x N+. In order to do this, we need to introduce the following
I-form @ in M:

1 1
d(X) = Trg<E£XLgD +— dﬁxggi) (1)

n

Although the Lie derivative of some tensor T, X — LxT, is not tensorial in X,
we have that

Lixig”(Y,Z) = fLxrg" (Y, Z2) +g"(YfX', Z) + g"(Y, Zf X*)
= fLx1g" (Y, 2) 2

and similarly for Lxngt, so @ is actually a 1-form.

DEFINITION 13. A distribution D is said to be umbilical if there exists a vector
field H € D+, called the mean curvature vector field of D, such that for X, Y € D
and Z € D™ it holds that

g(VxY, Z) = g(X,Y)g(Z, H). 3)
The relation of umbilicity to LCW’s was already noted in [8].

REMARK 14. If D is an arbitrary smooth distribution, then we can define the
second fundamental form of the distribution

I11(X,Y) = Ppi(VyY)
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where Pp. is the projection onto D+ and X, Y are vector fields tangent to D.
It is easy to confirm that the distribution is integrable if and only if this form is
symmetric, and in particular, an umbilical distribution is integrable.

THEOREM 15. Let (M, g) be a Riemannian metric, and D, D+ distributions as
above.
The following are equivalent:

(1) D and D* are integrable distributions and g is locally conformal to the
product of the metric restricted to an integral leave of D and the metric
restricted to an integral leave of D*.

(2) The Lie derivative of gP with respect to any vector field in D* is a multiple
of gP, the Lie derivative of g+ with respect to any vector field in D is a
multiple of g*, and the I-form @ is closed.

(3) The distributions D and D+ are umbilic and, if H, and H, are the respective
mean curvature vector fields, H, + H, is a gradient vector field for the
metric g.

Proof. (1) = (2) Let g = e“g be a product metric of two metrics on the leaves
of D and D* through p € M. Using the chart (U, ¢), there are symmetric tensors

in U such that g is written as
o 5D
.~ [e"g
8= < eagL>

where the first block does not depend on the coordinates of the second factor and
vice versa. This is equivalent to

Ly1 (eagD) = Ly (e“gL) =0,
and also to

Lx:(g”) =X (a)g”
Lxo(g") = —X"(a)g*.

Thus the first part of (2) is immediate, and the second follows because

®(X) = —X(a) = —da(X).
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(2) = (1) D is integrable since, for X, Y € D and Z € D*:

gH(X, Y], Z) = —(LxgH(Y, Z) + X (g (Y, Z)) — g- (Y. [X, Z])
= —cg* (Y, 2)
=0

where we are using that Lxg* = cg* for some function c. The integrability of
D* is proved similarly.

Let U be some simply connected neighborhood of a given point. Thus @ being
closed yields some function « such that @ = —d«. For an arbitrary vector field X,
the hypothesis in part (2) gives some function ¢ such that Ly g? = cg?; taking
traces in both sides, and using that the dimension of D is d, we get that

c= éTrg([,XLgD) = d(XH) = —da(X") = - X" (),
thus Lx:g” + X*(a) = 0, and a simple computation yields Lx:(e“g?) = 0.
A similar procedure gives us Lxo(e®g*) = 0, so the metric g = e%g is a product
of two metrics on the leaves of D and D*.
(1) = (3) Let g = ¢**g be a product of two metrics on the leaves of D and
D+ as before. A simple formula relates the Levi-Civita connections of g and g
(see [3, Theorem 1.159]):

VxY¥ = VyY + (X, Y)U — g(X, U)Y — g(Y, U)X 4)
where U = —Va. Thus for X, Y € D and Z € D+,

so the projection of U onto D" is the mean curvature of D and vice versa. It
follows that H; + H, = U, which is a gradient.

(3) = (1) Suppose H, + H, = —Va, and define g = e~>*g. Equation (4)
shows that

g(VxY,Z)=0 )
g(V,W,X) =0 ©6)

for X,Y e Dand Z, W € D*.

As remarked before the Theorem, umbilic distributions are integrable, so by
Lemma 12, we can find a coordinate basis adapted simultaneously to D and D+,
that is {0, ..., d;} span D and {91, ..., d,} span D*. Then fori € {1...d},
j.kef{d+1...n}
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0;8jx = 0;(8(9;, 9))
=&(V, 9;, 0%) + g(9;, Vo, 8)
= —g(Vy, 0, &) — 8(0;, Vo, ) — g[8, 8,1, 8) — &([3;, 8], 9))
= —3;(3(, 3)) + &, Vi, 9) — % (&3, ) + §(@;, Va,9))
=0

where in the second line we have used the compatibility of the metric with the
Levi-Civita connection, in the third we have used that the Levi-Civita connection
is torsion-free, and in the fourth we have used Equations (5) and (6) together with
the orthogonality of D and D*.

In a similar way, we also get the vanishing of 9;g;x when j, k € {1...d} and
i € {d+ 1...n}. Both sets of equalities imply that g is a product metric. O

Related conditions can be found in the literature. For example, [19] investigates
the case of warped products. However, we have preferred to keep our criteria as
simple as possible.

COROLLARY 16. If D is a 1-dimensional distribution with D* integrable, and D,
D+, satisfy any of the conditions (1)—(3) from Proposition 15, then (M, g) admits
a limiting Carleman weight.

Proof. It follows directly from Theorem | and Proposition 15. 0

As mentioned in the Introduction, for a metric g in the conditions of the above
Corollary, g would be locally isometric to a product dt*> + g, in R x M, and
some of its limiting Carleman weights would be of the form ¢ (¢, x) = at + b for
a,b eR.

3. Conformal factors in dimension 3

This section combines the results of the previous section with an examination of
the Cotton—York tensor of a metric g to describe when a 3-dimensional manifold
has an LCW. We refer the reader to [2] for some background on the Cotton—York
tensor. Recall that the space of algebraic Cotton—York tensors at some given point
p € M coincides with the space of traceless symmetric operators in 7, M.

DEFINITION 17. An eigenflag direction of a traceless symmetric operator in a
3-dimensional euclidean space V is a 1-dimensional vector subspace L such that
for any v € L and w,, w, € L+, we have

CY,(v,v) =CY,(w;, wp) =0.
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Suppose we are given a metric g in M; [2, Theorem 1.6] shows that if a
conformal metric g admits a parallel vector field, the subspace L that this vector
field generates is an eigenflag direction of the Cotton—York tensor of g at each
point of M.

We start by classifying the possible algebraic Cotton—York tensors in terms of
their eigenflag directions.

LEMMA 18. An algebraic Cotton—York tensor CY falls into one of the following
categories:

e Every direction in 'V is eigenflag for CY; this agrees with the case when CY is
null.

e There are exactly two eigenflag directions for CY; this agrees with the case
when CY is not null and det(CY) = 0.

e There are no eigenflag directions, this is equivalent to the case det(CY) # 0.

Proof. Lemma 5.1 in [2] shows that det(CY) = O if and only if CY has an
eigenflag direction, so assume that L is an eigenflag direction for CY. If v is a
unit vector along L, and {v, wy, w,} is an orthonormal basis of V, the matrix of
CY is given by

Oab

a00

b0O

(see [2, Lemma 1.7]).
A further rotation with axis L changes the matrix of CY to the form

0cO
c00
000

If CY is not zero, the null directions for this symmetric operator is the union of
the planes {x = 0} and {y = 0}. Thus only the orthogonals to those two planes
can be eigenflag directions. O

Proof of Theorem 6. In the first case, we have a sequence of points p; converging
to p such that detCY,, # 0. By Lemma 18, there are no eigenflag directions at
Pk, and thus there is not an open neighborhood of p with a limiting Carleman
weight.

Suppose next that there is a neighborhood U of p where detCY = 0 but
CY # 0 anywhere. Lemma 18 says that there are two fields of eigenflag directions
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in U. Moreover, it is easy to see that such fields vary smoothly (see for instance,
[14, Theorems 9.2.7 and 9.2.8]). Such fields are the only ones that can go in the
direction of a conformal R-factor; for this to happen, one of the two fields must
satisfy the conditions of Proposition 15.

Finally, in the first case, the metric is conformally flat, since this is characterized
by the vanishing of the Cotton—York tensor. O

4. Classification of algebraic Weyl tensors of 4-manifolds

We would like to carry out a similar analysis for 4-dimensional manifolds to
the one we did in Section 3; however, the extra dimension brings out a higher
complexity, even at the level of algebraic Weyl operators. So in this section, we
start by classifying such operators with respect to the size of their set of eigenflag
directions.

In order to help the reader in the proof that follows, recall that, given a vector
space, the Pliicker relations are a set of algebraic relations that allow us to
distinguish simple bivectors (that is, those of the form v A w for v, w € V) from
arbitrary bivectors (that is, elements in A%(V)). In dimension 4, simple bivectors
are characterized as those bivectors T € A%(V) such that T A T = 0; choosing a
base of V, {e;}, the Pliicker relations arise from writing 7 in the base {e; A e;} and
computing T A 7. This results in a single equation, of the form

A1pa3y — A13ax + agayy =0 for v = E ajei N\e;.
1<i<j<4

Proof of Lemma 8. Let W be a Weyl operator with an eigenflag direction L = (v).
The operator W/, .,1) is symmetric, and diagonalizes in an orthonormal basis
VAey, UAe3, vAey. Define ey = v and e;; = e; Ae;. It follows from the properties
of the Weyl operator that ey, ey, and ez, are eigenvectors of W with the same
eigenvalues as ey4, €13, €12, respectively (see the proof of [2, Theorem 6.1]). Thus
W diagonalizes as

)

Recall that W is traceless, so A1 + A3 + A4 = 0. If the three numbers A5, Aj3,
A4 are different, the operator has exactly three eigenspaces, each of dimension 2.
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If two numbers coincide, there is one eigenspace of dimension 4 and a second
eigenspace of dimension 2. Finally, the remaining possibility is that the Weyl
operator vanishes. This will account for the different possibilities in the statement
of the Theorem, once we have related them to the eigenflags. We do this case by
case.

Three different eigenvalues. Suppose X, # A3 7 A4; then the eigenspace for
A1z 1s the set of bivectors of the form ae, + bess, a, b € R. The Pliicker relations
imply that such bivector is simple only when ab = 0. In other words, the only
simple bivectors in the eigenspace for A, are the multiples of either e, or of ez,.
Changing i, j we get that every simple eigenvector of W is a multiple of some ¢;;,
and consequently each one of the ¢;’s generates an eigenflag direction.

Suppose v were a vector spanning a different eigenflag direction. Then v A v+
would be an eigenspace of W consisting of simple bivectors, so there should be
three orthogonal unit vectors wy € v* such that v A wy are eigenvectors for W. It
follows that v A w; = e;; for some i, j, which implies that v, w, € span(e;, ¢;),
and we can assume without loss of generality that i = 1, j = 2. Then w, €
(v, w)* = span(es, e;); writing v and w, in the basis {e;} and using that v A w,
can only be a coordinate 2-plane {e; A e;, we obtain that v = e; or v = e,.

Two different eigenvalues. Suppose A, = A3 # Ayy. Let v = ae, + be; be
any vector in span(e,, e3). Then

VAe = —aepp —be;, vAes=aey+ bey,
are eigenvectors of eigenvalue A,, while
v A (—bey + aey) = (aey + bey) A (—bey + aey) = (a® + b )eas

is an eigenbivector of eigenvalue A 4. Therefore, v A v is an invariant subspace,
and v is an eigenflag direction. A similar argument applies to any vector in
span(e;, e4) to show that it is an eigenflag direction, hence we only need to prove
that there are no additional eigenflag directions.
A general bivector in the Aj,-eigenspace has the form ae, + bess + cej3 +deay,
and it is simple when
ab—cd =0

by the Pliicker relations. This equation defines a 3-dimensional quadric in a 4-
dimensional space, and does not contain any linear space of dimension 3. If v
is an eigenflag direction, v A v' is an invariant subspace, and the restriction of
W to v A vt diagonalizes in subspaces of the eigenspaces for W. Thus, v A v+
must intersect the eigenspace associated to A4. The intersection is spanned by
a bivector v A w, for some w € v, but the only simple eigenbivectors in the
eigenspace associated to Ay4 are eyy and e;. If v A w = eyy, this implies that
v € span(ey, e4), while v A w = ey; implies v € span(e,, e3). O
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5. Conformal factors in dimension 4

A 4-dimensional manifold may be conformal to a product in two different ways:
aproduct Rx N, with N a 3-dimensional manifold, or as a product of two surfaces.
Since we are going to use the Weyl tensor to distinguish between the two cases,
we start by computing the Weyl operator of a product of two surfaces.

LEMMA 19. Let M, and M, be two Riemannian surfaces.
(1) The Weyl operator of M| x M, has type C or D at any point.

(2) It has type D at every point if and only if both surfaces have constant
curvature s, and s», and s, + s, = 0.

(3) If it has type C at a point p, then p has a neighborhood U such W,
has exactly two planes of eigenflag directions for every q € U. These two
distributions are the tangent distributions to the factors M, and M,.

Proof. Taking isothermal coordinates (¢, x) on M; and (y, z) on M;, the product
metric is written as

[, x)
g = [t x)
h(y, z)
h(y, z)
Denote the normalized coordinate fields as
« 1 A 1 A 1 A 1
0, = 0;,, 0, = 0y, 0, = dy, 0, =—=0

VT
In the basis of A*T,M

A A A

dAde O ADy O AD, A, O AD, dAD,

the Weyl operator is diagonal; a long and tedious calculation by hand, that can be
better carried out with some computer assistance, gives

A g(WB, AD), 0 AD) = g(W@B, AD), B, A D)

_ by —hhe S+ £2 = fhe = S
6h3 6f3

®)
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and

gW@ AD), 0 A =gW(@E AD), d AD)
= g(W(@0 Ady), 0 ADy) = g(W(De AD.), D A D)
AR —hhy —hhee 24 2= ffi = fh
1213 12 /3
=—1/2 )

where g above also denotes the metric induced on bivectors by the original metric
tensor on the manifold. Thus W falls into type C or D depending on whether A is
different or equal to zero.

We recognize

—1
)"(t7-xa y’Z) = ?(Sl(tax) +S2(y7 Z)),

where s; is the Gaussian curvature of M;. Thus if A vanishes identically, s; and s,
are global constants whose sum is 0.

If A does not vanish at point p = (py, p2), let U C M, x M, be a neighborhood
of p where A does not vanish. Then Lemma 8 proves that at every g € U, there
are exactly two planes of eigenflag directions of W,,. It is simple, using (8) and
(9), to prove directly that any vector in (d;, d,) spans an eigenflag direction.

Hence the eigenflag directions are exactly the tangent lines to either factor. [

We are now ready to distinguish those metric products of surfaces that admit,
simultaneously, an LCW.

LEMMA 20. Let (M, g) be a product of surfaces that admits a limiting Carleman
weight . Let p € M with W, # 0; then there are coordinates (t, x, y, z) around
p in which g is written as

e/
J(x)
e
8= eK0.0) (10)

K02
for some functions J = J(x), K = K(y, 2).
Proof. Since W, # 0, Lemma 19 implies that W is of type C in some

neighborhood of p, and the set of eigenflag directions for the Weyl tensor of g
and g is the union of the two planes (9,, 9,) and {9y, 9;).
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Choose some coordinate system (¢, x, y, z) adapted to the product structure
M, x M,, as in the proof of Lemma 19.
Let g be the rescaled metric

g=1Vol’g.

Lemmas 3.10 and 3.11 in [16] give that the vector field A = Veisa parallel vector
field for g. Theorem 1.3 in [2] shows that (A) must be an eigenflag direction.

Without loss of generality, we assume that A is in (9;, d,) at every point, hence
there are functions «, 8 such that

A = ad, + B9,.

It follows from the definition of parallel vector field that A, the distribution
orthogonal to A, is integrable (see the proof of [16, Lemma 3.12, page 57]). It is
clear that

A =(—Bo +ad,,d,,0,).

Denote B := —f0, + «d,; the integrability condition implies that
[B.0,] = (8,8)8, — (8,)d; € A

and therefore [B, 8y] must be in the B direction, that is, [B, 8y] = A B for some
function A;; thus
B =—r-B, Ooa=—i o

Looking at [B, 9,], we get
8Z,B = —)\,2 . ,3, 8Z(X = —)\,2 .

Next, observe that any integral submanifold of A is foliated by surfaces tangent
to (d,, d;); since A is a parallel vector field, its integral curves are given by
geodesics. Therefore, if we consider the maps

¢(I(),X0)(u7 v, w) = exp(to,xo,u,w) (MA)’

we see that for each (%, xy), the vector fields 9,, 9,, 9, are mapped by the
differential of ¢, ., to A, d, and 9, and therefore

[A.0,] =1[A,0.]=0.
On the other hand, writing A = «d, 4+ 89,, we would get

[A,8,] = —(3,0)9 — (3,8)d,, [A,d.] = —(3.)9 — (3.8)d;.
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The consequence of this is that A; = A, = 0, and every Lie bracket between
elements in the basis {A, B, d,, 0.} vanishes, and hence they form a coordinate
basis for some set of coordinates about p. We keep on denoting them (¢, x, y, 2),
although only the last two would coincide with the former. The first two, (¢, x),
will still, however, parametrize the first factor of the product structure of M. In
this chart, g is written as

1

- 1
§= b(t,x,y,2) (In

b(t,x,y,2)

where b is actually h(y, z2)|Vo|?(t, x, v, 2).
Because A is parallel, it follows from Koszul formula

28(VxY, Z) = 0x(g(Y, 2)) + 9y (g(X, Z)) — 92(g(X, Y))

that b does not depend on ¢ (taking X = A, Y = Z = 9,).

The metric g is conformal to a product where the factors are tangent to
(0, 0y) = (A, B) and (9, 0;). Let 5.,, = (1/¢Z)ay be a unit vector in the direction
of d,. We compute the Weyl operator in the basis

AAB, AN, AAD, dAD, BAD, BAD,

The 6 x 6 matrix of W in this basis has the block structure
(W 0
=" w)

bby, — b.by bb,. — b,b.

where the 3 x 3 block W is

4
452 452
bby —biby 0
4552 /
bbxz B bxbz
i 0 w/2

where
bb* — b*b,, — b* + bb,, — b> + bb,.
v = x y Y z
6b3 '
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As mentioned in the proof of Lemma 19, if the metric is a product of surfaces
tangent to (d;, d,) and (ds, d4), the off-diagonal elements in the corresponding
basis of A*(T, M) must vanish at every p. Thus:

bb,, = b,b,
bb,, = b,b,.
Integrating the first equation we get:
(b)), b,
b, b

log(b,) = log(b) + C(x, 2)
b_x — €0
b

log(b) = D(x,z) + E(y, 2)

and similarly, integrating the second, we get log(b) = F(x, y) + G(y, z). Define
r = log(b), and observe that r,, = r,;, = 0, which in turn yields r, = H(x), or
rix,y,z) =—-Jx)+ K(y,2).

Thus, in the basis {A, B, 9y, 9.}, the metric g is written as

1

1
e /M eK(:2)
e /W) eK0.2)

oo
Il

Undoing the change from g to g shows that the matrix for g is as claimed in the
statement of the Theorem. O

REMARK 21. For a metric of the form (10), the vector field 9, is a parallel unit
vector field for the metric g = e~/™g, and it is the gradient of the coordinate
function (¢, x, y, z) — t. By [8, Lemma 2.5], the function ¢ is an LCW for g, and
by [8, Lemma 2.1], it is also an LCW for g (since the identity (1\71 ,8) — M, g
is a conformal transformation).

We can now proceed with the proof of Theorem 11.

Proof of Theorem 11. Assume S, x S, has an LCW tangent to the first factor;
Lemma 20 shows that there are coordinates in S, such that g; can be written in

the form:
e’ 13
8= PUCN N (13)

Clearly such a metric has 9, as a Killing field.
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Assume now (S, g1) has a Killing field. Since for any vector field X that does
not vanish at a point p, there is a coordinate chart around a p such that X = 9y,
we can assume, using that X is Killing, that there are coordinates where g is
written as before. It is then clear that after a change of coordinates of the form
(t, x) — (t, A(x)), with 1/ (x) = e’®/2, the matrix of g becomes

e*](x)
=)

which is a piece of a surface of revolution.

Finally, if (S}, g;) is a surface of revolution, take a chart as above; undoing
the change of coordinates (¢, x) — (¢, A(x)) get a chart in the product where the
metric g; X g, takes the expression appearing in Lemma 20. Multiplying by the
conformal factor e~/ shows that there is an LCW along 9,. O

Proof of Theorem 9. Theorem 1.3 in [2] shows that if W, has type A, there cannot
be LCW’s around p. Clearly, the same thing happens if p is in the closure of the
set of points with Type A Weyl operators.

If p has a neighborhood where every point has a Type C Weyl operator,
Lemma 8 shows that there are two orthogonal distributions D and D*; the
hypothesis of the Theorem assure that there is a conformal change such that a
neighborhood of p is isometric to a product of surfaces; since one of them has a
Killing field, there is an LCW.

The case of a Type B neighborhood is similarly done. Finally, if W vanishes in
a neighborhood of p, the manifold would be conformally flat around p. O

6. A metric with Weyl tensor of constant type B, three of the four eigenflag
directions are conformal factors

Lemma 8 has an interesting consequence: if a manifold admits an LCW, then
it has at least four vector fields of eigenflag directions. In general, only one of
them will really correspond to a conformal factor. Theorem 22 below shows a less
usual case of a manifold with Weyl tensor of constant type B that is conformal to
a product along three of the four eigenflag directions.

THEOREM 22. Take coordinates (t, x, y, z) on an open set

Uc{tx, yz)eR x>0}
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Define the metric
1000
10100
£=looxo0
000 x?

(14)

on U. Then:
o The Weyl tensor of g has type B at every point.

e The eigenflag directions of the Weyl tensor are spanned by the coordinate vector

fields.
e The functions t, y, z are LCW’s.

e The function x is not an LCW.

Proof. The nonzero Christoffel symbols for this metric are

. . S L
Fvy:_l/z’ Fzzz_x’ F;y:]")%xza, 1_;:}:1_'1 :;’

the (4, 0) Riemann curvature tensor is
1
Riem(g) = —(dx Ady) ® (dx Ady) + 2x(dy A dz) ® (dy A dz),
X
the Ricci tensor is
Ric(g) 1d@d 1d®d 1d®d
ic(g) = — - — - = a
§ 4 x2 * * 4x Y Y 2 ¢ ¢

and the scalar curvature is —1/2x2. . .
We define the normalized vector fields d, = (9,/+/x) and 9, = (3./x).
In the orthonormal basis of A*T,U

A

QA HADy HAD, A, B AD, B AD,

Z

the Weyl tensor of g is diagonal, with a 3 x 3 block repeated twice

> 0
W 96 x? )
W = 1 . W, =
( Wl) l 0 96 x2
0
24 x2
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The proof of Lemma 8 shows that the four eigenflag directions are spanned by 9,,
Oy, 0y, and 0.

It is obvious that 9, is a unit parallel vector field, while 0, and 9, are unit
parallel vector fields for the conformal metrics 1/xg and 1/x2g, respectively.
Thus, according to Theorem 1, the coordinate functions #, y, and z are LCW’s.

In order to check if (9, ) is a conformal factor, we need to apply our Theorem 15.
The second fundamental form of {9, }* in the orthonormal basis {9, 5}., éz} is:

0 0 O
1
O_E 0
0 0 ——

X

which is not a multiple of the identity. This means that {9, } is not umbilical, and
we deduce that (9,) is not a conformal factor. ]

7. A metric not conformal to a product, but with Weyl tensor of constant
type C

In this example we show an explicit metric whose Weyl tensor has type C at all
points in an open set, but which is not conformal to a product. After that, we show

how to find out all its LCW’s.

THEOREM 23. Let U be any open subset of {(t, x, y, z) € R* : x > 0}. The metric

100 O
010 O
000 1/x

on U has Weyl tensor of type C at every point, but is not conformal to a product of
surfaces. Moreover, there are only three LCW’s which are the coordinate functions
£y, 2.

Proof. The nonzero Christoffel symbols for this metric are

i 3, . 1 3 1
Mh==3¥ =55 Di=0i=5- Ti=Ii=-5

the (4, 0)-Riemann curvature tensor is
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Riem(g) = —3x(dx A dy) ® (dx Ady)
— %(dx Adz) ® (dx Adz) —3(dy Adz) ® (dy Adz), (16)

the Ricci tensor is

. 3
Ric(g) = _ﬁdx ® dx,
and the scalar curvature is —3/2x2. . .
We define the normalized vector fields 9, = x /29, and 9, = /x0..
In the orthonormal basis of A*T,U

A A A

QADe O ADy, A, A, A, A

the Weyl tensor of g is diagonal, with a 3 x 3 block repeated twice

1

% 8x2
w=["" W, = -
( Wl) : 16 x2

1612

The proof of 8 shows that the two 2-planes distributions of eigenflag vectors are
spanned by {9,, 9.} and {9,, 0,}. We deduce from Lemma 19 that our manifold can
only be conformal to a product of 2-dimensional manifolds tangent to the planes
(9, 9) and (9, 9,).

However, Theorem 15 implies that if our metric were conformal to a product
metric, the distribution (d,, d;) would be umbilical. But in that case, it follows
from Definition 13 that the following two numbers should be the same

K 2x’ (17)
V; 8”1 a)( = 3>
8( 5,0z ) 2
and we conclude that the metric is not conformal to a product metric.

Thus, the metric in the above Theorem is not covered by our Theorem 9.

It is obvious that o, is a parallel vector field, while 9, and 0, are unit
parallel vector fields for the conformal metrics 1/x3g and xg, respectively. Thus,
according to Theorem 1, the coordinate functions ¢, y, and z are LCW’s.

In order to check if (d,) is a conformal factor, we need to apply our Theorem 15.
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The second fundamental form of {9, }* in the orthonormal basis {9, EA)y, 52} is:

0 0 O

0 3 0
2x ;

0 00—
2x

which is not a multiple of the identity. This means that {9, }* is not umbilical, and
we deduce that (9,) is not a conformal factor.

The analysis of the Weyl tensor shows that any possible conformal factor must
be contained in either (9,, ) or (d,, d;). Let us push Theorem 15 a little bit further
to find all of them.

Let X be a unit vector field in (9;, 9,). X can be written in the form

X = cos()0; + sin(w)0,

for a real valued function o : M — R.
If X spans a conformal factor for some o, then (X )= is an umbilical distribution.
X € (9, 0,) implies (d,, 9,) C (X )+, so in particular the form

Z— g(VzZ, X)

for Z € (dy, 0;) must be a multiple of the identity. This tensor can be written as a
linear combination

g(VZZ7 X) = Cos(a)g(VZZ7 at) + Sin(a)g(V227 ax)
but we notice that the first summand is zero
Z— g(VzZ,9) =0

and we saw in (17) that the matrix of Z — g(VzZ, d,) in the orthonormal basis
{éy, éz} is not a multiple of the identity. Thus, the only combination of them that
produces a multiple of the identity is cos(a) = 1, sin(x) = 0.

The same trick will not help us decide whether there are conformal factors of
dimension 1 contained in (d,, d). Instead, we define

Z = cos(a)éy + Sin(oz)EA)Z
and compute the second fundamental form of Z* in the basis

&, 8, —sin(a)d, + cos()d.
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We remark that for some choices of « the distribution Z= is not integrable, which
is why the matrix

0 0 0
17— 0 0 —2 cos(a) sin(a)
B x? cos(a)d.a — sin(er)dyax
—d,a —0, 3
x3/2

is not always symmetric. If Z* is umbilical for some choice of «, then the above
matrix must be a multiple of the identity, and hence it would vanish identically. In
particular, —2 cos(«) sin() is zero, and since « is continuous, we only have two
choices: Z = éy and Z = éz. O

REMARK 24. The above example shows how even if the analysis of the Weyl
tensor yields an infinite number of candidates to be 1-dimensional conformal
factors, a use of Theorem 15 allows to rule out the fake ones. Notice that in this
example, it happened that for the false candidates, Z+ was not umbilical. In the
rare event (we do not know of any example) that for false candidates Z+ was
umbilical, the conditions on H; 4+ H, being a gradient field would rule out those
eigenflags directions not arising from LCW.
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