BACKWARD CONTINUED FRACTIONS AND THEIR INVARIANT MEASURES

KARLHEINZ GRÖCHENIG AND ANDREW HAAS

ABSTRACT. This paper continues our investigation of backward continued fractions, associated with the generalized Renyi maps $T_u(x) = \langle \frac{1}{u(1-x)} \rangle$ on [0, 1). We first show that the dynamics of the shift map on a specific class of shift invariant spaces of nonnegative integer sequences exactly models the maps T_u for $u \in (0, 4)$. In the second part we construct a new family of explicit invariant measures for certain values of the parameter u.

1. Introduction. The starting point for our considerations is the family of maps $T_u(x) = \langle \frac{1}{u(1-x)} \rangle$ where $u > 0, x \in [0, 1)$, and $\langle a \rangle$ denotes the fractional part of $a \in \mathbb{R}$. These maps should be viewed as analogues of the classical continued fraction map $S(x) = \langle \frac{1}{x} \rangle$. The case u = 1 was studied by Renyi [9] and provides an alternate approach to continued fractions and rational approximation. Varying u in the interval (0, 4) results in a one parameter family of continued fractions theories. Termed u-backward continued fractions, they have far more structure than is seen in the general theory of f-transformations [8] and further, possess some attractive properties which are not shared by the classical continued fractions.

Given $u \in (0, 4)$ and $x \in [0, 1)$ define the *u*-itinerary of *x* to be the sequence $(a_i)_{i \in \mathbb{N}}$ of nonnegative integers where we set $x_j = T_u^j(x)$ and $a_j \leq \frac{1}{u(1-x_{j-1})} < a_j + 1$. Then *x* has the *u*-backward continued fraction expansion

(1)
$$x = [a_1, a_2, \dots]_u = 1 - \frac{1}{un_1 - \frac{1}{n_2 - \frac{1}{un_3 - \frac{1}{n_4 - \dots}}}}$$

where $n_i = a_i + 1$ and the coefficient of n_i is 1 or u, depending on the parity of i. More precisely, x is the limit of the partial quotients $[a_1, a_2, \ldots, a_n]_u$. This expansion is the unique such for x where all of the partial quotients belong to the unit interval.

In [4] we showed how the dynamics of T_u on [0, 1) can be modeled by the shift operator σ acting on the space Σ_u of all itinerary sequences for $x \in [0, 1)$ (see also [5, 6]). If we let \mathbf{z}_u denote the itinerary sequence of 0 under T_u , called the *zero sequence*, then Σ_u is characterized as the set of infinite sequences **a** of non-negative integers satisfying $\mathbf{z}_u \leq \sigma^k \mathbf{a}$ for all $k \geq 0$, where sequences are ordered lexicographically. In particular, the zero sequence itself must satisfy $\mathbf{z}_u \leq \sigma^k \mathbf{z}_u$ for all $k \geq 0$. Such a sequence is

The first author was partially supported by NSF grant DMS-9306430.

Received by the editors October 24, 1995.

AMS subject classification: 11J70, 58F11, 58F03.

Key words and phrases: Continued fractions, interval maps, invariant measures, symbolic dynamics.

[©] Canadian Mathematical Society, 1996.

called *admissible*. Our first goal in this paper is to prove a converse to the existence of symbolic representations, which allows us to conclude that the family of dynamical systems $(T_u, [0, 1))$ for $u \in (0, 4)$ is in one-to-one correspondence with the shift spaces (σ, Σ) where $\Sigma = \{ \mathbf{a} \in (\mathbb{N} \cup \{0\})^{\mathbb{N}} : \mathbf{z} \le \sigma^k \mathbf{a} \text{ for all } k \ge 0 \}$ for some admissible sequence \mathbf{z} . In other words, we show that for any admissible \mathbf{z} there is a number $u \in (0, 4)$ so that $\mathbf{z}_u = \mathbf{z}$. It is then easy to deduce the existence of maps T_u which possess the dynamic behavior suited to our needs (Section 3).

In [4] we focused on the basic theory of the *u*-backward continued fractions and the dynamic properties of the T_u . Of particular interest was the possibility of writing down the explicit form of an absolutely continuous invariant measure similar to the Gauss measure $\frac{1}{1+x}dx$ for $\langle \frac{1}{x} \rangle$ and Renyi's measure $\frac{1}{x}dx$ for T_1 . We were successful with two classes of maps: first for the values $u_q = 4\cos^2 \frac{\pi}{q}$, by showing that T_u is a factor of the first return map of the geodesic flow on the unit tangent bundle of a $(0; 2, q, \infty)$ hyperbolic surface and then proceeding as in [1, 2, 3, 13]. Secondly, we guessed, by analogy to the u_q cases, the invariant probability measures corresponding to the values $u = \frac{1}{N}$ for positive integers N. The maps $T_{\frac{1}{N}}$ are all combinatorially similar to the map $T_1 = \langle \frac{1}{1-x} \rangle$ studied by Renyi.

The second main result in this paper is a derivation of explicit absolutely continuous invariant probability measures for the family of maps T_u which are combinatorially similar to the maps T_{u_q} for integers $q \ge 3$ (Section 4). These maps all have the property that for some $k \ge 1$ the sequence $T_u^j(0)$, $0 \le j \le k$ is monotone increasing and $T_u^{k+1}(0) = 0$. As in the cases $u = \frac{1}{N}$ considered earlier, each q determines a countable set of values u. Only for the value $u = u_q$ is the measure infinite.

2. **Preliminaries.** In this section we collect the necessary background on backward continued fractions, their symbolic dynamics, and their invariant measures. For more details and proofs the reader is referred to [4].

2.1. T_u and backward continued fractions. For fixed u > 0, iteration of the map

$$T_u(x) = \left\langle \frac{1}{u(1-x)} \right\rangle$$

is closely connected to the action of the matrices

$$A_u = \begin{pmatrix} \sqrt{u} & -\frac{1}{\sqrt{u}} \\ \sqrt{u} & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

as Möbius transformations. If $x \in [1 - \frac{1}{uk}, 1 - \frac{1}{u(k+1)}) = A_u[k, k+1)$ then

(2)
$$T_u(x) = B^{-k} A_u^{-1}(x)$$

It follows by induction that the n^{th} iterate is of the form

(3)
$$T_u^n(x) = B^{-a_n} A_u^{-1} B^{-a_{n-1}} A_u^{-1} \cdots B^{-a_1} A_u^{-1}(x)$$

where the a_j 's are the unique integers so that $B^{-a_k}A_u^{-1}\cdots B^{-a_1}A_u^{-1}(x) \in [0, 1)$ for $k = 1, \ldots, n$.

Let $(\mathbb{N} \cup \{0\})^{\mathbb{N}}$ denote the set of all infinite sequences $\mathbf{a} = (a_1, a_2, ...)$ with values in the non-negative integers. We consider $(\mathbb{N} \cup \{0\})^{\mathbb{N}}$ as an ordered topological space. The topology is the product topology, where each factor $\mathbb{N} \cup \{0\}$ is considered discrete. The order is the lexicographical order $\mathbf{a} < \mathbf{b}$, if and only if there exists $k \ge 1$ so that $a_i = b_i$ for i < k and $a_k < b_k$. The shift operator σ on $(\mathbb{N} \cup \{0\})^{\mathbb{N}}$ is defined by $\sigma(a)_i = a_{i+1}$.

Given an infinite sequence $\mathbf{a} \in (\mathbb{N} \cup \{0\})^{\mathbb{N}}$, we define

(4)
$$[a_1, a_2, \ldots]_u = \lim_{n \to \infty} A_u B^{a_1} A_u B^{a_2} \cdots A_u B^{a_n} A_u(\infty)$$

if it exists, and we write π for the map $\pi: (\mathbb{N} \cup \{0\})^{\mathbb{N}} \to \mathbb{R}, \pi(\mathbf{a}) = [a_1, a_2, \ldots]_u$, whenever it is defined. After setting $n_i = a_i + 1$, it is easy to see that (4) is identical with the informal expansion (1). In general this expansion will not be very nice, unless some restrictions are imposed on the sequences (a_i) .

Given u > 0 the zero sequence $\mathbf{z}_u = (z_1, z_2, ...)$ may be defined by

(5)
$$\max\left(0, 1 - \frac{1}{uz_j}\right) \le T_u^j(0) < 1 - \frac{1}{u(z_j+1)}$$

in agreement with (2).

DEFINITION 1. The restricted symbol space for u > 0 is

(6)
$$\Sigma_u = \left\{ \mathbf{a} \in (\mathbb{N} \cup \{0\})^{\mathbb{N}} : \sigma^k \mathbf{a} \ge \mathbf{z}_u \text{ for all } k \ge 0 \right\}$$

The main property of the *u*-backward continued fractions is given in the following

THEOREM 1. For any 0 < u < 4, π is well-defined for all $\mathbf{a} \in \Sigma_u$ and is a continuous, order-preserving bijection from Σ_u onto [0, 1). Furthermore, the diagram

$$\begin{array}{cccc} \Sigma_u & \stackrel{\sigma}{\longrightarrow} & \Sigma_u \\ \pi \downarrow & & \downarrow \pi \\ [0,1) & \stackrel{T_u}{\longrightarrow} & [0,1) \end{array}$$

commutes.

The following lemma summarizes some important technical properties of the family of matrices A_u , sometimes written A(u). To be consistent with [4], we will also use $\phi_u(x) = A_u^{-1}(x)$. Recall the definition $u_q = 4\cos^2 \frac{\pi}{q}$, where q is an integer $q \ge 3$.

LEMMA 1 ([4]). *a*) For $u \in (u_q, u_{q+1})$ we have

$$0 < \phi_u(0) < \phi_u^2(0) < \dots < \phi_u^{q-2}(0) < 1$$
 and $\phi_u^{q-1}(0) > 1$

and $\phi_{u_q}^{q-2}(0) = 1$.

b) For $u \in (u_q, u_{q+1})$ we have

$$(\phi_{u}^{k})'(0) < 1$$
 for $k = 1, \dots, q-2$ and $(\phi_{u}^{q-1})'(0) > 1$,

whereas $(\phi_{u_q}^{q-2})'(0) = 1$.

c) For each $x \in [0, 1)$ and $k \leq q - 1, (\phi_u^k)'(x)$ is a decreasing function of u in (u_q, u_{q+1}) .

d) For $u \in (u_q, u_{q+1})$, and $k \leq q-1$, $(\phi_u^k)'(x)$ is increasing in $x \in [0, 1)$.

e) The zero sequence of u_q is periodic with period q - 2, and $\mathbf{z}_{u_q} = \overline{[0, \dots, 0, 1]}_u$ with q - 3 consecutive zeros appearing in a period.

2.2. Admissible sequences. Given $z \in (\mathbb{N} \cup \{0\})^{\mathbb{N}}$ admissible, for $n \ge 1$ define the index function of z by

(7)
$$\kappa(n) = \max\{k : 1 \le k \le n, \overline{z_1 \cdots z_k} \text{ is admissible }\}$$

For instance, if $z = \overline{01}$, then $\overline{010}$ is not admissible and therefore $\kappa(3) = 2$. In general $\kappa(2n+1) = \kappa(2n) = 2n$ for this z.

LEMMA 2. Let $\mathbf{z} = (z_1 z_2 \cdots)$ be an admissible sequence with index function κ . Then (a) κ is increasing and either $\kappa(n + 1) = \kappa(n)$ or $\kappa(n + 1) = n + 1$ for all $n \ge 1$. Moreover, $\overline{z_1 \cdots z_{\kappa(n)}} \le \mathbf{z}$.

(b) If $\kappa(l) = l, z_{l+i} = z_i$ for j = 1, ..., n - l - 1 and $z_n > z_{n-l}$, then $\kappa(n) = n$.

(c) In particular, $z_{\kappa(n)+i} = z_i$ for $i = 1, ..., n - \kappa(n)$, $\kappa(n) \ge (n+1)/2$, and $z_{n+1} \ge z_{n+1-\kappa(n)}$.

(d) If $\kappa(n+1) = n+1$ and $z_{n+1} = z_{n+1-\kappa(n)}$, then there exists an integer $r \ge 1$ so that $\overline{z_1 \cdots z_r} = \overline{z_1 \cdots z_{n+1}}$ and either $z_r > z_{r-\kappa(r-1)}$ or r = 1.

PROOF. (a) If $\kappa(n) < \kappa(n+1) \le n$, then $\overline{z_1 \cdots z_{\kappa(n+1)}}$ would be admissible in contrast to the definition of $\kappa(n)$. $\overline{z_1 \cdots z_{\kappa(n)}} \le \mathbf{z}$ follows from $\sigma^{\ell \kappa(n)} \mathbf{z} \ge \mathbf{z}$ for all $\ell \ge 1$.

(b) Consider the sequences $\eta = (\eta_i) = \overline{z_1, \dots, z_l}$ and $\omega = (\omega_i) = \overline{z_1 \cdots, z_n}$. Observe that $\eta_i = \omega_i$ for $i = 1, \dots, n-1$ and $\eta_n = z_{n-l} < z_n = \omega_n$. By hypothesis $\sigma^k \eta \ge \eta$ for all $k \ge 0$. Thus for k < n either $\sigma^k \eta = \eta$ or there is a smallest value j so that $\eta_{j+k} > \eta_j$.

If $\sigma^k \eta = \eta$ or if j > n, then $\omega_{i+k} = \eta_{i+k} = \eta_i = \omega_i$ for i = 1, ..., n - k - 1, and by the above observation $\sigma^k \omega > \omega$. If $j \le n$ then it is immediate from the observation that $\sigma^k \omega \ge \omega$. Since ω is *n*-periodic, we conclude that it is admissible and consequently that $\kappa(n) = n$.

(c) is now an immediate consequence of (b), and $z_{n+1} \ge z_{n+1-\kappa(n)}$ follows from $\sigma^{\kappa(n)}\mathbf{z} \ge \mathbf{z}$.

(d) Set $s = n + 1 - \kappa(n)$ and $\eta = \overline{z_1 \cdots z_{n+1}} = \overline{z_1 \cdots z_{\kappa(n)} z_1 \cdots z_s}$. By the admissibility of η we obtain $\sigma^{\kappa(n)} \eta = z_1 \cdots z_s \overline{z_1 \cdots z_{n+1}} \ge z_1 \cdots z_s z_{s+1} \cdots z_{n+1} \overline{z_1 \cdots z_{n+1}}$. Omitting the first *s* terms, this reads as $\eta \ge \sigma^s \eta$ and thus we obtain $\sigma^s \eta = \eta$, *i.e.*, $\overline{z_1 \cdots z_s} = \overline{z_1 \cdots z_{n+1}}$. Let *r* by the smallest integer so that $\overline{z_1 \cdots z_r} = \overline{z_1 \cdots z_{n+1}}$. Then either $z_r > z_{r-\kappa(r-1)}$ or r = 1 by the above argument. 2.3. The Perron-Frobenius operator. The density of an absolutely continuous invariant measure for T_u is an eigenfunction of eigenvalue 1 of the Perron-Frobenius operator [10, 7]

$$L_{u}f(x) = \sum_{\{y \mid T_{u}(y)=x\}} \frac{1}{|T'_{u}(y)|} f(y).$$

For 0 < u and $N = \left[\frac{1}{u}\right]$, L_u is given explicitly by the formula [4]

(8)
$$L_{u}f(x) = \sum_{n=N+1}^{\infty} \frac{1}{u(x+n)^{2}} f\left(1 - \frac{1}{u(x+n)}\right) + \chi_{[T_{u}(0),1)}(x) \frac{1}{u(x+N)^{2}} f\left(1 - \frac{1}{u(x+N)}\right).$$

We shall use this later in Section 4 to verify that a given function is in fact the density for the unique absolutely continuous invariant measure.

2.4. *Ergodicity.* The main facts regarding the ergodic theory of the maps T_u are contained in the following Proposition, which was proved in [4].

PROPOSITION 1. 1. For $u \in (0, 4)$ the maps T_u act ergodically.

2. If $u = 4 \cos^2 \frac{\pi}{q}$ with q an integer, $q \ge 3$, then there exists an infinite T_u -invariant measure on [0, 1), which is, up to a multiplicative constant, the unique invariant measure absolutely continuous with respect to Lebesgue measure.

3. If $u \in (0,4)$ and $u \neq 4\cos^2 \frac{\pi}{q}$ then there is a unique T_u -invariant probability measure on [0,1) which is absolutely continuous with respect to Lebesgue measure.

3. Main results. The main result of this paper is

THEOREM 2. Given an admissible sequence $\mathbf{z} \in (\mathbb{N} \cup \{0\})^{\mathbb{N}}$, there exists a unique $u \in (0,4]$ so that \mathbf{z} is the zero sequence of T_u .

3.1. *Existence of u*. If u > 0 is given, then $\mathbf{z}_u = (z_i)$ is defined and

(9)
$$B^{-z_n}A_u^{-1}B^{-z_{n-1}}A_u^{-1}\cdots B^{-z_1}A_u^{-1}(0) = T_u^n(0) \in [0,1)$$

for all $n \ge 1$. Therefore, given an admissible sequence $\mathbf{z} = (z_i)$, we define

(10)
$$C_n(u) = B^{-z_n} A_u^{-1} B^{-z_{n-1}} A_u^{-1} \cdots B^{-z_1} A_u^{-1}$$

(11)
$$I_n = \{u > 0 : C_k(u)(0) \in [0, 1) \text{ for } k = 1, \dots, n\}, \text{ and }$$

(12)
$$\Psi_n(u) = A_u^{-1} C_n(u)(0),$$

where $C_0(u) = \text{Id}$ and $\Psi_0(u) = A_u^{-1}(0) = 1/u$. Then the intervals I_n are nested and any $u \in \bigcap_{n=1}^{\infty} I_n$ satisfies (9). Consequently if the intersection is nonempty $\mathbf{z}_u = \mathbf{z}$.

The following lemma contains some immediate consequences of these definitions.

LEMMA 3. If $I_{n+1} \neq \emptyset$, then $\overline{I_{n+1}} \subseteq I_n$ and I_{n+1} is a half-open interval $I_{n+1} = (\alpha_{n+1}, \beta_{n+1}]$. Let $\xi_n = \Psi_n(\beta_n)$, then $\Psi_n: I_n \to [\xi_n, \infty)$ is a decreasing C^{∞} -bijection and

(13)
$$I_{n+1} = \Psi_n^{-1} ([\xi_n, \infty) \cap [z_{n+1}, z_{n+1} + 1)).$$

PROOF BY INDUCTION ON *n*. The case n = 0 is obvious, since $\Psi_0(u) = 1/u$ is decreasing and maps $I_0 = (0, 4]$ onto $[1/4, \infty)$. Then $I_1 = \{0 < u < 4 : B^{-z_1}A_u^{-1}(0) \in [0, 1)\} = \Psi_0^{-1}([z_1, z_1 + 1) \cap [\frac{1}{4}, \infty)).$

Assume that the lemma is true for k < n. Write $\Psi_n(u) = \frac{1}{u(1+z_n - \Psi_{n-1}(u))}$ and differentiate. Then

(14)
$$\Psi'_{n}(u) = \frac{-1}{u^{2}(1+z_{n}-\Psi_{n-1}(u))} + \frac{\Psi'_{n-1}(u)}{u(1+z_{n}-\Psi_{n-1}(u))^{2}}$$

Since by induction $\Psi'_{n-1}(u) < 0$ and $\Psi_{n-1}(u) \in [z_n, z_n + 1)$, we have $\Psi'_n(u) < 0$ for $u \in I_n$.

Since $C_{n+1}(u)(0) = B^{-z_{n+1}}\Psi_n(u)$, $u \in I_{n+1}$ if and only if $u \in I_n$ and $\Psi_n(u) \in [z_{n+1}, z_{n+1} + 1)$, from which (13) follows. Consequently, $I_{n+1} = (\alpha_{n+1}, \beta_{n+1}]$ is half-open, and, since $\Psi_n(\alpha_{n+1}) = z_{n+1} + 1$, $\Psi_{n+1}(\alpha_{n+1}) = A(\alpha_{n+1})^{-1}B^{-z_{n+1}}\Psi_n(\alpha_{n+1}) = A(\alpha_{n+1})^{-1}(1) = \infty$. Moreover, $\alpha_{n+1} > \alpha_n$ and thus $\overline{I_{n+1}} \subseteq I_n$.

To prove the existence of u in Theorem 2 it will suffice to show that $I_n \neq \emptyset$ for all $n \ge 1$.

LEMMA 4. If \mathbf{z} is an admissible sequence, then $I_n \neq \emptyset$ for all $n \geq 1$, and Ψ_n : $(\alpha_n, \beta_n] \rightarrow [\xi_n, \infty)$ satisfies

(15)
$$\xi_n = \Psi_{n-\kappa(n)}(\beta_{\kappa(n)}), \quad \xi_n \in [z_{n+1-\kappa(n)}, z_{n+1-\kappa(n)}+1)$$

and $\beta_{n+1} = \beta_n$ if and only if $z_{n+1} = z_{n+1-\kappa(n)}$.

PROOF BY INDUCTION ON *n*. The case n = 0 is obvious. To begin we show that if the lemma holds for *n* then $I_{n+1} \neq \emptyset$. The relevant observations in this regards are Lemma 2(c) stating that $z_{n+1} \ge z_{n+1-\kappa(n)}$ and the inductive hypothesis $\xi_n \in [z_{n+1-\kappa(n)}, z_{n+1-\kappa(n)} + 1)$. Then $[\xi_n, \infty) \cap [z_{n+1}, z_{n+1} + 1) \neq \emptyset$ and $I_{n+1} = \Psi_n^{-1} ([\xi_n, \infty) \cap [z_{n+1}, z_{n+1} + 1)) \neq \emptyset$.

The assertion regarding the β_n 's also follows easily: If $z_{n+1} > z_{n+1-\kappa(n)}$, then $[z_{n+1}, z_{n+1} + 1) \subseteq [[\xi_n] + 1, \infty)$. Consequently, $\beta_{n+1} = \Psi_n^{-1}(z_{n+1}) > \Psi_n^{-1}(\xi_n) = \beta_n$. On the other hand, as $\Psi_n(\beta_{n+1}) = \max(\xi_n, z_{n+1})$, equality $\beta_{n+1} = \beta_n = \Psi_n^{-1}(\xi_n)$ implies $[\xi_n] = z_{n+1-\kappa(n)} \leq z_{n+1} \leq \xi_n$, *i.e.*, $z_{n+1-\kappa(n)} = z_{n+1}$.

As a consequence of Lemma 2 (c) we have

(16)
$$\beta_l = \beta_{\kappa(n)} \quad \text{for } \kappa(n) \le l \le n.$$

To prove the claim on ξ_n , we distinguish three cases and use

$$\xi_{n+1} = A(\beta_{n+1})^{-1} B^{-z_{n+1}} \Psi_n(\beta_{n+1})$$

from definition (10) and (12).

CASE 1. Suppose $\kappa(n + 1) = \kappa(n) < n + 1$. Then by Lemma 2 (c) $z_{n+1} = z_{n+1-\kappa(n)}$ and $\beta_{n+1} = \beta_n = \beta_{\kappa(n)}$ from the previous observation (16). Then using the inductive hypothesis for ξ_n

(17)

$$\begin{aligned} \xi_{n+1} &= A(\beta_{\kappa(n)})^{-1} B^{-z_{n+1}} \Psi_n(\beta_n) = A(\beta_{\kappa(n)})^{-1} B^{-z_{n+1}}(\xi_n) \\ &= A(\beta_{\kappa(n)})^{-1} B^{-z_{n+1-\kappa(n)}} \Psi_{n-\kappa(n)}(\beta_{\kappa(n)}) = \Psi_{n+1-\kappa(n)}(\beta_{\kappa(n)}) \\ &= \Psi_{n+1-\kappa(n+1)}(\beta_{\kappa(n+1)}) \end{aligned}$$

Combining Lemma 2(c) and $\kappa(n) = \kappa(n+1)$ gives $\kappa(n) \ge n+2-\kappa(n)$. This then implies that $I_{\kappa(n)} \subseteq I_{n+2-\kappa(n)}$ and that $\xi_{n+1} = \Psi_{n+1-\kappa(n)}(\beta_{\kappa(n)}) \in \Psi_{n+1-\kappa(n)}(I_{n+2-\kappa(n)}) \subseteq [z_{n+2-\kappa(n+1)}, z_{n+2-\kappa(n+1)} + 1)$, completing the first case.

CASE 2. If $\kappa(n+1) = n+1$ and $z_{n+1} = z_{n+1-\kappa(n)}$, then by Lemma 2(d) $\overline{z_1 \cdots z_{n+1}} = \overline{z_1 \cdots z_r}$, where $z_r > z_{r-\kappa(r-1)}$ or r = 1 and n+1 = qr for some $q \in \mathbb{N}$. Therefore by observation (16), $\beta_j = \beta_{\kappa(j)} = \beta_r$ for all $j \ge r$

Applying the inductive hypothesis to ξ_r yields

$$C_r(\beta_r)(0) = A(\beta_r)\Psi_r(\beta_r) = A(\beta_r)\xi_r$$

= $A(\beta_r)\Psi_{r-\kappa(r)}(\beta_{\kappa(r)}) = A(\beta_r)A(\beta_r)^{-1}(0) = 0.$

In this way we obtain

$$\xi_{n+1} = A(\beta_{n+1})^{-1} C_{n+1}(\beta_{n+1})(0) = A(\beta_{\kappa(n+1)})^{-1} C_r(\beta_r)^q(0)$$

= $A(\beta_{\kappa(n+1)})^{-1}(0) = \Psi_{n+1-\kappa(n+1)}(\beta_{\kappa(n+1)})$

Writing $\xi_{n+1} = \Psi_0(\beta_{n+1}) \in [z_1, z_1 + 1) = [z_{n+2-\kappa(n+1)}, z_{n+2-\kappa(n+1)} + 1)$ completes this case.

CASE 3. Finally, if $\kappa(n+1) = n+1$, but $z_{n+1} > z_{n+1-\kappa(n)}$, then we must have $\xi_n < z_{n+1}$. Thus $\Psi_n(\beta_{n+1}) = z_{n+1}$ and

$$\begin{aligned} \xi_{n+1} &= \Psi_{n+1}(\beta_{n+1}) = A(\beta_{n+1})^{-1} B^{-z_{n+1}} \Psi_n(\beta_{n+1}) \\ &= A(\beta_{n+1})^{-1} B^{-z_{n+1}} z_{n+1} = A(\beta_{n+1})^{-1}(0) = \Psi_0(\beta_{n+1}) \in [z_1, z_1 + 1). \end{aligned}$$

This completes the proof.

3.2. Uniqueness of u. The map T_u is differentiable on [0, 1) except at 0 and at the jump points $1 - \frac{1}{nu}$ for integers $n \ge u^{-1}$. For any s > 0 and $x \in [0, 1)$ we define $(T_u^s)'(x) = \lim_{\epsilon \to 0^+} (T_u^s)'(x + \epsilon)$. This is well-defined and the chain rule holds for any decomposition of T_u^s into a product.

To derive uniqueness in Theorem 2 we will need the following lemma. This result is both a simplification and a strengthening of Proposition 2 in [4].

LEMMA 5. Let $q \ge 2$ be an integer and suppose that α , $\beta \in \mathbb{R}$ satisfy $u_q < \alpha < \beta < u_{q+1}$. Then for any $\lambda > 0$ there is an integer s > 0 so that $(T_u^s)'(x) > \lambda$ for all $u \in [\alpha, \beta]$ and $x \in [0, 1)$.

In the proof, repeated use will be made of Lemma 1.

192

PROOF. Given $x \in [0, 1)$ there is a smallest integer 0 < m < q - 1 for which $\phi_u^m(x) \ge 1$. Observe that *m* is defined by the inequality $\phi_u^{-1}(1) = 1 - \frac{1}{u} \le \phi_u^{m-1}(x) < 1$ or $\phi_u^{-m}(1) \le x < \phi_u^{-m+1}(1)$. We show that there is a number $\eta > 1$ so that $(\phi_u^m)'(x) > \eta$ for any $u \in [\alpha, \beta]$. Since $\phi_u^{q-2}(0) \in (1 - \frac{1}{u}, 1)$, there are two cases to consider. First suppose that $\phi_u^{q-2}(0) \le \phi_u^{m-1}(x) < 1$, for 0 < m < q - 1. Then the estimate is a consequence of the following chain of inequalities:

$$1 = (\phi_{u_{q+1}}^{q-1})'(0) < (\phi_{\beta}^{q-1})'(0) = \eta \le (\phi_{u}^{q-1})'(0)$$

= $(\phi_{u}^{m})'(\phi_{u}^{q-m-1}(0))(\phi_{u}^{q-m-1})'(0) < (\phi_{u}^{m})'(\phi_{u}^{q-m-1}(0)) \le (\phi_{u}^{m})'(x)$

for any x with $\phi_u^{q-m-1}(0) \le x < 1$. We have used Lemma 1(c) in the first and second steps, and (d) in the final step.

The second case is $\phi_u^{-1}(1) \le \phi_u^{m-1}(x) < \phi_u^{q-2}(0)$, where now 0 < m < q-2. Again by Lemma 1 we have

$$1 > (\phi_{u_{q+1}}^{-j+q-1})'(0) = (\phi_{u_{q+1}}^{-j})'(\phi_{u_{q+1}}^{q-1}(0))(\phi_{u_{q+1}}^{q-1})'(0) = (\phi_{u_{q+1}}^{-j})'(1)$$

for 0 < j < q-1. Set $\rho = \sup_{0 < j < q-1} (\phi_{u_{q+1}}^{-j})'(1)$. Then for 0 < m < q-2, and $\phi_u^{-m}(1) \le x < \phi_u^{m+1}(1)$,

$$(\phi_u^m)'(x) > (\phi_u^m)'(\phi_u^{-m}(1)) \quad \text{and} \\ (\phi_u^m)'(\phi_u^{-m}(1))(\phi_{u_{q+1}}^{-m})'(1) > (\phi_u^m)'(\phi_u^{-m}(1))(\phi_u^{-m})'(1) = 1.$$

Consequently $(\phi_u^m)'(x) > \frac{1}{\rho} = \eta$. We have used Lemma 1(d) to conclude that $(\phi_{u_{q+1}}^{-m})'(1) > (\phi_u^{-m})'(1)$ for 0 < m < q - 2 and $u_q < u < u_{q+1}$.

Next, by writing $T_u^s(x)$ in a particular product form, which reflects the manner in which successive iterates of x cycle across [0, 1), and applying the above, we shall complete the proof.

Given s > 0 there are well defined integers $n_1 < \cdots < n_k = s$ so that $T_u^j(x) \in [1 - \frac{1}{u}, 1)$ if and only if $j = n_i - 1$ for some $1 \le i < k$. Write $T_u^s = T_u^{m_k} \circ \cdots \circ T_u^{m_1}$ where $m_1 = n_1$, $m_0 = 0$ and $m_i = n_i - n_{i-1}$. Applying the chain rule to this composition we have

(18)
$$(T_u^s)'(x) = (T_u^{m_k})' (T_u^{n_k-1}(x)) (T_u^{m_{k-1}})' (T_u^{n_{k-1}-1}(x)) \cdots (T_u^{m_1})'(x).$$

With $T_u^{n_j-1}(x) = x_j$ we see that $T_u^i(x_j) = \phi_u^i(x_j)$ for $i = 1, ..., m_j - 1, 1 - \frac{1}{u} \le \phi_u^{m_{j-1}}(x_j) < 1$, and $\phi_u^{m_j}(x_j) > 1$.

By the initial observation m_j is the unique minimal value *m* associated with x_j for which $\phi_u^m(x_j) \ge 1$, and so

$$(T_u^{m_j})'(T_u^{n_j-1}(x)) = (\phi_u^{m_j})'(x_j) > \eta \quad \text{for } j < k.$$

Applying this to decomposition (18) yields

$$(T_u^{\mathfrak{s}})'(x) > \eta^{k-1}(T_u^{m_k})'(x_k) \ge \eta^{k-1}(T_u^{m_k})'(0).$$

With $(T_u^n)'(0)$ attaining its minimum C > 0 for $n = 1 \cdots, q - 2, u \in [\alpha, \beta]$, and $k \ge \frac{s}{q-1}$ we can finally conclude that

$$(T_u^s)'(x) \ge C\eta^{\frac{3}{q-1}-1}$$

for all $u \in [\alpha, \beta]$ and $x \in [0, 1)$. The lemma follows.

LEMMA 6. Let $q \ge 2$ be an integer and suppose that α , $\beta \in \mathbb{R}$ satisfy $u_q < \alpha < \beta < u_{q+1}$. Given M > 0 there is an N > 0 so that $|\Psi'_n(u)| > M$ for all $n \ge N$ and for all $u \in [\alpha, \beta]$.

PROOF. The modulus of (14) is

(19)
$$\begin{aligned} |\Psi'_{n}(u)| &= \frac{1}{u^{2} \left(1 + z_{n} - \Psi_{n-1}(u)\right)} + \frac{|\Psi'_{n-1}(u)|}{u \left(1 + z_{n} - \Psi_{n-1}(u)\right)^{2}} \\ &= \frac{1}{u} \Psi_{n}(u) + u \Psi_{n}^{2}(u) |\Psi'_{n-1}(u)| \ge u \Psi_{n}^{2}(u) |\Psi'_{n-1}(u)|. \end{aligned}$$

Inducting over *n* gives

$$|\Psi'_n(u)| \ge |\Psi'_0(u)| \prod_{j=1}^n u \Psi_j^2(u).$$

Since $C_j(u)(0) = T_u^j(0)$ we get

$$\Psi_j(u) = A_u^{-1} C_j(u)(0) = \frac{1}{u(1 - T_u^j(0))}$$

and so we can write

$$\begin{aligned} |\Psi_n'(u)| &\geq \left(\prod_{j=1}^n u \Psi_j^2(u)\right) \frac{1}{u^2} = \frac{1}{u} \prod_{j=0}^n u \Psi_j^2(u) \\ &= \frac{1}{u} \prod_{j=0}^n \frac{1}{u \left(1 - T_u^j(0)\right)^2} = \frac{1}{u} \prod_{j=0}^n T_u'(T_u^j(0)) = \frac{1}{u} (T_u^{n+1})'(0). \end{aligned}$$

Lemma 5 assures us that the last quantity can be made arbitrarily large.

PROOF OF THEOREM 2: UNIQUENESS. We argue by contradiction. Suppose that $\bigcap_{n=1}^{\infty} I_n$ in (13) contains points $0 < u_1 < u_2 < 4$. Then $\mathbf{z}_{u_1} = \mathbf{z}_u$ for all $u \in [u_1, u_2]$. In particular, there is an integer $q \ge 2$ and numbers $\alpha, \beta \in \mathbb{R}$ so that $u_q < \alpha < \beta < u_{q+1}$ and $\mathbf{z}_{u_1} = \mathbf{z}_u$ for all $u \in [\alpha, \beta]$. Ψ_n is a monotone map of $[\alpha, \beta]$ into [0, 1]. Choose *N* in Lemma 6 so that $|\Psi'_n(u)| > \frac{1}{\beta - \alpha}$ for all $n \ge N$ and $u \in [\alpha, \beta]$. Then Ψ_n maps $[\alpha, \beta]$ onto an interval of length greater than one, giving the desired contradiction.

REMARK 1. If $u \ge 4$, then T_u has an attractive fixed point $\xi \in [0, 1 - \frac{1}{u})$, so that $T_u^j(0) \in [0, 1 - \frac{1}{u})$ for all $j \ge 1$ and $\lim_{j\to\infty} T_u^j(0) = \xi$ [4]. Thus for $u \ge 4$ the zero sequence is always $[0, 0, \ldots]_u$.

_

194

3.3. Consequences. Next we derive some consequences from Theorem 2.

COROLLARY 1. Suppose that $\Sigma \subseteq (\mathbb{N} \cup \{0\})^{\mathbb{N}}$ is a proper shift-invariant subspace of $(\mathbb{N} \cup \{0\})^{\mathbb{N}}$ with the property that if $\mathbf{a} \leq \mathbf{b}$ and $\mathbf{a} \in \Sigma$, then $\mathbf{b} \in \Sigma$. Then there exists a continuous order preserving bijection π from Σ onto either I = [0, 1) or I = (0, 1) and a unique $u \in (0, 4]$, so that the diagram

$$\begin{array}{cccc} \Sigma & \stackrel{\sigma}{\longrightarrow} & \Sigma \\ \pi \downarrow & & \downarrow \pi \\ I & \stackrel{T_u}{\longrightarrow} & I \end{array}$$

commutes.

PROOF. We define the sequence $\mathbf{z} = (z_n)_{n \in \mathbb{N}}$ by induction. Let $z_1 = \min\{a_1 : \mathbf{a} \in \Sigma\}$. If z_1, \ldots, z_n are already defined, set $z_{n+1} = \min\{a_{n+1} : \mathbf{a} \in \Sigma, a_i = z_i \text{ for } i = 1, \ldots, n\}$. Then it is easy to see that $\{\mathbf{a} \in (\mathbb{N} \cup \{0\})^{\mathbb{N}} : \mathbf{a} > \mathbf{z}\} \subseteq \Sigma \subseteq \{\mathbf{a} \in (\mathbb{N} \cup \{0\})^{\mathbb{N}} : \mathbf{a} \ge \mathbf{z}\}$, and that Σ is one of these sets, depending on whether $\mathbf{z} \in \Sigma$ or not.

By construction \mathbf{z} is an admissible sequence and thus the zero sequence of a unique $u \in (0, 4]$. Therefore either $\Sigma = \Sigma_u$ or $\Sigma = \Sigma_u \setminus {\mathbf{z}}$. Since $\Sigma \neq (\mathbb{N} \cup {0})^{\mathbb{N}}$, u < 4. The diagram now follows from Theorem 1.

COROLLARY 2. The orbit of 0 is (eventually) periodic under T_u , if and only if \mathbf{z}_u is admissible and (eventually) periodic. Furthermore, if \mathbf{z}_u is eventually periodic, then u is an algebraic number.

PROOF. If $T_u^{jn+r}(0) = T_u^r(0)$ for some $r \ge 0$ and all $j \ge 0$, then by definition $z_{nj+r} = z_r$ and \mathbf{z}_u is eventually periodic.

On the other hand, if $\mathbf{z} \neq \mathbf{0}$ is admissible and eventually periodic, then there exists a $u \in (0, 4)$ with zero sequence $\mathbf{z}_u = \mathbf{z} = z_1 \cdots z_r \overline{z_{r+1} \cdots z_{n+r}}$. Using the diagram of Theorem 1, the periodicity $\sigma^{jn+r} \mathbf{z} = \sigma^r \mathbf{z}$ translates into

$$T_u^{jn+r}(0) = \pi \circ \sigma^{jn+r} \circ \pi^{-1}(0) = \pi \circ \sigma^{jn+r}(\mathbf{z}) = \pi \circ \sigma^r(\mathbf{z}) = T_u^r(0)$$

as desired.

r

Suppose that $\mathbf{z}_u = z_1 \cdots z_r, \overline{z_{r+1} \cdots z_{n+r}}$. Writing the identity $T_u^{n+r}(0) = T_u^r(0)$ in terms of the matrices A_u and B, as in (9), gives

(20)

$$\prod_{j=1}^{n} B^{-z_{r+1-j}} A_u^{-1}(0) = T_u^r(0) = T_u^{n+r}(0)$$
$$= \left(\prod_{j=1}^{n} B^{-z_{n+r+1-j}} A_u^{-1}\right) \left(\prod_{j=1}^{r} B^{-z_{r+1-j}} A_u^{-1}\right) (0)$$

After defining $V_u = u^{r/2} \prod_{j=1}^r B^{-z_{r+1-j}} A_u^{-1} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ and $W_u = u^{n/2} \prod_{j=1}^n B^{-z_{n+r+1-j}} A_u^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ we obtain from (20) that

(21)
$$\frac{\beta}{\delta} = V_u(0) = W_u V_u(0) = \frac{a\beta + b\delta}{c\beta + d\delta}.$$

In (21) the entries of V_u and W_u are all polynomials in u with integer coefficients. We conclude that u is a solution to the equation $\beta^2 c + \beta \delta d - \beta \delta a - b \delta^2 = 0$, which is again a nontrivial polynomial in u with integer coefficients.

3.4. Examples. The identity (20) allows us to compute u from a given (eventually) periodic admissible sequence z.

1. If $\mathbf{z} = [N, N, ...]$, then $B^{-N}A_u^{-1}(0) = 0$ gives $u = \frac{1}{N}$. 2. If $\mathbf{z} = \overline{N_1 N_2}$, where $N_1 < N_2$, then $B^{-N_2}A_u^{-1}B^{-N_1}A_u^{-1}(0) = 0$ gives $N_2(N_1 + 1)u^2 - 1$ $(N_2 + 1)u = 0$ and thus

(22)
$$u = \frac{N_2 + 1}{(N_1 + 1)N_2}.$$

3. If $z = [N_1 N_2 N_2 \cdots]$, where $N_1 < N_2$, then $T_u(0)$ is a fixed point and $B^{-N_2}A_{\mu}^{-1}B^{-N_1}A_{\mu}^{-1}(0) = B^{-N_1}A_{\mu}^{-1}(0)$. A little computation reveals that

(23)
$$u = \frac{2N_1 - N_2 - \sqrt{(2N_1 - N_2)^2 - 4(N_1 + 1)(N_1 - N_2)}}{2(N_1 + 1)(N_1 - N_2)}.$$

In particular, $[0111\cdots] = \mathbf{z}_u$ for $u = \frac{1+\sqrt{5}}{2}$.

4. Finally, if 0 has period 3 then $\mathbf{z}_{\mu} = \overline{N_1 N_2 N_3}$ with $N_1 \le N_2 < N_3$ or $N_1 < N_2 \le N_3$ and after some computation

(24)
$$u = \frac{(N_2 + 2)N_3 + N_2 + 1 + \sqrt{\{(N_2 + 2)N_3 + N_2 + 1\}^2 - 4(N_1 + 1)(N_2 + 1)N_3}}{2(N_1 + 1)(N_2 + 1)N_3}$$

Observe that in 3 and 4 respectively, the choice of a minus and a plus sign was made in the expression for *u* to assure that $N_1 \leq \frac{1}{u} < N_1 + 1$.

4. Invariant measures. Given $u \in (0, 4)$, define $\alpha_u = B^{N-1}A_uB$, where $N = \lfloor 1/u \rfloor$. Expanding the notation, we see that

$$\alpha_u(x) = N - \frac{1}{u(x+1)}.$$

THEOREM 3. Suppose $u \in (0,4)$ has the periodic zero sequence \mathbf{z}_{u} = $[\overline{N, \ldots, N, N+1}]$, where $N \ge 0$ appears in blocks of length q. Then the function

(25)
$$\rho(x) = \sum_{j=0}^{q} \frac{1}{x + \alpha_{u}^{j}(N)} \chi_{[\mathcal{T}_{u}^{j}(0), \mathcal{T}_{u}^{j+1}(0))}(x)$$

is the invariant density for T_{μ} , where we write $T_{\mu}^{q+1}(0) = 1$ for brevity.

PROOF. First we verify that with u defined by its zero sequence, we have

(26)
$$\alpha_u^q(N) = \frac{1}{u} - 1$$

This follows from Corollary 2, since $T_u^{q+1}(0) = B^{-1}(B^{-N}A_u^{-1})^{q+1}(0) = 0$ implies 0 = $(AB^{N})^{q+1}B(0) = (AB)(B^{N-1}AB)^{q}B^{N}(0) = (AB)(\alpha_{u}^{q})(N)$ and thus $\frac{1}{u} - 1 = B^{-1}A^{-1}(0) =$

 $\alpha_{u}^{q}(N)$. Also, $T_{u}^{j}(0) \in [0, 1 - \frac{1}{u(N+1)})$ for j = 1, ..., q-1 and $T_{u}^{q}(0) = 1 - \frac{1}{u(N+1)}$ imply $T_{u}^{j}(0) < T_{u}^{j+1}(0)$ for j = 0, ..., q-1. The unit interval is therefore the disjoint union of the intervals $[T_{u}^{j}(0), T_{u}^{j+1}(0)], j = 0, ..., q-1$ and $[T_{u}^{q}(0), 1) = [1 - \frac{1}{u(N+1)}, 1)$.

The argument is completed by showing that $L_u \rho = \rho$, where L_u is the Perron-Frobenius operator of T_u (8).

For n > N and $x \in [0, 1)$ we have $T_u^q(0) = 1 - \frac{1}{u(N+1)} \le 1 - \frac{1}{u(x+n)} < 1$ and consequently

$$\rho\left(1-\frac{1}{u(x+n)}\right) = \frac{1}{x+\alpha_u^q(N)} = \frac{1}{x+\frac{1}{u}-1}.$$

Suppose $x \in [T_u^j(0), T_u^{j+1}(0)), 1 \le j \le q$, then $1 - \frac{1}{u(x+N)} = T_u^{-1}(x+N) \in [T_u^{j-1}(0), T_u^j(0))$ and $\rho(1 - \frac{1}{u(x+N)}) = (1 - \frac{1}{u(x+N)} + \alpha_u^{j-1}(N))^{-1}$. Thus with $\delta(x) = \chi_{[T_u(0),1)}(x)$ we compute

$$L_{u}\rho(x) = \sum_{n=N+1}^{\infty} \frac{1}{u(x+n)^{2}} \rho\left(1 - \frac{1}{u(x+n)}\right) + \delta(x) \frac{1}{u(x+N)^{2}} \rho\left(1 - \frac{1}{u(x+N)}\right)$$

$$= \sum_{n=N+1}^{\infty} \frac{1}{u(x+n)^{2}} \frac{1}{\frac{1}{u} - \frac{1}{u(x+n)}} + \delta(x) \frac{1}{u(x+N)^{2}} \frac{1}{1 - \frac{1}{u(x+N)} + \alpha_{u}^{j-1}(N)}$$

(27)
$$= \sum_{n=N+1}^{\infty} \left(\frac{1}{x+n-1} - \frac{1}{x+n}\right) + \delta(x) \left(\frac{1}{(x+N)[u(\alpha_{u}^{j-1}(N)+1)(x+N)-1]}\right)$$

$$= \frac{1}{x+N} + \delta(x) \left(\frac{1}{x+N - \frac{1}{u(\alpha_{u}^{j-1}(N)+1)}} - \frac{1}{x+N}\right)$$

$$= \left(\frac{1}{x+N} - \delta(x) \frac{1}{x+N}\right) + \delta(x) \frac{1}{x+\alpha_{u}^{j}(N)} = \frac{1}{x+\alpha_{u}^{j}(N)},$$

This is also true for j = 0, since $\alpha_u^0(N) = N$. Thus $L_u \rho(x) = \rho(x)$ for $x \in [T_u^j(0), T_u^{j+1}(0))$ and all $j = 0, \dots, q$.

4.1. *Examples.* If $\mathbf{z} = \overline{[N, N+1]}$, then by (22) $u = \frac{N+2}{(N+1)^2}$, and the invariant density is

$$\rho(x) = \frac{1}{x+N}\chi_{[0,\frac{1}{N+2})}(x) + \frac{1}{x+N-1+\frac{1}{N+2}}\chi_{[\frac{1}{N+2},1)}(x)$$

This density has also been found by Schweiger [12].

If $\mathbf{z} = \overline{[N, N, N+1]}$, then from (24)

$$u = \frac{N^2 + 3N + 3 + \sqrt{(N^2 + 3N + 3)^2 - 4(N + 1)^3}}{2(N + 1)^3}$$

and $T_u(0) = \frac{1}{u} - N$, $T_u^2(0) = 1 - \frac{1}{u(N+1)}$. According to Theorem 3 the invariant density is

$$\rho(x) = \frac{1}{x+N} \chi_{[0,\frac{1}{u}-N)}(x) + \frac{1}{x+N-\frac{1}{u(N+1)}} \chi_{[\frac{1}{u}-N,1-\frac{1}{u(N+1)})}(x) + \frac{1}{x+\frac{1}{u}-1} \chi_{[1-\frac{1}{u(N+1)},1)}(x).$$

REMARK 2. Fix $q \ge 3$. Given $M, N \ge 0$ let u and v respectively be the unique value given by Theorem 2 with $\mathbf{z}_u = \overline{N \cdots N, N+1}$ and $\mathbf{z}_v = \overline{M \cdots MM+1}$ where M and N appear both q - 2 times in a period. Define the map $h: [0, 1) \to [0, 1)$, taking $x = [a_1a_2\cdots]_u$ to $y = h(x) = [a_1 - N + M, a_2 - N + M, \ldots]_v$. By Theorem 1 and 2 h is a well defined map satisfying

- 1. h is an increasing homeomorphism, and
- 2. $h \circ T_u = T_v \circ h$.

Thus T_u and T_v are dynamically indistinguishable. On the other hand, if we let N = 0 then the associated $u = 4 \cos^2 \frac{\pi}{q}$. For M > 0 let μ denote the unique absolutely continuous T_v -invariant probability measure given by Proposition 1. Then the pull back $h_*\mu$ is a T_u -invariant probability measure which by [14] and Proposition 1 must be singular with respect to Lebesgue measure. Thus the ergodic theory of these maps is far from identical.

One would expect that for any q > 0 and $N \neq M$ the map h is singular. See [11]. This would follow if one knew that for $N \neq M$, T_u and T_v have different entropies.

REFERENCES

- 1. R. L. Adler and L. Flatto, *Cross-section maps for geodesic flows*. In: Ergodic Theory and Dynamical Systems, Progress in Math. 2, (ed. A. Katok), Birkhäuser, Boston, 1980.
- 2. _____, The backward continued fraction map and the geodesic flow, Ergodic Theory Dynamical Systems 4(1984), 487–492.
- 3. _____, Geodesic flows, interval maps, and symbolic dynamics, Bull. Amer. Math. Soc. 25(1991), 229-334.
- 4. K. Gröchenig and A. Haas, Backward continued fractions, Hecke groups and invariant measures for transformations of the interval, Ergodic Theory Dynamical Systems, to appear.
- 5. F. Hofbauer, On the intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math. 34(1979), 213–237.
- 6. _____, The structure of piecewise monotonic transformations, Ergodic Theory Dynamical Systems 1(1981), 159–178.
- 7. W. de Melo and S. van Strien, *One-Dimensional Dynamics*, Ergebnisse d. Math. Vol. 25, Springer, Berlin, Heidelberg, 1993.
- 8. A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Hungary 8(1957), 477–493.
- 9. _____, Valòs szàmok elöàllitàsàra szölgàlò algoritmusokròl, M. T. A. Mat. Oszt. Käl. 7(1957), 265–293.
- 10. M. Rychlik, Bounded variation and invariant measures, Studia Math. 76(1983), 69-80.
- R. Salem, On some singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc. 53(1943), 427–439.
- 12. F. Schweiger, Invariant measures of generalized Renyi maps, Univ. Salzburg, 1993, preprint.
- 13. C. Series, The modular group and continued fractions, J. London Math. Soc. 31(1985), 69-80.
- 14. M. Thaler, Transformations on [0, 1] with infinite invariant measure, Israel J. Math. 46(1983), 67–96.

Department of Mathematics The University of Connecticut Storrs, Connecticut 06269-3009 U.S.A. e-mail: GROCH@MATH.UCONN.EDU e-mail: HAAS@MATH.UCONN.EDU

198