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Abstract

Hilbert–Kunz multiplicity and F-signature are numerical invariants of commutative rings
in positive characteristic that measure severity of singularities: for a regular ring both invari-
ants are equal to one and the converse holds under mild assumptions. A natural question
is for what singular rings these invariants are closest to one. For Hilbert–Kunz multiplicity
this question was first considered by the last two authors and attracted significant attention.
In this paper, we study this question, i.e., an upper bound, for F-signature and revisit lower
bounds on Hilbert–Kunz multiplicity.
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1. Introduction
1.1. Background

A ring of positive characteristic has a wealth of objects arising from the Frobenius endo-
morphism. The focus of this paper are two numerical invariants: Hilbert–Kunz multiplicity
and F-signature. For simplicity, let us assume that A is a local domain such that A1/p is a
finitely generated A-module. The Hilbert–Kunz multiplicity of A ([27, 30]) is defined as

eHK(A) := lim
e→∞

μA
(
A1/pe)

rank
(
A1/pe) ,

where μA denotes the minimal number of generators, and the F-signature of A
([22, 41]) is

s(A) := lim
e→∞

max
{
n | A1/pe ∼= A⊕n ⊕ M

}
rank

(
A1/pe) ,

where M is a finitely generated A-module without free direct summands.
A fundamental result of Kunz ([26]) asserts that A1/pe

is free if and only if A is regular.
It follows that eHK(A) ≥ 1 and 1 ≥ s(A) ≥ 0, and under a mild condition the value is 1 if
and only if A is regular ([22, 26, 45]). Furthermore, positivity of F-signature characterises
the class of strongly F-regular rings [3], a fundamental class of mild singularities that first
appeared in the tight closure theory [21]. A related result of Blickle–Enescu [4] shows that
small Hilbert–Kunz multiplicity also forces the ring to be strongly F-regular.

A natural question is how close can the Hilbert–Kunz multiplicity of a singu-
larity be to 1? And a natural guess is that the simplest double point singularity
k[[x1, . . . , xd]]/

(
x2

1 + · · · + x2
d

)
should have the smallest Hilbert–Kunz multiplicity (see,

Conjecture 2·4 for details). By [2, 46, 48] this is now a theorem in dimension at most 6.
In this paper, we extend this investigation by asking to find further bounds on

Hilbert–Kunz multiplicity of mild singularities and considering the analogous question for
F-signature. For instance, in dimension 2, most non-regular F-regular local rings are quo-
tient singularities, in which case we have that s(A) = 1/|G| ≤ 1/2, where A = k[[x, y]]G and
G is a finite subgroup of GL2(k). It seems that a similar question has no answer even in
dimension 3.

Question 1·1. Let A be a strongly F-regular local domain of dimension d ≥ 3 which is not
regular. Then what is the upper bound on s(A)?

We give a partial answer to the question above, and pose a conjecture; see Conjecture 2·10.
Let us explain the organisation of the paper.

1.2. Structure of the paper and main results

In Section 2, we recall several definitions (Hilbert–Kunz multiplicity, F-regularity, FFRT,
F-signature and so on) and pose two conjectures. In Section 3, we give a lower bound on
Hilbert–Kunz multiplicities. Namely, we prove the following theorem and its refinement in
the 3-dimensional case (see Theorem 3·7).
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THEOREM 1·2 (see Theorem 3·2). Let (A, m) be a formally unmixed local ring of
characteristic p> 0. If d = dim A ≥ 3, then for every m-primary ideal I we have

eHK(I)>
e(I) + d

d! .

In Section 4, we generalise an argument of De Stefani and the first author that s(A) ≤ 1/2
for non-Gorenstein Cohen–Macaulay local rings A (see Proposition 4·1) and characterise the
case where equality holds.

THEOREM 1·3 (see Theorem 4·6). Let A be a Cohen–Macaulay local domain with the
canonical moduleωA which is not Gorenstein. Then s(A) ≤ 1/2, and the following conditions
are equivalent:

(i) s(A) = 1/2;

(ii) A1/pe
is a finite direct sum of A and ωA for every e ≥ 1.

When this is the case, eHK(A) = (type(A) + 1)/2. If, in addition, either A is Q-Gorenstein
or a toric singularity, then it is isomorphic to the Veronese subring k [[x1, x2, . . . , xd]](2),
where k[[x1, . . . , xd]](n) = k[[(x1, . . . , xd)n]] (see Theorem 4·14 and 5·6).

The F-signature of a Gorenstein ring may exceed 1/2. We explore an upper bound on
F-signature for Gorenstein, non-regular local rings of dimension three.

THEOREM 1·4 (see, Theorem 4·15). Let (A, m, k) be a 3-dimensional Gorenstein strongly
F-regular local ring with e(A) ≥ 3. Then s(A) ≤ e(A)/24.

We also provide a classification of (pointed, normal, affine) toric rings with F-signature
greater than one half.

THEOREM 1·5 (see Theorem 5·12). The toric rings with F-signature greater than 1
2 are,

up to isomorphism, as follows:

(i) for a polynomial ring A, we have s(A) = 1;

(ii) for the coordinate ring A of the Segre product P1#P1, we have s(A) = 2/3;

(iii) for the coordinate ring A of the Segre product P2#P2, we have s(A) = 11/20.

2. Preliminaries

Let (A, m) be a local ring of characteristic p> 0 and let Fe : A → A denote the eth
iterated Frobenius map of A. For an A-module M, the Frobenius push-forward of M,
Fe∗M = {Fe∗m | m ∈ M}, is defined as follows: it agrees with M as an abelian group and A
acts by a · Fe∗m = Fe∗(ape

m) for any a ∈ A and m ∈ M. If A is reduced, Fe∗A is identified with
A1/pe

which consists of pe-th roots of A. The ring A is called F-finite if Fe∗A is a finitely
generated A-module for every (some) e ≥ 1.

We now recall a more general definition of Hilbert–Kunz multiplicity.

Definition 2·1. Let �A(W) denote the length of a finitely generated A-module W. For an
m-primary ideal I ⊂ A we denote I[q] = (aq | a ∈ I)A for each q = pe. If M is a finitely
generated A-module,
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e(I, M) := lim
n→∞

d!
nd
�A

(
M/In+1M

) (
resp. eHK(I, M) := lim

q→∞
�A(M/I[q]M)

qd

)
is called the multiplicity (resp. the Hilbert–Kunz multiplicity) of M with respect to I. For
brevity, we denote e(I) = e(I, A) (resp. eHK(I) = eHK(I, A)) and call it the multiplicity (resp.
the Hilbert–Kunz multiplicity) of I. We also denote, e(m, M) = e(M) and eHK(m, M) =
eHK(M).

Recall the fundamental properties of Hilbert–Kunz multiplicities; see e.g. [45].

PROPOSITION 2·2 [15], [45, (2·3),(2·4),(2·5)]. Let I ⊂ A be an m-primary ideal.

(i) The following inequalities hold true:

e(I)

d! ≤ eHK(I) ≤ e(I).

If, in addition, d ≥ 3, then e(I)/d!< eHK(I).

(ii) If I is a parameter ideal, then eHK(I) = e(I).

(iii) Let Assh(A) denote the set of all associated prime ideals P with dim A/P = dim A.
Then

eHK(I, M) =
∑

P∈Assh(A)

eHK(I, A/P) · �AP(MP).

2.1. Minimal value of Hilbert–Kunz multiplicity

Now we want to discuss the conjectural lower bound on Hilbert–Kunz multiplicities of
singularities. In order to state it, we recall the definition of type (A1) simple singularity.

Definition 2·3. Let p be a prime number, k be an algebraically closed field of characteristic
p, and d a positive integer. Then we define Ap,d as follows:

Ap,d :=
{

k[[x0, x1, . . . , xd]]/ (x0x1 + x2x3 + · · · + xd−1xd) (when d = 2m − 1, m ≥ 1) ;

k[[x0, x1, . . . , xd]]/
(
x2

0 + x1x2 + x3x4 + · · · + xd−1xd
)
(when d = 2m, m ≥ 1) .

For p> 2 the equation takes a more familiar form Ap,d ∼= k[[x0, x1, . . . , xd]]/(x2
0 + x2

1 +
· · · + x2

d). Han and Monsky ([14]) gave an algorithm to compute eHK(Ap,d) given p and d.
However, an explicit formula for eHK(Ap,d) as a function of p is only known for small values
of d (see [51] for examples). Gessel and Monsky ([12]) showed that limp→∞ eHK(Ap,d) =
1 + cd where

sec x + tan x = 1 +
∞∑

i=1

cd xd
(

|x|< π

2

)
.

The first several values of cd are recorded in Table 1 below.
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CONJECTURE 2·4 (cf. [48, conjecture 4·2]). Let (A, m, k) be an F-finite, formally unmixed,
non-regular local ring of dimension d ≥ 1. Then:

(i) eHK(A) ≥ eHK(Ap,d) ≥ 1 + cd, where cd is defined above;

(ii) Suppose that k = k. If eHK(A) = eHK(Ap,d), then Â ∼= Ap,d.

Let us summarise the cases where Conjecture 2·4 is known.

THEOREM 2·5. Let A be a formally unmixed, non-regular local ring and p be an odd
prime number.

(i) If d ≤ 3 then Conjecture 2·4 holds and eHK(Ap,d) = 1 + cd ([46, theorem 3·1], [48,
theorem 3·1]). In fact, these results also show that eHK(A) ≥ eHK(Ap,d) = 1 + cd for
p = 2.

(ii) If d = 4, then Conjecture 2·4 holds ([48, theorem 4·3]) but eHK(Ap,4) =
(29p2 + 15)/(24p2 + 12)> 29/24 now depends on p ([12]).

(iii) If d = 5, 6 then eHK(A) ≥ eHK(Ap,d) ≥ 1 + cd ([2, theorem 5·2]).

(iv) If A is a complete intersection local ring, then eHK(A) ≥ eHK(Ap,d) (see [10, theorem
4·6]).

(v) The inequality eHK(Ap,d) ≥ 1 + cd in full generality appears in the recent preprint of
Trivedi [40].

(vi) Yoshida [51] conjectures that eHK(Ap,d) is a decreasing function in p for a fixed d. For
p sufficiently large (depending on d) Yoshida’s conjecture is also asserted by Trivedi
in [40].

Observation 2·6. If p = 2 and d = 2m (m = 1, 2, . . . ), then the following statement can be
proved by using an argument in [14] (see [51] for details)

�
(

A2,d/m
[2e]
)

= 2m + 1

2m
2de.

In particular, eHK(A2,d) = (2m + 1)/2m.

Similarly, [51] conjectures that if d = 2m − 1 (m = 1, 2, . . . ), then

�
(

A2,d/m
[2e]
)

= 2m

2m − 1
2de −

(
2m−1

)e
2m − 1

for every e ≥ 1. In particular, if would follow that eHK(A2,d) = 2m/(2m − 1).
Based upon these observations, we pose an improved conjecture as follows:

CONJECTURE 2·7. Let (A, m, k) be a formally unmixed non-regular local ring of dimension
d ≥ 1 and with algebraically closed residue field. Let m ≥ 1 be an integer.

(i) If d = 2m − 1, then either Â ∼= Ap,d or eHK(A)> 2m/(2m − 1).

(ii) If d = 2m, then either Â ∼= Ap,d or eHK(A)> (2m + 1)/2m.
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By results of Watanabe and Yoshida, Conjecture 2·7 has an affirmative answer when p ≥ 3
and d ≤ 4. The following table depicts the difference between two conjectures.

Table 1. Comparison between the two conjectured bounds

d 1 2 3 4 5 6

1 + cd 2
3

2

4

3

29

24

17

15

781

720

(RHS) 2
3

2

4

3

5

4

8

7

9

8

2.2. Strong F-regularity and F-signature

Hilbert–Kunz multiplicity is inherently connected with tight closure, a powerful theory
developed by Hochster and Huneke in a series of papers starting at [20].

Definition 2·8 (cf. [20]) Let I ⊂ A be an ideal, and let x be an element of A. Put Ao =
A \ ∪P∈Min(A)P. For x ∈ A, we say that x is in the tight closure of I (denoted by I∗) if there
exists an element c ∈ Ao such that cxq ∈ I[q] for sufficiently large q = pe.

A local ring A is said to be weakly F-regular (resp. F-rational) if any ideal I (resp. any
parameter ideal I) is tightly closed, that is, I∗ = I.

A result of Hochster and Huneke [20, theorem 8·17] asserts that eHK(I∗) = eHK(I) and,
moreover, I∗ is the largest ideal containing I with same Hilbert–Kunz multiplicity.

On the other hand, F-signature coincides with the minimal relative Hilbert–Kunz multi-
plicity [32, 47, 50] and is connected to the following class of singularities.

Definition 2·9 (cf. [21]). An F-finite local ring A is called strongly F-regular if for any
c ∈ Ao, there exists q = pe, e ≥ 1 such that the map A ↪→ A1/q defined by x 
→ c1/qx splits as
an A-linear map. Any Noetherian ring A is called strongly F-regular if any localization of A
is also a strongly F-regular local ring.

Strongly F-regular singularities enjoy many nice properties and are always normal and
Cohen-Macaulay. For example, quotient singularities and toric singularities are strongly
F-regular rings. As it was already mentioned, s(A)> 0 if and only if A is strongly F-regular
by a result of Aberbach and Leuschke [3, theorem 0·2]. The two notions of F-regularity
are conjectured to be equivalent and are known to be equivalent in several cases, such as
Gorenstein rings [19].

The simple singularity Ap,d discussed above is a hypersurface with e(Ap,d) = 2, thus by
[47, example 2·3] eHK(A) = 2 − s(A) and s(A) attains the maximal value if and only if eHK(A)
is minimal. The following conjecture is then natural.

CONJECTURE 2·10. Let (A, m) be a non-regular local ring of dimension d ≥ 1. Then

s(A) ≤ 2 − eHK(Ap,d) = s(Ap,d).

The theory of F-signature originates in the following particular case of rings of finite
F-representation type, which was introduced by Smith and Van den Bergh [37] (see
also [49]).
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Definition 2·11. We say that A has finite F-representation type (FFRT) if there is a finite
set S = {M0, M1, . . . , Mn} of isomorphism classes of indecomposable finitely generated
A-modules such that for any positive integer e, Fe∗A is isomorphic to a finite direct sum
of these modules, that is,

Fe∗A ∼= M
⊕c0,e
0 ⊕ M

⊕c1,e
1 ⊕ · · · ⊕ M

⊕cn,e
n

for some ci,e ∈Z≥0. Moreover, we say that a finite set S = {M0, M1, . . . , Mn} as above is the
(FFRT) system of A if every A-module Mi appears non-trivially in Fe∗A as a direct summand
for some e ∈N.

3. Lower bound on Hilbert–Kunz multiplicities

The last two authors gave a lower bound on Hilbert–Kunz multiplicities of two-
dimensional unmixed (Cohen–Macaulay) local rings A in terms of usual multiplicities:

eHK(I) ≥ e(I) + 1

2

for any m-primary ideal I of A [46]. In this section, we consider a higher dimensional
analogue of this inequality; see Theorem 3·2.

We recall [2, theorem 3·2] which improves the volume estimation technique developed
in [48]. For any real number s we define vs,d to be the volume of {(x1, . . . , xd) ∈ [0, 1]d |∑d

i=1 xi ≤ s} which can be computed as

vs,d =
�s�∑

n=0

(−1)n (s − n)d

(d − n)! n! ,

where � � stands for round down.
For an element x ∈ A we denote

νI(x) := lim
n→∞

sup
{
k | xn ∈ Ik

}
n

.

It is known that the limit exists and νI(x) ≥ k if and only if x ∈ Ik; see Rees [34].

THEOREM 3·1 (Aberbach–Enescu [2]). Let (A, m) be a formally unmixed reduced
local ring of characteristic p> 0 and dimension d. Let J be a minimal reduction of an
m-primary ideal I and let r be an integer such that r ≥μA(I/J∗). For every real number
s ≥ 0, we have

eHK(I) ≥ e(I)

(
vs,d −

r∑
i=1

vs−ti,d

)
,

where ti = νI(zi) for z1, . . . , zr generators of I modulo J∗.
In particular,

eHK(I) ≥ e(I)
(
vs,d − r · vs−1,d

)
.

Using the above theorem and the technique developed in [1], we can improve
Proposition 2·2.
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THEOREM 3·2. Let (A, m) be a formally unmixed local ring of characteristic p> 0. If
d = dim A ≥ 3, then for every m-primary ideal I we have

eHK(I)>
e(I) + d

d! .

Definition 3·3. A Cohen–Macaulay local ring (A, m) is said to have minimal multiplicity
if μA(m) = e(A) + dim A − 1. This condition is equivalent to requiring that m is stable, that
is, m2 = Jm for some minimal reduction J of m.

In what follows, we may assume that A is complete and the residue field k = A/m is
infinite since such extensions do not affect multiplicity and Hilbert–Kunz multiplicity.

LEMMA 3·4. Let (A, m, k) be a formally unmixed local ring of characteristic p> 0. Let I
denote an m-primary ideal and J its minimal reduction. ThenμA(I/J∗) ≤ e(I) − 1. Moreover,
the equality holds if and only if I =m and Â is F-rational and has minimal multiplicity.

Proof. By definition, μA(I/J∗) = �A(I/J∗ +mI). Thus, by colon-capturing (see for exam-
ple [29, lemma 4 and proof of theorem 6]),

μA(I/J∗) = �A(A/J∗) − �A(A/I) − �A(mI/J∗ ∩mI) ≤ e(I) − 1 − �A(mI/J∗ ∩mI), (3·1)

and the first assertion follows.
For the second assertion we recall that the equality e(J) = �A(A/J∗) for some parame-

ter ideal characterises F-rationality by a theorem of Goto and Nakamura [13]. Hence, the
equality in (3·1) forces A to be F-rational and I =m. However, for μA(I/J∗) = e(I) − 1 we
additionally need that �A(mI/J∗ ∩mI) = 0, i.e., m2 ⊆ J. Since J is a minimal reduction,
m2 ∩ J =mJ, so this condition is equivalent to minimal multiplicity. Note that a complete
F-rational ring is necessarily Cohen–Macaulay.

The following proposition gives a refinement of Aberbach and Enescu [1, corollary 3·4].

PROPOSITION 3·5. Let (A, m) be a Cohen-Macaulay local ring of dimension d ≥ 1. Let I be
an m-primary ideal and suppose that there exists a minimal reduction J of I such that I2 ⊂ J
(e.g. I is stable). Then

eHK(I) ≥ e(I)

2
.

Proof. Let ωA denote the canonical module of A. First we observe that eHK(J,ωA) =
eHK(J) for any m-primary ideal J. Namely, we use Proposition 2·2(iii) after noting that
�A((ωA)P) = �A(ωAP) = �A(AP), by the Matlis duality in the artinian ring AP.

Since I[q]ωA ⊆ J[q]ωA : I[q] for any q = pe by assumption, we get

�A
(
ωA/J

[q]ωA
) = �A

(
ωA/J

[q]ωA : I[q])+ �A
(
J[q]ωA : I[q]/J[q]ωA

)
≤ �A

(
ωA/I

[q]ωA
)+ �A

(
J[q]ωA : I[q]/J[q]ωA

)
.

Then we compute lim
q→∞

�A
(
ωA/I[q]ωA

)
qd

= eHK(I,ωA)= eHK(I) and

lim
q→∞

�A
(
ωA/J[q]ωA

)
qd

= eHK(J,ωA)= eHK(J) = e(I).
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On the other hand, since(
J[q]ωA : I[q]

)
J[q]ωA

∼= HomA/J[q]
(
A/I[q],ωA/J

[q]ωA
)∼= HomA/J[q]

(
A/I[q],ωA/J[q]

)∼=ωA/I[q] ,

we get that �A
((

J[q]ωA : I[q]
)
/J[q]ωA

)= �A
(
ωA/I[q]

)= �A
(
A/I[q]

)
by the Matlis duality.

Hence

lim
q→∞

�A
((

J[q]ωA : I[q]
)
/J[q]ωA

)
qd

= eHK(I)

and thus e(I) ≤ 2 · eHK(I), as required.

COROLLARY 3·6. ([1]). Let A be a Cohen–Macaulay local ring of dimension d with
minimal multiplicity. Then eHK(A) ≥ e(A)/2.

Proof of Theorem 3·2. We may assume that I is tightly closed because eHK(I) = eHK(I∗)
and e(I) = e(I∗). Moreover, we may assume e(I) ≥ 2. Let J be a minimal reduction of I.

Case 1. The case where A is F-rational and I2 ⊂ J.

We can apply Proposition 3·5 to obtain eHK(I) ≥ e(I)

2
>

e(I) + d

d! if d ≥ 3 and e(I) ≥ 2.

Case 2. The remaining case where either I2 �⊂ J or A is not F-rational.
By Lemma 3·4, we have μA(I/J∗) ≤ e(I) − 2. So we can apply Theorem 3·1 as e = e(I) ≥

2, r = e − 2 and s = 1 + 1/e. Then �s� = 1 and

d! · ed(vs,d − r · vs−1,d
) = ed · d! ·

(
(1 + 1/e)d

d! − (1/e)d

(d − 1)! − (e − 2)
(1/e)d

d!
)

= (e + 1)d − d − e + 2

= ed + ded−1 +
d−2∑
k=2

(
d
k

)
ek + de + 1 − d − e + 2

≥ ed + ded−1 + (d − 1)(e − 1) + 2> ed−1(e + d).

Hence eHK(I) ≥ e(vs,d − r · vs−1,d)> (e + d)/d!, as required.

If we fix d, then this is not the best possible. In this paper, we prove the following theorem,
which gives the optimal bound on the Hilbert–Kunz multiplicity eHK(A) in dimension 3.

THEOREM 3·7. Let (A, m, k) be a formally unmixed local ring of dimension 3 and
characteristic p> 0. Then

eHK(A) ≥ e(A)

6
+ 1.

If equality holds, then A is a strongly F-regular local ring with e(A) = 2. Moreover, if, in
addition, the residue field k is algebraically closed and p ≥ 3, then Â ∼= k[[x, y, z, w]]/(xz −
yw) and eHK(A) = 4/3.
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In order to prove the theorem, we prove a stronger result as follows.

LEMMA 3·8. Under the assumptions of Theorem 3·7, we suppose that e = e(A) ≥ 3. If R

is F-rational with minimal multiplicity then eHK(A) ≥ e

6

(
e + 2 + √

e + 2)/(e + 1
)2

. If one

of these conditions does not hold, then we have a stronger bound

eHK(A) ≥ 1

6

(
e + 3 + 2

e
+
(

2 + 2

e

)√
e + 1

)
.

Proof. We will optimise the volume estimate from Theorem 3·1 and we use Lemma 3·4
to get a bound on r =μA(I/J∗).

We now start with the first inequality. For 1 ≤ s ≤ 2, by Theorem 3·1
eHK(A) ≥ e · (vs,3 − (e − 1)vs−1,3

)
= e ·

(
s3

6
− (s − 1)3

2
− (e − 1)

(s − 1)3

6

)
= e

(
s3 − (e + 2)(s − 1)3

)
6

.

We consider a function f (s) = s3 − (e + 2)(s − 1)3. The derivative is given by f ′(s) = 3s2 −
3(e + 2)(s − 1)2 and the equation f ′(s) = 0 has roots s± = (e + 2 ± √

e + 2
)
/(e + 1). Since

s− < 1< s+ < 2, the maximum on 1 ≤ s ≤ 2 is at s+ which gives the inequality:

eHK(A) ≥ e

6
· f (s+) = e

6
· s2+ = e

6

(
e + 2 + √

e + 2

e + 1

)2

.

In the second case, we may estimate that eHK(A) ≥ e · (vs,3 − (e − 2)vs−1,3) and e ≥ 3. So
if we consider g(s) = s3 − (e + 1)(s − 1)3, then 1 ≤ (e + 1 + √

e + 1
)
/e ≤ 2 and a similar

argument as above implies

eHK(A) ≥ e

6
· g

(
e + 1 + √

e + 1

e

)
= 1

6

(
e + 3 + 2

e
+
(

2 + 2

e

)√
e + 1

)
,

as required.

Proof of Theorem 3·7. First suppose that A is neither F-rational nor Cohen–Macaulay with
minimal multiplicity. If e = 2, then eHK(A) = 2> 4/3 = e/6 + 1. Hence we may assume
e = e(A) ≥ 3. Then Lemma 3·8 yields that

eHK(A) ≥ 1

6

(
e + 3 + 2

e
+
(

2 + 2

e

)√
e + 1

)
>

e

6
+ 1.

Next suppose that A is F-rational and Cohen–Macaulay with minimal multiplicity.
If e ≥ 4, then eHK(A) ≥ e/2> e/6 + 1.
If e = 3, then [48, lemma 3·3(3)] implies eHK(A) ≥ 13/8> 3/2 = e/6 + 1.
Suppose that e = 2. Then the main theorem in [48] yields eHK(A) ≥ 4/3 = e/6 + 1 and

equality holds if and only if Â ∼= k[[x, y, z, w]]/(xz − yw). Therefore we complete the proof.
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4. Upper bounds on F-signature

The main aim of this section is to give an upper bound on F-signature for non-Gorenstein
Cohen–Macaulay local rings. We start with a few preliminaries.

We say that M is a maximal Cohen–Macaulay A-module if it is a finitely generated
R-module such that any (equiv., some) system of parameters of R is an M-regular sequence.
For such modules μA(M) ≤ e(M), because multiplicity can be computed from a regular
sequence. We say that M is an Ulrich A-module if μA(M) = e(M). Ulrich modules first
appeared in [5] under the name maximally generated maximal Cohen–Macaulay module.

If A is a local ring of positive characteristic p> 0 and M is a finitely generated
A-module then the rank of the largest free summand of M is independent of a decomposition,
because we may pass to the completion, see [31, remark 3·4]. Moreover, if A is a Cohen–
Macaulay local ring with the canonical module ωA and M is maximal Cohen–Macaulay,
then the number of direct summand of M isomorphic to ωA is also independent of a
direct decomposition, since these correspond to a free summand of HomA(M,ωA). Last,
we note that an F-finite Cohen–Macaulay ring has a canonical module by a result of Gabber
[11, remark 13·6].

The following proposition is related to lemma 3·1 of [28]; the second assertion was ini-
tially observed by De Stefani and Jeffries in relation with Sannai’s dual F-signature ([35]).
Recall that type(A) is the minimal number of generators of ωA.

PROPOSITION 4·1. Let A be an F-finite Cohen–Macaulay local domain which is not
Gorenstein. Then

eHK(A) ≤ s(A)(type(A) + 1) + 2 · e(A)

(
1

2
− s(A)

)
.

In particular, s(A) ≤ 1/2.

Proof. For every e ≥ 1, we can write

Fe∗A = A⊕ae ⊕ω
⊕be
A ⊕ Me,

where ae, be are non-negative integers and Me is a maximal Cohen–Macaulay A-module that
does not contain A and ωA as direct summands. Then

Fe∗ωA ∼= HomA
(
Fe∗A,ωA

)∼= A⊕be ⊕ω
⊕ae
A ⊕ HomA(Me,ωA) .

By the argument in the proof of Sannai [35, proposition 3·10], we have

lim
e→∞

ae

rank Fe∗A
= lim

e→∞
be

rank Fe∗A
= s(A).

Since Me is a maximal Cohen–Macaulay A-module, we then have

μA
(
Fe∗A

)= ae + be · type(A) +μA(Me)

≤ ae + be · type(A) + eA(Me)

= ae + be · type(A) + e(A) rankA (Me)

= ae + be · type(A) + e(A)
(
rank Fe∗A − ae − be

)
. (4·1)
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Hence

μA(Fe∗A)

rank Fe∗A
≤ ae

rank Fe∗A
+ type(A) · be

rank Fe∗A
+ e(A)

(
1 − ae

rank Fe∗A
− be

rank Fe∗A

)
,

and the first assertion follows after taking limits as e tends to ∞.
In particular, since

0 ≤ rankA (Me)

rank Fe∗A
= 1 − ae

rank Fe∗A
− be

rank Fe∗A
,

we get 0 ≤ 1 − 2 · s(A), that is, s(A) ≤ 1/2.

Remark 4·2. We note that there are examples of Gorenstein rings having F-signature at
least 1

2 . The first example is a 2-dimensional Gorenstein strongly F-regular local ring: A
is necessarily a hypersurface and has minimal multiplicity, thus e(A) = 2. Therefore, we
have s(A) = 2 − eHK(A) ≥ 2 − 3/2 = 1/2 by [48, corollary 2·6] (see also [46, example 4·1]
and [22, example 18]). Second, the Segre product k[x, y]#k[a, b] has F-signature 2/3 by
Proposition 5·8.

The following theorem characterizes the equality in Proposition 4·1.

THEOREM 4·3. Let A be a strongly F-regular local domain which is not Gorenstein. The
following conditions are equivalent:

(i) eHK(A) = s(A)(type(A) + 1) + 2 · e(A)
(

1
2 − s(A)

)
;

(ii) each Fe∗A is a finite direct sum of A, ωA and an Ulrich A-module Me.

Proof. For every e ≥ 1, we can write Fe∗A = A⊕ae ⊕ω
⊕be
A ⊕ Me, where ae and be are non-

negative integers and Me is a maximal Cohen–Macaulay A-module that does not contain A
and ωA as direct summands.

(ii) =⇒ (i): by the assumption, Me is an Ulrich A-module, that is, μA(Me) = e(Me). Hence
the assertion follows from the proof of Proposition 4·1.

(i) =⇒ (ii): suppose that there exists e′ such that Fe′
∗ A = A⊕ae′ ⊕ω

⊕be′
A ⊕ Me′ , where Me′

is an maximal Cohen–Macaulay A-module but not an Ulrich A-module, namely, μA(Me′) <
e(Me′). By [31, lemma 3·3] we may now build a similar decomposition for all e ≥ e′:

Fe∗A = A⊕ae ⊕ω
⊕be
A ⊕ M⊕ce

e′ ⊕ Ne

such that lim infe→∞ ce/ rank Fe∗A> 0. Following the proof of Proposition 4·1 we obtain
that

μA
(
Fe∗A

)≤ ae + be · type(A) − ce(e(Me) −μA(Me))+ e(A)( rank Fe∗A − ae − be),

which shows after dividing by rank Fe∗A and passing to the limit that

eHK(A)< s(A)(type(A) + 1) + e(A)(1 − 2 · s(A)).
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One can prove the following proposition by a similar method as in the proof of
Proposition 4·1 and Theorem 4·3.

PROPOSITION 4·4. Suppose that A is an F-finite Gorenstein local ring of dimension d ≥ 2.
Then

eHK(A) ≤ s(A) + (1 − s(A)) · e(A)

and the equality holds if and only if for all e ≥ 1 Fe∗A can be written as a direct sum of A and
Ulrich A-modules.

We note that if e(A) = 2 we have eHK(A) = 2 − s(A), and hence A satisfies the equality of
Proposition 4·4.

Question 4·5. If A is Gorenstein and satisfies eHK(A) = s(A) + (1 − s(A)) · e(A), then is
e(A) ≤ 2?

We proceed to study non-Gorenstein rings whose F-signature is 1/2.

THEOREM 4·6. Let A be an F-finite Cohen–Macaulay local domain which is not
Gorenstein. Then the following conditions are equivalent:

(i) s(A) = 1/2,

(ii) A is FFRT with the FFRT system {A,ωA}.
When this is the case, eHK(A) = (type(A) + 1)/2.

Proof. (ii) =⇒ (i) essentially follows from the proof of Proposition 4·1, because in this
case there is no Me and we have equality throughout.

(i) =⇒ (ii): assume that for some e′ ≥ 1, we write Fe∗A as

Fe′
∗ A = A⊕ae′ ⊕ω

⊕be′
A ⊕ Me′ ,

where 0 �= Me′ is a maximal Cohen-Macaulay A-module that does not have A and ωA as
direct summands. Since R is strongly F-regular by the assumption, as explained in [31,
lemma 3·3] we may now build similar decompositions for e ≥ e′:

Fe∗A = A⊕ae ⊕ω
⊕be
A ⊕ M⊕ce

e′ ⊕ Ne

with lim infe→∞ ce/ rank Fe∗A> 0. After taking ranks we then have that

1 ≥ ae

rank Fe∗A
+ be

rank Fe∗A
+ rankA Me′

ce

rank Fe∗A

which after taking limits then gives that 1> s(A) + s(A) which is a contradiction.

Let us give an example of local rings having s(A) = 1/2.

Example 4·7. Let d ≥ 2 be an integer. Let A = k[[x1, . . . , xd]](2) be the second Veronese sub-
ring of the formal power series ring over k. Then s(A) = 1/2. Moreover, A is not Gorenstein
if and only if d is odd.
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Let A be a Cohen–Macaulay local domain with minimal multiplicity. Then A is not
Gorenstein if and only if e(A) ≥ 3. Moreover, then type(A) = e(A) − 1. So we can obtain
the following corollary by combining 3·6, 4·1, 4·6 and 4·3.

COROLLARY 4·8. Suppose that A is a Cohen–Macaulay local domain with minimal
multiplicity and with e(A) ≥ 3. Then:

(i) s(A) ≤ 1/2;

(ii) e(A)/2 ≤ eHK(A) ≤ (1 − s(A))e(A);

(iii) the following conditions are equivalent:

(a) s(A) = 1
2 ;

(b) A has FFRT with the FFRT system {A,ωA}.
When this is the case, eHK(A) = e(A)/2.

(iv) Suppose s(A)> 0. Then the following conditions are equivalent:

(a) eHK(A) = (1 − s(A))e(A);
(b) Fe∗A can be written as a direct sum of A, ωA and Ulrich A-modules for every e ≥ 1.

Example 4·9. Let A = k[[x, y, z]](2). Then A has minimal multiplicity and its multiplicity
is 4. Moreover, eHK(A) = e(A)/2 = 2 and s(A) = 1/2.

Example 4·10. Let A = k[[x3, xy2, xy2, y3]] = k[[x, y]](3). Then, Fe∗A can be written as direct
sum of A, ωA = Ax + Ay and M = Ax2 + Axy + Ay2. In this case, s(A) = 1/3 by [47], and
e(A) = 3, type(A) = 2. Since μA(M) = 3 = eA(M) = e(A) rankA (M), we see that M is an
Ulrich A-module, and we have

eHK(A) = 2 = s(A)(type(A) + 1) + 2 · e(A)

(
1

2
− s(A)

)
.

We pose the following question.

Question 4·11. Let A be a d-dimensional Cohen–Macaulay local domain with isolated
singularity and that s(A) = 1/2. Then is A isomorphic to the ring defined in Example 4·7?

4.1. Q-Gorenstein local rings

We are able to give an affirmative answer to Question 4·11 in a particular case.
Let A be a Cohen-Macaulay reduced local ring. For an ideal I ⊂ A of pure height 1, the

nth symbolic power I(n) denotes the intersection of height one primary components of In.

Definition 4·12. Let A be a normal local domain having a canonical module ωA.

(i) The ring A is said to be Q-Gorenstein if there exists an ideal J of pure height 1 which
is isomorphic to ωA as an A-module such that J(n) is principal. Furthermore,

index(A) := min
{

n ≥ 1 | J(n) is principal
}

is called the index of A. Note that A is Gorenstein if and only if it is Q-Gorenstein of
index 1.
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(ii) Suppose that A is a Q-Gorenstein normal local domain of r = index(A) ≥ 2, and let J
be an ideal such that J ∼=ωA. Then the canonical cover of A is defined as

B :=
r−1⊕
i=0

J(i).

We will use the following result due to Carvajal–Rojas [9, theorem C] which extends prior
work [42, theorem 2·6·5] and [44].

THEOREM 4·13. Let A be a strongly F-regular Q-Gorenstein local domain and let r ≥ 2
be the index of A. Let B be the canonical cover of A. Then we have s(A) = s(B)/r.

Using this, we can prove the following theorem.

THEOREM 4·14. Let A be an F-finite Q-Gorenstein normal local domain of charac-
teristic p> 0. Assume the index r of A is at least 2. Then the following conditions are
equivalent:

(i) s(A) = 1/2.

(ii) r = 2 and A admits a canonical cover B which is regular.

Proof. Suppose (i). Let B a canonical cover of A. Then s(A) = s(B)/r. If r ≥ 3, then
s(B) = r · s(A)> 1. This is a contradiction. Hence r = 2 and s(B) = 1. Hence B is regular.
The converse is easy.

4.2. The F-signatures of 3-dimensional Gorenstein rings

We want to present a few upper bounds on F-signature in view of Question 1·1. We first
estimate F-signature using the multiplicity.

THEOREM 4·15. Let (A, m, k) be a 3-dimensional Gorenstein strongly F-regular local
ring with multiplicity e(A) ≥ 3. Then s(A) ≤ e(A)/24.

Proof. Let J be a minimal reduction of m. Then we can write J : m= (J, u) for some
u ∈m \ J because A is Gorenstein. Moreover, we have

s(A) ≤ eHK(J) − eHK(J : m) = e(J) − eHK(J : m) = e(A) − eHK(J : m).

Since A is strongly F-regular, applying the Briançon–Skoda theorem to J[q] we get that
m3q ⊂ J[q], and thus m2 ⊂ J : m. Since A is not double point, m2 �⊂ J. Hence there exists an
element v ∈m2 such that v ∈ J : m \ J. Write v = a + ru for some a ∈ J and r ∈ A. Suppose
r ∈m. Then ru ∈ J and thus v = a + ru ∈ J, which is a contradiction. Hence r ∈ A \m and
(J, u) = (J, v). So we may assume that u ∈m2. Then uq ∈m2q and we get

�A

(
uqA + J[q]

J[q]

)
≤ �A

(
uqA +m� 5

2 q� + J[q]

J[q]

)

≤ �A

(
uqA +m� 5

2 q� + J[q]

m� 5
2 q� + J[q]

)
+ �A

(
m� 5

2 q� + J[q]

J[q]

)
.
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Note that A = A/J[q] is an Artinian Gorenstein local ring. Thus the Matlis duality yields
that

�A

(
uqA +m� 5

2 q� + J[q]

m� 5
2 q� + J[q]

)
≤ �A

(
A/m� 1

2 q�) and �A

(
m� 5

2 q� + J[q]

J[q]

)
≤ �A

(
A/m� 1

2 q�) .

Therefore

s(A) ≤ lim
e→∞ �A

(
uqA + J[q]

J[q]

)
/q3 ≤ 2 · lim

e→∞
�A

(
A/m� 1

2 q�
)

q3
= 2 × 1

3!
(

1

2

)3

e(A) = 1

24
e(A),

as required.

The next example shows that Theorem 4·15 gives the best possible bound.

Example 4·16. Let R(2) be the 2nd Veronese subring of R = k[x, y, z, w]/(xw − yz). Set

A = k
[[

(x, y, z, w)2
]]
/(xw − yz),

which is the completion with respect to the irrelevant maximal ideal m of R(2). Then A is a 3-
dimensional Gorenstein strongly F-regular local domain. Hence [23, theorem 5·1(1)] implies
e(A) ≤ emb(A) − 1 = 8. On the other hand, since A is not hypersurface (of multiplicity 2),
e(A) ≥ emb(A) − dim A + 2 = 9 − 3 + 2 = 8 and thus e(A) = 8. Moreover, we have

s(A) = s(R)

2
= 2/3

2
= 1

3
= e(A)

24
.

On the other hand, by [46, corollary 1·10], we have

eHK

(
m2

R

)
= e(m)

(
2 + 3 − 2

3

)
+ eHK(m)

(
2 + 3 − 2

3 − 1

)

= e(R) + 3 · eHK(R) = 2 + 3 · 4

3
= 6.

Hence

eHK(A) = eHK(mAR)

2
= eHK(m2

R)

2
= 6

2
= 3>

7

3
= 8

6
+ 1 = e(A)

6
+ 1.

Remark 4·17. The argument given in the proof of Theorem 4·15 is also valid for some
classes of higher dimensional Gorenstein rings. A specific example is a hypersurface
A := k [[x0, x1, . . . , xd]] /

(
xd

0 + xd
1 + · · · + xd

d

)
. For the maximal ideal m and its minimal

reduction J, we have that md ⊂ J and md−1 �⊂ J. Thus, by the same argument as the proof of
Theorem 4·15, we see that s(A) ≤ e(A)/2d−1d! = 1/2d−1(d − 1)!, see also [47, proposition
2·4 and question 2·6].

As the first open case, we will investigate Question 1·1, Conjecture 2·10 for 3-dimensional
Gorenstein rings. In particular, we ask the following question.

Question 4·18. Let (A, m) be a 3-dimensional non-regular Cohen-Macaulay local ring. Is
s(A) ≤ 2/3?
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If this is correct, then this bound is best possible because if A = k[x, y, z, w]/(xw − yz),
then s(A) = 2/3. We will give a positive answer to this question for the case of toric rings
in the next section (see Theorem 5·12). For a general situation, we only have the inequality
given in Proposition 4·19.

PROPOSITION 4·19. Let A be a 3-dimensional strongly F-regular local domain which is not
regular. Then s(A)< 5/6.

Proof. We may assume that A is Gorenstein (see Proposition 4·1). By Proposition 4·4(1),
we have

eHK(A) ≤ s(A) + e(A)(1 − s(A)).

On the other hand, Theorem 3·7 implies that

e(A)

6
+ 1 ≤ eHK(A) ≤ s(A) + e(A)(1 − s(A)).

Hence

e(A)

(
s(A) − 5

6

)
≤ s(A) − 1< 0.

and thus s(A)< 5/6.

5. Observations on toric rings

In this section, we further study an upper bound on F-signature of a toric ring. In
particular, in Theorem 5·12 we give a positive answer to Question 4·18.

5.1. Preliminaries

Let N ∼=Zd be a lattice of rank d. Let M = HomZ(N, Z) be the dual lattice of N. We set
NR = N ⊗Z R and MR = M ⊗Z R. We denote the inner product by 〈 , 〉 : MR × NR →R.
Let

σ := R≥0v1 + · · · +R≥0vn ⊂ NR

be a strongly convex rational polyhedral cone of dimension d generated by v1, . . . , vn ∈Zd

where d ≤ n. We assume that v1, . . . , vn are minimal generators of σ . Namely, the cone
generated by any proper subset of {v1, . . . , vn} is a proper subset of σ , and each vi is the
lattice point of smallest magnitude on the ray it generates. For each generator, we define the
linear form λi(−) := 〈−, vi〉. We consider the dual cone σ∨:

σ∨ := {x ∈ MR | λi(x) ≥ 0 for all i = 1, 2, . . . , n} .

In this case, σ∨ ∩ M is a positive normal affine monoid. Given an algebraically closed field
k of characteristic p> 0, we define the toric ring

A := k
[
σ∨ ∩ M

]= k
[
tm1
1 · · · tmd

d

∣∣(m1, . . . , md) ∈ σ∨ ∩ M
]

.

Thus, in this paper, a toric ring is a pointed normal affine monomial ring. In particular, any
toric ring that we consider is strongly F-regular. We denote the irrelevant ideal of A as m.

For each a = (a1, . . . , an) ∈Zn, we set

V(a) := {x ∈ M | (λ1(x), . . . , λn(x)) ≥ (a1, . . . , an)} .
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Then we define the divisorial ideal (rank one reflexive module) D(a) generated by all
monomials whose exponent vectors are in V(a). For example, we have that R = D(0) and
ωA ∼= D(1, 1, . . . , 1). Let pi := D(δi1, . . . , δin), where δij is the Kronecker delta. The height
one prime ideals p1, . . . , pn generate the class group Cl(A). When we consider a divisorial
ideal D(a) as the element of Cl(A), we denote it by [D(a)].

In what follows, we will pay attention to a certain class of divisorial ideals called conic.

Definition 5·1. (see e.g.[6, 7]). We say that a divisorial ideal D(a) is conic if there exist
x ∈ MR such that a = (�λ1(x)�, . . . , �λn(x)�), where � � stands for the round up.

Any conic divisorial ideal is a rank one maximal Cohen–Macaulay module (see
[7, corollary 3·3]). We denote the set of isomorphism classes of conic divisorial ideals of
a toric ring A by C(A). This is a finite set because the number of isomorphism classes of rank
one maximal Cohen-Macaulay A-modules is finite (see [7, corollary 5·2]). The following
proposition guarantees that any conic divisorial ideal appears in Fe∗A as a direct summand.

THEOREM 5·2 ([7, proposition 3·6], [37, subsection 3·2]). Let A be a toric ring as above.
Then, A has FFRT by the FFRT system C(A).

We recall that our arguments can be reduced to the m-adic completion of A, as we men-
tioned in the beginning of Section 4. Thus, we may assume that A is complete local, in which
case the Krull–Schmidt condition holds for A.

Remark 5·3. In some parts of this section, we assume that if the class group Cl(A) contains
a torsion element, then the order of that element is coprime to p. In this case, the toric ring
A is a ring of invariants.

Namely, let k× be the multiplicative group of k and G := Hom(Cl(A), k×) be the character
group of Cl(A). The group G acts on B := k[x1, . . . , xn] by g · xi = g([pi])xi for each g ∈ G
and any i. Then, by [7, theorem 2·1(b)], A can be described as A ∼= BG. Moreover, to avoid
the triviality, we assume that g([pi]) �= 1 for any i, that is, [pi] �= 0 in Cl(A).

Last, we will use that the F-signature of a toric ring can be computed combinatorially and,
in particular, does not depend on the characteristic.

THEOREM 5·4 ([47, theorem 5·1], see also [6, 36, 42]). Let A be a toric ring. Then, we
may compute

s(A) = vol {x ∈ MR | 0 ≤ λi(x) ≤ 1 for all i} .

5.2. Cohen–Macaulay toric rings

We recall that the F-signature of non-Gorenstein ring is less than or equal to 1/2 (see
Proposition 4·1). We now determine the non-Gorenstein toric rings whose F-signature is 1/2.

PROPOSITION 5·5. Let A be a toric ring as in Remark 5·3. Then, the following conditions
are equivalent.

(i) The FFRT system of A is {A, M} with M �∼= A.

(ii) A is isomorphic to the Veronese subring k[x1, . . . , xd](2) of degree 2.

When this is the case, the F-signature is s(A) = 1/2.

https://doi.org/10.1017/S0305004122000238 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000238


Lower bounds on Hilbert–Kunz multiplicities and maximal F-signatures 265

Proof. We first assume that the FFRT system of A is {A, M}. We note that M ∼=ωA if A
is not Gorenstein. In fact, ωA certainly appears in Fe∗A as a direct summand for sufficiently
large e, since A is strongly F-regular (cf. [35, proof of proposition 3·10], [18, proposition
2·1]). By [7, remark 3·4], the divisorial ideals p1, . . . , pn are conic. Since C(A) = {A, M},
we have that p1 ∼= · · · ∼= pn ∼= M. Thus we have that [p1] = · · · = [pn] = [M] in Cl(A). On
the other hand, since [ωA] = [p1] + · · · + [pn], we see that n[pi] = 0 (resp. (n − 1)[pi] = 0)
in Cl(A) for any i if A is Gorenstein (resp. not Gorenstein). Thus we conclude that Cl(A)
is a finite cyclic group generated by [pi], that is, Cl(A) ∼= 〈[pi]〉. By [8, corollary 4·59], this
implies that the cone σ defining A is simplicial (i.e., n = d), thus we have that A ∼= BG where
B = k[x1, . . . , xd] and G = Hom(Cl(A), k×) is a finite cyclic group. We may assume that G
is small (see e.g. [24, proof of theorem 5·7]). By [37, proposition 3·2], each indecomposable
direct summand of Fe∗A is a module of covariants which takes the form (B ⊗k Vi)G, where
Vi is an irreducible representation of G. Since the FFRT system is {A, M} and G is small, we
have only two non-isomorphic irreducible representations of G. Then we have that |G| = 2,
and the elements of G are the characters of ρ0, ρ1 ∈ Hom(Cl(A), k×) defined by ρ([pi]) =
1 and ρ([pi]) = −1 respectively. Consequently, we have that A ∼= k[x1, . . . , xd](2). By [47,
theorem 4·2], the F-signature of A ∼= BG is 1/|G| = 1/2.

On the other hand, we assume that A ∼= k[x1, . . . , xd](2). Then, A is the invariant subring
of k[x1, . . . , xd] under the action of the cyclic group 〈g = diag(−1, . . . , −1)〉 defined by
g · xi = −xi for any i. Thus, the condition (i) follows from [37, proposition 3·2·1].

This is the main result in this subsection.

THEOREM 5·6. Let A be a toric ring as Remark 5·3. Assume that A is not Gorenstein,
then the following conditions are equivalent.

(i) s(A) = 1/2.

(ii) The FFRT system of A is {A,ωA}.
(iii) A is isomorphic to the Veronese subring k[x1, . . . , xd](2) of degree 2, where d is an

odd number.

Proof. (iii) =⇒ (i) follows from [47, theorem 4·2]. (i) ⇐⇒ (ii) follows from Theorem 4·6.
Then we show (ii) ⇐⇒ (iii). By Proposition 5·5, we see that A ∼= k[x1, . . . , xd](2) =
k[x1, . . . , xd]G, where G ∼= 〈diag(−1, . . . , −1)〉. Since A is not Gorenstein, G is not a
subgroup of SL(d,k), thus d is an odd number (see [43]).

Example 5·7. If A is a Gorenstein toric ring, then s(A) = 1/2 does not imply the
conditions (ii) and (iii) in Theorem 5·6. Namely, consider the Segre product Pn :=
k[x1, y1]# · · · #k[xn, yn] of n polynomial rings with two variables, which is a Gorenstein toric
ring in dimension n + 1. Then, by [18, proposition 6·1], one can compute s(Pn) = 2/(n + 1).
For example, s(P3) = 1/2 but the FFRT system of P3 consists of 7 conic divisorial ideals
(see [17, example 2·6]).

This example shows that it is difficult to bound F-signature of a Gorenstein ring A
using the number of modules in the FFRT system. For this reason, we give an observation
regarding Gorenstein toric rings whose the FFRT system consists of three modules.
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PROPOSITION 5·8. Let A be a toric ring as in Remark 5·3. We assume that A is Gorenstein.
Then, the following conditions are equivalent.

(i) The FFRT system of A is {A, M1, M2},
(ii) A is isomorphic to one of the following rings:

(a) the invariant subring k[x1, . . . , xd]G where G =
〈

diag

⎛⎝ξ , . . . , ξ︸ ︷︷ ︸
m

, ξ2, . . . , ξ2︸ ︷︷ ︸
m

⎞⎠〉
with d = 2m and ξ is a primitive cubic root of unity, in which case s(A) = 1/3,

(b) the Segre product k[x1, y1]#k[x2, y2] = k[x1x2, x1y2, y1x2, y1y2] of two polynomial
rings, in which case s(A) = 2/3.

Proof. We first show (i) =⇒ (ii). By [18, proposition 2·1], we have that M1 ∼= M∗
2 . Since

pi is conic, each pi is isomorphic to either M1 or M∗
1 . Moreover, since [ωA] = [p1] + · · · +

[pn] = 0, we see that n is an even number and we may assume that

[p1] = · · · = [pm] = −[pm+1] = · · · = −[pn]

where n = 2m. Then, we see that Cl(A) is generated by [p1], and we have two cases
depending on whether it is torsion.

(i) If Cl(A) ∼=Z/rZ, then, by an argument similar to the proof of Proposition 5·5, G ∼=
Z/3Z. For a generator g of G, we can set g([p1]) = ξ where ξ is a primitive cubic root
of unity. In this case, the action of G in S can be described as{

g · xi = ξxi (i = 1, . . . , m),

g · xi = ξ−1xi = ξ2xi (i = m + 1, . . . , n),

and we have the case (a). The F-signature of A can be obtained from
[47, theorem 4·2].

(ii) If Cl(A) ∼=Z, then we see that G ∼= k× and if g([p1]) = ζ ∈ k× for a generator g of G,
then g(−[p1]) = ζ−1. Thus, the action of G on B can be described as{

g · xi = ζxi (i = 1, . . . , m),

g · xi = ζ−1xi (i = m + 1, . . . , n).

In this case, we have that

A ∼= k[x1, . . . , xm]#k[xm+1, . . . , xn] = k[xixj | i = 1, . . . , m, j = m + 1, . . . , n].

This Segre product of two polynomial rings can be considered as a Hibi ring [16],
and the conic classes in Hibi rings are characterized in [17]. By [17, theorem 2·4 and
example 2·6], we see that the Segre products of two polynomial rings that satisfy the
condition (i) are only the one with m = 2. Thus, we have that s(A) = 2/3 by Example
5·7 (the case of n = 2), or we easily see that A ∼= k[x, y, z, w]/(xw − yz), in which case
s(A) = e(A) − eHK(A) = 2 − 4/3 = 2/3.

(ii) =⇒ (i) is well known, see e.g. [37, proposition 3·2] for the case (a) and [39, the proof
of theorem 6·1] for (b).
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5.3. Maximal toric F-signatures

In this subsection, we completely classify the toric rings A for which s(A)> 1/2. To this
purpose, it will be helpful to introduce the following notation.

Definition 5·9. For w1, . . . , wm ∈ N, a finite set of vectors in the lattice N, define the dual
zonotope as

P∨({w1, . . . , wm})= {x ∈ MR | 〈x, wi〉 ∈ [0, 1]} .

In this notation, Theorem 5·4 says that s(k[σ∨ ∩ M]) = vol P∨({v1, . . . , vn}), where
v1, . . . , vn are the minimal generators of σ .

Our techniques will be based on volumes of slices of the unit cube, as in Section 3. First,
we interpret certain volumes as Eulerian numbers.

LEMMA 5·10. The volume of the portion of the unit d-cube where the sum of the coordi-
nates lies between k and k + 1 is A(d, k)/d!, where A(d, k) denotes the Eulerian number with
parameters d and k.

Proof. The following argument is due to Stanley [38]. The hyperplanes xi = xj cut the
interior of the unit cube into d! simplices of equal volume. Each can be characterized as the
set of points
σ where 0< xσ (1) < xσ (2) < · · ·< xσ (d) < 1 for some σ ∈ Sd, giving a natural
bijection between the simplices and Sd. Define a map

φ(x1, . . . , xd)i =

⎧⎪⎨⎪⎩
xi+1 − xi if xi < xi+1 and i �= d

1 + xi+1 − xi if xi > xi+1 and i �= d

1 − xn if i = d .

Note that φ maps into the unit cube, and that φ|
σ is affine with determinant ±1. Further, if
(x1, . . . , xd) ∈
σ , then

k ≤ φ(x1, . . . , xd)1 + · · · + φ(x1, . . . , xd)d ≤ k + 1 ,

where k is the number of descents of σ . Additionally, the map

ψ(x1, . . . , xd)i = �xi + · · · + xn� − (xi + · · · + xn)

provides an inverse for φ on its image.

LEMMA 5·11. For the Eulerian numbers A(d, k), A(d, k)/d!> 1/2 if and only if (d, k) =
(1, 0), (3, 1) or (5, 2).

Proof. By symmetry, it is clear that A(d, k)/d!< 1/2 for an even integer d. Let k ≥ 3;
we will show that A(2k + 1, k + j)/(2k + 1)!< 1

2 by induction. The values can explicitly
checked for k = 3. By twice applying the relation

A(n, m) = (n − m) A(n − 1, m − 1) + (m + 1) A(n − 1, m)

one obtains the equality

A(2k + 1, k + j) = (k − j + 1)! A(2k − 1, k − j − 2) + (k + j + 1)! A(2k − 1, k − j)

+ 2(k2 + k − j2) A(2k − 1, k − j − 1) .
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By induction, this is less than (2k − 1)!
(

k2 + 3
2 k + 1

2

)
, which, for k ≥ 3, is less than

1
2 (2k + 1)! as required.

THEOREM 5·12. The toric rings with F-signature greater than 1/2 are, up to isomor-
phism, as follows:

(i) for a polynomial ring A, we have s(A) = 1;

(ii) for the coordinate ring A of the Segre product P1#P1, we have s(A) = 2/3;

(iii) for the coordinate ring A of the Segre product P2#P2, we have s(A) = 11/20.

Proof. We use the notation of Subsection 5·1. We can write

P∨({v1, . . . , vn})=
⋂

{j1,...,jd}⊂{1,...,n}
P∨({vj1 , . . . , vjd

})
. (5·1)

By the Jacobian formula,

vol
(P∨({vj1 , . . . , vjd

}))= ∣∣∣∣∣ 1

det
[
vj1 , . . . , vjd

] ∣∣∣∣∣ .

Thus, if s(R)> 1/2,
∣∣ det

[
vj1 , . . . , vjd

]∣∣= 1 for any {j1, . . . , jd} ⊂ {1, . . . , n}. Assume for
now that this is the case. If n = d, then {v1, . . . , vn} is a basis for M, so A is isomorphic to a
polynomial ring.

Consider the case where n = d + 1. The vectors {v1, . . . , vd} form a basis for N. Let
x1, . . . , xd be coordinates of M forming a dual basis to v1, . . . , vd. We may thus compute the
volume of P∨({v1, . . . , vn}) in these coordinates. Since | det [v1, . . . , v̂i, . . . , vd, vd+1]| = 1,
the ith coordinate of vd+1 is ±1. That is, in these coordinates,

[v1, . . . , vd+1] =

⎡⎢⎢⎢⎢⎣
1 0 ... 0 ±1

0 1 ... 0 ±1
...

...
. . .

...
...

0 0 ... 1 ±1

⎤⎥⎥⎥⎥⎦ .

Note that if d ≤ 2, then our generating set for σ is not minimal, so we may assume that
d ≥ 3. Renumber the coordinates so that in the matrix above, 〈xi, vd+1〉 = +1 for i ≤ k and
〈xi, vd+1〉 = −1 for i> k. Then P∨({v1, . . . , vd+1}) is the subset of the unit d-cube where

0 ≤ x1 + · · · + xk − xk+1 − · · · − xd ≤ 1 .

Using xj 
→ 1 − xj symmetry of the cube, we have

vol
(P∨({v1, . . . , vd+1})

)= vol

({
(x1, . . . , xd) ∈ [0, 1]d | k ≤

d∑
i=1

xi ≤ k + 1

})
.

By Lemma 5·11, we see that the volume s(A) is greater than 1/2 only if d = 3 and k = 1 or
d = 5 and k = 2. These correspond to the coordinate rings of P1#P1 and P2#P2.
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We now consider what happens if n ≥ d + 2. If vol (P∨({v1, . . . , vn}))> 1/2, with d = 3,
then

[v1, . . . , v4] =
⎡⎢⎣1 0 0 1

0 1 0 1

0 0 1 −1

⎤⎥⎦
in the dual basis to v1, v2, v3. If n ≥ 5, the same arguments show that if
vol (P∨({v1, . . . , vn}))> 1/2, in a particular basis we have

[v1, . . . , v5] =
⎡⎢⎣1 0 0 1 1

0 1 0 1 −1

0 0 1 −1 1

⎤⎥⎦ ,

where one computes vol (P∨({v1, . . . , v5})) = 1/3. Thus, the F-signature cannot be greater
than or equal to 1/2 in this case. Now consider d = 5. If vol (P∨({v1, . . . , vn}))> 1/2,

[v1, . . . , v6] =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1

0 1 0 0 0 1

0 0 1 0 0 1

0 0 0 1 0 −1

0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎦
in the dual basis to v1, v2, v3, v4, v5. If n ≥ 7, a case-by-case analysis similar to above shows
that the volume vol (P∨({v1, . . . , vn}))< 1/2.

If A is not a toric ring, we have a family of 3-dimensional Gorenstein rings whose
F-signature are greater than 1/2.

Example 5·13. Let c> 2 be an integer. Put A := k[[x, y, z, w]]/
(
x2 + y2 + z2 + wc

)
, where

k is an algebraically closed field of characteristic p> c. Then, A is a normal hypersurface of
dim A = 3, and

1

2
< s(A)<

2

3
.

In fact, since e(A) = 2 we have that s(A) = 2 − eHK(A), thus this follows from [48, corollary
3·11].
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